WO2010034181A1 - 胺类化合物的应用以及一种化学机械抛光液 - Google Patents

胺类化合物的应用以及一种化学机械抛光液 Download PDF

Info

Publication number
WO2010034181A1
WO2010034181A1 PCT/CN2009/001002 CN2009001002W WO2010034181A1 WO 2010034181 A1 WO2010034181 A1 WO 2010034181A1 CN 2009001002 W CN2009001002 W CN 2009001002W WO 2010034181 A1 WO2010034181 A1 WO 2010034181A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing liquid
mechanical polishing
chemical mechanical
polishing
hydrogen
Prior art date
Application number
PCT/CN2009/001002
Other languages
English (en)
French (fr)
Inventor
姚颖
宋伟红
Original Assignee
安集微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子科技(上海)有限公司 filed Critical 安集微电子科技(上海)有限公司
Publication of WO2010034181A1 publication Critical patent/WO2010034181A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • This invention relates to the use of a compound, and more particularly to the use of an amine compound.
  • the invention also relates to a chemical mechanical polishing fluid.
  • interlayer dielectric ILD
  • CMP chemical mechanical polishing
  • the CMP process uses an abrasive-containing mixture and a polishing pad to polish the surface of the integrated circuit.
  • the substrate is placed in direct contact with a rotating polishing pad and a load is applied to the back side of the substrate with a load.
  • the gasket and the table rotate while maintaining a downward force on the back of the substrate, applying abrasive and chemically active solutions (often referred to as polishing fluids or polishing slurries) to the gasket.
  • polishing fluids or polishing slurries abrasive and chemically active solutions
  • the copper polishing solution often introduces some chemicals, which contain nitrogen or oxygen atoms, and have strong complexation or chelation of metal ions, which can significantly enhance the copper metal. Polishing rate. Most of these chemicals contain a carboxyl group or an amine group, and the most common ones are glycine, diethylamine tetraacetic acid, citric acid, triethanolamine, and the like.
  • Ammoniatriacetic acid and iminoacetic acid are polyamino acids containing amino groups and are currently used mainly for metal polishing, disk polishing and surface cleaning.
  • a complexing agent of ammonia triacetic acid as a copper polishing liquid is disclosed, for example, in US 20070186484 US 20070224101, US 20080057716.
  • USPatent 6527819 The use of iminodiacetic acid in metal polishing fluids is described in US Patent 7029373. However, the use of compounds such as ammonia triacetic acid or iminoacetic acid in oxide polishing fluids is rarely mentioned in the patent.
  • the oxide dielectric includes thin thermal oxide, high density plasma oxide > borophosphosilicate glass, tetraethoxy silica (PETEOS) And carbon doped oxide or the like.
  • Polishing abrasives for oxide dielectric polishing slurries are primarily fumed silica, ceria and sol silica, but the first two abrasives tend to scratch the surface during polishing. Compared with the first two kinds of abrasives, the sol-type silica produces less surface defects during polishing, but the removal rate of the oxide dielectric is lower, and the amount of abrasive in the polishing liquid tends to be higher, the amount of abrasive used. Even as high as 30% or more. Moreover, the pH of the polishing liquid is also high, and most of the polishing liquid has a pH of 10.5 or more. Summary of invention
  • the technical problem to be solved by the present invention is to overcome the defects of high polishing abrasive content and high polishing surface defects in the chemical mechanical polishing liquid for polishing an oxide dielectric in the prior art, and provide an amine compound in preparation.
  • the use of a polishing liquid for polishing an oxide dielectric can increase the silica removal rate.
  • the present invention also provides a chemical mechanical polishing liquid containing the above compound.
  • the present invention provides a novel use of an amine compound as shown in Formula 1, which can be used for preparing a polishing liquid for a polishing oxide dielectric to achieve an effect of increasing the dielectric removal rate of an oxide. among them
  • R, . R 2 and R 3 are each hydrogen, (CH 2 ) n COOR4 or (CH 2 ) n CONH 2 , but are not hydrogen at the same time; n is
  • R4 is hydrogen, an alkali metal ion, an ammonium ion or a fluorenyl group having 1 to 4 carbon atoms.
  • the amine compound is preferably selected from the group consisting of ammonia triacetic acid, ammonia triacetate, Methyl ammonia triacetate, ethyl triacetate, propyl triacetate, butyl triacetate, iminodiacetic acid, iminodiacetic acid acetate, methyl iminodiacetic acid, ethyl iminoacetate, Isopropyl diacetate, butyl iminodiacetic acid, carbamate or ammonium imino acid; the most preferred is ammonia triacetic acid, iminodiacetic acid or carbamide.
  • the present invention also provides a chemical mechanical polishing liquid containing the above compound.
  • the chemical mechanical polishing liquid contains one or more of silica, an amine compound, a surfactant, and water, and the molecular structure of the amine compound is shown in Formula 1.
  • the amount of the amine compound is preferably from 0.1 to 3%, more preferably from 0.1% to 1%.
  • the percentage is the mass percentage.
  • the silica is preferably a sol type silica which is an aqueous solution system of monodisperse silica colloidal particles, wherein the concentration of the silica colloidal particles is preferably 20 to 50%, more preferably It is 30%.
  • the particle diameter of the silica is preferably from 30 to 120 nm.
  • the amount of silica is preferably from 10 to 30%, more preferably from 10 to 20%. The percentage is the mass percentage.
  • the surfactant is preferably a nonionic and/or amphoteric surfactant, more preferably lauroyl propyl amine oxide, dodecyl dimethyl amine oxide (OA-12), coconut oil.
  • the surfactant is preferably used in an amount of less than or equal to 0.2%, but not including 0%, more preferably 0.005 to 0.05%; and percentages are by mass.
  • a nonionic or amphoteric surfactant when used, by adjusting the kind of the surfactant, different polysilicon removal rates can be obtained, thereby achieving the purpose of adjusting the polysilicon removal rate.
  • dodecyl dimethyl betaine has a high removal rate of polysilicon
  • cocamidopropyl betaine has a low polysilicon removal rate
  • the polysilicon removal rate is different. Between the removal rates when used.
  • the water is preferably deionized water, and the water is supplemented with 100% by mass.
  • the conventionally added auxiliary in the field can be added to the polishing liquid of the present invention.
  • Reagents such as viscosity modifiers, alcohol or ether reagents, sol type silica stabilizers, fungicides, and the like.
  • the polishing liquid of the present invention preferably has a pH of from 9 to 12, more preferably from 10 to 12.
  • the polishing liquid of the present invention can be obtained by simply and uniformly mixing the above components, followed by adjustment to a suitable pH with a pH adjuster.
  • the pH adjusting agent may be selected from conventional pH adjusting agents in the art, such as potassium hydroxide and aqueous ammonia.
  • the positive progress of the present invention is as follows: (1) The present invention provides an application of an amine compound in polishing an oxide; (2) the amine compound of the present invention can enhance the polishing rate of an oxide dielectric; (3) A chemical mechanical polishing liquid containing the amine compound of the present invention, having a lower abrasive content and a higher silica removal rate; (4) a non-ionic type is used in a preferred embodiment of the invention. / or amphoteric surfactants, can obtain different polysilicon removal rate, so as to achieve the purpose of adjusting the polysilicon removal rate.
  • Figure 1 is a graph of TEOS removal rates for different amine compounds.
  • Figure 2 is a graph showing the TEOS removal rate for various amounts of amine compounds.
  • Figure 3 is a graph showing the removal rate of the polishing solution at different pH values.
  • Figure 4 is a plot of TEOS and Ploy removal rates for silicas of different particle sizes.
  • Figure 5 is a graph of TEOS removal rates for different amounts of silica.
  • Figure 6 is a graph showing the removal rates of TEOS, Si 3 N 4 and Poly for different surfactants.
  • Figure 7 is a graph showing the removal rates of TEOS and Poly for different amounts of surfactant.
  • the removal rate of silica was measured using polishing liquids 1 to 4 and comparative polishing liquid 1 (TEOS), as shown in Fig. 1. As can be seen from the figure, the polishing rate of the polishing solution containing Compound A significantly increased the TEOS polishing rate compared to Comparative Example 1 in which no compound was added.
  • TEOS comparative polishing liquid 1
  • polishing solution The formulation of the polishing solution is shown in Table 1.
  • the components are simply and uniformly mixed according to the contents listed in Table 1.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the silica removal rate was measured by polishing the liquid 3, 5 to 8 and the comparative polishing liquid 2, as shown in Fig. 2. As can be seen from the figure, the polishing rate of the polishing liquid increases as the amount of the additive increases.
  • the formulation of the polishing solution is shown in Table 2. The components are simply and uniformly mixed according to the contents listed in Table 2. The pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing The flow rate was 100 ml/min, and the polishing machine was Logitec PM5.
  • the silica and polycrystalline silicon (Poly) were polished with a polishing solution of 9 to 12 to determine the removal rates of silica and Poly, as shown in Fig. 3.
  • polishing solution The formulation of the polishing solution is shown in Table 3.
  • the components are simply and uniformly mixed according to the contents listed in Table 3.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the silica was polished with a polishing liquid 13 to 15 to determine the removal rate of silica, as shown in Fig. 4. As can be seen from the figure, the silica particle size does not have a large influence on the polishing rate, and a wide silica particle size range can be selected.
  • polishing solution The formulation of the polishing solution is shown in Table 4.
  • the components are simply and uniformly mixed according to the contents listed in Table 4.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: lower pressure 4.0 psi, polishing pad IC1000, Polishing plate rotation speed 70 rpm, polishing liquid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the silica was polished with a polishing liquid of 16 to 19 to measure the removal rate of silica, as shown in Fig. 5. As can be seen from the figure, the removal rate increases as the amount of silica increases.
  • polishing solution The formulation of the polishing solution is shown in Table 5. The components are simply and uniformly mixed according to the contents listed in Table 5. The pH is adjusted with KOH, and the remaining amount is made by deionized water. Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • Example 6 Effect of Surfactant Species on TEOS, Si 3 N 4 and Poly Removal Rate Polishing silica, Si 3 N 4 and Poly with a polishing solution of 20 to 26, measured for silica, Si 3 N 4 and Poly removal rate, as shown in Figure 6.
  • the removal rate of TEOS and Si3N4 did not change much after the introduction of the nonionic and zwitterionic surfactants compared to the polishing solution 20 without the surfactant added, but the polishing rate of poly was significantly reduced.
  • polishing solution The formulation of the polishing solution is shown in Table 6. The components are simply mixed and mixed according to the contents listed in Table 6. The pH is adjusted with KOH, and the remaining amount is made by deionized water. Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • polishing solution The formulation of the polishing solution is shown in Table 7.
  • the components are simply and uniformly mixed according to the contents listed in Table 7.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • polishing solution The square and removal rate are shown in Table 8. The components were simply and uniformly mixed according to the contents listed in Table 8, and the pH was adjusted with KOH, and the remaining amount was made with deionized water. Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

胺类化合物的应用以及一种化学机械抛光液 技术领域
本发明涉及一种化合物的应用, 尤其涉及一种胺类化合物的应用。本发 明还涉及一种化学机械抛光液。
技术背景
在集成电路的制造过程中,硅晶圆基片上往往构建了成千上万的结构单 元, 这些结构单元通过多层金属互连进一步形成功能性电路和元器件。在多 层金属互连结构中,金属导线之间填充二氧化硅或掺杂其他元素的二氧化硅 作为层间介电质 (ILD)。 随着集成电路金属互连技术的发展和布线层数的增 加, 化学机械抛光 (CMP)已经广泛应用于芯片制造过程中的表面平坦化。 这 些平坦化的芯片表面有助于多层集成电路的生产,且防止将电介层涂覆在不 平表面上引起的畸变。
CMP工艺就是使用一种含磨料的混合物和抛光垫抛光集成电路表面。 在典型的化学机械抛光方法中, 将衬底直接与旋转抛光垫接触, 用一载重物 在衬底背面施加压力。在抛光期间, 垫片和操作台旋转, 同时在衬底背面保 持向下的力, 将磨料和化学活性溶液(通常称为抛光液或抛光浆料)涂于垫 片上, 该抛光液与正在抛光的薄膜发生化学反应开始进行抛光过程。
在铜互连工艺的抛光过程中, 铜抛光液往往引入一些化学物质, 这些化 学物质中含有氮或氧原子, 对金属离子有较强的络合或螯合作用, 能够显著 提升对金属铜的抛光速率。这类化学物质中大多含有羧基或胺基, 最为常见 的为甘氨酸、 二乙胺四乙酸、 柠檬酸、 三乙醇胺等。
氨三乙酸和亚氨基乙酸为一种含有氨基的多元酸, 目前主要用于金属抛 光、 磁盘抛光和表面清洗。 如 US 20070186484 US 20070224101、 US 20080057716揭示了氨三乙酸作为铜抛光液的络合剂。 而 USPatent 6527819 和 USPatent 7029373则对亚氨基二乙酸在金属抛光液的应用进行了说明。但 氨三乙酸或亚氨基乙酸这类化合物在氧化物抛光液中的应用,很少有专利提 及。
氧化物介电质包括薄膜热氧化二氧化硅 (thin thermal oxide),高密度等离 子二氧化娃 (high density plasma oxide) > 硼憐化 玻璃 (borophosphosilicate glass), 四乙氧基二氧化硅 (PETEOS)和掺碳二氧化硅 (carbon doped oxide)等。
用于氧化物介电质抛光浆料的抛光磨料主要为气相二氧化硅、二氧化铈 和溶胶型二氧化硅, 但前两种磨料在抛光过程中容易划伤表面。与前两种磨 料相比, 溶胶型二氧化硅在抛光过程中产生的表面缺陷较少, 但对氧化物介 电质的去除速率较低, 其抛光液中磨料的用量往往较高, 磨料用量甚至高达 30%以上。而且抛光液的 pH值也较高, 绝大部分抛光液的 pH在 10.5以上。 发明概要
本发明所要解决的技术问题是克服现有技术中用于抛光氧化物介电质 的化学机械抛光液中抛光液磨料含量高、抛光表面缺陷高的缺陷, 提供了一 种胺类化合物在制备用于抛光氧化物介电质的抛光液中的应用,其能提高二 氧化硅去除速率。 本发明还提供了一种含有上述化合物的化学机械抛光液。
本发明提供了如式 1所示的胺类化合物的新应用,其能用于制备用于抛 光氧化物介电质的抛光液, 达到提高氧化物介电质去除速率的效果。 其中
R, . R2和 R3分别为氢、 (CH2)nCOOR4或 (CH2)nCONH2, 但不同时为氢; n为
0或 1 ; R4为氢、 碱金属离子、 铵离子或碳原子数 1〜4的垸基。
R2
R—— N I 式 1
—— R3 当 R,、 和 中只有任一基团为氢时, 较佳地其他两个基团相同; 当 Ri , 和 皆不为氢时, 较佳地 R4中所述的碱金属离子较佳的 为钾离子或钠离子。 所述的胺类化合物较佳地选自氨三乙酸、 氨三乙酸盐、 氨三乙酸甲酯、 氨三乙酸乙酯、 氨三乙酸丙酯、 氨三乙酸丁酯、 亚氨基二乙 酸、 亚氨基二乙酸盐、 亚氨基二乙酸甲酯、 亚氨基二乙酸乙酯、 亚氨基二乙 酸丙酯、 亚氨基二乙酸丁酯、 氨基甲酰胺或亚氨基酸铵类; 最佳的为氨三乙 酸、 亚氨基二乙酸或氨基甲酰胺。
本发明还提供了一种含有上述化合物的化学机械抛光液。所述的化学机 械抛光液含有二氧化硅、 胺类化合物中的一种或多种、表面活性剂和水, 其 中胺类化合物的分子结构式见式 1。
所述的胺类化合物的用量较佳的为 0. 1〜3%, 更佳的为 0.1%〜1%。 百分 比为质量百分比。
所述的二氧化硅较佳的为溶胶型二氧化硅,其为单分散的二氧化硅胶体 颗粒的水溶液体系,其中二氧化硅胶体颗粒的浓度较佳的为 20〜50%, 更佳 的为 30%。 所述的二氧化硅的粒径较佳的为 30〜120nm。 二氧化硅的用量较 佳的为 10〜30%, 更佳的用量为 10〜20%。 百分比为质量百分比。
所述的表面活性剂较佳的为非离子型和 /或两性型表面活性剂, 更佳的 为月桂酰基丙基氧化胺、十二垸基二甲基氧化胺(OA-12)、椰油酰胺基丙基 甜菜碱(CAB-30)、 吐温 20 (Tween 20)、 十二垸基二甲基甜菜碱(BS-12)、 椰油酰胺丙基甜菜碱 (CAB-35 )和椰油脂肪酸二乙醇酰胺 (6501 ) 中的一 种或多种。所述的表面活性剂用量较佳的为小于或等于 0.2%,但不包括 0%, 更佳的为 0.005〜0.05%; 百分比为质量百分比。
使用非离子型或两性型表面活性剂时, 通过调整表面活性剂的种类, 能 够得到不同的多晶硅去除速率, 从而实现调节多晶硅去除速率的目的。 如, 十二垸基二甲基甜菜碱对多晶硅的去除速率很大,而椰油酰胺丙基甜菜碱的 多晶硅去除速率低, 同时使用这两种表面活性剂, 得到的多晶硅去除速率介 于单独使用时的去除速率之间。
水较佳的为去离子水, 用水补足质量百分比 100%。
根据工艺实际需要,可向本发明的抛光液中添加本领域常规添加的辅助 性试剂, 如粘度调节剂、 醇类或醚类试剂、 溶胶型二氧化硅稳定剂、 杀菌剂 等。
本发明所述的抛光液的 pH值较佳的为 9〜12, 更佳的为 10〜12。 本发明的抛光液由上述成分简单均匀混合, 之后采用 pH调节剂调节至 合适 pH值即可制得。 pH调节剂可选用本领域常规 pH调节剂, 如氢氧化钾 和氨水等。
本发明所有试剂均市售可得。
本发明的积极进步效果在于: (1 )本发明提供了一种胺类化合物在抛光 氧化物中的应用; (2)本发明所述的胺类化合物能够提升氧化物介电质的抛 光速率; (3 )含有本发明所述的胺类化合物的化学机械抛光液, 具有较低的 磨料含量、较高的二氧化硅去除速率; (4)本发明优选的实施例中使用了非 离子型和 /或两性型表面活性剂,能够得到不同的多晶硅去除速率,从而实现 调节多晶硅去除速率的目的。 附图说明
图 1为不同胺类化合物的 TEOS去除速率图。
图 2为不同用量的胺类化合物的 TEOS去除速率图。
图 3为不同 pH值的抛光液的去除速率图。
图 4为不同粒径的二氧化硅的 TEOS和 Ploy去除速率图。
图 5为不同用量的二氧化硅的 TEOS去除速率图。
图 6为不同表面活性剂的 TEOS、 Si3N4和 Poly的去除速率图。
图 7为不同用量的表面活性剂的 TEOS和 Poly的去除速率图。
发明内容
下面用实施例来进一步说明本发明, 但本发明并不受其限制。 百杀得上海三博生化有限公司
月桂酰基丙基氧化胺江苏飞翔化工有限公司
CAB-30上海圣轩生物化工有限公司
CAB-35上海圣轩生物化工有限公司
Tween 20江苏江阴华元化工有限公司
BS-12江苏江阴华元化工有限公司
6501 上海圣轩生物化工有限公司
OA- 12江苏飞翔化工有限公司
实施例 1 胺类化合物对 TEOS抛光速率的影响
用抛光液 1〜4和对比抛光液 1抛光二氧化硅(TEOS), 测定二氧化硅 的去除速率, 如图 1。 由图可见, 与没有添加化合物的对比 1相比, 含有化 合物 A的抛光液对 TEOS的抛光速率明显增加。
抛光液配方见表 1, 将各组分按表 1所列含量简单均匀混合, 用 KOH 调节 pH, 去离子水补足余量。 抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 1
Figure imgf000007_0001
实施例 2 胺类化合物的用量对 TEOS去除速率的影响
用抛光液 3、 5〜8和对比抛光液 2抛光二氧化硅, 测定二氧化硅的去除 速率, 如图 2。 由图可见, 抛光液抛光速率随增助剂用量的增加而增加。 抛光液配方见表 2, 将各组分按表 2所列含量简单均匀混合, 用 KOH调节 pH, 去离子水补足余量。
抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光 液流速 100ml/min, 抛光机台 Logitec PM5。
表 2
Figure imgf000008_0001
实施例 3 抛光液的 pH值对抛光速率的影响
用抛光液 9〜12抛光二氧化硅和多晶硅 (Poly), 测定其对二氧化硅和 Poly的去除速率, 如图 3。 由图可见, 高 pH值有利于得到高的二氧化硅抛 光速率, 但在 pH=10后变化不大, 较佳的为 10〜12。
抛光液配方见表 3, 将各组分按表 3所列含量简单均匀混合, 用 KOH 调节 pH, 去离子水补足余量。 抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 3
Figure imgf000008_0002
实施例 4 二氧化硅粒径对 TEOS去除速率的影响
用抛光液 13〜15抛光二氧化硅,测定其对二氧化硅的去除速率,如图 4。 由图可见, 二氧化硅粒径对抛光速率没有太大影响, 可以选择较宽的二氧化 硅粒径范围。
抛光液配方见表 4, 将各组分按表 4所列含量简单均匀混合, 用 KOH 调节 pH, 去离子水补足余量。 抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 4
Figure imgf000009_0002
实施例 5 二氧化硅用量对 TEOS去除速率的影响
用抛光液 16〜19抛光二氧化硅, 测定二氧化硅的去除速率, 如图 5。 由 图可见, 去除速率随二氧化硅用量的增加而增加。
抛光液配方见表 5, 将各组分按表 5所列含量简单均匀混合, 用 KOH 调节 pH, 去离子水补足余量。 抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
Figure imgf000009_0001
Figure imgf000009_0003
实施例 6表面活性剂种类对 TEOS、 Si3N4和 Poly去除速率的影响 用抛光液 20〜26抛光二氧化硅、 Si3N4和 Poly,测定其对二氧化硅、 Si3N4 和 Poly 的去除速率, 如图 6。 由图可见, 与没有添加表面活性剂的抛光液 20相比, 引入非离子和两性离子表面活性剂后, TEOS和 Si3N4的去除速率 变化不大, 但 poly的抛光速率显著降低。
抛光液配方见表 6, 将各组分按表 6所列含量简单均勾混合, 用 KOH 调节 pH, 去离子水补足余量。 抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 6
抛 二氧化硅 胺类化合物 表面活性剂 pH 去除速率 (A/min) 光 用量 粒径 用量 用量
种类 种类 TEOS Si3N4 Poly 液 (%) (nm) (%) (%)
亚氨基
20 15 120 2 1 1 12 2021 504 4522 二乙酸
亚氨基 月桂酰基丙
21 15 120 2 0.04 12 1837 484 839 二乙酸 基氧化胺
亚氨基
22 15 120 2 CAB-30 0.04 12 2015 544 959 二乙酸
亚氨基
23 15 120 2 Tween 20 0.04 12 1930 463 613 亚氨基
24 15 120 2 BS-12 0.04 12 1622 527 1055 亚氨基
25 15 120 2 6501 0.04 12 1870 477 974 二乙酸
亚氨基
26 15 120 2 CAB-35 0.04 12 1834 512 350 实施例 7表面活性剂用量对 TEOS和 Poly去除速率的影响
用抛光液 3、 27〜30抛光二氧化硅和 Poly, 测定其对二氧化硅和 Poly 的去除速率, 如图 7。 由图可见, 引入表面活性剂后, TEOS去除速率略有 降低, 但 poly的去除速率显著降低, 但当用量高于 500ppm后, 去除速率无 明显变化。
抛光液配方见表 7, 将各组分按表 7所列含量简单均匀混合, 用 KOH 调节 pH, 去离子水补足余量。 抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 7
Figure imgf000010_0001
实施例 8
用抛光液 31抛光二氧化硅, 测定其对二氧化硅的去除速率。 抛光液配 方和去除速率见表 8。 将各组分按表 8所列含量简单均匀混合, 用 KOH调 节 pH, 去离子水补足余量。 抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 8
Figure imgf000011_0001

Claims

权利要求
1、 一种如式 1所示的胺类化合物在制备用于抛光氧化物介电质的抛光 液中的应用;
R2
Ri—— N I 式 1
—— R3
其中, 、 R2和 R3分别为氢、 (CH2)nCOOR4或 (CH2)nCONH2, 但不同时为 氢; n为 0或 1 ; 为氢、 碱金属离子、 铵离子或碳原子数 1〜4的垸基。
2、如权利要求 1所述的应用, 其特征在于: 当所述的 、 和 中只 有任一基团为氢时, 其他两个基团相同; 当 、 R2和 R3皆不为氢时, R]— R-2=R3 °
3、 如权利要求 1所述的应用, 其特征在于: 所述的碱金属离子为钾离 子或钠离子。
4、 如权利要求 1所述的应用, 其特征在于: 所述的胺类化合物为氨三 乙酸、 氨三乙酸盐、 氨三乙酸甲酯、 氨三乙酸乙酯、 氨三乙酸丙酯、 氨三乙 酸丁酯、 亚氨基二乙酸、 亚氨基二乙酸盐、 亚氨基二乙酸甲酯、 亚氨基二乙 酸乙酯、 亚氨基二乙酸丙酯、 亚氨基二乙酸丁酯、 氨基甲酰胺或亚氨基酸铵 类。
5、 一种化学机械抛光液, 其特征在于: 其含有如式 1所示的胺类化合 物中的一种或多种、 二氧化硅、 表面活性剂和水;
R2
—— N I 式 1
—— R3
其中, R!、 R2和 R3分别为氢、 (CH2)nCOOR4或 (CH2)nCONH2, 但不同时为 氢; n为 0或 1 ; R4为氢、 碱金属离子、 铵离子或碳原子数 1〜4的垸基。
6、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的胺类化 合物中, 当所述的 R,、 R2和 中只有任一基团为氢时,其他两个基团相同; 当 R,、 R2和 皆不为氢时,
7、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的胺类化 合物中, 所述的碱金属离子为钾离子或钠离子。
8、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的胺类化 合物为氨三乙酸、 氨三乙酸盐、 氨三乙酸甲酯、 氨三乙酸乙酯、 氨三乙酸丙 酯、 氨三乙酸丁酯、 亚氨基二乙酸、 亚氨基二乙酸盐、 亚氨基二乙酸甲酯、 亚氨基二乙酸乙酯、 亚氨基二乙酸丙酯、 亚氨基二乙酸丁酯、 氨基甲酰胺或 亚氨基酸铵类。
9、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的胺类化 合物的含量为质量百分比 0. 1~3%。
10、 如权利要求 9所述的化学机械抛光液, 其特征在于: 所述的胺类化 合物的含量为质量百分比 0.1%~1%。
11、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的二氧化 硅的含量为质量百分比 10〜30%。
12、 如权利要求 11所述的化学机械抛光液, 其特征在于: 所述的二氧 化硅的含量为质量百分比 10〜20%。
13、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的二氧化 硅的粒径为 30〜120nm。
14、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的二氧化 硅为溶胶型二氧化硅;所述的溶胶型二氧化硅中二氧化硅胶体颗粒的浓度为 质量百分比 20〜50%。
15、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的表面活 性剂的用量为小于或等于 0.2%, 但不包括 0%; 百分比为质量百分比。
16、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的表面活 性剂为非离子型和 /或两性型表面活性剂。
17、 如权利要求 16所述的化学机械抛光液, 其特征在于: 所述的表面 活性剂为月桂酰基丙基氧化胺、十二烷基二甲基氧化胺、椰油酰胺基丙基甜 菜碱、吐温 20、十二垸基二甲基甜菜碱、椰油酰胺丙基甜菜碱和椰油脂肪酸 二乙醇酰胺中的一种或多种。
18、 如权利要求 5所述的化学机械抛光液, 其特征在于: 所述的化学机械抛 光液的 pH值为 9〜12。
PCT/CN2009/001002 2008-09-05 2009-09-04 胺类化合物的应用以及一种化学机械抛光液 WO2010034181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810042567.X 2008-09-05
CN200810042567A CN101665661A (zh) 2008-09-05 2008-09-05 胺类化合物的应用以及一种化学机械抛光液

Publications (1)

Publication Number Publication Date
WO2010034181A1 true WO2010034181A1 (zh) 2010-04-01

Family

ID=41802448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001002 WO2010034181A1 (zh) 2008-09-05 2009-09-04 胺类化合物的应用以及一种化学机械抛光液

Country Status (2)

Country Link
CN (1) CN101665661A (zh)
WO (1) WO2010034181A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462503A (zh) * 2015-12-02 2016-04-06 苏州捷德瑞精密机械有限公司 一种纳米级不锈钢精密机械抛光液及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220083728A (ko) 2019-10-15 2022-06-20 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. 연마 조성물 및 이의 사용 방법
CN110578165B (zh) * 2019-11-01 2021-01-08 灵宝华鑫铜箔有限责任公司 一种钛质阴极辊用电化学抛光液及利用该抛光液抛光阴极辊的方法
CN113789126B (zh) * 2021-08-17 2022-07-12 万华化学集团电子材料有限公司 一种硅片化学机械抛光液及其应用
CN113861848B (zh) * 2021-11-08 2022-07-12 万华化学集团电子材料有限公司 一种再生晶圆化学机械抛光液及其制备方法
CN115785819A (zh) * 2022-11-11 2023-03-14 万华化学集团电子材料有限公司 一种硅片抛光组合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024842A1 (en) * 1998-10-23 2000-05-04 Arch Specialty Chemicals, Inc. A chemical mechanical polishing slurry system having an activator solution
US20020081865A1 (en) * 2000-05-01 2002-06-27 Wojtczak William A. Polishing slurries for copper and associated materials
US6468913B1 (en) * 2000-07-08 2002-10-22 Arch Specialty Chemicals, Inc. Ready-to-use stable chemical-mechanical polishing slurries
CN1422922A (zh) * 2001-11-28 2003-06-11 不二见株式会社 磁盘基材的抛光组合物和使用该组合物的抛光方法
CN101044600A (zh) * 2004-10-28 2007-09-26 卡伯特微电子公司 包含表面活性剂的化学机械抛光(cmp)组合物
US20080105652A1 (en) * 2006-11-02 2008-05-08 Cabot Microelectronics Corporation CMP of copper/ruthenium/tantalum substrates
WO2009032065A1 (en) * 2007-08-28 2009-03-12 Cabot Microelectronics Corporation Copper cmp composition containing ionic polyelectrolyte and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024842A1 (en) * 1998-10-23 2000-05-04 Arch Specialty Chemicals, Inc. A chemical mechanical polishing slurry system having an activator solution
US20020081865A1 (en) * 2000-05-01 2002-06-27 Wojtczak William A. Polishing slurries for copper and associated materials
US6527819B2 (en) * 2000-05-01 2003-03-04 Advanced Technology Materials, Inc. Polishing slurries for copper and associated materials
US6468913B1 (en) * 2000-07-08 2002-10-22 Arch Specialty Chemicals, Inc. Ready-to-use stable chemical-mechanical polishing slurries
CN1422922A (zh) * 2001-11-28 2003-06-11 不二见株式会社 磁盘基材的抛光组合物和使用该组合物的抛光方法
CN101044600A (zh) * 2004-10-28 2007-09-26 卡伯特微电子公司 包含表面活性剂的化学机械抛光(cmp)组合物
US20080105652A1 (en) * 2006-11-02 2008-05-08 Cabot Microelectronics Corporation CMP of copper/ruthenium/tantalum substrates
WO2009032065A1 (en) * 2007-08-28 2009-03-12 Cabot Microelectronics Corporation Copper cmp composition containing ionic polyelectrolyte and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462503A (zh) * 2015-12-02 2016-04-06 苏州捷德瑞精密机械有限公司 一种纳米级不锈钢精密机械抛光液及其制备方法

Also Published As

Publication number Publication date
CN101665661A (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
JP6762390B2 (ja) 研磨用組成物、研磨方法および基板の製造方法
JP5915843B2 (ja) 化学機械研磨用水系分散体の製造方法
JP5385141B2 (ja) 水に可溶性酸化剤を使用する炭化ケイ素の研磨方法
WO2010012159A1 (zh) 一种化学机械抛光液
JP6422325B2 (ja) 半導体基板用研磨液組成物
TW201915120A (zh) 包含帶電磨料之研磨組成物
JP2008512871A (ja) メタレート変性シリカ粒子を含有する水性スラリー
IL182536A (en) Composition for chemical-mechanical polishing containing active material - interior
JP6790790B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2008025209A1 (fr) Pâte de polissage pour matériau faiblement diélectrique
TWI635168B (zh) Chemical mechanical polishing slurry
KR20120001766A (ko) 반도체 기판용 연마액 및 반도체 기판의 연마 방법
WO2017114309A1 (zh) 一种化学机械抛光液及其应用
WO2010034181A1 (zh) 胺类化合物的应用以及一种化学机械抛光液
WO2014089907A1 (zh) 一种化学机械抛光液的应用
CN114106706B (zh) 具有压力缓冲作用的铜互连抛光液和其磨料的制备方法
CN102115636A (zh) 一种化学机械抛光液
WO2010025623A1 (zh) 一种化学机械抛光液
TW201435072A (zh) 金屬用研磨液及研磨方法
JP7015663B2 (ja) 研磨用組成物及びその製造方法並びに研磨方法
WO2012071780A1 (zh) 一种化学机械抛光浆料
TWI625372B (zh) 低介電基板之研磨方法
TW202124615A (zh) 化學機械拋光液
JP7267893B2 (ja) 研磨用組成物
TWI760252B (zh) 研磨粒的製造方法、化學機械研磨用組成物及化學機械研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815551

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815551

Country of ref document: EP

Kind code of ref document: A1