WO2010020323A1 - Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs - Google Patents

Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs Download PDF

Info

Publication number
WO2010020323A1
WO2010020323A1 PCT/EP2009/005349 EP2009005349W WO2010020323A1 WO 2010020323 A1 WO2010020323 A1 WO 2010020323A1 EP 2009005349 W EP2009005349 W EP 2009005349W WO 2010020323 A1 WO2010020323 A1 WO 2010020323A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
turbine
gas turbocharger
combustion engine
spiral channel
Prior art date
Application number
PCT/EP2009/005349
Other languages
English (en)
French (fr)
Inventor
Siegfried Sumser
Stephan KRÄTSCHMER
Markus Müller
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to JP2011523318A priority Critical patent/JP5259822B2/ja
Publication of WO2010020323A1 publication Critical patent/WO2010020323A1/de
Priority to US12/927,866 priority patent/US8522547B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust gas turbocharger of the type specified in the preamble of claim 1 for an internal combustion engine of a motor vehicle.
  • the invention further relates to a motor vehicle with an internal combustion engine and an exhaust gas turbocharger.
  • exhaust gas turbochargers A further influence on the performance of exhaust gas turbochargers results from downstream of the turbine in the exhaust system arranged exhaust aftertreatment systems such as soot filters, catalysts or SCR systems. These exhaust aftertreatment systems lead to an increase in pressure at an exhaust gas outlet of the exhaust gas turbocharger. This in turn causes a reduction of a turbocharger pressure gradient describing the power of the exhaust gas turbocharger, wherein the turbine pressure gradient can be determined as the quotient of a pressure upstream of the turbine wheel or an exhaust gas inlet of the turbine housing and a pressure downstream of the turbine wheel or an exhaust gas outlet of the turbine housing. For this reason too, the turbine size must again be designed to smaller values and thus lower efficiencies in order to be able to satisfy the power requirement of the compressor of the exhaust gas turbocharger.
  • a certain improvement in this case offer from the prior art known exhaust gas turbocharger whose turbine housing comprise two independently souströmbare spiral channels, which are each coupled to different exhaust pipes of an exhaust tract of the internal combustion engine and having free annular nozzles.
  • the exhaust pipes are in turn assigned to different cylinders or cylinder groups of the internal combustion engine.
  • one of the spiral channels serves as a so-called lambda spiral, which ensures its exhaust gas capacity for the required air-fuel ratio of the internal combustion engine.
  • the other spiral channel serves as a so-called exhaust gas recirculation (EGR) spiral and is responsible for the exhaust gas recirculation capability of the exhaust gas turbocharger.
  • EGR exhaust gas recirculation
  • exhaust gas turbochargers which are usually defined by the nominal point, the gas exchange side and the consumption side of the internal combustion engine, but also by exhaust gas turbocharger with two spiral channels, in particular the lower load and speed range of internal combustion engines are often not optimally operated.
  • flow cross-sectional areas of the spiral channels are generally chosen as small as possible in order to be able to generate the required exhaust gas flow rates.
  • Object of the present invention is therefore to provide an exhaust gas turbocharger of the type mentioned, which also allows under the highly transient requirements of internal combustion engines or motor vehicles efficiency improvement at the lowest possible manufacturing cost.
  • a ⁇ denotes a narrowest flow cross-sectional area of the first spiral passage
  • AA G R denotes a narrowest flow cross-sectional area of the second spiral passage
  • a R denotes a wheel outlet cross-sectional area of the turbine wheel passage.
  • Speed conversion in the spiral channels referred to is thus known in turbines known from the prior art below the value 0.4.
  • a different gradient distribution of the total gradient of the turbine can be achieved, wherein reaction rates are achieved which are greater than 0.5. Since the sum of the flow cross-sectional areas A ⁇ , A AGR is comparatively larger compared to the prior art, only small demands are made in terms of manufacturing limits, so that low-cost sand casting or the like can be used for the manufacture of the turbine housing.
  • the area ratio Q 9 of the turbine is at least 0.45 and preferably at least 0.5.
  • the multi-flow turbine has it a degree of reaction that is unusually above the value of 0.45 or 0.5 at the design point.
  • an area ratio Qx between the narrowest flow cross-sectional area A ⁇ of the first spiral channel and the wheel outlet cross-sectional area A R of the turbine wheel channel is at least 0.35.
  • the first spiral channel is arranged as a so-called lambda spiral in the exhaust tract, a correspondingly improved efficiency can be achieved, since no Abgasschreibschreibmassenbate occur.
  • the area ratio Qx between the narrowest flow cross-sectional area A ⁇ of the first spiral channel and the Radaustrittsqueritess constitutional A R of the turbine wheel is at least 0.4, preferably at least 0.5 and in particular at least 0.6.
  • the first spiral channel can be operated according to an optimal reaction turbine with correspondingly high degrees of reaction, whereby particularly high turbine efficiencies can be achieved and the overall behavior of the exhaust gas turbocharger in a wide operating ranges in terms of air delivery is particularly advantageous.
  • an area ratio Q AGR between the narrowest flow cross-sectional area A AGR of the second spiral channel and the wheel outlet cross-sectional area A R of the turbine wheel channel is at most 0.3.
  • the second spiral channel is designed as a so-called AGR spiral, the second spiral channel can thereby operate according to a pulse turbine with reaction degrees below 0.3.
  • the respective area ratio Q AGR is preferably selected as a function of the engine's EGR requirement.
  • the area ratio Q AGR between the narrowest flow cross-sectional area A AGR of the second spiral channel and the wheel outlet cross-sectional area A R of the turbine wheel channel is at most 0.28, preferably at most 0.25 and in particular at most 0.1.
  • particularly strict emission limit specifications can be taken into account and the emission behavior of the associated internal combustion engine can be correspondingly improved.
  • the narrowest flow cross-sectional area A ⁇ of the first spiral channel and / or the narrowest flow cross-sectional area A A G R of the second spiral channel are provided in the mouth region of the first and the second spiral channel in the turbine wheel. In this way, the narrowest flow cross-sectional area A ⁇ or A EGR acts advantageously as an annular nozzle for generating high exhaust gas flow rates.
  • the first and / or the second spiral channel comprises at least two fluidically separated spiral segment channels, which can be coupled with different exhaust pipes of the internal combustion engine.
  • an exhaust gas turbocharger is provided with an at least three-flow turbine, the spiral segment channels allow a shock charging operation with a more effective use of the expansion work of individual cylinders or groups of cylinders.
  • the flow cross-sectional area A ⁇ or A AGR denotes the sum of the flow cross-sectional areas of the at least two spiral segment channels.
  • the number of spiral segment channels can be adapted to the number of cylinders or cylinder groups. It can also be provided that both spiral channels have two or more spiral segment channels. Alternatively or additionally, it can be provided that the turbine of the exhaust gas turbocharger comprises three or more spiral channels.
  • the turbine comprises a guide grid device.
  • the guide grid device is designed to be movable, whereby the inflow of the exhaust gas can be advantageously adapted load or throughput dependent.
  • the guide grid device can be mounted, for example, translationally and / or rotationally movably in the turbine housing.
  • the narrowest flow cross-sectional area A ⁇ of the first spiral channel and / or the narrowest flow cross-sectional area A AGR of the second spiral channel are formed by the guide grid device and / or adjustable by means of the guide grid device.
  • the guide grid device is a particularly high given geometric variability of the turbine and a correspondingly optimal adjustability of the flow guidance.
  • a further increase in the efficiency can be achieved thereby, since the respective spiral channel can be provided upstream of the guide grid device with an enlarged cross-sectional area.
  • a further aspect of the invention relates to a motor vehicle having an internal combustion engine, which comprises at least two cylinders or two cylinder groups which are connected to at least two exhaust pipes of an exhaust tract, and to an exhaust gas turbocharger, which has a compressor arranged in an intake tract of the internal combustion engine and one in the exhaust gas tract the turbine arranged turbine includes.
  • the turbine in turn comprises a turbine casing having at least a first spiral duct coupled to a first exhaust duct, a second spiral duct coupled to a second exhaust duct, and a turbine wheel disposed within a turbine wheel duct of the turbine casing.
  • the turbine wheel can be acted upon to drive a compressor shaft of the compressor, which can be guided in a rotationally fixed manner via a bearing shaft, to the exhaust gas of the internal combustion engine that can be guided through the at least two spiral channels.
  • an improvement in efficiency is also made possible under highly transient requirements of the internal combustion engine or the motor vehicle with the lowest possible manufacturing costs according to the invention in that the exhaust gas turbocharger is designed according to one of the preceding embodiments. The resulting benefits can be found in the corresponding descriptions.
  • Fig. 1 is a schematic diagram of an internal combustion engine of a motor vehicle, which is provided with an exhaust gas turbocharger according to one embodiment
  • FIG. 2 is a schematic side sectional view of a turbine of the exhaust gas turbocharger shown in FIG. 1; FIG. and
  • Fig. 3 is a schematic turbine map of the turbine of the exhaust gas turbocharger.
  • 1 shows a schematic diagram of an internal combustion engine 10 of a motor vehicle (not shown), which is provided with an exhaust-gas turbocharger 12 according to one exemplary embodiment.
  • the internal combustion engine 10 in this case comprises a known intake tract 14 with an air filter 16. Downstream of the air filter 16, a compressor 18 of the exhaust gas turbocharger 12 is arranged.
  • the compressor 18 has a compressor wheel 20, which is non-rotatably connected via a bearing shaft 22 to a turbine wheel 24 of a turbine 26 of the exhaust gas turbocharger 12, which is explained in more detail below. Downstream of the compressor wheel 20, the intake tract 14 has a charge air cooler 28.
  • the internal combustion engine 10 is designed in the present embodiment as a diesel engine and comprises six cylinders 30a-f, which are divided into two groups of cylinders 32a, 32b, so that the individual cylinders 30a-f do not influence each other during the charge exchange.
  • the cylinder groups 32a, 32b are connected to the turbine 26 of the exhaust gas turbocharger via two separate exhaust gas lines 34a, 34b of an exhaust gas tract 36 of the internal combustion engine 10.
  • an exhaust gas recirculation device 38 is provided with a valve 40 and an exhaust gas cooler 42, by means of which exhaust gas from the exhaust pipe 34a can be fed into the intake 14.
  • a bypass line 44 is provided with a blow-off valve 46, through which exhaust gas is to be routed past the turbine 26 as required.
  • the bypass line 44 and the blow-off valve 46 are integrated in a turbine housing 50 of the turbine 26.
  • an exhaust aftertreatment system 48 is finally arranged in the exhaust tract 36, by means of which an exhaust gas purification is carried out.
  • the turbine 26 of the exhaust gas turbocharger 12 will be explained below in conjunction with FIG. 2, which shows a schematic sectional side view of the turbine 26.
  • the turbine housing 50 of the turbine 26, which is designed as a low-cost sand casting, comprises a first spiral channel 52a coupled to the first exhaust pipe 34a, a second spiral channel 52b coupled to the second exhaust pipe 34b, and the turbine wheel 24 disposed within a turbine wheel 54 the bearing shaft 22 is connected to the compressor wheel 20.
  • the spiral channel 52a is arranged on the outlet side and formed as a full spiral with a wrap angle of approximately 360 °, whereas the spiral channel 52b arranged on the bearing side and is formed as a partial spiral with a lying at 360 ° wrap.
  • both spiral channels 52a, 52b may be formed as a full and / or as a partial spiral. It can likewise be provided that at least one spiral channel 52a or 52b is designed as a segment spiral with two or more segment channels distributed over the circumference of the turbine housing 50 is that are coupled with a correspondingly adapted number of exhaust pipes 34.
  • the spiral channel 52a is designed as a so-called lambda spiral, which ensures its exhaust gas capacity for the required air-fuel ratio of the internal combustion engine 10.
  • the second spiral channel 52b serves as a so-called exhaust gas recirculation (EGR) spiral and is responsible for the exhaust gas recirculation capability of the exhaust gas turbocharger 12 and the turbine 26, respectively.
  • EGR exhaust gas recirculation
  • an area ratio Q 9 of the turbine 26 in the present embodiment corresponds to the formula
  • a ⁇ denotes a narrowest flow cross-sectional area of the first spiral passage 52a
  • a AGR denotes a narrowest flow cross-sectional area of the second spiral passage 52b
  • a R denotes a wheel outlet cross-sectional area of the turbine wheel passage 54 in the exit area of the turbine wheel 24.
  • the area ratio Q ⁇ > 0.5 is selected.
  • the area ratio Q AGR is selected as a function of the EGR requirement of the internal combustion engine 10 and can therefore also be selected below 0.25, optionally below 0.1.
  • the flow cross-sectional areas A ⁇ l A AGR by a Leitgitter worn are formed, whereby a further increase of the turbine efficiency can be achieved, since in this case the spiral channels 52a, 52b upstream of the respective guide gratings be formed with enlarged cross-sectional areas can.
  • FIG. 3 shows a schematic turbine characteristic diagram of the turbine 26 of the exhaust-gas turbocharger 12.
  • the throughput lines K 1-3 are shown for different speeds.
  • the throughput line K 1 shows the throughput behavior with open spiral channels 52a, 52b.
  • the throughput curve K 2 shows the throughput behavior in open spiral channel 52a, and closed spiral channel 52b, the throughput line K 3 finally shows the throughput behavior in open spiral channel 52b, and closed spiral channel 52a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Die Erfindung betrifft einen Abgasturbolader (12) für eine Brennkraftmaschine (10) eines Kraftfahrzeugs, mit einer Turbine (26), welche ein Turbinengehäuse (50) mit wenigstens einem ersten und einem zweiten Spiralkanal (52a, 52b) umfasst, die jeweils mit wenigstens einer von mehreren Abgasleitungen (34a, 34b) eines Abgastrakts (36) der Brennkraftmaschine (10) koppelbar und unabhängig voneinander mit Abgas durchströmbar sind, und mit einem innerhalb eines Turbinenradkanals (54) des Turbinengehäuses (50) angeordneten Turbinenrad (24), welches zum Antreiben eines über eine Lagerwelle (22) drehfest mit diesem gekoppelten Verdichterrads (20) eines Verdichters (18) des Abgasturboladers (12) mit dem durch die wenigstens zwei Spiralkanäle (52a, 52b) führbaren Abgas der Brennkraftmaschine (10) beaufschlagbar ist, wobei ein Flächenverhältnis Qg der Turbine (26) der Formel Qg = (Aλ+AAGR)/AR > 0,40 entspricht, wobei Aλ eine engste Strömungsquerschnittsfläche des ersten Spiralkanals (52a), AAGR eine engste Strömungsquerschnittsfläche des zweiten Spiralkanals (52b) und AR eine Radaustrittsquerschnittsfläche des Turbinenradkanals (54) bezeichnen. Die Erfindung betrifft weiterhin ein Kraftfahrzeug mit einer Brennkraftmaschine (10) und einem Abgasturbolader (12).

Description

Abgasturbolader für eine Brennkraftmaschine eines Kraftfahrzeugs
Die Erfindung betrifft einen Abgasturbolader der im Oberbegriff des Patentanspruchs 1 angegebenen Art für eine Brennkraftmaschine eines Kraftfahrzeugs. Die Erfindung betrifft weiterhin ein Kraftfahrzeug mit einer Brennkraftmaschine und einem Abgasturbolader.
Durch die fortwährende Verschärfung der Emissionsgrenzwerte, beispielsweise der NOx- und Rußemissionsgrenzwerte, steigen auch die Anforderungen an Abgasturbolader bzw. an aufgeladene Brennkraftmaschinen. So ergeben sich wachsende Anforderungen hinsichtlich der Ladedruckbereitstellung bei hohen Abgasrückführungs-Raten (AGR-Rate) über mittlere bis hohe Lastanforderungsbereiche der Brennkraftmaschine, wodurch die Turbinen von Abgasturboladern geometrisch zunehmend verkleinert werden. Die geforderten hohen Turbinenleistungen von Abgasturboladern werden mit anderen Worten durch eine Steigerung der Aufstaufähigkeit und eine entsprechende Reduktion der Schluckfähigkeit der Turbinen im Zusammenspiel mit der jeweiligen Brennkraftmaschine realisiert. Eine weitere Beeinflussung der Leistung von Abgasturboladern ergibt sich durch stromab der Turbine im Abgastrakt angeordnete Abgasnachbehandlungssysteme wie beispielsweise Rußfilter, Katalysatoren oder SCR-Anlagen. Diese Abgasnachbehandlungssysteme führen zu einer Druckerhöhung an einem Abgasaustritt des Abgasturboladers. Dies bewirkt wiederum eine Reduzierung eines die Leistung des Abgasturboladers beschreibenden Turbinendruckgefälles, wobei das Turbinendruckgefälle als Quotient eines Druckes vor dem Turbinenrad bzw. einem Abgaseintritt des Turbinengehäuses und eines Druckes nach dem Turbinenrad bzw. eines Abgasaustritts des Turbinengehäuses ermittelbar ist. Auch aus diesem Grund muss die Turbinengröße nochmals zu kleineren Werten und damit geringeren Wirkungsgraden ausgelegt werden, um die Leistungsanforderung des Verdichters des Abgasturboladers befriedigen zu können. Eine gewisse Verbesserung bieten hierbei aus dem Stand der Technik bekannte Abgasturbolader, deren Turbinengehäuse zwei unabhängig voneinander durchströmbare Spiralkanäle umfassen, die jeweils mit unterschiedlichen Abgasleitungen eines Abgastrakts der Brennkraftmaschine gekoppelt werden und freie Ringdüsen aufweisen. Die Abgasleitungen sind ihrerseits unterschiedlichen Zylindern bzw. Zylindergruppen der Brennkraftmaschine zugeordnet. Üblicherweise dient dabei einer der Spiralkanäle als sogenannte Lambda-Spirale, die über ihre Abgasaufstaufähigkeit für das erforderliche Luft-Kraftstoff-Verhältnis der Brennkraftmaschine sorgt. Der andere Spiralkanal dient demgegenüber als sogenannte Abgasrückführungs-Spirale (AGR-Spirale) und ist für die Abgasrückführungs-Fähigkeit des Abgasturboladers verantwortlich.
Bei den Auslegungsrandbedingungen von Abgasturboladern, die üblicherweise vom Nennpunkt, der Ladungswechselseite und der Verbrauchsseite der Brennkraftmaschine her definiert werden, kann jedoch auch durch Abgasturbolader mit zwei Spiralkanälen insbesondere der untere Last- und Drehzahlbereich von Brennkraftmaschinen häufig nicht optimal bedient werden. Zu diesem Zweck werden Strömungsquerschnittsflächen der Spiralkanäle grundsätzlich möglichst klein gewählt, um die erforderlichen Abgasströmungsgeschwindigkeiten erzeugen zu können.
Als nachteilig an den bekannten Abgasturboladern ist der Umstand anzusehen, dass diese vergleichsweise geringe Wirkungsgrade besitzen, wodurch der Kraftstoffbedarf einer mit dem Abgasturbolader versehenen Brennkraftmaschine entsprechend steigt. Dies macht zusätzliche Maßnahmen zur Wirkungsgradsteigerung erforderlich, wodurch jedoch auch die Fertigungskosten erheblich steigen.
Aufgabe der vorliegenden Erfindung ist es daher, einen Abgasturbolader der eingangs genannten Art zu schaffen, welcher auch unter den stark transienten Anforderungen von Brennkraftmaschinen bzw. Kraftfahrzeugen eine Wirkungsgradverbesserung bei möglichst geringen Fertigungskosten ermöglicht.
Die Aufgabe wird erfindungsgemäß durch einen Abgasturbolader mit den Merkmalen des Patentanspruchs 1 sowie durch ein Kraftfahrzeug mit den Merkmalen des Patentanspruchs 11 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nichttrivialen Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben, wobei vorteilhafte Ausgestaltungen des Abgasturboladers - soweit anwendbar - als vorteilhafte Ausgestaltungen des Kraftfahrzeugs anzusehen sind. Ein erfindungsgemäßer Abgasturbolader, welcher auch unter den stark transienten Anforderungen von Brennkraftmaschinen bzw. Kraftfahrzeugen eine Wirkungsgradverbesserung bei möglichst geringen Fertigungskosten ermöglicht, ist dadurch geschaffen, dass ein Flächenverhältnis Q9 der Turbine einen Wert größer als 0,4 aufweist, wobei das Flächenverhältnis Q9 der Formel
Q9 = (Aλ+AAGR)/AR
entspricht, wobei Aλ eine engste Strömungsquerschnittsfläche des ersten Spiralkanals, AAGR eine engste Strömungsquerschnittsfläche des zweiten Spiralkanals und AR eine Radaustrittsquerschnittsfläche des Turbinenradkanals bezeichnen. Mit anderen Worten besitzen die Spiralkanäle der Turbine des erfindungsgemäßen Abgasturboladers im Gegensatz zum Stand der Technik in Relation zur engsten Querschnittsfläche stromab der Spiralkanäle, nämlich der Radaustrittsquerschnittsfläche AR, eine deutlich vergrößerte engste Strömungsquerschnittsflächensumme Aλ+AAGR. Der Schwerpunkt der Auslegungen von aus dem Stand der Technik bekannten Abgasturboladern bzw. Turbinen ist derart entwickelt, dass der größere Exergiebetrag des Gesamtgefälles der Turbine vor dem Turbinenrad in den Spiralkanälen und nicht im Turbinenradkanal in Geschwindigkeit umgesetzt wird. Der Reaktionsgrad der Turbine, welcher den Quotient der Geschwindigkeitsumwandlung im Turbinenradkanal zur
Geschwindigkeitsumwandlung in den Spiralkanälen bezeichnet, liegt somit bei aus dem Stand der Technik bekannten Turbinen unterhalb des Wertes 0,4. Demgegenüber kann mit Hilfe des erfindungsgemäßen Abgasturboladers während des Betriebs eine abweichende Gefälleaufteilung des Gesamtgefälles der Turbine erzielt werden, wobei Reaktionsgrade erzielt werden, die über 0,5 liegen. Da die Summe der Strömungsquerschnittsflächen Aλ, AAGR im Vergleich zum Stand der Technik vergleichsweise größer ausgebildet ist, werden zudem nur geringe Anforderungen hinsichtlich der fertigungstechnischen Grenzen gestellt, so dass problemlos kostengünstige Sandgussverfahren oder dergleichen zur Herstellung des Turbinengehäuses verwendet werden können.
In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Flächenverhältnis Q9 der Turbine wenigstens 0,45 und vorzugsweise wenigstens 0,5 beträgt. Hierdurch werden für größere Massenabgasströme erhöhte Wirkungsgrade erzielt, wodurch das Gesamtverhalten des Abgasturboladers in weiten Betriebsbereichen hinsichtlich der Luftlieferung sehr vorteilhaft wird. Die mehrflutige Turbine besitzt damit einen Reaktionsgrad, der im Auslegungspunkt in unüblicherweise Weise über dem Wert von 0,45 bzw. 0,5 liegt.
Weitere Vorteile ergeben sich, indem ein Flächenverhältnis Qx zwischen der engsten Strömungsquerschnittsfläche Aλ des ersten Spiralkanals und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals wenigstens 0,35 beträgt. Insbesondere wenn der erste Spiralkanal als sogenannte Lambda-Spirale im Abgastrakt angeordnet ist, kann ein entsprechend verbesserter Wirkungsgrad erzielt werden, da keine Abgasrückführmassenverluste auftreten.
In einer weiteren vorteilhaften Ausgestaltung ist vorgesehen, dass das Flächenverhältnis Qx zwischen der engsten Strömungsquerschnittsfläche Aλ des ersten Spiralkanals und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals wenigstens 0,4, vorzugsweise wenigstens 0,5 und insbesondere wenigstens 0,6 beträgt. Auf diese Weise kann der erste Spiralkanal gemäß einer optimalen Reaktionsturbine mit entsprechend hohen Reaktionsgraden betrieben werden, wodurch besonders hohe Turbinenwirkungsgrade erzielt werden können und das Gesamtverhalten des Abgasturboladers in weiten Betriebsbereichen hinsichtlich seiner Luftlieferung besonders vorteilhaft ist.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass ein Flächenverhältnis QAGR zwischen der engsten Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals höchstens 0,3 beträgt. Insbesondere wenn der zweite Spiralkanal als sogenannte AGR-Spirale ausgebildet ist, kann der zweite Spiralkanal hierdurch gemäß einer Impulsturbine mit Reaktionsgraden unter 0,3 operieren. Das jeweilige Flächenverhältnis QAGRwird vorzugsweise in Abhängigkeit des AGR-Bedarfs der Brennkraftmaschine gewählt.
Weitere Vorteile ergeben sich, indem das Flächenverhältnis QAGR zwischen der engsten Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals höchstens 0,28, vorzugsweise höchstens 0,25 und insbesondere höchstens 0,1 beträgt. Hierdurch können auch besonders strenge Emissions-Grenzwertfestlegungen berücksichtigt und das Emissionsverhalten der zugeordneten Brennkraftmaschine entsprechend verbessert werden. In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die engste Strömungsquerschnittsfläche Aλ des ersten Spiralkanals und/oder die engste Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals im Mündungsbereich des ersten bzw. des zweiten Spiralkanals in den Turbinenradkanal vorgesehen sind. Auf diese Weise fungiert die engste Strömungsquerschnittsfläche Aλ bzw. AAGR vorteilhaft als Ringdüse zur Erzeugung hoher Abgasströmungsgeschwindigkeiten.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der erste und/oder der zweite Spiralkanal wenigstens zwei fluidisch getrennte Spiralsegmentkanäle umfasst, die mit unterschiedlichen Abgasleitungen der Brennkraftmaschine koppelbar sind. Auf diese Weise ist ein Abgasturbolader mit einer wenigstens dreiflutig ausgebildeten Turbine geschaffen, wobei die Spiralsegmentkanäle einen Stoßaufladungs-Betrieb mit einer effektiveren Nutzung der Expansionsarbeit einzelner Zylinder bzw. Zylindergruppen ermöglichen. Hierdurch können auch untere Last- und Drehzahlbereiche der Brennkraftmaschine optimal bedient werden, so dass eine erhebliche Wirkungsgradverbesserung über einen größeren Betriebsbereich der Brennkraftmaschine gewährleistet ist. Die Strömungsquerschnittsfläche Aλ bzw. AAGR bezeichnet in diesem Fall die Summe der Strömungsquerschnittsflächen der wenigstens zwei Spiralsegmentkanäle. Die Anzahl der Spiralsegmentkanäle kann dabei an die Anzahl der Zylinder bzw. Zylindergruppen angepasst sein. Ebenso kann vorgesehen sein, dass beide Spiralkanäle über zwei oder mehr Spiralsegmentkanäle verfügen. Alternativ oder zusätzlich kann vorgesehen sein, dass die Turbine des Abgasturboladers drei oder mehr Spiralkanäle umfasst.
Um das Verhalten der Turbine besser an das Betriebsverhalten der Brennkraftmaschine anpassen zu können, hat es sich in weiterer Ausgestaltung als vorteilhaft gezeigt, dass die Turbine eine Leitgittereinrichtung umfasst. Hierdurch ist eine von der geometrischen Ausgestaltung der Leitgittereinrichtung abhängige Strömungsbeeinflussung ermöglicht. Dabei kann vorgesehen sein, dass die Leitgittereinrichtung beweglich ausgebildet ist, wodurch die Zuströmung des Abgases vorteilhaft last- bzw. durchsatzabhängig angepasst werden kann. Die Leitgittereinrichtung kann hierzu beispielsweise translatorisch und/oder rotatorisch, bewegbar im Turbinengehäuse gelagert sein.
Besondere Vorteile ergeben sich, wenn die engste Strömungsquerschnittsfläche Aλ des ersten Spiralkanals und/oder die engste Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals durch die Leitgittereinrichtung ausgebildet und/oder mittels der Leitgittereinrichtung einstellbar sind. Auf diese Weise ist eine besonders hohe geometrische Variabilität der Turbine und eine entsprechend optimale Einstellbarkeit der Strömungsführung gegeben. Weiterhin kann hierdurch eine weitere Steigerung des Wirkungsgrades erzielt werden, da der betreffende Spiralkanal stromauf der Leitgittereinrichtung mit einer vergrößerten Querschnittsfläche versehen sein kann.
Ein weiterer Aspekt der Erfindung betrifft ein Kraftfahrzeug mit einer Brennkraftmaschine, welche mindestens zwei Zylinder bzw. zwei Zylindergruppen umfasst, die mit wenigstens zwei Abgasleitungen eines Abgastrakts verbunden sind, und mit einem Abgasturbolader, welcher einen in einem Ansaugtrakt der Brennkraftmaschine angeordneten Verdichter und eine im Abgastrakt der Brennkraftmaschine angeordnete Turbine umfasst. Die Turbine umfasst ihrerseits ein Turbinengehäuse mit wenigstens einem ersten, mit einer ersten Abgasleitung gekoppelten Spiralkanal, einem zweiten, mit einer zweiten Abgasleitung gekoppelten Spiralkanal und einem innerhalb eines Turbinenradkanals des Turbinengehäuses angeordneten Turbinenrad. Das Turbinenrad ist dabei zum Antreiben eines über eine Lagerwelle drehfest mit diesem gekoppelten Verdichterrads des Verdichters mit dem durch die wenigstens zwei Spiralkanäle führbaren Abgas der Brennkraftmaschine beaufschlagbar. Dabei wird eine Wirkungsgradverbesserung auch unter stark transienten Anforderungen der Brennkraftmaschine bzw. des Kraftfahrzeugs bei möglichst geringen Fertigungskosten erfindungsgemäß dadurch ermöglicht, dass der Abgasturbolader gemäß einem der vorhergehenden Ausführungsbeispiele ausgebildet ist. Die sich hieraus ergebenden Vorteile sind den entsprechenden Beschreibungen zu entnehmen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung eines Ausführungsbeispiels sowie anhand der Zeichnungen. Dabei zeigen:
Fig. 1 eine Prinzipdarstellung einer Brennkraftmaschine eines Kraftfahrzeugs, welche mit einem Abgasturbolader gemäß einem Ausführungsbeispiel versehen ist;
Fig. 2 eine schematische seitliche Schnittansicht einer Turbine des in Fig. 1 gezeigten Abgasturboladers; und
Fig. 3 ein schematisches Turbinenkennfeld der Turbine des Abgasturboladers. Fig. 1 zeigt eine Prinzipdarstellung einer Brennkraftmaschine 10 eines Kraftfahrzeugs (nicht abgebildet), welche mit einem Abgasturbolader 12 gemäß einem Ausführungsbeispiel versehen ist. Die Brennkraftmaschine 10 umfasst hierbei einen an sich bekannten Ansaugtrakt 14 mit einem Luftfilter 16. Stromab des Luftfilters 16 ist ein Verdichter 18 des Abgasturboladers 12 angeordnet. Der Verdichter 18 weist ein Verdichterrad 20 auf, das über eine Lagerwelle 22 drehfest mit einem Turbinenrad 24 einer im Folgenden näher erläuterten Turbine 26 des Abgasturboladers 12 verbunden ist. Stromab des Verdichterrads 20 weist der Ansaugtrakt 14 einen Ladeluftkühler 28 auf. Die Brennkraftmaschine 10 ist im vorliegenden Ausführungsbeispiel als Diesel-Motor ausgebildet und umfasst sechs Zylinder 30a-f, die in zwei Zylindergruppen 32a, 32b aufgeteilt sind, damit sich die einzelnen Zylinder 30a-f beim Ladungswechsel nicht gegenseitig beeinflussen. Die Zylindergruppen 32a, 32b sind über zwei getrennte Abgasleitungen 34a, 34b eines Abgastrakts 36 der Brennkraftmaschine 10 mit der Turbine 26 des Abgasturboladers verbunden. Zwischen den Zylindern 30a-c und der Turbine 26 ist dabei eine Abgasrückführungseinrichtung 38 mit einem Ventil 40 und einem Abgaskühler 42 vorgesehen, mittels welcher Abgas aus der Abgasleitung 34a in den Ansaugtrakt 14 geleitet werden kann. Stromauf der Turbine 26 ist demgegenüber eine Bypassleitung 44 mit einem Abblaseventil 46 vorgesehen, durch welche bei Bedarf Abgas an der Turbine 26 vorbei zu leiten ist. Die Bypassleitung 44 und das Abblaseventil 46 sind dabei vorliegend in ein Turbinengehäuse 50 der Turbine 26 integriert. Stromab der Turbine 26 ist schließlich ein Abgasnachbehandlungssystem 48 im Abgastrakt 36 angeordnet, mittels welchem eine Abgasreinigung durchgeführt wird.
Die Turbine 26 des Abgasturboladers 12 wird im Folgenden in Zusammenschau mit Fig. 2 erläutert werden, welche eine schematische seitliche Schnittansicht der Turbine 26 zeigt. Das Turbinengehäuse 50 der Turbine 26, welches als kostengünstiges Sandgussteil ausgebildet ist, umfasst einen ersten, mit der ersten Abgasleitung 34a gekoppelten Spiralkanal 52a, einen zweiten, mit der zweiten Abgasleitung 34b gekoppelten Spiralkanal 52b sowie das innerhalb eines Turbinenradkanals 54 angeordnete Turbinenrad 24, welches über die Lagerwelle 22 mit dem Verdichterrad 20 verbunden ist. Der Spiralkanal 52a ist dabei austrittsseitig angeordnet und als Vollspirale mit einem Umschlingungswinkel von annähernd 360° ausgebildet, wohingegen der Spiralkanal 52b lagerseitig angeordnet und als Teilspirale mit einem unter 360° liegenden Umschlingungswinkel ausgebildet ist. Grundsätzlich können jedoch beide Spiralkanäle 52a, 52b als Voll- und/oder als Teilspirale ausgebildet sein. Ebenso kann vorgesehen sein, dass wenigstens ein Spiralkanal 52a bzw. 52b als Segmentspirale mit zwei oder mehr über den Umfang des Turbinengehäuses 50 verteilten Segmentkanälen ausgebildet ist, die mit einer entsprechend angepassten Anzahl an Abgasleitungen 34 gekoppelt werden. Der Spiralkanal 52a ist dabei als sogenannte Lambda-Spirale ausgebildet, die über ihre Abgasaufstaufähigkeit für das erforderliche Luft-Kraftstoff-Verhältnis der Brennkraftmaschine 10 sorgt. Der zweite Spiralkanal 52b dient demgegenüber als sogenannte Abgasrückführungs-Spirale (AGR-Spirale) und ist für die Abgasrückführungs- Fähigkeit des Abgasturboladers 12 bzw. der Turbine 26 verantwortlich.
Um auch unter den stark transienten Anforderungen der Brennkraftmaschine 10 eine Wirkungsgradverbesserung bei möglichst geringen Fertigungskosten zu ermöglichen, entspricht ein Flächenverhältnis Q9 der Turbine 26 im vorliegenden Ausführungsbeispiel der Formel
Q9 = (Aλ+AAGR)/AR> 0,50 ,
wobei Aλ eine engste Strömungsquerschnittsfläche des ersten Spiralkanals 52a, AAGR eine engste Strömungsquerschnittsfläche des zweiten Spiralkanals 52b und AR eine Radaustrittsquerschnittsfläche des Turbinenradkanals 54 im Austrittsbereich des Turbinenrads 24 bezeichnen. Zudem beträgt ein Flächenverhältnis Qχ zwischen der engsten Strömungsquerschnittsfläche Aλ des ersten Spiralkanals 52a und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals 54 wenigstens Qλ=Aλ/AR=0,4 und ein Flächenverhältnis QAGR zwischen der engsten Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals 52b und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals 54 höchstens QAGR=AAGR/AR=0,25. Alternativ kann vorgesehen sein, dass das Flächenverhältnis Qλ>0,5 gewählt ist. Es kann auch vorgesehen sein, dass das Flächenverhältnis QAGR in Abhängigkeit des AGR-Bedarfs der Brennkraftmaschine 10 gewählt ist und daher auch unterhalb von 0,25, gegebenenfalls unterhalb von 0,1 , gewählt sein kann. Alternativ kann vorgesehen sein, dass die Strömungsquerschnittsflächen Aλl AAGR durch eine Leitgittereinrichtung (nicht gezeigt) ausgebildet sind, wodurch eine weitere Steigerung des Turbinenwirkungsgrades erzielt werden kann, da in diesem Fall die Spiralkanäle 52a, 52b stromauf der betreffenden Leitgitter mit vergrößerten Querschnittsflächen ausgebildet sein können.
Fig. 3 zeigt ein schematisches Turbinenkennfeld der Turbine 26 des Abgasturboladers 12. Dabei ist auf der Ordinate ein Durchsatzparameter D[kg*VK/s*bar] über einem auf der Abszisse aufgetragenen Turbinendruckverhältnis T=p3f/p4 des Drucks p3t am Flanscheintritt der Spiralkanäle 52a, 52b und dem Druck p4 nach dem Turbinenrad 24 dargestellt. Die Durchsatzlinien K1-3 sind dabei für verschiedene Drehzahlen dargestellt. Die Durchsatzlinie K1 zeigt das Durchsatzverhalten bei geöffneten Spiralkanälen 52a, 52b. Die Durchsatzlinie K2 zeigt das Durchsatzverhalten bei geöffnetem Spiralkanal 52a und geschlossenem Spiralkanal 52b, die Durchsatzlinie K3 zeigt schließlich das Durchsatzverhalten bei geöffnetem Spiralkanal 52b und geschlossenem Spiralkanal 52a.

Claims

Patentansprüche
1. Abgasturbolader (12) für eine Brennkraftmaschine (10) eines Kraftfahrzeugs, mit einer Turbine (26), welche ein Turbinengehäuse (50) mit wenigstens einem ersten und einem zweiten Spiralkanal (52a, 52b) umfasst, die jeweils mit wenigstens einer von mehreren Abgasleitungen (34a, 34b) eines Abgastrakts (36) der Brennkraftmaschine (10) koppelbar und unabhängig voneinander mit Abgas durchströmbar sind, und mit einem innerhalb eines Turbinenradkanals (54) des Turbinengehäuses (50) angeordneten Turbinenrad (24), welches zum Antreiben eines über eine Lagerwelle (22) drehfest mit diesem gekoppelten Verdichterrads (20) eines Verdichters (18) des Abgasturboladers (12) mit dem durch die wenigstens zwei Spiralkanäle (52a, 52b) führbaren Abgas der Brennkraftmaschine (10) beaufschlagbar ist, dadurch gekennzeichnet, dass ein Flächenverhältnis Q9 der Turbine (26) einen Wert größer als 0,4 aufweist, wobei das Flächenverhältnis Q9 der Turbine (26) der Formel
Qg = (Aλ+AAGR)/AR entspricht, wobei
Aλ eine engste Strömungsquerschnittsfläche des ersten Spiralkanals (52a);
AAGR eine engste Strömungsquerschnittsfläche des zweiten Spiralkanals (52b); und
AR eine Radaustrittsquerschnittsfläche des Turbinenradkanals (54) bezeichnen.
2. Abgasturbolader (12) nach Anspruch 1 , dadurch gekennzeichnet, dass das Flächenverhältnis Q9 der Turbine (26) wenigstens 0,45 und vorzugsweise wenigstens 0,5 beträgt.
3. Abgasturbolader (12) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Flächenverhältnis Qx zwischen der engsten Strömungsquerschnittsfläche Aλ des ersten Spiralkanals (52a) und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals (54) wenigstens 0,35 beträgt.
4. Abgasturbolader (12) nach Anspruch 3, dadurch gekennzeichnet, dass das Flächenverhältnis Q^ zwischen der engsten Strömungsquerschnittsfläche Aλ des ersten Spiralkanals (52a) und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals (54) wenigstens 0,4, vorzugsweise wenigstens 0,5 und insbesondere wenigstens 0,6 beträgt.
5. Abgasturbolader (12) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Flächenverhältnis QAGR zwischen der engsten Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals (52b) und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals (54) höchstens 0,3 beträgt.
6. Abgasturbolader (12) nach Anspruch 5, dadurch gekennzeichnet, dass das Flächenverhältnis QAGR zwischen der engsten Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals (52b) und der Radaustrittsquerschnittsfläche AR des Turbinenradkanals (54) höchstens 0,28, vorzugsweise höchstens 0,25 und insbesondere höchstens 0,1 beträgt.
7. Abgasturbolader (12) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die engste Strömungsquerschnittsfläche Aλ des ersten Spiralkanals (52a) und/oder die engste Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals (52b) im Mündungsbereich des ersten bzw. des zweiten Spiralkanals (52a, 52b) in den Turbinenradkanal (54) vorgesehen sind.
8. Abgasturbolader (12) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der erste und/oder der zweite Spiralkanal (52a, 52b) wenigstens zwei fluidisch getrennte Spiralsegmentkanäle umfasst, die mit unterschiedlichen Abgasleitungen (34a, 34b) der Brennkraftmaschine (10) koppelbar sind.
9. Abgasturbolader (12) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Turbine (26) eine Leitgittereinrichtung umfasst.
10. Abgasturbolader (12) nach Anspruch 9, dadurch gekennzeichnet, dass die engste Strömungsquerschnittsfläche Aλ des ersten Spiralkanals (52a) und/oder die engste Strömungsquerschnittsfläche AAGR des zweiten Spiralkanals (52b) durch die Leitgittereinrichtung ausgebildet und/oder mittels der Leitgittereinrichtung einstellbar ist.
11. Kraftfahrzeug mit einer Brennkraftmaschine (10), welche mindestens zwei Zylinder (30a-f) bzw. zwei Zylindergruppen (32a, 32b) umfasst, die mit wenigstens zwei Abgasleitungen (34a, 34b) eines Abgastrakts (36) verbunden sind, und mit einem Abgasturbolader (12), welcher einen in einem Ansaugtrakt (14) der Brennkraftmaschine (10) angeordneten Verdichter (18) und eine im Abgastrakt (36) der Brennkraftmaschine (10) angeordnete Turbine (26) umfasst, wobei die Turbine (26) ein Turbinengehäuse (50) mit wenigstens einem ersten, mit einer ersten Abgasleitung (34a) gekoppelten Spiralkanal (52a), einem zweiten, mit einer zweiten Abgasleitung (34b) gekoppelten Spiralkanal (52) und einem innerhalb eines Turbinenradkanals (54) des Turbinengehäuses (50) angeordneten Turbinenrad (24) umfasst, wobei das Turbinenrad (24) zum Antreiben eines über eine Lagerwelle (22) drehfest mit diesem gekoppelten Verdichterrads (20) des Verdichters (18) mit dem durch die wenigstens zwei Spiralkanäle (52a, 52b) führbaren Abgas der Brennkraftmaschine (10) beaufschlagbar ist, dadurch gekennzeichnet, dass der Abgasturbolader (12) gemäß einem der Ansprüche 1 bis 9 ausgebildet ist.
PCT/EP2009/005349 2008-08-21 2009-07-23 Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs WO2010020323A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011523318A JP5259822B2 (ja) 2008-08-21 2009-07-23 自動車の内燃機関用エグゾーストターボチャージャ
US12/927,866 US8522547B2 (en) 2008-08-21 2010-11-27 Exhaust gas turbocharger for an internal combustion engine of a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008039086.0 2008-08-21
DE102008039086A DE102008039086A1 (de) 2008-08-21 2008-08-21 Abgasturbolader für eine Brennkraftmaschine eines Kraftfahrzeugs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/927,866 Continuation-In-Part US8522547B2 (en) 2008-08-21 2010-11-27 Exhaust gas turbocharger for an internal combustion engine of a motor vehicle

Publications (1)

Publication Number Publication Date
WO2010020323A1 true WO2010020323A1 (de) 2010-02-25

Family

ID=41226457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005349 WO2010020323A1 (de) 2008-08-21 2009-07-23 Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs

Country Status (4)

Country Link
US (1) US8522547B2 (de)
JP (1) JP5259822B2 (de)
DE (1) DE102008039086A1 (de)
WO (1) WO2010020323A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007045051A1 (en) 2005-10-21 2007-04-26 Honeywell Limited An authorisation system and a method of authorisation
WO2012114058A1 (en) * 2011-02-24 2012-08-30 Imperial Innovations Limited A turbine wheel, a turbine and use thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894877B2 (ja) * 2009-03-26 2012-03-14 マツダ株式会社 過給機付きエンジン
US8640457B2 (en) * 2009-10-13 2014-02-04 General Electric Company System and method for operating a turbocharged engine
DE102011008525B4 (de) * 2011-01-13 2013-04-04 Pierburg Gmbh Leitvorrichtung für eine Turbine sowie derartige Turbine eines Turboladers
DE102011010454A1 (de) 2011-02-05 2012-08-09 Daimler Ag Turbine für einen Abgasturbolader
DE102011016529A1 (de) * 2011-04-08 2012-01-05 Daimler Ag Turbine für einen Abgasturbolader sowie Verbrennungskraftmaschine mit einer solchen Turbine
US20140223904A1 (en) * 2011-08-26 2014-08-14 International Engine Intellectual Property Company, Llc Pulse turbine turbocharger and egr system
US8944036B2 (en) * 2012-02-29 2015-02-03 General Electric Company Exhaust gas recirculation in a reciprocating engine with continuously regenerating particulate trap
DE102012103416A1 (de) * 2012-04-19 2013-10-24 Ihi Charging Systems International Gmbh Abgasturbolader
EP2671630B1 (de) 2012-06-07 2016-08-10 General Electric Company Mischvorrichtung mit mehreren Mischkanälen und Verwendung davon
US9512721B2 (en) 2012-07-20 2016-12-06 Pratt & Whitney Canada Corp. Compound cycle engine
US9926843B2 (en) 2012-07-20 2018-03-27 Pratt & Whitney Canada Corp. Compound cycle engine
US10107195B2 (en) * 2012-07-20 2018-10-23 Pratt & Whitney Canada Corp. Compound cycle engine
US9249761B2 (en) 2013-06-13 2016-02-02 Cummins Inc. Exhaust gas recirculation and control with twin scroll turbines
DE112015002367B4 (de) 2014-05-19 2020-02-13 Borgwarner Inc. Doppelspiralen-Turbolader, um die Impulsenergietrennung für Kraftstoffsparsamkeit und AGR-Nutzung über asymmetrische Doppelspiralen zu optimieren
GB2529133B (en) * 2014-05-30 2020-08-05 Cummins Inc Engine systems and methods for operating an engine
US10215136B2 (en) 2014-08-26 2019-02-26 Borgwarner Inc. Adjustable, low loss valve for providing high pressure loop exhaust gas recirculation
GB2533351A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Internal combustion engine having a two stage turbocharger
EP3719281B1 (de) 2014-12-19 2022-11-23 Typhon Technology Solutions, LLC Mobile elektrische stromerzeugung für hydraulische frakturierung von unterirdischen geologischen formationen
US10378326B2 (en) 2014-12-19 2019-08-13 Typhon Technology Solutions, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
GB201617858D0 (en) * 2016-10-21 2016-12-07 Cummins Ltd Method of design of a turbine
US10655534B2 (en) 2018-02-06 2020-05-19 Garrett Transportation I Inc. Rotary axial valve
WO2020209146A1 (ja) * 2019-04-10 2020-10-15 株式会社Ihi タービンおよび過給機
US11725582B1 (en) 2022-04-28 2023-08-15 Typhon Technology Solutions (U.S.), Llc Mobile electric power generation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134602A (en) * 1982-12-28 1984-08-15 Nissan Motor Variable-capacity radial turbine
WO2004031552A2 (de) * 2002-09-28 2004-04-15 Daimler Chrysler Ag Brennkraftmaschine mit einem abgasturbolader und einer abgasrückführeinrichtung
DE102004034070A1 (de) * 2004-07-15 2006-02-09 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader
DE102004038903A1 (de) * 2004-08-11 2006-02-23 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
WO2009077033A1 (de) * 2007-12-14 2009-06-25 Daimler Ag Brennkraftmaschine und verfahren zum steuern einer brennkraftmaschine für ein kraftfahrzeug
WO2009129896A1 (de) * 2008-04-24 2009-10-29 Daimler Ag Abgasturbolader für eine brennkraftmaschine und brennkraftmaschine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755769A (fr) * 1969-09-04 1971-02-15 Cummins Engine Co Inc Corps de turbine, notamment pour turbo-compresseur a gaz d'echappement
US4111598A (en) * 1974-04-30 1978-09-05 Kabushiki Kaisha Komatsu Seisakusho Turbine casing for superchargers
US4027994A (en) * 1975-08-08 1977-06-07 Roto-Master, Inc. Partially divided turbine housing for turbochargers and the like
FR2378178A1 (fr) * 1977-01-24 1978-08-18 Semt Procede et dispositif d'amenagement de l'ecoulement des gaz dans un collecteur d'echappement d'un moteur a combustion interne
JPS605788B2 (ja) * 1977-10-20 1985-02-14 株式会社東芝 水車ケーシング
JPS6019920A (ja) * 1983-07-14 1985-02-01 Nissan Motor Co Ltd タ−ボチヤ−ジヤのタ−ビンスクロ−ル
JPH01227803A (ja) * 1988-03-08 1989-09-12 Honda Motor Co Ltd 可変容量タービン
DE19727140C1 (de) * 1997-06-26 1998-12-17 Daimler Benz Ag Brennkraftmaschinen - Turbolader - System
DE19838754C1 (de) * 1998-08-26 2000-03-09 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE10152804B4 (de) * 2001-10-25 2016-05-12 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
US7269950B2 (en) * 2004-05-05 2007-09-18 Precision Industries, Inc. Staged turbocharger
US7014418B1 (en) * 2004-12-03 2006-03-21 Honeywell International, Inc. Multi-stage compressor and housing therefor
JP4275081B2 (ja) * 2005-02-10 2009-06-10 三菱重工業株式会社 可変容量型排気ターボ過給機のスクロール構造及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134602A (en) * 1982-12-28 1984-08-15 Nissan Motor Variable-capacity radial turbine
WO2004031552A2 (de) * 2002-09-28 2004-04-15 Daimler Chrysler Ag Brennkraftmaschine mit einem abgasturbolader und einer abgasrückführeinrichtung
DE102004034070A1 (de) * 2004-07-15 2006-02-09 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader
DE102004038903A1 (de) * 2004-08-11 2006-02-23 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
WO2009077033A1 (de) * 2007-12-14 2009-06-25 Daimler Ag Brennkraftmaschine und verfahren zum steuern einer brennkraftmaschine für ein kraftfahrzeug
WO2009129896A1 (de) * 2008-04-24 2009-10-29 Daimler Ag Abgasturbolader für eine brennkraftmaschine und brennkraftmaschine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007045051A1 (en) 2005-10-21 2007-04-26 Honeywell Limited An authorisation system and a method of authorisation
WO2012114058A1 (en) * 2011-02-24 2012-08-30 Imperial Innovations Limited A turbine wheel, a turbine and use thereof
JP2014506974A (ja) * 2011-02-24 2014-03-20 インペリアル イノベ−ションズ リミテッド タービンホイール、タービンおよびその使用
US9708913B2 (en) 2011-02-24 2017-07-18 Imperial Innovations Limited Turbine wheel, a turbine and use thereof

Also Published As

Publication number Publication date
US8522547B2 (en) 2013-09-03
DE102008039086A1 (de) 2010-02-25
US20110088391A1 (en) 2011-04-21
JP5259822B2 (ja) 2013-08-07
JP2012500357A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2010020323A1 (de) Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs
EP1375868B1 (de) Motorbremseinrichtung für eine turboaufgeladene Brennkraftmaschine
EP1763627B1 (de) Brennkraftmaschine mit abgasnachbehandlung und verfahren zu deren betrieb
DE102008020406A1 (de) Abgasturbolader für eine Brennkraftmaschine eines Kraftfahrzeugs und Brennkraftmaschine
EP2059663B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
WO2010020322A1 (de) Brenhkraftmaschine mit einem abgasturbolader
DE102006019780A1 (de) Abgasturbolader in einer Brennkraftmaschine
WO2010121684A1 (de) Verbrennungskraftmaschine sowie verfahren zum betreiben einer verbrennungskraftmaschine
WO2009077033A1 (de) Brennkraftmaschine und verfahren zum steuern einer brennkraftmaschine für ein kraftfahrzeug
DE202017105126U1 (de) Abgasleitsystem
DE102008052088A1 (de) Turbinengehäuse für einen Abgasturbolader und Brennkraftmaschine
EP2545265A1 (de) Brennkraftmaschine mit zweistufiger aufladung
DE102013206690A1 (de) Brennkraftmaschine mit Ladeluftkühler und Abgasrückführung und Verfahren zum Herstellen einer derartigen Brennkraftmaschine
EP2058484A1 (de) Aufgeladene Brennkraftmaschine
DE102008020405A1 (de) Abgasturbolader für eine Brennkraftmaschine und Brennkraftmaschine
EP2058485B1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
WO2011147510A2 (de) Turbine für einen abgasturbolader
DE102013008827A1 (de) Aufgeladene Brennkraftmaschine
WO2004111406A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
DE102015108560A1 (de) Verfahren zum Betreiben einer einen Abgasstrang aufweisenden Brennkraftmaschine
DE102011111747A1 (de) Verdichter für einen Abgasturbolader
EP2058486B1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102013216608B4 (de) Abgasturboaufgeladene Brennkraftmaschine umfassend einen Verdichter mit zwei Laufrädern
DE102018120179B4 (de) Abgastrakt für eine Verbrennungskraftmaschine und Verbrennungskraftmaschine
EP2134925A2 (de) Abgasturbolader und verfahren zu dessen betreiben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011523318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09777390

Country of ref document: EP

Kind code of ref document: A1