WO2009157373A1 - レーザアニール方法及び装置 - Google Patents

レーザアニール方法及び装置 Download PDF

Info

Publication number
WO2009157373A1
WO2009157373A1 PCT/JP2009/061162 JP2009061162W WO2009157373A1 WO 2009157373 A1 WO2009157373 A1 WO 2009157373A1 JP 2009061162 W JP2009061162 W JP 2009061162W WO 2009157373 A1 WO2009157373 A1 WO 2009157373A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
laser
laser annealing
axis direction
linear beam
Prior art date
Application number
PCT/JP2009/061162
Other languages
English (en)
French (fr)
Inventor
河口 紀仁
隆介 川上
西田 健一郎
正木 みゆき
森田 勝
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN2009801240211A priority Critical patent/CN102077318B/zh
Priority to EP09770083A priority patent/EP2299476A4/en
Priority to JP2010517966A priority patent/JP5366023B2/ja
Priority to US13/001,311 priority patent/US8598050B2/en
Publication of WO2009157373A1 publication Critical patent/WO2009157373A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a laser annealing method and apparatus for annealing a target object by irradiating the target object with laser light.
  • a method of forming a semiconductor element such as a high-performance thin film transistor on an insulating substrate such as a glass substrate has been developed.
  • thin-film polycrystalline silicon obtained by crystallizing amorphous silicon by heat treatment is used for this semiconductor element.
  • an amorphous silicon film is generally formed on a substrate in advance and crystallized by irradiating with laser light. According to this method, since a crystallization phenomenon in the process of melting and solidifying a semiconductor thin film is used, a high-quality polycrystalline silicon film having a relatively large particle size can be obtained.
  • a laser beam is shaped into a linear beam having a maximum beam length of 465 mm and a minor axis direction of 0.4 to 5 mm by an optical system.
  • a linear beam having a maximum beam length of 200 mm and a minor axis direction of 40 to 50 ⁇ m can be obtained.
  • the semiconductor film is crystallized by relatively moving the substrate and the laser beam so that the irradiation position of the linear beam partially overlaps the irradiation region in the beam minor axis direction.
  • the overlap ratio is set to about 95%, and the same region is irradiated about 20 times.
  • FIG. 1A and 1B are explanatory diagrams of a conventional laser annealing method.
  • FIG. 1A shows a state in which the substrate 30 is irradiated with the laser beam 31 while being relatively moved in the beam minor axis direction.
  • first row R1 is irradiated as shown in FIG. 1A.
  • the laser light 31 is moved relatively in the long axis direction, and the second and subsequent rows are irradiated.
  • FIG. 1B shows an example in which the entire surface of the substrate is processed by two rows of irradiation. At this time, a beam joint W is generated between adjacent rows (the first row R1 and the second row R2 in FIG. 1B).
  • a joint W is generated by overlapping and irradiating the ends of linear beams in adjacent rows.
  • the overlap becomes excessive and the crystal quality is different from other portions, so that the joint portion W can be visually observed.
  • the overlap is insufficient at the beam end, and an amorphous portion remains, and the crystallinity is also different from other portions.
  • the beam joint W is an area irradiated with both beams in adjacent rows (for example, the first row R1 and the second row R2), the crystallinity of the region is different from the other portions.
  • the variation in crystallinity becomes large, and the second harmonic of the YAG laser has a smaller variation than the excimer laser, but the crystallinity also varies.
  • the performance of the thin film transistor cannot be made uniform.
  • a display device such as a liquid crystal display or an organic EL display
  • the display quality is easily influenced by the uniformity of the performance of the thin film transistor. Therefore, in order to maintain the display quality, display is performed within an area limited by the beam length of the laser beam. Panels must be made. In the case of the green YAG laser, since the beam length is short, it is difficult to produce a large display exceeding 20 inches.
  • Patent Documents 1 and 2 disclose techniques for preventing the non-uniformity of crystallinity of the beam joint W as described above.
  • Patent Document 1 adjusts the width dimension and energy density of a laser beam when crystallizing a semiconductor thin film having a large area by superimposing the laser beam irradiation regions, so that the laser beam overlapped portion is not aligned.
  • the crystallinity is made uniform at the overlapping portion.
  • Patent Document 2 The method of Patent Document 2 is to uniform the crystallinity by setting so that the slope portions of the beam profile of the joint portion overlap each other in a region of 20% to 80% of the laser intensity.
  • the present invention has been made in view of the above-described problems.
  • a semiconductor thin film formed on a substrate such as glass is crystallized by laser irradiation, the crystallinity is obtained at the joint portion in the long axis direction of the laser beam. It is an object of the present invention to provide a laser annealing method and apparatus capable of forming a crystalline semiconductor thin film on the entire surface of a substrate having a good and high uniformity so that the joint portion cannot be visually confirmed without impairing the uniformity.
  • the present invention irradiates a processing object by irradiating the processing object with a linear beam that is shaped into a linear shape while moving the laser beam relatively in the short axis direction of the linear beam.
  • irradiation by relative movement of the linear beam in the minor axis direction is performed in two or more rows while being shifted in the beam major axis direction.
  • a mask placed on the optical path of the laser beam is used to shield the portion corresponding to the end of the linear beam so that the amount of shielding increases or decreases periodically. It is characterized by operating.
  • the shielding amount is periodically increased or decreased by swinging the mask.
  • the mask is swung using a piezo element.
  • the present invention also anneals the object to be processed by irradiating the object to be processed with a linear beam shaped linearly while moving the laser beam in the short axis direction of the linear beam.
  • a laser annealing apparatus for performing processing and a mask that is disposed on an optical path of a laser beam and shields a portion corresponding to an end of a linear beam, and operates the mask so that the shielding amount by the mask periodically increases and decreases And a mask driving device.
  • the mask driving device periodically increases or decreases the shielding amount by swinging the mask.
  • the mask driving device is a piezo element.
  • the portion corresponding to the end of the linear beam is shielded by the mask, and the mask is operated so that the shielding amount periodically increases or decreases.
  • the overlap rate at the end of the beam is lower than that at the non-shielded portion.
  • the overlap rate can be easily controlled by swinging the mask.
  • the piezo element can generate high-frequency vibrations by controlling the applied voltage, so that high-speed rocking of the mask can be easily realized and overlapped. The rate can be easily controlled.
  • FIG. 2 is a diagram showing an overall configuration of the laser annealing apparatus 1 according to the embodiment of the present invention.
  • the laser annealing apparatus 1 has, as its basic components, a laser light source 3 that emits laser light 2, a beam shaping optical system 4 that shapes the laser light 2 from the laser light source 3, and the laser light 2 that is to be processed by the object 7.
  • a reflecting mirror 5 that reflects in the direction
  • a condenser lens 6 that condenses the laser beam 2 from the reflecting mirror 5 on the surface of the object 7 to be processed
  • a moving stage 9 that moves the object 7 to be moved are provided.
  • the laser light source 3 for example, an excimer laser, a solid-state laser, or a semiconductor laser can be applied.
  • the laser beam 2 may be either pulse oscillation or continuous oscillation.
  • the beam shaping optical system 4 shapes the laser light 2 so as to be a linear beam on the surface of the object 7 to be processed, and can include a beam expander, a homogenizer, and the like as constituent elements.
  • the object to be processed 7 includes a substrate 7a and an amorphous semiconductor film 7b formed thereon.
  • the substrate 7a is a glass substrate or a semiconductor substrate.
  • the amorphous semiconductor film 7b is, for example, an amorphous silicon film.
  • the moving stage 9 is configured to be movable in the direction of arrow A in the figure. Therefore, by moving the object 7 to be processed in the minor axis direction (A direction) of the linear beam while irradiating the laser light 2, the irradiated portion of the laser light 1 is shortened with respect to the object 7. It can be moved relatively in the axial direction.
  • the moving stage 9 is configured to be movable in the same direction as the long axis direction of the linear beam and in a direction perpendicular to the paper surface of FIG.
  • the laser annealing apparatus 1 of the present invention further includes a mask 10 that is disposed on the optical path of the laser light 2 and shields a portion corresponding to the end of the linear beam, and the shielding amount by the mask 10 is periodically increased or decreased. And a mask driving device 12 for operating the mask 10.
  • FIG. 3A is a diagram illustrating a configuration example of the mask 10 and the mask driving device 12, and in this figure, the horizontal direction is the beam major axis direction of the laser light 2.
  • the mask 10 is disposed at a position directly above the substrate, and shields the laser beam 2 at this position.
  • the mask 10 is disposed at both ends of the laser beam 2 in the long axis direction.
  • FIG. 3B shows the energy distribution in the major axis direction of the beam end (only the left side in the figure).
  • the gradient part by the diffracted light 2a is made in the position of the beam edge part in the energy distribution A.
  • the mask 10 can be made of, for example, a metal plate, a glass plate with metal plating, or single crystal silicon.
  • the mask driving device 12 may be configured to periodically increase or decrease the shielding amount by swinging the mask 10.
  • the mask driving device 12 swings the mask 10 in the beam long axis direction. By swinging the mask 10, it is possible to easily control the overlap rate described later.
  • the mask driving device 12 that swings the mask 10 can be constituted by a piezo element. Since the piezo element can generate high-frequency vibrations by controlling the applied voltage, high-speed oscillation of the mask 10 can be easily realized.
  • the mask driving device 12 can also be configured by a motor and a mechanism that converts the rotational motion of the motor into a reciprocating motion.
  • the operation mode of the mask 10 may be not only swing but also rotation.
  • the same effect can be obtained even if the mask 10 is a rotating plate with a cut corresponding to the swinging width of the mask (metal or ceramic or glass coated with a light shielding film such as a chromium film).
  • a pulse laser with a pulse frequency of 2 kHz is set with an overlap rate of 95% (for example, when the beam width is 100 ⁇ m and the conveyance speed is 5 ⁇ m / pulse: the same area is irradiated with the laser 20 times)
  • the overlap rate remains 95%.
  • the edge of the image once formed may be shielded by the mask 10, and the image may be formed on the irradiation surface by the optical system 14.
  • the masks 10 may be disposed at both ends of the laser beam 2 in the major axis direction as in FIG.
  • FIG. 5 shows a pulse laser with a pulse frequency of 2 kHz and an overlap rate of 95% (for example, when the beam width is 100 ⁇ m and the conveyance speed is 5 ⁇ m / pulse: the same area is irradiated with the laser 20 times).
  • FIG. 6 shows how the overlap rate applied to the beam end portion changes depending on the oscillation frequency of the mask 10.
  • the oscillation frequency is 1 kHz
  • the beam edge is irradiated only 10 times, so that the apparent conveyance speed per pulse is doubled, and the overlap rate is changed from 95% to 90%.
  • the frequency is changed to 500 Hz
  • the beam edge is irradiated only five times from FIG. 5, so that the overlap rate can be reduced to 80%.
  • the overlap rate of the beam end can be lowered by controlling the oscillation frequency to be lower.
  • laser light 2 is emitted from a laser light source 3, and the laser light 2 is condensed into a linear beam by beam shaping 4 by a beam shaping optical system 4 and condensing by a condensing lens 6, to be processed 7. Irradiate.
  • the movement of the moving stage 9 causes the linear beam (irradiation portion B) to move relative to the object 7 in the short axis direction as shown in FIG.
  • the amorphous semiconductor film is crystallized.
  • the amorphous silicon film is changed to a polysilicon film.
  • FIG. 6B shows an example in which the object to be processed 7 is processed by irradiation of two rows, where R1 is the first row and R2 is the second row. W is an overlapping portion (joint portion) in the first and second rows.
  • the mask 10 disposed on the optical path of the laser beam 2 shields the portion corresponding to the end of the linear beam so that the shielding amount periodically increases or decreases. 10 is operated to reduce the overlap rate of the beam end.
  • the overlap rate is not controlled as in the conventional case, irradiation for two rows is performed on the joint portion W.
  • irradiation at the joint portion W is performed by lowering the overlap rate at the beam end as in the present invention. The amount can be reduced, thereby preventing an excessive overlap rate.
  • by overlapping and irradiating beams between adjacent rows it is possible to prevent lack of overlap.
  • the overlap ratio of the beam end portion by the mask 10 may be controlled for the beam end portion on the side that becomes the joint portion W when at least one of the two adjacent rows is irradiated.
  • the first row may be irradiated without being shielded by the mask 10, and the overlap ratio of the beam end portion may be controlled by the second row irradiation.
  • the irradiation of the first row R1 may be performed at the beam end portion.
  • the overlap rate may be controlled, and the second row may be irradiated without being shielded by the mask 10.
  • the mask 10 to be arranged may be only on one side of the laser light 2.
  • the vibration width of the mask 10 is preferably set according to the overlapping width of the joint portion W.
  • the vibration width of the piezo element is usually 100 ⁇ m or less, so it is desirable to set within this range.
  • the oscillation frequency of the mask 10 is determined by the pulse frequency of the pulse laser and the necessary overlap rate. The relationship between the oscillation frequency of the mask 10 and the overlap rate of the beam end is as described above (see FIG. 5).
  • the mask 10 is made of single crystal silicon or the like so that the energy intensity at the beam end is not increased by the diffracted light 2a from the mask 10 and is adjusted while monitoring the energy distribution in the beam major axis direction with a profile monitor. Is desirable.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】レーザ光の長軸方向の継ぎ目部において結晶性の均一性を損なうことなく、継ぎ目部が目視で確認できないほど良好で均一性が高い結晶性半導体薄膜を基板全面に形成できるレーザアニール方法及び装置を提供する。 【解決手段】線状ビームの照射中、レーザ光2の光路上に配置されたマスク10により、線状ビームの端部に対応する部分を遮蔽し、遮蔽量が周期的に増減するようにマスク10を動作させる。

Description

レーザアニール方法及び装置
 本発明は、被処理体にレーザ光を照射することにより被処理体をアニール処理するレーザアニール方法及び装置に関する。
 従来から、高性能な液晶表示装置などのデバイスを実現するために、ガラス基板などの絶縁性基板上に高性能な薄膜トランジスタなどの半導体素子を形成する方法が開発されている。この半導体素子には、一般に、非晶質シリコンを熱処理により結晶化させた薄膜状の多結晶シリコンが用いられる。
 多結晶シリコン膜を製造する方法としては、非晶質シリコン膜を予め基板上に成膜しておき、レーザ光を照射して結晶化させる方法が一般的である。この方法によれば、半導体薄膜の溶融固化過程における結晶化現象を利用するため、比較的粒径が大きく、高品質な多結晶シリコン膜を得ることができる。
 現在最も一般的に利用されているレーザアニール方法として、パルスレーザ光、特にエキシマレーザを用いたものがある。近年では、固体レーザであるYAGレーザやYLFレーザを用いたものが開発されている。パルスレーザ光を用いる方法では、非晶質シリコン膜を局所的に溶融させて、その溶融させた領域を極めて短い時間だけ高温度にするものである。このため、高熱が基板に伝わらないことから、耐熱性に優れた高価な石英基板を用いるのではなく、安価なガラス基板を利用することができ、大面積エレクトロデバイスの低温プロセス化に最も適している。
 一般的なレーザアニール方法では、例えばエキシマレーザを用いた場合、レーザ光を光学系により、ビーム長が最大465mm、短軸方向が0.4~5mmの線状ビームに整形する。YAGレーザの場合、ビーム長が最大200mm、短軸方向が40~50μmの線状ビームが得られる。この線状ビームの照射位置がビーム短軸方向に照射領域に対して部分的に重複するように、基板とレーザ光を相対的に移動させて、半導体膜の結晶化が行われる。一般的には、オーバーラップ率を約95%に設定し、同一領域に約20回照射する。
 図1Aと図1Bは、従来のレーザアニール方法の説明図である。図1Aでは、基板30に対してレーザ光31をビーム短軸方向に相対移動させて照射している様子を示している。ビーム長より長いサイズの基板30を処理する場合、図1Aに示すように、まず1列目R1を照射する。1列目R1の照射が完了したら、レーザ光31を長軸方向に相対的に移動させて2列目以降の照射を行う。図1Bは2列の照射により、基板全面を処理した例を示している。このとき、隣接する列同士(図1Bでは1列目R1と2列目R2)にはビームの継ぎ目部Wが発生する。
 通常のレーザアニールでは、隣接する列の線状ビームの端部を重ねて照射することで、継ぎ目部Wが発生する。この継ぎ目部Wではオーバーラップ(ビームの重複照射)が過剰となり結晶品質が他の部分と異なることにより、目視で継ぎ目部Wが見えるようになる。一方、隣接する列のビームの重なりが少ない、あるいは無い場合、ビーム端部ではオーバーラップが不十分となり、非晶質の部分が残り、やはり結晶性が他の部分と異なることになる。
 ビーム継ぎ目部Wは、隣接する列(例えば1列目R1と2列目R2)のビームの両方が照射された領域であるため、その領域の結晶性は他の部分とは異なる。エキシマレーザの場合、結晶性のばらつきが大きくなり、YAGレーザの第2高調波では、エキシマレーザに比べ、ばらつきは小さいものの、やはり結晶性がばらつく。
 結晶性が不均一な領域を用いて薄膜トランジスタを作製した場合、薄膜トランジスタの性能を均一化することができない。液晶ディスプレイや有機ELディスプレイなどの表示装置では、その表示品質が薄膜トランジスタの性能の均一性に左右され易いため、表示品質を維持するためには、レーザ光のビーム長に制限された領域内に表示パネルを作製しなければならなくなる。グリーンYAGレーザの場合、ビーム長が短いため、20インチを超える大型ディスプレイを作製することは困難である。
 上記のような、ビーム継ぎ目部Wの結晶性の不均一性を防止するための技術は、例えば特許文献1、2に開示されている。
 特許文献1の方法は、レーザ光の照射領域を重ね合わせて大面積の半導体薄膜を結晶化させる際に、レーザ光の幅寸法やエネルギー密度を調整することにより、レーザ光の重ね合わせ部と非重ね合わせ部とで結晶性を均一化させるというものである。
 特許文献2の方法は、継ぎ目部のビームプロファイルのスロープ部分がレーザ強度の20%以上80%以下の領域で互いに重ねるように設定することで、結晶性を均一化させるというものである。
特開2000-315652号公報 特開2005-243747号公報
 しかし、特許文献1の方法では、レーザ光の幅寸法やエネルギー密度を調整することは容易ではなく、装置の生産性が低下するという問題がある。
 特許文献2の方法では、エネルギー密度の異なる条件でビームを重ねるため、特にエネルギー変動に対して結晶性が大きく変動するエキシマレーザの場合、結晶性が不均一となることが予想される。
 本発明は、上記の問題に鑑みてなされたものであり、レーザ照射によりガラスなどの基板上に形成された半導体薄膜の結晶化を行う際に、レーザ光の長軸方向の継ぎ目部において結晶性の均一性を損なうことなく、継ぎ目部が目視で確認できないほど良好で均一性が高い結晶性半導体薄膜を基板全面に形成できるレーザアニール方法及び装置を提供することを課題とする。
 上記の課題を解決するため、本発明のレーザアニール方法及び装置は、以下の技術的手段を採用する。
(1)本発明は、レーザ光を線状に整形した線状ビームを、被処理物に対して線状ビームの短軸方向に相対的に移動させながら照射して、被処理物にアニール処理を施すレーザアニール方法であって、線状ビームの短軸方向の相対移動による照射を、ビーム長軸方向にずらして2列以上行い、この際に、隣接する列同士のビーム照射領域が一部重なるように照射し、線状ビームの照射中、レーザ光の光路上に配置されたマスクにより、線状ビームの端部に対応する部分を遮蔽し、遮蔽量が周期的に増減するようにマスクを動作させる、ことを特徴とする。
(2)上記(1)のレーザアニール方法において、前記マスクを揺動させることで遮蔽量を周期的に増減する。
(3)上記(2)のレーザアニール方法において、ピエゾ素子を用いて前記マスクを揺動させる。
(4)また本発明は、レーザ光を線状に整形した線状ビームを、被処理物に対して線状ビームの短軸方向に相対的に移動させながら照射して、被処理物にアニール処理を施すレーザアニール装置であって、レーザ光の光路上に配置され線状ビームの端部に対応する部分を遮蔽するマスクと、前記マスクによる遮蔽量が周期的に増減するようにマスクを動作させるマスク駆動装置と、を備えることを特徴とする。
(5)上記(4)のレーザアニール装置において、前記マスク駆動装置は、前記マスクを揺動させることで遮蔽量を周期的に増減する。
(6)上記(5)のレーザアニール装置において、前記マスク駆動装置はピエゾ素子である。
 上記(1)の方法及び上記(3)の装置によれば、マスクにより線状ビームの端部に対応する部分を遮蔽し、遮蔽量が周期的に増減するようにマスクを動作させるので、遮蔽したビーム端部のオーバーラップ率が非遮蔽部分のそれよりも低下する。これにより、継ぎ目部のオーバーラップの過剰を抑制できるとともに、隣接する列同士でビームを重ねて照射することでオーバーラップの不足も防止することができる。したがって、継ぎ目部における結晶性の不均一性を低減でき、均一性の高い半導体薄膜を基板全面に形成できる。
 上記(2)の方法及び上記(4)の装置によれば、マスクを揺動させることで、容易にオーバーラップ率を制御することができる。
 上記(3)の方法及び上記(6)の装置によれば、ピエゾ素子は印加電圧の制御によって高い周波数の振動を発生させることができるので、マスクの高速揺動を容易に実現し、オーバーラップ率を容易に制御することができる。
従来のレーザアニール方法による1列目の照射の説明図である。 従来のレーザアニール方法による基板全面処理時の説明図である。 本発明の実施形態にかかるレーザアニール装置の全体構成を示す図である。 マスクとマスク駆動装置の一構成例を示す図である。 ビーム端部の長軸方向のエネルギー分布を示す図である。 マスクの他の配置例を示す図である。 マスクの揺動周波数とビーム端部のオーバーラップ率との関係を示す図である。 本発明のレーザアニール装置による1列目の照射の説明図である。 本発明のレーザアニール装置による基板全面処理時の説明図である。
 以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図2は、本発明の実施形態にかかるレーザアニール装置1の全体構成を示す図である。
 レーザアニール装置1は、その基本構成要素として、レーザ光2を出射するレーザ光源3と、レーザ光源3からのレーザ光2を整形するビーム整形光学系4と、レーザ光2を被処理体7の方向に反射する反射ミラー5と、反射ミラー5からのレーザ光2を被処理体7の表面に集光する集光レンズ6と、被処理体7を載せて移動する移動ステージ9とを備える。
 上記のレーザ光源3としては、例えば、エキシマレーザ、固体レーザあるいは半導体レーザを適用することが可能である。固体レーザとしては、YAG、YLF、YVO等がある。レーザ光2は、パルス発振、連続発振のいずれであってもよい。
 ビーム整形光学系4は、レーザ光2を被処理体7表面において線状ビームとなるように整形するものであり、ビームエキスパンダ、ホモジナイザ等を構成要素として含むことが可能である。
 被処理体7は、基板7aとその上に形成された非晶質半導体膜7bからなる。基板7aは、ガラス基板や半導体基板である。非晶質半導体膜7bは、例えばアモルファスシリコン膜である。
 移動ステージ9は、図中の矢印A方向に移動可能に構成されている。したがって、レーザ光2を照射しながら移動ステージ9により被処理体7を線状ビームの短軸方向(A方向)に移動させることで、被処理体7に対してレーザ光1の照射部分を短軸方向に相対的に移動させることができる。また、移動ステージ9は、線状ビームの長軸方向と同じ方向である、図2の紙面に垂直な方向に移動可能に構成されている。
 本発明のレーザアニール装置1は、さらに、レーザ光2の光路上に配置され線状ビームの端部に対応する部分を遮蔽するマスク10と、マスク10による遮蔽量が周期的に増減するようにマスク10を動作させるマスク駆動装置12と、を備える。
 図3Aは、マスク10とマスク駆動装置12の一構成例を示す図であり、この図では左右方向がレーザ光2のビーム長軸方向である。この例において、マスク10は基板の直上の位置に配置され、この位置においてレーザ光2を遮蔽する。またこの例においてマスク10は、レーザ光2の長軸方向の両端部に配置されている。図3Bに、ビーム端部(図で左側のみ)の長軸方向のエネルギー分布を示す。このようにマスク10により遮蔽した場合、エネルギー分布Aにおけるビーム端部の位置に回折光2aによる勾配部分ができる。
 マスク10は、例えば、金属板や、ガラス板に金属メッキを施したものや、単結晶シリコンで構成することが可能である。
 マスク駆動装置12は、マスク10を揺動させることで遮蔽量を周期的に増減するものとして構成されてよい。図3の構成例では、マスク駆動装置12はマスク10をビーム長軸方向に揺動させる。マスク10を揺動させることで、後述するオーバーラップ率の制御を容易に行うことができる。
 マスク10を揺動させるマスク駆動装置12は、ピエゾ素子で構成することが可能である。ピエゾ素子は印加電圧の制御によって高い周波数の振動を発生させることができるので、マスク10の高速揺動を容易に実現できる。また、マスク駆動装置12は、モータとモータの回転運動を往復運動に変換する機構とで構成することもできる。
 マスク10の動作態様は、揺動だけでなく、回転であってもよい。例えば、マスク10をマスクの揺動幅に相当する切掻きのついた回転板(金属でもセラミックスでももしくはガラスにクロム膜などの遮光膜を塗布したものでも良い)でも同様の効果を得ることができる。例えば、パルス周波数が2kHzのパルスレーザで、オーバーラップ率を95%(例えばビーム幅100μmで搬送速度5μm/パルスで照射するケース:同じエリアにレーザが20回照射される)で設定した場合、回転板の回転数を2kHzとして、切掻き部にレーザが透過するように同期させた場合、オーバーラップ率は95%のままである。一方、回転板の回転数を1kHzとした場合、レーザは回転板に2周に1回、遮蔽されるため、ビーム端部には20回から10回しか照射されなくなり、見かけのパルスあたりの搬送速度は2倍になるため、オーバーラップ率は90%に減少する。さらに同期する回転数を小さくすることで、さらにオーバーラップ率を低下させることができる。
 なお、オーバーラップ率ORは、以下の式により定義される。
 OR=(1-V/W)×100  W:ビーム幅  V:搬送速度(1パルスあたり)
 またマスク10の配置位置の別の例として、図4に示すように、一旦形成した像の端部をマスク10で遮蔽し、その像を光学系14により照射面に結像させる構成としてもよい。この場合、図3と同様に、レーザ光2の長軸方向の両端にマスク10を配置してもよい。
 図5は、パルス周波数が2kHzのパルスレーザで、オーバーラップ率を95%(例えばビーム幅100μmで搬送速度5μm/パルスで照射するケース:同じエリアにレーザが20回照射される)で設定した場合に、マスク10の揺動周波数によってビーム端部に照射されるオーバーラップ率がどのように変化するかを示している。
 揺動周波数が1kHzとした場合、ビームエッジには10回しか照射されなくなるため、見かけのパルスあたりの搬送速度は2倍になり、オーバーラップ率は、95%から90%に変化する。500Hzに変化させると、図5から、ビームエッジには5回しか照射されなくなるため、オーバーラップ率は80%に低減できる。
 以上のように、揺動周波数をより低く制御することで、ビーム端部のオーバーラップ率を下げることができる。
 なお、オーバーラップ率ORは、以下の式により定義される。
 OR=(1-V/W)×100  W:ビーム幅  V:搬送速度(1パルスあたり) 
 次に、上記のように構成されたレーザアニール装置1の動作を説明する。
 図2において、レーザ光源3からレーザ光2を出射させ、ビーム整形光学系4によるビーム整形4及び集光レンズ6による集光によりレーザ光2を線状ビームに集光して被処理体7に照射する。
 この状態で移動ステージ9の移動により、図6Aに示すように、被処理体7に対して線状ビーム(の照射部分B)を短軸方向に相対的に移動させて、レーザ照射部分Bで非晶質半導体膜の結晶化を行う。例えば、アモルファスシリコン膜をポリシリコン膜にする。
 線状ビームの長軸方向の長さより大きい基板を処理する場合、1列目の照射が完了した後、移動ステージの移動によりレーザ光2を長軸方向に相対的に移動させて2列目以降の照射を行い、この際に、隣接する列同士のビーム照射領域が一部重なるように照射する。これにより、基板の全面を照射する。図6Bでは、2列の照射により被処理体7を処理した例を示しており、R1が1列目、R2が2列目である。また、Wは1列目と2列目の重なり部分(継ぎ目部)である。
 本発明では、線状ビームの照射中、レーザ光2の光路上に配置されたマスク10により、線状ビームの端部に対応する部分を遮蔽し、遮蔽量が周期的に増減するようにマスク10を動作させ、ビーム端部のオーバーラップ率を低下させる。従来のようにオーバーラップ率を制御しない場合、継ぎ目部Wには2列分の照射が行われるが、本発明のようにビーム端部のオーバーラップ率を下げることで、継ぎ目部Wでの照射量を減らし、これによりオーバーラップ率の過剰を防止することができる。
 また、隣接する列同士でビームを重ねて照射することでオーバーラップの不足も防止することができる。
 ここで、マスク10によるビーム端部のオーバーラップ率の制御は、隣接する2つの列の少なくとも一方を照射するときに、継ぎ目部Wとなる側のビーム端部について行えばよい。例えば、1列目はマスク10による遮蔽なしで照射し、2列目の照射でビーム端部のオーバーラップ率の制御を行ってもよく、逆に、1列目R1の照射でビーム端部のオーバーラップ率の制御を行い、2列目はマスク10による遮蔽なしで照射するようにしてもよい。この場合、ビーム端部のオーバーラップ率の制御は、片側の端部のみでよいので、配置されるマスク10もレーザ光2の片側のみでよい。
 あるいは、継ぎ目部Wとなる側のビーム端部についてのオーバーラップ率の制御を、隣接する2つの列を照射するときの両方において行ってもよい。
 この場合、ビーム端部のオーバーラップ率の制御は、両端部において行う必要があるため、図3の構成例のようにレーザ光2の長軸方向の両側にマスク10が配置される必要がある。
 マスク10の振動幅は、継ぎ目部Wの重なり幅に応じて設定するのがよい。例えば、マスク駆動装置12としてピエゾ素子を用いる場合、ピエゾ素子の振動幅は通常100μm以下なので、この範囲内で設定するのが望ましい。
 マスク10による遮蔽が無い状態で照射したときには隣接する列の継ぎ目部が重ならないような位置関係で被処理体7にビームを照射する場合でも、マスク10による遮蔽がある状態ではマスク10による回折光2aにより継ぎ目部Wが重なる状態となるのであれば、そのような照射態様も可能である。
 マスク10の揺動周波数は、パルスレーザのパルス周波数と、必要なオーバーラップ率により決定する。マスク10の揺動周波数とビーム端部のオーバーラップ率との関係は、上述したとおりである(図5を参照)。
 なお、マスク10での回折光2aによりビーム端部のエネルギー強度が大きくならないように、マスク10を単結晶シリコンなどで構成し、ビーム長軸方向のエネルギー分布をプロファイルモニタで監視しながら調整することが望ましい。
 上記において、本発明の実施形態について説明を行ったが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。

Claims (6)

  1.  レーザ光を線状に整形した線状ビームを、被処理物に対して線状ビームの短軸方向に相対的に移動させながら照射して、被処理物にアニール処理を施すレーザアニール方法であって、
     線状ビームの短軸方向の相対移動による照射を、ビーム長軸方向にずらして2列以上行い、この際に、隣接する列同士のビーム照射領域が一部重なるように照射し、
     線状ビームの照射中、レーザ光の光路上に配置されたマスクにより、線状ビームの端部に対応する部分を遮蔽し、遮蔽量が周期的に増減するようにマスクを動作させる、ことを特徴とするレーザアニール方法。
  2.  前記マスクを揺動させることで遮蔽量を周期的に増減する、請求項1記載のレーザアニール方法。
  3.  ピエゾ素子を用いて前記マスクを揺動させる、請求項2記載のレーザアニール方法。
  4.  レーザ光を線状に整形した線状ビームを、被処理物に対して線状ビームの短軸方向に相対的に移動させながら照射して、被処理物にアニール処理を施すレーザアニール装置であって、
     レーザ光の光路上に配置され線状ビームの端部に対応する部分を遮蔽するマスクと、
     前記マスクによる遮蔽量が周期的に増減するようにマスクを動作させるマスク駆動装置と、を備えることを特徴とするレーザアニール装置。
  5.  前記マスク駆動装置は、前記マスクを揺動させることで遮蔽量を周期的に増減する、請求項4記載のレーザアニール装置。
  6.  前記マスク駆動装置はピエゾ素子である請求項5記載のレーザアニール装置。
PCT/JP2009/061162 2008-06-26 2009-06-19 レーザアニール方法及び装置 WO2009157373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801240211A CN102077318B (zh) 2008-06-26 2009-06-19 激光退火方法及装置
EP09770083A EP2299476A4 (en) 2008-06-26 2009-06-19 METHOD AND APPARATUS FOR LASER RECEIVER
JP2010517966A JP5366023B2 (ja) 2008-06-26 2009-06-19 レーザアニール方法及び装置
US13/001,311 US8598050B2 (en) 2008-06-26 2009-06-19 Laser annealing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008166747 2008-06-26
JP2008-166747 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009157373A1 true WO2009157373A1 (ja) 2009-12-30

Family

ID=41444441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061162 WO2009157373A1 (ja) 2008-06-26 2009-06-19 レーザアニール方法及び装置

Country Status (7)

Country Link
US (1) US8598050B2 (ja)
EP (1) EP2299476A4 (ja)
JP (1) JP5366023B2 (ja)
KR (1) KR101213659B1 (ja)
CN (1) CN102077318B (ja)
TW (1) TWI410290B (ja)
WO (1) WO2009157373A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079318A (ja) * 2015-10-21 2017-04-27 三星ディスプレイ株式會社Samsung Display Co.,Ltd. レーザアニーリング装置、及びそれを利用したディスプレイ装置の製造方法
US9812471B2 (en) 2015-08-07 2017-11-07 Samsung Display Co., Ltd. Laser annealing apparatus and method of manufacturing display apparatus by using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288993B1 (ko) * 2011-12-20 2013-08-16 삼성디스플레이 주식회사 레이저 어닐링 장치
JP5717146B2 (ja) * 2012-10-23 2015-05-13 株式会社日本製鋼所 レーザラインビーム改善装置およびレーザ処理装置
JP5725518B2 (ja) * 2013-04-17 2015-05-27 株式会社日本製鋼所 レーザ光遮蔽部材、レーザ処理装置およびレーザ光照射方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116834A (ja) * 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd 非単結晶薄膜のレーザー結晶化方法
JP2000315652A (ja) 1999-04-30 2000-11-14 Sony Corp 半導体薄膜の結晶化方法及びレーザ照射装置
JP2005243747A (ja) 2004-02-24 2005-09-08 Sharp Corp 半導体薄膜の製造方法、半導体薄膜製造装置、半導体薄膜、半導体装置および液晶表示装置
JP2006093677A (ja) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US20080118203A1 (en) * 2006-11-17 2008-05-22 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, and laser irradiation method

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100299292B1 (ko) * 1993-11-02 2001-12-01 이데이 노부유끼 다결정실리콘박막형성방법및그표면처리장치
US5970368A (en) * 1996-09-30 1999-10-19 Kabushiki Kaisha Toshiba Method for manufacturing polycrystal semiconductor film
EP1049144A4 (en) * 1997-12-17 2006-12-06 Matsushita Electronics Corp THIN SEMICONDUCTOR LAYER, METHOD AND DEVICE THEREOF, SEMICONDUCTOR COMPONENT AND METHOD FOR MANUFACTURING SAME
JP4162772B2 (ja) 1998-09-09 2008-10-08 日酸Tanaka株式会社 レーザピアシング方法およびレーザ切断装置
TW457553B (en) * 1999-01-08 2001-10-01 Sony Corp Process for producing thin film semiconductor device and laser irradiation apparatus
US6573195B1 (en) * 1999-01-26 2003-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device by performing a heat-treatment in a hydrogen atmosphere
US6393042B1 (en) * 1999-03-08 2002-05-21 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer and laser irradiation apparatus
TW544743B (en) * 1999-08-13 2003-08-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
CA2412603A1 (en) * 2001-04-19 2002-10-31 The Trustee Of Columbia University In The City Of New York Method and system for providing a single-scan, continuous motion sequential lateral solidification
JP2003142395A (ja) 2001-11-08 2003-05-16 Canon Inc 温度制御流体供給装置、及びその装置を備える露光装置と半導体デバイス製造方法
US7105048B2 (en) * 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7078322B2 (en) * 2001-11-29 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor
JP3949564B2 (ja) * 2001-11-30 2007-07-25 株式会社半導体エネルギー研究所 レーザ照射装置及び半導体装置の作製方法
US7214573B2 (en) * 2001-12-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes patterning sub-islands
US6733931B2 (en) * 2002-03-13 2004-05-11 Sharp Laboratories Of America, Inc. Symmetrical mask system and method for laser irradiation
TWI331803B (en) * 2002-08-19 2010-10-11 Univ Columbia A single-shot semiconductor processing system and method having various irradiation patterns
KR20040031276A (ko) 2002-10-04 2004-04-13 엘지.필립스 엘시디 주식회사 레이저 어닐링 장비 및 이를 이용한 실리콘 결정화 방법
US6747245B2 (en) * 2002-11-06 2004-06-08 Ultratech Stepper, Inc. Laser scanning apparatus and methods for thermal processing
US7160762B2 (en) * 2002-11-08 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
TW569351B (en) 2002-11-22 2004-01-01 Au Optronics Corp Excimer laser anneal apparatus and the application of the same
GB2399311B (en) 2003-03-04 2005-06-15 Xsil Technology Ltd Laser machining using an active assist gas
US7304005B2 (en) * 2003-03-17 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
TWI359441B (en) * 2003-09-16 2012-03-01 Univ Columbia Processes and systems for laser crystallization pr
US7364952B2 (en) * 2003-09-16 2008-04-29 The Trustees Of Columbia University In The City Of New York Systems and methods for processing thin films
KR100543010B1 (ko) * 2003-10-20 2006-01-20 삼성에스디아이 주식회사 다결정 실리콘 박막의 제조 방법 및 이를 사용하여 제조된디스플레이 디바이스
KR100631013B1 (ko) * 2003-12-29 2006-10-04 엘지.필립스 엘시디 주식회사 주기성을 가진 패턴이 형성된 레이저 마스크 및 이를이용한 결정화방법
US20050237895A1 (en) * 2004-04-23 2005-10-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method for manufacturing semiconductor device
JP5250181B2 (ja) * 2004-05-06 2013-07-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8110775B2 (en) * 2004-06-18 2012-02-07 Electro Scientific Industries, Inc. Systems and methods for distinguishing reflections of multiple laser beams for calibration for semiconductor structure processing
US8304313B2 (en) 2004-08-23 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US20090218577A1 (en) * 2005-08-16 2009-09-03 Im James S High throughput crystallization of thin films
FR2891483B1 (fr) 2005-10-05 2009-05-15 Commissariat Energie Atomique Procede et installation de decoupe/de soudage laser
US20070117287A1 (en) * 2005-11-23 2007-05-24 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
KR101365185B1 (ko) * 2005-12-16 2014-02-21 삼성디스플레이 주식회사 실리콘 결정화 마스크 및 이를 갖는 실리콘 결정화 장치
KR101202524B1 (ko) 2005-12-29 2012-11-16 엘지디스플레이 주식회사 레이저 결정화 장비 및 구동방법, 그를 이용한폴리실리콘막, 박막트랜지스터 및 액정표시장치의 제조방법
JP2007208180A (ja) * 2006-02-06 2007-08-16 Fujifilm Corp レーザアニール技術、半導体膜、半導体装置、及び電気光学装置
JP4403427B2 (ja) 2006-10-06 2010-01-27 ソニー株式会社 レーザ加工装置、レーザ加工方法、配線基板の製造方法、表示装置の製造方法、及び配線基板
US20080204197A1 (en) * 2007-02-23 2008-08-28 Semiconductor Energy Laboratory Co., Ltd. Memory carrier and method for driving the same
US8003300B2 (en) * 2007-04-12 2011-08-23 The Board Of Trustees Of The University Of Illinois Methods for fabricating complex micro and nanoscale structures and electronic devices and components made by the same
US8198567B2 (en) 2008-01-15 2012-06-12 Applied Materials, Inc. High temperature vacuum chuck assembly
JP5503876B2 (ja) * 2008-01-24 2014-05-28 株式会社半導体エネルギー研究所 半導体基板の製造方法
KR101481686B1 (ko) * 2008-02-12 2015-01-13 삼성디스플레이 주식회사 반도체층 결정화 마스크 및 이를 이용한 반도체층 결정화방법
US7883988B2 (en) * 2008-06-04 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
US8153958B2 (en) * 2009-07-10 2012-04-10 Sphere Renewable Energy Corp. Method and apparatus for producing hyperthermal beams
US8337618B2 (en) * 2009-10-26 2012-12-25 Samsung Display Co., Ltd. Silicon crystallization system and silicon crystallization method using laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116834A (ja) * 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd 非単結晶薄膜のレーザー結晶化方法
JP2000315652A (ja) 1999-04-30 2000-11-14 Sony Corp 半導体薄膜の結晶化方法及びレーザ照射装置
JP2005243747A (ja) 2004-02-24 2005-09-08 Sharp Corp 半導体薄膜の製造方法、半導体薄膜製造装置、半導体薄膜、半導体装置および液晶表示装置
JP2006093677A (ja) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US20080118203A1 (en) * 2006-11-17 2008-05-22 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, and laser irradiation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2299476A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812471B2 (en) 2015-08-07 2017-11-07 Samsung Display Co., Ltd. Laser annealing apparatus and method of manufacturing display apparatus by using the same
JP2017079318A (ja) * 2015-10-21 2017-04-27 三星ディスプレイ株式會社Samsung Display Co.,Ltd. レーザアニーリング装置、及びそれを利用したディスプレイ装置の製造方法
US9966392B2 (en) 2015-10-21 2018-05-08 Samsung Display Co., Ltd. Laser annealing apparatus and method of manufacturing display apparatus by using the same

Also Published As

Publication number Publication date
CN102077318A (zh) 2011-05-25
EP2299476A1 (en) 2011-03-23
US20110097907A1 (en) 2011-04-28
TW201008690A (en) 2010-03-01
EP2299476A4 (en) 2011-08-03
KR20110020794A (ko) 2011-03-03
JPWO2009157373A1 (ja) 2011-12-15
JP5366023B2 (ja) 2013-12-11
CN102077318B (zh) 2013-03-27
US8598050B2 (en) 2013-12-03
TWI410290B (zh) 2013-10-01
KR101213659B1 (ko) 2012-12-18

Similar Documents

Publication Publication Date Title
JP4216068B2 (ja) 多結晶シリコン膜の製造方法および製造装置ならびに半導体装置の製造方法
US8221544B2 (en) Line scan sequential lateral solidification of thin films
JP2009505431A (ja) 高周波レーザを用いた薄膜の均一な逐次的横方向結晶化のためのシステム及び方法
KR20110094022A (ko) 박막 결정화를 위한 시스템 및 방법
JP5366023B2 (ja) レーザアニール方法及び装置
WO2012157410A1 (ja) レーザ処理装置
JP4772261B2 (ja) 表示装置の基板の製造方法及び結晶化装置
JP5214662B2 (ja) 多結晶シリコン薄膜の製造方法
WO2006075568A1 (ja) 多結晶半導体薄膜の製造方法および製造装置
JP4092414B2 (ja) レーザアニール方法
JP2010034366A (ja) 半導体処理装置および半導体処理方法
JP2006013050A (ja) レーザビーム投影マスク及びそれを用いたレーザ加工方法、レーザ加工装置
JP2006086447A (ja) 半導体薄膜の製造方法および半導体薄膜の製造装置
JP2008147429A (ja) レーザアニール装置及びレーザアニール方法
JP2007221062A (ja) 半導体デバイスの製造方法および製造装置
KR101301282B1 (ko) 비정질 실리콘 결정화용 레이저 조사 장치
KR102285121B1 (ko) 레이저를 이용한 비정질 반도체 결정화 장치 및 그의 제어방법
TWI435390B (zh) 結晶質膜的製造方法以及製造裝置
WO2020158424A1 (ja) レーザアニール方法、レーザアニール装置、および結晶化シリコン膜基板
JP2007207896A (ja) レーザビーム投影マスクおよびそれを用いたレーザ加工方法、レーザ加工装置
JP2007287866A (ja) 半導体結晶薄膜の製造方法およびそれに用いられる製造装置、フォトマスク、ならびに半導体素子
JP2008147236A (ja) 結晶化装置およびレーザ加工方法
JP2007242803A (ja) 半導体薄膜の製造方法および半導体薄膜の製造装置
JP2005072487A (ja) 半導体膜のレーザアニーリング方法
JP2005353979A (ja) 半導体薄膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124021.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517966

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107027118

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009770083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009770083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13001311

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE