WO2009154222A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2009154222A1
WO2009154222A1 PCT/JP2009/061012 JP2009061012W WO2009154222A1 WO 2009154222 A1 WO2009154222 A1 WO 2009154222A1 JP 2009061012 W JP2009061012 W JP 2009061012W WO 2009154222 A1 WO2009154222 A1 WO 2009154222A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
vibration
chamber
vibration isolator
liquid chamber
Prior art date
Application number
PCT/JP2009/061012
Other languages
English (en)
French (fr)
Inventor
植木 哲
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN200980123126.5A priority Critical patent/CN102066803B/zh
Priority to EP09766670.5A priority patent/EP2302254B1/en
Priority to US12/999,827 priority patent/US8672304B2/en
Priority to JP2010517939A priority patent/JP5452484B2/ja
Publication of WO2009154222A1 publication Critical patent/WO2009154222A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids

Definitions

  • the present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.
  • This application claims priority based on Japanese Patent Application No. 2008-158351 for which it applied to Japan on June 17, 2008, and uses the content here.
  • a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit and the other one of the vibration generating unit and the vibration receiving unit are connected.
  • a second mounting member, a first rubber elastic body that elastically connects the first and second mounting members, and the interior of the first mounting member with the first rubber elastic body as a part of the partition wall The main liquid chamber in which the liquid is enclosed and the internal volume changes due to the deformation of the first rubber elastic body, and the sub liquid chamber in which at least a part of the partition wall is deformably formed and in which the liquid is enclosed are partitioned.
  • a partition member, and an orifice passage is formed between the outer peripheral surface side of the partition member and the inner peripheral surface side of the first mounting member to communicate the main liquid chamber and the sub liquid chamber.
  • a configuration in which liquid is sealed in the main liquid chamber and the sub liquid chamber is known.
  • the liquid pressure in the main liquid chamber suddenly increases, and then vibrates in the reverse direction due to, for example, rebound of the first rubber elastic body.
  • the main liquid chamber may become negative pressure. At this time, cavitation in which a large number of bubbles are generated in the liquid in the main liquid chamber occurs.
  • a shock wave is generated when the bubbles disappear from the liquid, and this shock wave propagates to a metal material such as the first mounting member, thereby generating abnormal noise.
  • a communication hole for communicating the main liquid chamber and the sub liquid chamber is formed in the partition member separately from the orifice passage.
  • a valve is provided in the communication hole, and when the liquid pressure in the main liquid chamber suddenly rises and then attempts to reach a negative pressure, this valve is opened and the main liquid chamber and the sub liquid chamber are short-circuited.
  • a configuration is known in which the occurrence of cavitation is prevented in advance by suppressing the decrease in hydraulic pressure.
  • the conventional vibration isolator is provided with a communication hole, a valve, etc., not only is the structure complicated, but also tuning for adjusting the hydraulic pressure when the valve opens as described above is difficult and unexpected. In some cases, the valve could open and deteriorate the damping performance.
  • the present invention has been made in consideration of such circumstances, and is a vibration proofing device that can reduce the magnitude of abnormal noise generated without complicating the structure and without deteriorating the attenuation performance.
  • An object is to provide an apparatus.
  • the vibration isolator of the present invention includes a cylindrical first mounting member coupled to one of a vibration generating unit and a vibration receiving unit, a vibration A second attachment member connected to the other of the generator and the vibration receiving portion; a first rubber elastic body that elastically connects the first and second attachment members; and an interior of the first attachment member A liquid is sealed with the first rubber elastic body as a part of the partition wall, and a main liquid chamber in which an internal volume is changed by deformation of the first rubber elastic body, and at least a part of the partition wall is formed to be deformable, And a sub liquid chamber in which a liquid is enclosed, and a partition member that is partitioned into a main liquid chamber and a sub liquid between the outer peripheral surface side of the partition member and the inner peripheral surface side of the first mounting member.
  • An orifice passage communicating with the chamber is formed, and these main liquid chambers And a secondary liquid chamber, wherein the liquid contains a first liquid and a second liquid that are insoluble in each other, and the second liquid has a smaller surface tension than the first liquid. And the weight contained in the said liquid is small, It is characterized by the above-mentioned.
  • the liquid sealed in the main liquid chamber and the sub liquid chamber contains the first liquid and the second liquid that are insoluble in each other, the content of the second liquid is less than that of the first liquid, and the second liquid Since the surface tension of the first liquid is smaller than the surface tension of the first liquid, when a large vibration (load) is input, for example, the liquid passes through the restriction passage, the internal volume of the liquid chamber fluctuates, Due to the occurrence of cavitation or the like, innumerable second liquids that have become granular are dispersed in the first liquid.
  • cavitation occurs not only in the first liquid but also in the second liquid in the vicinity of the opening of the restriction passage where the flow velocity of the liquid becomes high in the main liquid chamber, and the liquid does not contain the second liquid.
  • the growth of bubbles generated in the first liquid is suppressed. Therefore, it is possible to suppress the shock wave generated due to the collapse of cavitation in the first liquid.
  • the state in which the first liquid and the second liquid are insoluble can be obtained by mixing a polar fluid and a nonpolar fluid.
  • the second liquid is dispersed in the first liquid as described above, the growth of bubbles generated in the second liquid is suppressed, and the bubble contraction speed during condensation is suppressed from increasing. As a result, the shock wave generated due to the collapse of cavitation in the second liquid can be kept small. As described above, the shock wave generated in the entire liquid in the liquid chamber can be suppressed to be smaller than that in the case where the liquid does not contain the second liquid and contains only the first liquid, and the generated abnormal noise is large. Can be reduced.
  • shock waves from the individual second liquids dispersed in the first liquid interfere with each other and cancel their energy, and the shock waves generated in the second liquid are small as described above. Simultaneously with the suppression, the shock wave from the second liquid can be prevented from propagating outside the vibration isolator. If vibration (load) is repeatedly input thereafter, the second liquid is further finely dispersed in the first liquid and evenly distributed over the entire area, and the above-described effects are effectively achieved.
  • the second liquid may have a higher vapor pressure at the same temperature than the vapor pressure of the main component of the first liquid.
  • the liquid contains the first liquid and the second liquid that are insoluble in each other and have different vapor pressures at the same temperature
  • the vapor pressure of the entire liquid is equal to the vapor pressure of the first liquid alone and the second liquid. It becomes higher than the vapor pressure of two liquids alone. Therefore, in the process in which the liquid pressure in the main liquid chamber decreases as described above, the liquid pressure at which cavitation starts to occur in the interface region between the first liquid and the second liquid in the liquid is the main liquid chamber and the sub liquid chamber. It becomes high compared with the case where the 1st liquid simple substance or the 2nd liquid simple substance is enclosed.
  • the liquid pressure in the main liquid chamber continues to decrease further thereafter, and the first liquid also has the first liquid in the interface region.
  • the main component and the second liquid are suppressed by preferentially generating cavitation on the second liquid side where the vapor pressure at the same temperature is high while expanding the bubbles generated by this cavitation. It is possible to suppress the generation of the aforementioned bubbles in the main component of the first liquid.
  • the first liquid may contain ethylene glycol alone or ethylene glycol and propylene glycol or water or other polar fluid
  • the second liquid may contain silicone oil or fluorine oil.
  • the second liquid higher alcohol, hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, methylene chloride, or phenols such as phenoxyethanol may be used.
  • the liquid may contain 60% by weight or more and 99.9% by weight or less of the first liquid and 0.1% by weight or more and 40% by weight or less of the second liquid. In these cases, the above-described effects can be reliably achieved without reducing the attenuation performance.
  • silicone oil and fluorine oil are more expensive than ethylene glycol and propylene glycol
  • the second liquid has a lower weight in the liquid than the first liquid. The rise can be suppressed.
  • the present invention it is possible to reduce the size of the generated abnormal noise without complicating the structure and without deteriorating the attenuation performance.
  • 6 is a graph obtained by measuring the acceleration acting on the vibration isolator in a state where the second liquid is not dispersed in the first liquid in the vibration isolator shown as an embodiment according to the present invention.
  • 5 is a graph obtained by measuring the acceleration acting on the vibration isolator in a state where the second liquid is dispersed in the first liquid in the vibration isolator shown as an embodiment according to the present invention. It is the graph which measured the acceleration which acts on the conventional vibration isolator.
  • Correlation between the change in weight% of the second liquid in the liquid and the acceleration acting on the vibration isolator shown as an embodiment of the present invention when a combination of different first liquid and second liquid is used It is a graph which shows. Correlation between the change in weight% of the second liquid in the liquid and the acceleration acting on the vibration isolator shown as an embodiment of the present invention when a combination of different first liquid and second liquid is used It is a graph which shows. Correlation between the change in weight% of the second liquid in the liquid and the acceleration acting on the vibration isolator shown as an embodiment of the present invention when a combination of different first liquid and second liquid is used It is a graph which shows.
  • Correlation between the change in weight% of the second liquid in the liquid and the acceleration acting on the vibration isolator shown as an embodiment of the present invention when a combination of different first liquid and second liquid is used It is a graph which shows. Correlation between the change in weight% of the second liquid in the liquid and the loss factor reduction rate of the vibration isolator shown as an embodiment of the present invention when a combination of different first liquid and second liquid is used It is a graph which shows a relationship. Correlation between the change in weight% of the second liquid in the liquid and the loss factor reduction rate of the vibration isolator shown as an embodiment of the present invention when a combination of different first liquid and second liquid is used It is a graph which shows a relationship.
  • the vibration isolator 10 includes a cylindrical first mounting member 11 connected to one of the vibration generating unit and the vibration receiving unit, and a second mounting connected to the other of the vibration generating unit and the vibration receiving unit.
  • Each of these members is formed in a circular shape or an annular shape when viewed from above, and is disposed coaxially with the common shaft.
  • this common axis is referred to as a central axis O.
  • the second mounting member 12 is formed in a columnar shape, and is disposed at one end opening in the central axis O direction of the first mounting member 11, and the first rubber elastic body 13 is opened at one end of the first mounting member 11.
  • the first mounting member 11 is closed from one end side in the direction of the central axis O by being adhered to the outer peripheral surface of the second mounting member 12.
  • An internal thread portion is formed on one end surface of the second mounting member 12.
  • one axial end portion of the second mounting member 12 protrudes outward in the central axis O direction from one end opening surface of the first mounting member 11 in the central axis O direction.
  • a diaphragm 19 is disposed at the other end opening of the first mounting member 11 in the direction of the central axis O.
  • the diaphragm 19 is formed in a circular shape when viewed from above, and is an inverted bowl-shaped body that opens toward the other end side in the direction of the central axis O. Further, the outer peripheral edge of the diaphragm 19 is vulcanized and bonded to the inner peripheral surface of the ring plate 19a over the entire periphery.
  • the ring plate 19a is fitted into the other end opening of the first mounting member 11, so that the diaphragm 19 closes the first mounting member 11 from the other end side in the central axis O direction. .
  • the liquid chamber is filled with a liquid L described later.
  • the liquid chamber has a first liquid elastic body 13 as a part of a partition wall by a partition member 16 and a main liquid chamber 14 whose inner volume changes due to deformation of the first rubber elastic body 13 and a diaphragm 19. It is divided into a sub-liquid chamber 15 which has a part of the partition wall and whose internal volume changes due to the deformation of the diaphragm 19.
  • an orifice passage 24 extending along the circumferential direction of the first mounting member 11 is formed between the outer peripheral surface side of the partition member 16 and the inner peripheral surface side of the first mounting member 11.
  • the partition member 16 is formed in an annular shape, and a circumferential groove formed on the outer peripheral surface thereof serves as the orifice passage 24, and the orifice passage 24 is formed on the first mounting member 11 from the outside in the radial direction.
  • the inner peripheral surface is blocked by a rubber film 18 covered.
  • the rubber film 18 is formed integrally with the first rubber elastic body 13, and the inner peripheral surface of the first mounting member 11 is covered with the first rubber elastic body 13 and the rubber film 18 over the entire area.
  • a disc-shaped rubber member 16a is disposed inside the partition member 16 in the radial direction, and closes the radial center of the partition member 16 formed in an annular shape.
  • the vibration isolator 10 is a compression type that is attached and used so that the main liquid chamber 14 is positioned on the upper side in the vertical direction and the sub liquid chamber 15 is positioned on the lower side in the vertical direction.
  • the liquid L contains a first liquid and a second liquid that are insoluble in each other.
  • the second liquid has a surface tension smaller than that of the first liquid and a weight contained in the liquid L.
  • the second liquid has a higher vapor pressure at the same temperature than the vapor pressure of the main component of the first liquid.
  • the second liquid has a vapor pressure at the same temperature higher than the vapor pressure of the main component of the first liquid and a small surface tension in the temperature range of at least ⁇ 30 ° C. to 100 ° C.
  • the vapor pressure of the second liquid is more than twice the vapor pressure of the main component of the first liquid.
  • Examples of the first liquid as described above include those containing ethylene glycol and propylene glycol, ethylene glycol alone or a mixed liquid of ethylene glycol and water, and other polar fluids.
  • silicone oil or fluorine oil can be used.
  • As the second liquid higher alcohol, hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, methylene chloride, or phenols such as phenoxyethanol may be used.
  • the liquid L contains the first liquid in an amount of 60 wt% to 99.9 wt% and the second liquid in an amount of 0.1 wt% to 40 wt%.
  • the liquid L contains the first liquid at 80 wt% or more and 99 wt% or less, and the second liquid contains 1 wt% or more and 20 wt% or less.
  • the second liquid has a lower viscosity than the first liquid.
  • 0.8 g to 40 g of the second liquid is included in the mixed liquid 80 g to 200 g of the first liquid and the second liquid.
  • FIGS. 5 to 8 show changes in the weight% of the second liquid in the liquid L when using a combination of different first liquid and second liquid, and an embodiment according to the present invention.
  • the correlation with the acceleration (vibration acceleration) acting on the vibration isolator when a large vibration is input to the illustrated vibration isolator is shown by indicating the weight percentage of the second liquid on the horizontal axis and the acceleration on the vertical axis. It is a graph. 9 to 10 show changes in the weight percentage of the second liquid in the liquid L when a combination of different first liquid and second liquid is used, and the prevention shown as one embodiment according to the present invention. It is the graph which showed the correlation with the loss factor reduction rate of a vibration apparatus, displaying weight% of the 2nd liquid on a horizontal axis, and displaying the loss factor reduction rate on a vertical axis
  • FIG. 5 shows the case where ethylene glycol is used for the first liquid and fluorine oil (trade name: Novec HFE7300, manufactured by Sumitomo 3M) is used for the second liquid.
  • FIG. 6 shows the case where ethylene glycol is used for the first liquid and silicone oil is used for the second liquid.
  • FIG. 7 shows the case where a mixed liquid of ethylene glycol and propylene glycol is used for the first liquid, and fluorine oil (trade name: Novec HFE7300, manufactured by Sumitomo 3M) is used for the second liquid.
  • FIG. 8 shows a case where a mixed liquid of ethylene glycol and propylene glycol is used for the first liquid and silicone oil is used for the second liquid.
  • FIG. 9 shows the case where ethylene glycol is used as the first liquid and fluorine oil (trade name: Novec HFE7300, manufactured by Sumitomo 3M Limited) is used as the second liquid.
  • FIG. 10 shows a case where ethylene glycol is used for the first liquid and silicone oil is used for the second liquid. 5 to 8, the effect of reducing the acceleration acting on the vibration isolator appears when the content of the second liquid is 0.1% by weight or more, and the vibration isolator when the content of the second liquid is 1% by weight or more. It can be seen that the effect of reducing the acceleration acting on is more prominent.
  • the effect of reducing the loss factor reduction rate of the vibration isolator starts to decline, and when the content of the second liquid is 40% by weight or more, It can be seen that the effect of reducing the loss factor reduction rate of the vibration device is further significantly reduced. From these things, content in the preferable weight% of the above-mentioned 1st liquid and 2nd liquid can be determined. Further, the liquid L is in a state where the second liquid is separated from the first liquid in the first liquid when at least a large vibration (load) is input to the vibration isolator 10 due to road surface unevenness or the like. It becomes the aspect distributed in many places.
  • the liquid L sealed in the main liquid chamber 14 and the sub liquid chamber 15 contains the first liquid and the second liquid that are insoluble in each other. Therefore, after a large vibration is input due to road surface unevenness or the like and the liquid pressure in the main liquid chamber 14 suddenly rises, for example, the vibration is input in the reverse direction due to rebound of the first rubber elastic body 13 or the like. Cavitation can be generated on both the first liquid side and the second liquid side in the interface region between the first liquid and the second liquid in the liquid L when the liquid pressure inside the liquid L decreases. .
  • the liquid L does not include the second liquid, it is possible to suppress the generation of bubbles in the first liquid, and the liquid pressure in the main liquid chamber 14 is increased to increase the original pressure. In the process of returning to the hydraulic pressure, it is possible to suppress the generation of shock waves due to bubbles being crushed in the first liquid.
  • the second liquid since the second liquid has a lower surface tension than the first liquid, it is easily dispersed in the liquid mixture, and the shock waves generated by crushing bubbles generated by cavitation interfere with each other, and the energy of the shock wave is reduced.
  • the thing in the 2nd liquid becomes lower than the thing in the 1st liquid. Accordingly, it is possible to suppress the generation of the shock wave in the first liquid as described above, and at the same time, it is possible to reduce the energy of the shock wave generated in the entire liquid L, thereby reducing the size of the generated abnormal noise. Can be reduced.
  • the weight contained in the said liquid L of the 2nd liquid whose surface tension is smaller than a 1st liquid is less than a 1st liquid, it originates in a 2nd liquid being easy to change a phase compared with a 1st liquid.
  • the cavitation is easily generated even during normal times when, for example, idle vibration or shake vibration is applied, and the liquid column resonance effect exhibited by the orifice passage 24 is difficult to be exhibited. It is possible to prevent the occurrence of such troubles.
  • the liquid L contains a first liquid and a second liquid that are insoluble in each other and have different vapor pressures at the same temperature
  • the vapor pressure of the entire liquid L is equal to the vapor pressure of the first liquid alone. It becomes higher than the vapor pressure of the second liquid alone. Therefore, in the process in which the liquid pressure in the main liquid chamber 14 decreases as described above, the liquid pressure at which cavitation starts to occur in the interface region between the first liquid and the second liquid in the liquid L is the main liquid chamber 14. And it becomes higher than the case where the first liquid simple substance or the second liquid simple substance is sealed in the auxiliary liquid chamber 15.
  • the interface region is continuously reduced in the process of decreasing the liquid pressure in the main liquid chamber 14 thereafter.
  • the bubbles generated by the cavitation are expanded by preferentially generating cavitation on the second liquid side having a high vapor pressure at the same temperature among the main component of the first liquid and the second liquid. It is possible to suppress a decrease in the hydraulic pressure, and it is possible to further suppress the generation of the aforementioned bubbles in the main component of the first liquid.
  • the vibration isolator 10 can be prevented from becoming complicated, and the valve is opened as in the prior art, so that the main liquid chamber and the sub-vibrator can be prevented. Since it is possible to reduce the size of the generated abnormal noise without short-circuiting the liquid chamber, there is a possibility that the attenuation performance may be deteriorated while such operational effects are exhibited. It becomes possible to prevent, and it can stabilize attenuation
  • the first liquid contains ethylene glycol alone or ethylene glycol and propylene glycol or water or other polar fluid
  • the second liquid is silicone oil or fluorine oil
  • the liquid L further contains the first liquid. Since it contains 60% by weight or more and 99.9% by weight or less and the second liquid contains 0.1% by weight or more and 40% by weight or less, the above-described effects can be reliably achieved without deteriorating the damping performance. It will be.
  • As the second liquid higher alcohol, hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, methylene chloride, or phenols such as phenoxyethanol may be used.
  • silicone oil and fluorine oil are more expensive than ethylene glycol and propylene glycol
  • the second liquid contains less weight in the liquid L than the first liquid. The increase in cost can be suppressed.
  • the liquid L is separated from the first liquid in the first liquid when a large vibration is input to the vibration isolator 10 at least due to road surface unevenness or the like. Therefore, it is possible to disperse the locations where the bubbles are generated in the liquid L in the main liquid chamber 14 without concentrating them at predetermined locations. Therefore, it becomes possible to disperse the location where the shock wave is generated in the liquid L in the main liquid chamber 14, and the shock wave travels in the liquid L to, for example, a portion formed of a metal material in the vibration isolator 10. Before propagating, the energy can be attenuated by causing interference between the shock waves.
  • FIG. 2 shows a state where the second liquid is not dispersed in the first liquid, that is, a state where the first liquid and the second liquid are separated, in the vibration isolator shown as one embodiment according to the present invention.
  • FIG. 3 shows a vibration isolator shown as an embodiment according to the present invention.
  • FIG. 4 is a graph obtained by measuring the acceleration acting on the vibration isolator when it is applied, with time on the horizontal axis and acceleration on the vertical axis.
  • FIG. 4 shows the measurement of acceleration acting on a conventional vibration isolator when large vibration similar to that in FIG. 2 is input to the vibration isolator with time on the horizontal axis and acceleration on the vertical axis. It is a graph.
  • 2 and 3 includes 197.5 cc of ethylene glycol (boiling point: 197.1 ° C., surface tension: 48 mN / m) as the first liquid, and fluorine as the second liquid.
  • This is an example in the case of a vibration isolator in which 2.5 cc of oil HFE7300 (boiling point: 98 ° C., surface tension: 15.0 mN / m) is injected and the total liquid amount is 200 cc.
  • FIG. 3 it is possible to reduce the acceleration acting on the vibration isolator most when the second liquid is dispersed in the first liquid. That is, it is possible to further reliably reduce the magnitude of the abnormal noise generated. Further, as shown in FIG.
  • the first liquid and the second liquid are not limited to those described above, and have a relatively low kinematic viscosity (1 ⁇ 10 ⁇ 4 m 2 / s or less at 25 ° C.) and a relatively high boiling point (80 ° C. or more). And if it is a liquid with a comparatively low freezing point (0 degreeC or less), you may change suitably.
  • the compression type is shown as the vibration isolator 10
  • the suspension type anti-vibration used so that the main liquid chamber 14 is positioned on the lower side in the vertical direction and the auxiliary liquid chamber 15 is positioned on the upper side in the vertical direction. It can also be applied to a vibration device.
  • the liquid L is not limited to two types of liquid, and may contain three or more types of liquid.
  • the liquid L may be mixed with a surfactant such as an emulsifier.
  • the vibration isolator 10 can be efficiently manufactured. it can.
  • the second liquid is made of a material having a higher vapor pressure at the same temperature than the vapor pressure of the main component of the first liquid, but the magnitude of the vapor pressure of the first liquid at the same temperature is shown.
  • the following materials may be used. The operation and effect in this case can be explained as follows.
  • the liquid sealed in the main liquid chamber and the sub liquid chamber contains the first liquid and the second liquid that are insoluble in each other, and the content of the second liquid is smaller than that of the first liquid, large vibration (load) Is input, for example, the liquid passes through the restricted passage, the internal volume of the liquid chamber fluctuates, and cavitation occurs in the liquid.
  • Two liquids are dispersed in the first liquid. And, in the vicinity of the opening of the restriction passage where the liquid flow rate becomes high, particularly in the main liquid chamber, cavitation starts preferentially occurring in the first liquid having a high vapor pressure among the first liquid and the second liquid.
  • the heat of the first liquid covering the generated bubbles is taken away by the heat of vaporization, and the temperature of the first liquid is lowered, so that the vapor pressure of the first liquid is lowered, the growth of bubbles is suppressed, and further, the first liquid is suppressed.
  • the temperature of the liquid drops below the temperature of the second liquid, cavitation starts to occur in the second liquid, thereby suppressing the growth of bubbles in the first liquid. It should be noted that this effect can be made more conspicuous by selecting a material whose latent heat of vaporization of the second liquid is smaller than that of the first liquid. At this time, since the second liquid is dispersed in the first liquid as described above, bubbles generated in the second liquid are prevented from growing greatly.
  • the shock wave generated in the entire liquid in the liquid chamber can be kept small, and the size of the generated abnormal noise can be reduced. Furthermore, innumerable shock waves from the individual second liquids dispersed in the first liquid interfere with each other and cancel their energy, and the shock waves generated in the second liquid are small as described above. Simultaneously with the suppression, the shock wave from the second liquid can be prevented from propagating outside the vibration isolator. If vibration (load) is repeatedly input thereafter, the second liquid is further finely dispersed in the first liquid and evenly distributed over the entire area, and the above-described effects are effectively achieved.
  • the size of the generated abnormal noise can be reduced without complicating the structure and without deteriorating the attenuation performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

 振動発生部および振動受部のいずれか一方に連結される筒状の第1取付け部材と、振動発生部および振動受部のいずれか他方に連結される第2取付け部材と、これらの第1、第2取付け部材同士を弾性的に連結する第1ゴム弾性体と、前記第1取付け部材の内部を、前記第1ゴム弾性体を隔壁の一部として液体が封入され、かつ第1ゴム弾性体の変形により内容積が変化する主液室と、隔壁の少なくとも一部が変形可能に形成され、かつ液体が封入される副液室と、に区画する仕切り部材と、が備えられ、前記仕切り部材の外周面側と第1取付け部材の内周面側との間に、主液室と副液室とを連通するオリフィス通路が形成されるとともに、これらの主液室および副液室に液体が封入された防振装置であって、前記液体は、互いに不溶な第1液体および第2液体を含有し、この第2液体は、第1液体よりも表面張力が小さくかつ前記液体中に含まれる重量が少ないことを特徴とする防振装置。

Description

防振装置
 本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関するものである。
 本願は、2008年6月17日に日本国に出願された特願2008-158351号に基づき優先権を主張し、その内容をここに援用する。
 この種の防振装置として、従来から、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付け部材と、振動発生部および振動受部のいずれか他方に連結される第2取付け部材と、これらの第1、第2取付け部材同士を弾性的に連結する第1ゴム弾性体と、前記第1取付け部材の内部を、前記第1ゴム弾性体を隔壁の一部として液体が封入され、かつ第1ゴム弾性体の変形により内容積が変化する主液室と、隔壁の少なくとも一部が変形可能に形成され、かつ液体が封入される副液室と、に区画する仕切り部材と、が備えられ、前記仕切り部材の外周面側と第1取付け部材の内周面側との間に、主液室と副液室とを連通するオリフィス通路が形成されるとともに、これらの主液室および副液室に液体が封入された構成が知られている。
 この防振装置においては従来から、路面の凹凸等により大きな振動(荷重)が入力されて主液室の液圧が急激に上昇した後、例えば第1ゴム弾性体のリバウンド等によって逆方向に振動が入力されたときに、主液室が負圧になることがある。この際、主液室内の液中に多数の気泡が生成されるキャビテーションが発生する。その後、主液室内の液圧が上昇するのに伴って気泡が液中から消滅する時に衝撃波が発生し、この衝撃波が第1取付け部材等の金属材料に伝播することで異音が生ずる。
 このような異音の発生を防ぐ手段として、例えば下記特許文献1に示されるように、仕切り部材に主液室と副液室とを連通する連通孔をオリフィス通路とは別に形成して、この連通孔に弁を設け、主液室の液圧が急激に上昇した後、負圧になろうとしたときに、この弁を開いて主液室と副液室とを短絡させて主液室の液圧が低下するのを抑えることにより、キャビテーションが発生するのを未然に防止する構成が知られている。
特開2003-1485489号公報
 しかしながら、前記従来の防振装置では、連通孔や弁等が設けられていたので、構造が複雑になるばかりでなく、前述のように弁が開くときの液圧を調整するチューニングも困難で不意に弁が開いて減衰性能を悪化させるおそれもあった。
 この発明は、このような事情を考慮してなされたもので、構造を複雑にすることなく、また減衰性能を悪化させることもなく、発生する異音の大きさを低減することができる防振装置を提供することを目的とする。
 上記課題を解決して、このような目的を達成するために、本発明の防振装置は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付け部材と、振動発生部および振動受部のいずれか他方に連結される第2取付け部材と、これらの第1、第2取付け部材同士を弾性的に連結する第1ゴム弾性体と、前記第1取付け部材の内部を、前記第1ゴム弾性体を隔壁の一部として液体が封入され、かつ第1ゴム弾性体の変形により内容積が変化する主液室と、隔壁の少なくとも一部が変形可能に形成され、かつ液体が封入される副液室と、に区画する仕切り部材と、が備えられ、前記仕切り部材の外周面側と第1取付け部材の内周面側との間に、主液室と副液室とを連通するオリフィス通路が形成されるとともに、これらの主液室および副液室に液体が封入された防振装置であって、前記液体は、互いに不溶な第1液体および第2液体を含有し、この第2液体は、第1液体よりも表面張力が小さくかつ前記液体中に含まれる重量が少ないことを特徴とする。
 この発明では、主液室および副液室に封入された液体が互いに不溶な第1液体および第2液体を含有し、かつ第2液体の含有量が第1液体よりも少なく、さらに第2液体の表面張力が第1液体の表面張力よりも小さいので、大きな振動(荷重)が入力されると、例えば液体が制限通路を通過したり、液室の内容積が変動したり、さらには液体にキャビテーションが発生したりすること等に起因して、粒状になった無数の第2液体が第1液体中に分散される。
 これにより、主液室内において特に液体の流速が高くなる制限通路の開口付近で、第1液体のみならず第2液体でもキャビテーションが発生することになり、液体が第2液体を含有していない場合に比べて、第1液体中に発生する気泡の成長が抑えられる。したがって、第1液体中のキャビテーション崩壊に起因して発生する衝撃波を小さく抑えることができる。なお、上述の第1液体と第2液体とが互いに不溶な状態は、極性流体と、非極性流体とを混合することで得られる。
 一方、第2液体は、第1液体中で前述のように分散しているので、この第2液体中で発生する気泡の成長が抑えられ、凝縮時における気泡の収縮速度が高くなるのが抑制されることとなり、第2液体中のキャビテーション崩壊に起因して発生する衝撃波を小さく抑えることができる。
 以上より、液体が第2液体を含有せず第1液体のみを含有している場合と比べて、液室内の液体全体で発生する衝撃波を小さく抑えることが可能になり、発生する異音の大きさを低減することができる。
 さらに、第1液体中で分散されている個々の第2液体からの無数の衝撃波同士が、互いに干渉し合いそのエネルギーを打ち消し合うこととなり、前述のように第2液体中で発生する衝撃波が小さく抑えられることと同時に、この第2液体からの衝撃波が防振装置の外側に伝播するのを防ぐことができる。
 なお、その後さらに振動(荷重)が繰り返し入力されると、第2液体が第1液体中でより一層細かくかつ全域にわたって均等に分散されることとなり、前述の作用効果が効果的に奏功される。
 さらに、例えば弁機構等といった新たな機構を追加しなくてもよいので、この防振装置の複雑化を回避することができるとともに、前記従来技術のように弁を開いて主液室と副液室とを短絡させることなく、発生する異音の大きさを低減することが可能になるので、このような作用効果が奏される一方で、減衰性能を悪化させるおそれが生じてしまうのを防ぐことが可能になり、減衰性能を安定させることができる。
 ここで、前記第2液体は、第1液体の主たる成分の蒸気圧よりも同一温度での蒸気圧が高くてもよい。
 この場合、前記液体が、互いに不溶でかつ同一温度での蒸気圧が異なる第1液体および第2液体を含有しているので、この液体全体の蒸気圧が、第1液体単体の蒸気圧および第2液体単体の蒸気圧よりも高くなる。
 したがって、前述のように主液室内の液圧が低下する過程で、前記液体中において第1液体と第2液体との界面領域でキャビテーションが発生し始める液圧が、主液室および副液室に第1液体単体若しくは第2液体単体を封入した場合と比べて高くなる。
 ここで、第2液体が第1液体の主たる成分の蒸気圧よりも蒸気圧が高いので、その後さらに継続して主液室内の液圧が低下する過程で、前記界面領域の中でも第1液体の主たる成分および第2液体のうち同一温度での蒸気圧が高い第2液体側で優先的にキャビテーションを発生させつつ、このキャビテーションにより生成された気泡を膨張させることにより、この液圧の低下を抑制することが可能になり、第1液体の主たる成分中に前述の気泡が生成されるのをより一層抑えることができる。
 また、前記第1液体はエチレングリコール単体若しくはエチレングリコールとプロピレングリコール或いは水やその他の極性流体とを含有し、前記第2液体はシリコーンオイル若しくはフッ素オイルを含有してもよい。なお、前記第2液体として、高級アルコール、ヘキサン、ベンゼン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、塩化メチレン、或いは、フェノキシエタノール等のフェノール類を使用しても良い。
 さらに、前記液体は、第1液体を60重量%以上99.9重量%以下含有し、第2液体を0.1重量%以上40重量%以下含有してもよい。
 これらの場合、減衰性能を低下させることなく前述の作用効果が確実に奏されることになる。
 さらにまた、シリコーンオイルおよびフッ素オイルは、エチレングリコールおよびプロピレングリコールと比べて高価であるものの、第2液体は、第1液体よりも液体中に含まれる重量が少ないので、この防振装置のコストが上昇するのを抑えることができる。
 この発明によれば、構造を複雑にすることなく、また減衰性能を悪化させることもなく、発生する異音の大きさを低減することができる。
本発明に係る一実施形態として示した防振装置の縦断面図である。 本発明に係る一実施形態として示した防振装置において、第2液体が第1液体中で分散していない状態において防振装置に作用する加速度を測定したグラフである。 本発明に係る一実施形態として示した防振装置において、第2液体が第1液体中で分散している状態において防振装置に作用する加速度を測定したグラフである。 従来の防振装置に作用する加速度を測定したグラフである。 異なる第1液体と第2液体との組合せを用いた場合の液体中における第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置に作用する加速度との相関関係を示すグラフである。 異なる第1液体と第2液体との組合せを用いた場合の液体中における第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置に作用する加速度との相関関係を示すグラフである。 異なる第1液体と第2液体との組合せを用いた場合の液体中における第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置に作用する加速度との相関関係を示すグラフである。 異なる第1液体と第2液体との組合せを用いた場合の液体中における第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置に作用する加速度との相関関係を示すグラフである。 異なる第1液体と第2液体との組合せを用いた場合の液体中における第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置の損失係数低下率との相関関係を示すグラフである。 異なる第1液体と第2液体との組合せを用いた場合の液体中における第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置の損失係数低下率との相関関係を示すグラフである。
 10 防振装置
 11 第1取付け部材
 12 第2取付け部材
 13 第1ゴム弾性体
 14 主液室
 15 副液室
 16 仕切り部材
 24 オリフィス通路
 L 液体
 O 中心軸線
 以下、本発明に係る防振装置の一実施形態を、図1を参照しながら説明する。この防振装置10は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付け部材11と、振動発生部および振動受部のいずれか他方に連結される第2取付け部材12と、これらの第1、第2取付け部材11、12同士を弾性的に連結する第1ゴム弾性体13と、第1取付け部材11の内部を後述する主液室14と副液室15とに区画する仕切り部材16と、を備えている。
 なお、これらの各部材はそれぞれ、上面視円形状若しくは円環状に形成されるとともに、共通軸と同軸に配置されている。以下、この共通軸を中心軸線Oという。
 そして、この防振装置10が例えば自動車に装着された場合、第2取付け部材12が振動発生部としてのエンジンに連結される一方、第1取付け部材11が図示されないブラケット等を介して振動受部としての車体に連結されることにより、エンジンの振動を車体に伝達するのを抑えられる。
 第2取付け部材12は柱状に形成されるとともに、第1取付け部材11における前記中心軸線O方向の一端開口部に配置されており、第1ゴム弾性体13は、第1取付け部材11の一端開口部と第2取付け部材12の外周面とに接着されて、第1取付け部材11を前記中心軸線O方向の一端側から閉塞している。なお、第2取付け部材12の一端面には雌ねじ部が形成されている。また、第2取付け部材12の軸方向一端部は、第1取付け部材11における前記中心軸線O方向の一端開口面よりも前記中心軸線O方向の外方に突出している。
 さらに、第1取付け部材11における前記中心軸線O方向の他端開口部にはダイヤフラム19が配設されている。このダイヤフラム19は上面視円形状に形成されるとともに、前記中心軸線O方向の他端側に向けて開口した逆椀状体である。また、このダイヤフラム19の外周縁部には、その全周にわたってリング板19aの内周面が加硫接着されている。そして、このリング板19aが、第1取付け部材11の前記他端開口部内に嵌合されることにより、ダイヤフラム19は第1取付け部材11を前記中心軸線O方向の他端側から閉塞している。
 以上の構成において、第1取付け部材11の内部のうち、ダイヤフラム19と第1ゴム弾性体13との間に位置する部分が、これらのダイヤフラム19および第1ゴム弾性体13によって液密に閉塞され、後述する液体Lが充填された液室となる。そして、この液室は、仕切り部材16によって、第1ゴム弾性体13を隔壁の一部に有しこの第1ゴム弾性体13の変形により内容積が変化する主液室14と、ダイヤフラム19を隔壁の一部に有しこのダイヤフラム19の変形により内容積が変化する副液室15と、に区画されている。
 ここで、仕切り部材16の外周面側と第1取付け部材11の内周面側との間には、第1取付け部材11の周方向に沿って延びるオリフィス通路24が形成されている。
 図示の例では、仕切り部材16は円環状に形成され、その外周面に形成された周溝が前記オリフィス通路24とされ、このオリフィス通路24は、前記径方向の外側から第1取付け部材11の内周面に被覆されたゴム膜18によって閉塞されている。なお、ゴム膜18は第1ゴム弾性体13と一体に形成され、第1取付け部材11の内周面は第1ゴム弾性体13およびゴム膜18により全域にわたって覆われている。また、仕切り部材16の径方向内側には円板状のゴム部材16aが配設されており、円環状に形成された仕切り部材16の径方向中央部を閉塞している。
 さらに、本実施形態では、この防振装置10は、主液室14が鉛直方向上側に位置しかつ副液室15が鉛直方向下側に位置するように取り付けられて用いられる圧縮式である。
 そして、本実施形態では、前記液体Lは、互いに不溶な第1液体および第2液体を含有している。第2液体は、第1液体よりも表面張力が小さくかつ前記液体L中に含まれる重量が少ない。また、第2液体は、第1液体の主たる成分の蒸気圧よりも同一温度での蒸気圧が高い。なお、第2液体は、少なくとも-30℃以上100℃以下の温度範囲で、第1液体の主たる成分の蒸気圧よりも同一温度での蒸気圧が高くかつ表面張力が小さい。例えば、第2液体の蒸気圧は第1液体の主たる成分の蒸気圧の2倍以上である。
 以上のような第1液体としては、例えばエチレングリコールとプロピレングリコールとを含有するもの若しくはエチレングリコール単体或いはエチレングリコールと水やその他の極性流体の混合液等が挙げられ、また第2液体としては、例えばシリコーンオイル若しくはフッ素オイル等が挙げられる。なお、前記第2液体として、高級アルコール、ヘキサン、ベンゼン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、塩化メチレン、或いは、フェノキシエタノール等のフェノール類を使用しても良い。また、前記液体Lは、第1液体を60重量%以上99.9重量%以下含有し、第2液体を0.1重量%以上40重量%以下含有している。好ましくは、前記液体Lは、第1液体を80重量%以上99重量%以下含有し、第2液体を1重量%以上20重量%以下含有している。なお、第2液体は、第1液体よりも粘度が低い。また例えば、本実施形態による防振装置のサイズに応じて、第1液体と第2液体の混合液80g~200gの内、第2液体は0.8g~40g含まれている。
 ここで、図5~図8は、異なる第1液体と第2液体との組合せを用いた場合の前記液体L中での第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置に大きな振動が入力された場合に防振装置に作用する加速度(振動加速度)との相関関係を横軸に第2液体の重量%、縦軸に加速度を表示して示したグラフである。図9~図10は、異なる第1液体と第2液体との組合せを用いた場合の前記液体L中での第2液体の重量%の変化と、本発明に係る一実施形態として示した防振装置の損失係数低下率との相関関係を横軸に第2液体の重量%、縦軸に損失係数低下率を表示して示したグラフである。図5は、第1液体にエチレングリコール、第2液体にフッ素オイル(住友スリーエム社製、商品名:ノベックHFE7300)を用いた場合である。図6は、第1液体にエチレングリコール、第2液体にシリコーンオイルを用いた場合である。図7は、第1液体にエチレングリコールとプロピレングリコールの混合液、第2液体にフッ素オイル(住友スリーエム社製、商品名:ノベックHFE7300)を用いた場合である。図8は、第1液体にエチレングリコールとプロピレングリコールの混合液、第2液体にシリコーンオイルを用いた場合である。図9は、第1液体にエチレングリコール、第2液体にフッ素オイル(住友スリーエム社製、商品名:ノベックHFE7300)を用いた場合である。図10は、第1液体にエチレングリコール、第2液体にシリコーンオイルを用いた場合である。図5~8より、第2液体の含有量が0.1重量%以上で上記防振装置に作用する加速度の低減効果が現れ、第2液体の含有量が1重量%以上では上記防振装置に作用する加速度の低減効果が更に顕著に現れることが分かる。また、図9,10より、第2液体の含有量が20重量%以上で上記防振装置の損失係数低下率の低減効果が落ち始め、第2液体の含有量が40重量%以上では上記防振装置の損失係数低下率の低減効果が更に顕著に落ちることが分かる。これらのことから、上述の第1液体、第2液体の好ましい重量%での含有量を決定することができる。
 さらに、前記液体Lは、少なくともこの防振装置10に路面の凹凸等により大きな振動(荷重)が入力されたときに、第1液体中に第2液体が第1液体に対して分離した状態で多数箇所に分散された態様になる。
 以上説明したように、本実施形態による防振装置10によれば、主液室14および副液室15に封入された液体Lが、互いに不溶な第1液体および第2液体を含有しているので、路面の凹凸等により大きな振動が入力されて主液室14の液圧が急激に上昇した後、例えば第1ゴム弾性体13のリバウンド等によって逆方向に振動が入力されて主液室14内の液圧が低下したときに、前記液体L中において第1液体と第2液体との界面領域の中で第1液体側および第2液体側の双方でキャビテーションを発生させることが可能になる。
 したがって、前記液体Lが第2液体を含まない場合と比べて、第1液体中に気泡が生成されるのを抑制することが可能になり、主液室14の液圧が上昇して元の液圧に戻る過程で、この第1液体中で気泡が潰されて衝撃波が発生するのを抑えることができる。
 ここで、第2液体は第1液体よりも表面張力が小さいので、混合液中に容易に分散し、キャビテーションにより生成された気泡が潰されて発生する衝撃波が相互に干渉し、衝撃波のエネルギーが、第1液体中のものよりも第2液体中のものが低くなる。
 したがって、前述のように第1液体中で衝撃波が発生するのを抑えられることと同時に、前記液体L全体に発生する衝撃波のエネルギーを低くすることが可能になり、発生する異音の大きさを低減することができる。
 しかも、第1液体よりも表面張力が小さい第2液体の前記液体L中に含まれる重量が、第1液体よりも少ないので、第2液体が第1液体と比べて相変化し易いことに起因して、前述の作用効果が奏される反面、例えばアイドル振動やシェイク振動が加えられる通常時にもキャビテーションが発生し易くなってオリフィス通路24で奏される液柱共振作用が発揮され難くなってしまう等の不具合の発生を防ぐことが可能になる。
 また、前記液体Lが、互いに不溶でかつ同一温度での蒸気圧が異なる第1液体および第2液体を含有しているので、この液体L全体の蒸気圧が、第1液体単体の蒸気圧および第2液体単体の蒸気圧よりも高くなる。
 したがって、前述のように主液室14内の液圧が低下する過程で、前記液体L中において第1液体と第2液体との界面領域でキャビテーションが発生し始める液圧が、主液室14および副液室15に第1液体単体若しくは第2液体単体を封入した場合と比べて高くなる。
 ここで、第2液体が第1液体の主たる成分の蒸気圧よりも同一温度での蒸気圧が高いので、その後さらに継続して主液室14内の液圧が低下する過程で、前記界面領域の中でも第1液体の主たる成分および第2液体のうち同一温度での蒸気圧が高い第2液体側で優先的にキャビテーションを発生させつつ、このキャビテーションにより生成された気泡を膨張させることにより、この液圧の低下を抑制することが可能になり、第1液体の主たる成分中に前述の気泡が生成されるのをより一層抑えることができる。
 さらに、例えば弁機構等といった新たな機構を追加しなくてもよいので、この防振装置10の複雑化を回避することができるとともに、前記従来技術のように弁を開いて主液室と副液室とを短絡させることなく、発生する異音の大きさを低減することが可能になるので、このような作用効果が奏される一方で、減衰性能を悪化させるおそれが生じてしまうのを防ぐことが可能になり、減衰性能を安定させることができる。
 また、第1液体がエチレングリコール単体若しくはエチレングリコールとプロピレングリコール或いは水やその他の極性流体とを含有し、第2液体がシリコーンオイル若しくはフッ素オイルであり、さらに、前記液体Lが、第1液体を60重量%以上99.9重量%以下含有し、第2液体を0.1重量%以上40重量%以下含有しているので、減衰性能を低下させることなく前述の作用効果が確実に奏されることになる。なお、前記第2液体として、高級アルコール、ヘキサン、ベンゼン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、塩化メチレン、或いは、フェノキシエタノール等のフェノール類を使用しても良い。
 さらにまた、シリコーンオイルおよびフッ素オイルは、エチレングリコールおよびプロピレングリコールと比べて高価であるものの、第2液体は、第1液体よりも液体L中に含まれる重量が少ないので、この防振装置10のコストが上昇するのを抑えることができる。
 さらに本実施形態では、前記液体Lが、少なくともこの防振装置10に路面の凹凸等により大きな振動が入力されたときに、第1液体中に第2液体が第1液体に対して分離した状態で多数箇所に分散された態様になるので、主液室14内の前記液体L中において前述の気泡が生成される箇所を、所定の箇所に集中させることなく分散させることが可能になる。
 したがって、前記衝撃波の発生箇所を主液室14内の液体L中で分散させることが可能になり、この衝撃波が液体L中を進行して例えば防振装置10において金属材料で形成された部分に伝播するまでの間に、そのエネルギーを衝撃波相互間で干渉させ合うことにより減衰させることができる。
 これにより、衝撃波が防振装置10において金属材料で形成された部分に伝播しても、この部分が振動するのを抑制することが可能になり、発生する異音の大きさをより一層確実に低減することができる。
 ここで、図2は本発明に係る一実施形態として示した防振装置において、第2液体が第1液体中で分散していない状態、即ち第1液体と第2液体が分離している状態において、大きな振動が防振装置に入力された場合に防振装置に作用する加速度を、横軸に時間、縦軸に加速度を表示して測定したグラフである。図3は、本発明に係る一実施形態として示した防振装置において、第2液体が第1液体中で分散している状態において、図2の場合と同様の大きな振動が防振装置に入力された場合に防振装置に作用する加速度を、横軸に時間、縦軸に加速度を表示して測定したグラフである。図4は、従来の防振装置において、図2の場合と同様の大きな振動が防振装置に入力された場合に作用する加速度を、横軸に時間、縦軸に加速度を表示して測定したグラフである。
 なお、図2及び図3に示す本実施形態による防振装置は、第1液体であるエチレングリコール(沸点:197.1℃、表面張力:48mN/m)197.5ccに、第2液体としてフッ素オイルHFE7300(沸点:98℃、表面張力:15.0mN/m)を2.5cc注入し、総液量を200ccとした防振装置の場合の実施例である。
 上述のような本実施形態によれば、図3に示すように、第2液体が第1液体中で分散している状態において防振装置に作用する加速度を最も低減することが可能である。即ち、発生する異音の大きさを一層確実に低減することができる。
 また、図2に示すように、第2液体が第1液体中で分散していなくとも、第1液体に第2液体を混合するだけでも、図4に示す従来の防振装置に比べて、防振装置に作用する加速度の低減効果が顕著に現れることが分かる。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、第1液体および第2液体は、前述したものに限らず、動粘度が比較的低く(25℃において1×10-4/s以下)、沸点が比較的高く(80℃以上)かつ凝固点が比較的低い(0℃以下)液体であれば、適宜変更してもよい。
 また、防振装置10として圧縮式を示したが、主液室14が鉛直方向下側に位置しかつ副液室15が鉛直方向上側に位置するように取り付けられて用いられる吊り下げ式の防振装置にも適用可能である。
 さらに、前記液体Lは、二種類の液体に限らず、三種類以上の液体を含有してもよい。
 また、前記液体Lには、例えば乳化剤等の界面活性剤を混入してもよい。この場合、前記液体L中で防振装置10を組み立てることでこの組み立てと同時に主液室14および副液室15に液体Lを封入する場合に、効率よくこの防振装置10を製造することができる。
 さらに、例えば仕切り部材16の表面においてオリフィス通路24を除く主液室14内に位置する部分をゴム膜等で覆う等して、異音の発生を防ぐようにしてもよい。
 また、前記実施形態では、第2液体として、第1液体の主たる成分の蒸気圧よりも同一温度での蒸気圧が高い材質を示したが、同一温度での第1液体の蒸気圧の大きさ以下の材質を採用してもよい。この場合の作用及び効果は以下のように説明できる。
 即ち、主液室および副液室に封入された液体が互いに不溶な第1液体および第2液体を含有し、かつ第2液体の含有量が第1液体よりも少ないので、大きな振動(荷重)が入力されると、例えば液体が制限通路を通過したり、液室の内容積が変動したり、さらには液体にキャビテーションが発生したりすること等に起因して、粒状になった無数の第2液体が第1液体中に分散される。
 そして、主液室内において特に液体の流速が高くなる制限通路の開口付近で、第1液体および第2液体のうち蒸気圧の高い第1液体で優先的にキャビテーションが発生し始めるが、この際、発生した気泡を覆う第1液体の熱が気化熱により奪われ、第1液体の温度が低下することで、第1液体の蒸気圧が低下し、気泡の成長が抑えられ、さらにこの第1液体の温度が第2液体の温度よりも大きく低下したときに、第2液体中でキャビテーションが発生し始めることで第1液体の気泡の成長が抑えられる。なお、第2液体の蒸発潜熱が、第1液体の蒸発潜熱よりも小さいものを選ぶことで、この効果をより一層顕著にできる。この際、第2液体は、第1液体中で前述のように分散しているので、この第2液体中で発生する気泡が大きく成長するのが抑えられる。したがって、凝縮時における気泡の収縮速度が高くなるのが抑制されることとなり、第2液体中のキャビテーション崩壊に起因して発生する衝撃波を小さく抑えることができる。
 以上より、液室内の液体全体で発生する衝撃波を小さく抑えることが可能になり、発生する異音の大きさを低減することができる。
 さらに、第1液体中で分散されている個々の第2液体からの無数の衝撃波同士が、互いに干渉し合いそのエネルギーを打ち消し合うこととなり、前述のように第2液体中で発生する衝撃波が小さく抑えられることと同時に、この第2液体からの衝撃波が防振装置の外側に伝播するのを防ぐことができる。
 なお、その後さらに振動(荷重)が繰り返し入力されると、第2液体が第1液体中でより一層細かくかつ全域にわたって均等に分散されることとなり、前述の作用効果が効果的に奏功される。
 構造を複雑にすることなく、また減衰性能を悪化させることもなく、発生する異音の大きさを低減することができる。

Claims (4)

  1.  振動発生部および振動受部のいずれか一方に連結される筒状の第1取付け部材と、
     振動発生部および振動受部のいずれか他方に連結される第2取付け部材と、
     これらの第1、第2取付け部材同士を弾性的に連結する第1ゴム弾性体と、
     前記第1取付け部材の内部を、前記第1ゴム弾性体を隔壁の一部として液体が封入され、かつ第1ゴム弾性体の変形により内容積が変化する主液室と、隔壁の少なくとも一部が変形可能に形成され、かつ液体が封入される副液室と、に区画する仕切り部材と、が備えられ、
     前記仕切り部材の外周面側と第1取付け部材の内周面側との間に、主液室と副液室とを連通するオリフィス通路が形成されるとともに、これらの主液室および副液室に液体が封入された防振装置であって、
     前記液体は、互いに不溶な第1液体および第2液体を含有し、この第2液体は、第1液体よりも表面張力が小さくかつ前記液体中に含まれる重量が少ないことを特徴とする防振装置。
  2.  請求項1記載の防振装置であって、
     前記第2液体は、第1液体の主たる成分の蒸気圧よりも蒸気圧が高いことを特徴とする防振装置。
  3.  請求項1または2に記載の防振装置であって、
     前記第1液体はエチレングリコール単体若しくはエチレングリコールとプロピレングリコールとを含有し、前記第2液体はシリコーンオイル若しくはフッ素オイルを含有することを特徴とする防振装置。
  4.  請求項1から3のいずれか1項に記載の防振装置であって、
     前記液体は、第1液体を60重量%以上99.9重量%以下含有し、第2液体を0.1重量%以上40重量%以下含有していることを特徴とする防振装置。
PCT/JP2009/061012 2008-06-17 2009-06-17 防振装置 WO2009154222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980123126.5A CN102066803B (zh) 2008-06-17 2009-06-17 隔振装置
EP09766670.5A EP2302254B1 (en) 2008-06-17 2009-06-17 Vibration damping device
US12/999,827 US8672304B2 (en) 2008-06-17 2009-06-17 Anti-vibration device
JP2010517939A JP5452484B2 (ja) 2008-06-17 2009-06-17 防振装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-158351 2008-06-17
JP2008158351 2008-06-17

Publications (1)

Publication Number Publication Date
WO2009154222A1 true WO2009154222A1 (ja) 2009-12-23

Family

ID=41434139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061012 WO2009154222A1 (ja) 2008-06-17 2009-06-17 防振装置

Country Status (5)

Country Link
US (1) US8672304B2 (ja)
EP (1) EP2302254B1 (ja)
JP (1) JP5452484B2 (ja)
CN (1) CN102066803B (ja)
WO (1) WO2009154222A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013163A (ja) * 2010-07-01 2012-01-19 Bridgestone Corp 作動流体および防振装置
US9016673B2 (en) 2011-12-26 2015-04-28 Sumitomo Riko Company Limited Liquid-filled vibration damping device
JP2015197154A (ja) * 2014-03-31 2015-11-09 山下ゴム株式会社 防振装置用液体組成物及び液体封入式防振装置
JP2016008643A (ja) * 2014-06-23 2016-01-18 住友理工株式会社 流体封入式防振装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161294A1 (ja) 2012-04-27 2013-10-31 東海ゴム工業株式会社 流体封入式防振装置
JP2014196808A (ja) 2013-03-29 2014-10-16 東海ゴム工業株式会社 流体封入式防振装置
CN105972134B (zh) * 2016-06-22 2019-02-26 北汽福田汽车股份有限公司 液压衬套、汽车悬架***及车辆
US10308102B2 (en) * 2017-02-07 2019-06-04 Vibracoustic Usa, Inc. Damped torque roll restrictor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579340A (en) * 1980-05-21 1982-01-18 Freudenberg Carl Springy buffer supporting body
JPS57163747A (en) * 1981-03-31 1982-10-08 Tokai Rubber Ind Ltd Anti-oscillation supporter for automobile engine
JPS60205041A (ja) * 1984-03-30 1985-10-16 Nissan Motor Co Ltd 防振マウント
JPH06221372A (ja) * 1993-01-22 1994-08-09 Toyota Motor Corp 流体封入式筒型マウント装置
JPH10252811A (ja) * 1997-01-10 1998-09-22 Tokai Rubber Ind Ltd 液体封入式筒型マウント装置
JP2001012537A (ja) * 1999-06-30 2001-01-16 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2003148549A (ja) 2001-08-07 2003-05-21 Hutchinson Sa 油圧式振動減衰支持体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598987B2 (ja) * 1988-06-06 1997-04-09 東海ゴム工業株式会社 流体封入式マウント装置
JP2860701B2 (ja) * 1990-09-27 1999-02-24 豊田合成株式会社 液封入防振装置
JP3826768B2 (ja) 2001-11-08 2006-09-27 東海ゴム工業株式会社 流体封入式防振装置
US7070175B2 (en) 2004-04-08 2006-07-04 Toyo Tire & Rubber Co., Ltd Anti-vibration device
US7216857B2 (en) 2004-10-12 2007-05-15 Toyo Tire & Rubber Co., Ltd. Hydraulic antivibration device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579340A (en) * 1980-05-21 1982-01-18 Freudenberg Carl Springy buffer supporting body
JPS57163747A (en) * 1981-03-31 1982-10-08 Tokai Rubber Ind Ltd Anti-oscillation supporter for automobile engine
JPS60205041A (ja) * 1984-03-30 1985-10-16 Nissan Motor Co Ltd 防振マウント
JPH06221372A (ja) * 1993-01-22 1994-08-09 Toyota Motor Corp 流体封入式筒型マウント装置
JPH10252811A (ja) * 1997-01-10 1998-09-22 Tokai Rubber Ind Ltd 液体封入式筒型マウント装置
JP2001012537A (ja) * 1999-06-30 2001-01-16 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2003148549A (ja) 2001-08-07 2003-05-21 Hutchinson Sa 油圧式振動減衰支持体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302254A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013163A (ja) * 2010-07-01 2012-01-19 Bridgestone Corp 作動流体および防振装置
US9016673B2 (en) 2011-12-26 2015-04-28 Sumitomo Riko Company Limited Liquid-filled vibration damping device
JP2015197154A (ja) * 2014-03-31 2015-11-09 山下ゴム株式会社 防振装置用液体組成物及び液体封入式防振装置
JP2016008643A (ja) * 2014-06-23 2016-01-18 住友理工株式会社 流体封入式防振装置

Also Published As

Publication number Publication date
JPWO2009154222A1 (ja) 2011-12-01
US8672304B2 (en) 2014-03-18
JP5452484B2 (ja) 2014-03-26
EP2302254B1 (en) 2017-01-04
US20110155887A1 (en) 2011-06-30
CN102066803A (zh) 2011-05-18
EP2302254A4 (en) 2015-10-07
CN102066803B (zh) 2014-05-14
EP2302254A1 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP5452484B2 (ja) 防振装置
JP5150644B2 (ja) 防振装置
US8807545B2 (en) Liquid-sealed antivibration device
JP5882125B2 (ja) 液封入式防振装置
JP5535958B2 (ja) 液封入式防振装置
WO2010143444A1 (ja) 防振装置
CA2894172C (en) Fluid-filled vibration damping device
JP2007100875A (ja) 流体封入式防振装置
JP4922871B2 (ja) 流体封入式防振装置
JP2009058084A (ja) 流体封入式防振装置
JP2008163970A (ja) 流体封入式防振装置
JP5393273B2 (ja) 防振装置
JP5346697B2 (ja) 防振装置
JP3774817B2 (ja) 液体封入式防振装置
JP4227138B2 (ja) 液体封入式防振装置
JP5393272B2 (ja) 防振装置
JP3774812B2 (ja) 液体封入式防振装置
JP5469926B2 (ja) 防振装置
JP3774816B2 (ja) 液体封入式防振装置
JP2006052857A (ja) 液体封入式防振装置
JP2012013163A (ja) 作動流体および防振装置
JP2006084032A (ja) 液体封入式防振装置
JP2009216226A (ja) 流体封入式防振装置
JP2009121593A (ja) 防振装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123126.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517939

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009766670

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009766670

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12999827

Country of ref document: US