WO2009150995A1 - 電力半導体回路装置およびその製造方法 - Google Patents

電力半導体回路装置およびその製造方法 Download PDF

Info

Publication number
WO2009150995A1
WO2009150995A1 PCT/JP2009/060264 JP2009060264W WO2009150995A1 WO 2009150995 A1 WO2009150995 A1 WO 2009150995A1 JP 2009060264 W JP2009060264 W JP 2009060264W WO 2009150995 A1 WO2009150995 A1 WO 2009150995A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
base plate
semiconductor element
circuit device
groove
Prior art date
Application number
PCT/JP2009/060264
Other languages
English (en)
French (fr)
Inventor
貴夫 三井
弘行 芳原
享 木村
菊池 正雄
洋一 五藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN2009801190034A priority Critical patent/CN102047414B/zh
Priority to JP2010516826A priority patent/JP5566289B2/ja
Priority to EP09762425.8A priority patent/EP2293328B1/en
Priority to KR1020107025840A priority patent/KR101186781B1/ko
Priority to US12/988,035 priority patent/US8659147B2/en
Publication of WO2009150995A1 publication Critical patent/WO2009150995A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power semiconductor circuit device provided with a power semiconductor element and a manufacturing method thereof, and more particularly to a power semiconductor circuit device in which heat radiation fins are formed on a base plate of the power semiconductor circuit device and a manufacturing method thereof.
  • the base plate of the power semiconductor circuit device is integrated with the base plate of the heat sink and the base plate of the power semiconductor circuit device without using the grease that is an obstacle to realizing high heat dissipation of the power semiconductor circuit device.
  • the power semiconductor circuit is formed by heat-bonding the heat sink fins of the heat sink with a high thermal conductivity insulating resin sheet or by integrally forming them and mounting electronic components such as power semiconductor elements and wiring members on the base plate of the power semiconductor circuit device.
  • the device is designed to increase heat dissipation. (For example, see Patent Document 1)
  • a power semiconductor element, a wiring member or the like is formed on a base plate formed by thermocompression bonding with a high thermal conductivity insulating resin sheet in advance or integrally formed.
  • the electronic parts are mounted, and then the case is attached with mold resin.
  • heat sink fins are attached to the base plate of the power semiconductor circuit device before mounting electronic components such as power semiconductor elements and wiring members, the heat capacity of the base plate of the power semiconductor circuit device becomes large and soldering is difficult.
  • a conventional jig cannot be used even in the wire bonding process, and a special jig must be made for each shape of the base plate and the radiating fin.
  • the base plate of the power semiconductor circuit device is preliminarily formed as a thin base plate, and electronic components such as power semiconductor elements and wiring members are mounted on the base plate, and finally, a radiation fin is provided. It can be solved by attaching.
  • a thermal attachment method such as soldering or welding to attach the radiating fins to the base plate results in poor productivity due to the large heat capacity of the power semiconductor device.
  • the present invention has been made to solve the above-described problems, and can simplify the manufacturing process, reduce the stress applied to the power semiconductor circuit device when forming the heat radiating fin, and the power semiconductor circuit device. It is an object of the present invention to provide a power semiconductor circuit device that achieves both high heat dissipation and high productivity and a method for manufacturing the same.
  • the power semiconductor circuit device is a power semiconductor circuit device including a power semiconductor element, wherein at least the base plate on which the power semiconductor element is mounted, the base plate, and the power semiconductor element are connected to the base plate.
  • a resin that molds in a state in which a part of the surface of the base plate including the surface opposite to the surface on which the power semiconductor element is mounted is exposed; and a heat dissipating fin that is bonded to the base plate by a pressing force.
  • a groove is machined in the radiating fin joint of the base plate, and the radiating fin is fixed to the groove by caulking.
  • the method for manufacturing a power semiconductor circuit device includes mounting at least a power semiconductor element on one surface of a base plate, forming a bonding groove on a surface opposite to the base plate, The power semiconductor element is molded with a resin in a state where a part of the surface of the base plate including the surface of the base plate opposite to the surface on which the power semiconductor element is mounted is exposed, and then the base The heat dissipating fins are fixed to the grooves of the plate by caulking.
  • the heat radiation fin can be formed without damaging the power semiconductor circuit device in the manufacturing process, and the manufacturing process can be simplified.
  • the heat sink fins can be formed with good productivity without changing the equipment such as jig replacement for each product.
  • FIG. 1 is a schematic cross-sectional view showing a power semiconductor circuit device according to Embodiment 1 of the present invention. It is the figure which showed the reduction effect of the stress which generate
  • a power semiconductor circuit device hereinafter also referred to as a power module
  • a manufacturing method thereof according to the present invention will be described below with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
  • FIG. 1 is a schematic sectional view showing a power semiconductor circuit device according to Embodiment 1 of the present invention.
  • a power semiconductor element 10 such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Field Effect Transistor) and a wiring member 11 on which the power semiconductor element 10 is mounted are a base plate 12 made of aluminum. They are bonded together by solder or adhesive 13.
  • the base plate 12 is manufactured by extrusion, casting, or die casting, and is the surface opposite to the surface on which the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted, that is, the back surface of the base plate 12.
  • the groove 14 is processed in advance.
  • the power semiconductor element 10, the wiring member 11 on which the power semiconductor element 10 is mounted, and the base plate 12 are provided on the back surface of the base plate 12 and the side surface of the base plate 12. Transfer-molded with an epoxy-based mold resin 15 so that a part of the surface is exposed.
  • heat radiating fins 16 are mounted in the groove 14 processed on the back surface of the base plate 12.
  • the heat radiating fins 16 are formed by corrugating a single pure aluminum plate member.
  • the radiating fin 16 includes the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted, and the base plate 12 covering the back surface of the base plate 12 and a part of the side surface of the base plate 12. After being transfer-molded with an epoxy mold resin 15 so as to be exposed, it is caulked and joined to the groove 14 of the base plate 12 as indicated by the arrow in FIG.
  • the power semiconductor circuit device is configured as described above, there may be a plurality of power semiconductor elements 10, and the power semiconductor elements 10 may be formed on the base plate without the wiring member 11. It may be mounted by directly bonding to 12 with solder or an adhesive 13. Further, the power semiconductor element 10 and the wiring member 11 are bonded to the base plate 12 via an insulating member such as a ceramic substrate with solder or an adhesive 13 for insulation from the base plate 12, and the insulating member is attached to the base plate. 12 may be adhered.
  • the heat radiating fins 16 attached to the grooves 14 processed on the back surface of the base plate 12 by caulking are not formed by corrugating one plate, but may be formed independently one by one.
  • the mounting of the radiating fins 16 to the base plate 12 may be performed by deforming and crimping the base plate 12, as long as the joining is performed by a pressing force between the two.
  • the radiating fins 16 may be heated at 100 to 150 ° C., and the radiating fins 16 may be softened to perform caulking joining.
  • the caulking pressure is about 70%, which is the same as when caulking at room temperature. It has been confirmed that it is tight.
  • FIG. 2B shows the relationship between the caulking pressure during caulking in the sealed hollow structure and the stress generated in the power semiconductor element 10.
  • 2B shows the caulking pressure (MPa)
  • the vertical axis shows the stress (MPa) generated in the power semiconductor element 10.
  • the caulking pressure is determined by the caulking blades of the radiation fins 16 at the base plate during caulking. 12 is a pressure for pressing 12.
  • the transfer mold structure according to the present embodiment has a support structure at the time of caulking joining as shown in FIG. 2C as compared with the hollow structure shown in FIG. In the case of both ends of the upper surface, the stress on the power semiconductor element 10 can be reduced to about 1 ⁇ 2. Further, when the entire upper surface of the mold resin 15 is supported as shown in FIG. 2D, the stress on the power semiconductor element 10 can be reduced to 1/10 or more. Therefore, according to the transfer mold structure of the present embodiment, the heat radiation fin 16 can be caulked and joined to the base plate 12 with very little stress and without fear of damage to the power semiconductor element 10.
  • the mold resin 15 enters the gap between the power semiconductor elements 10 to prevent the stress concentration in the power semiconductor elements 10, the breakdown tolerance of the power semiconductor elements 10 is increased, and the power is increased even with a large caulking pressure. Damage to the semiconductor element 10 is unlikely to occur.
  • the epoxy material is hard as the molding material, it is preferable from the viewpoint of avoiding damage to the power semiconductor element 10, and a structure in which the periphery of the power semiconductor element 10 is molded with an epoxy resin by a method such as potting, transfer molding, or casting method. Further, it is preferable that the upper surface has a flat structure as much as possible so that caulking pressure can be applied to the entire surface of the mold.
  • the manufacturing process includes a step of mounting the power semiconductor element 10 on the wiring member 11, a step of mounting the wiring member 11 on the base plate 12, and setting the wiring member 11 and the base plate 12 in a mold (not shown).
  • the process of molding the power semiconductor element 10 and the process of mounting the radiating fins 16 to the base plate 12 are performed, the soldering process and the wires that have been a problem in the past due to the radiating fins 16 from the beginning of the process. Problems such as difficulty in the bonding process and deterioration in productivity due to an increase in the size of the circuit device can be solved.
  • the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted are collectively soldered to or bonded to the base plate 12 on which the heat radiation fins 16 can be directly formed.
  • the grease portion used for joining the fins 16 can be eliminated, and the heat radiation of the power semiconductor circuit device can be increased.
  • the height and width of the heat radiating fins 16 can be changed according to the heat radiating specifications of the power semiconductor circuit device without changing the equipment. It becomes easy.
  • the heat radiating fins 16 are caulked and joined to the back surface of the base plate 12, it is preferable to use fins formed by processing a soft pure aluminum plate member into a wave shape and connecting a plurality of fins.
  • adjacent radiating fins 16 are attracted to each other and generate a force to press against the groove 14 formed in the base plate 12, so that the base plate 12 does not have to be greatly deformed. Large strength and low thermal resistance are obtained. Therefore, it is possible to realize the excellent bonding of the radiating fin 16 to the base plate 12 without causing further damage to the power semiconductor circuit device including the power semiconductor element 10.
  • the pitch between the fins of the radiating fins 16 slightly smaller than the pitch of the grooves 14 formed in the base plate 12
  • the pressing force of the radiating fins 16 on the side surfaces of the grooves 14 formed in the base plate 12 is increased. It can be further increased.
  • a pressure that presses the periphery of the base plate 12 when the resin flows into the periphery where the base plate 12 of the mold mold (not shown) is arranged.
  • Means are provided.
  • FIG. 3A a power semiconductor circuit device and a manufacturing method thereof according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted are collectively soldered to the base plate 30 made of aluminum. Or it is adhered.
  • the power semiconductor element 10, the wiring member 11 on which the power semiconductor element 10 is mounted, and the base plate 30 are part of the back surface of the base plate 30 and the side surface of the base plate 30.
  • the resin is transfer molded with an epoxy mold resin 15 so as to expose.
  • the surface of the base plate 30 opposite to the surface on which the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted, that is, the back surface of the base plate 30 is processed into a flat surface.
  • Radiation fins 31 are formed on the back surface of the base plate 30 processed into a flat surface. As shown in FIG. 3B, the heat radiating fins 31 are formed by bringing a pressing jig 32 into contact with the surface of the mold resin 15 and cutting the back surface of the base plate 30 with a tool 33 or the like. Note that the heat radiating fins 31 may be formed on the side surface portion of the base plate 30 exposed from the mold resin 15.
  • the stress generated in the power semiconductor element 10 can be reduced by supporting the upper surface of the mold resin 15 with a pressing jig 32 or the like.
  • the radiating fins 31 later, it becomes difficult to perform the soldering process and the wire bonding process, which has been a problem in the past due to the presence of the radiating fins 31 earlier, or the productivity is deteriorated due to being bulky. The problem can be solved.
  • the radiation fins 31 can be formed at room temperature, and a fin pitch that is narrower than that when the radiation fins 31 are formed by caulking is possible. There is no need to process the plate 30 in advance. Further, even if there is a burr at the time of molding on the surface on which the heat radiation fin 31 is formed, the burr is peeled off by the tool together with the cutting and raising process, so that the burr does not deteriorate the thermal resistance.
  • the thermal resistance between the radiating fins 31 and the base plate 30 is smaller than that of caulking, and the pitch and height of the radiating fins 31 can be changed according to the radiating specifications of the power semiconductor circuit device without changing the equipment. Therefore, it is possible to reduce the thermal resistance and improve the productivity by forming the radiating fins 31 later.
  • the power semiconductor circuit device according to the third embodiment has a power semiconductor element 10 and a wiring member 11 on which the power semiconductor element 10 is mounted, as shown in FIG.
  • the base plate 40 is transfer-molded with an epoxy-based mold resin 15 so that a part of the surface of the back surface of the base plate 40 and the side surface of the base plate 40 is exposed.
  • the mounting surface on which the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted is formed in a rectangular shape, and stepped portions 40a are formed by machining in four directions on the side surface. And as shown in FIG.4 (b), it molds so that a lower surface of the step part 40a can be sealed by pressing with the molding die 41.
  • FIG. 4 (b) it is the same as that of Embodiment 1, the same code
  • the wiring member 11 is positioned and molded using a pilot hole or the like of the wiring member.
  • the wiring member 11 is joined to the base plate 40. 11 and the base plate 40 are not misaligned. Even in such a case, positioning the base plate 40 with the stepped portion 40a formed on the base plate 40 facilitates alignment of the heat dissipating fins 16 when retrofitting.
  • the staircase portion 40a can prevent the mold resin 15 from flowing into the caulking joint portion, and the mold resin 15 can be prevented from flowing into the caulking joint portion. Therefore, the formation of the heat radiation fins 16 is facilitated.
  • the power semiconductor circuit device according to the fourth embodiment includes a power semiconductor element 10 and a wiring member 11 on which the power semiconductor element 10 is mounted as shown in FIG. 50.
  • the power semiconductor element 10 of the base plate 50 and the surface opposite to the mounting surface of the wiring member 11 on which the power semiconductor element 10 is mounted, that is, the back surface 50b of the base plate 50 mounts the power semiconductor element 10 and the power semiconductor element 10.
  • An inclined portion 50 c is provided on the side surface of the base plate 50 so as to be smaller than the mounting surface of the wiring member 11, that is, the surface 50 a of the base plate 50.
  • the mold 51 is provided with an inclined portion 51a that serves as a means for pressing and sealing the inclined portion 50c of the base plate 50 during molding.
  • the inclination part 50c is good also as the step part demonstrated in FIG.4 (b) of Embodiment 3.
  • FIG. Other configurations are the same as those of the first embodiment, and the same reference numerals are given and the description thereof is omitted.
  • the heat radiation fin 16 side is smaller than the mounting surface side of the wiring member 11 on which the power semiconductor element 10 and the power semiconductor element 10 are mounted.
  • the inclined portion 50c is provided, and the inclined portion 50c is pressed against the inclined portion 51a of the mold 51 by the pressure applied in the molding process. Can be eliminated.
  • the power semiconductor circuit device according to the fifth embodiment includes the surface of the base plate 60, that is, the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted.
  • a convex portion 60a is formed on the mounting surface perpendicular to the surface.
  • the convex portion 60a is provided at a position slightly inside from the end of each side surface of the base plate 60, and is molded with the molding resin 15 so as to include the convex portion 60a, as shown in FIG.
  • the area of the surface of the base plate 60 is larger than the projected area of the mold part by the mold resin 15, and the side surface of the mold resin 15 is on the outer side from the extreme end position of the radiation fin 16.
  • the convex portion 60a formed on the base plate 60 may be a concave portion.
  • Other configurations are the same as those of the first embodiment, and the same reference numerals are given and the description thereof is omitted.
  • the power semiconductor circuit device it is possible to eliminate the burrs of the mold resin 15 in the portions where the radiation fins 16 of the power semiconductor circuit device are formed.
  • the mold resin 15 is easily peeled off due to poor adhesiveness with the aluminum.
  • the mold resin 15 can be prevented from being peeled off due to stress at the time of forming the radiation fins 16.
  • FIG. FIG. 7 is a front longitudinal sectional view showing a power module which is a power semiconductor circuit device according to Embodiment 6 of the present invention
  • FIG. 8 is an exploded perspective view of the power module of Embodiment 6
  • FIG. 10 is a longitudinal sectional view showing the shape of the metal base groove and the sheet metal radiating fin
  • FIG. 11 is a view showing the caulking portion of the sheet metal radiating fin in the groove of the metal base.
  • FIG. 12 is a longitudinal sectional view showing a joined state
  • FIG. 12 is a longitudinal sectional view showing a state in which a gap between a metal base groove and a sheet metal radiating fin is filled with a high thermal conductive adhesive.
  • the power module 91 includes a power semiconductor element 111 that generates heat, a metal frame 112 on which the power semiconductor element 111 is mounted, and an electrode terminal 112a, and a metal on one surface 113a.
  • the mold resin 115 covering 113c and the caulking portion 116a formed to be bent in a substantially V shape are caulked and joined in the groove 114 so that the portion 116b protruding from the groove 114 of the caulking portion 116a is the bottom surface of the groove 114.
  • Sheet metal radiating fin 116 plastically deformed so as to be lower than 114a. It is equipped with a.
  • Examples of the power semiconductor element 111 include a diode in a converter unit that converts input AC power into DC, a bipolar transistor in an inverter unit that converts DC into AC, an IGBT, a MOSFET, a GTO, and the like.
  • the power semiconductor elements 111 and the power semiconductor elements 111 and the electrode terminals 112a are electrically connected by metal wires 117.
  • the metal base 113 is made of aluminum, copper or the like having high thermal conductivity.
  • the power semiconductor element 111 and the metal frame 112, and the metal frame 112 and the metal base 113 are joined by soldering, and the sheet metal radiating fins 116 have a potential. Since solder with high thermal conductivity is used for joining from the power semiconductor element 111 to the metal base 113, heat dissipation is high even with a small joining area, and the power semiconductor element 111 can be downsized.
  • a corrugated radiation fin formed by bending a plurality of thin strip metal plates such as aluminum into a wave shape (rectangular wave shape) is used.
  • the corrugated heat dissipating fins 116 are suitable for caulking and joining to the metal base 113 in one caulking process.
  • one belt-shaped metal plate is formed once in a substantially V shape.
  • a bent sheet metal radiating fin 116 may be used.
  • thermosetting resin such as an epoxy resin
  • a thermoplastic resin such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate) may be used.
  • a projection 115b is provided on the edge of the fin-side surface 115a of the mold resin 115 to facilitate positioning of the corrugated heat dissipating fin 116 during caulking and joining to the metal base 113, and the side flange 116d of the corrugated heat dissipating fin 116 is provided.
  • a protrusion 115b is fitted into and fixed to a hole 116e provided in the. The protrusion 115b also contributes to suppression of misalignment of the sheet metal radiating fin 116 after caulking and joining to the groove 114.
  • the sheet metal radiating fin 116 and the metal base 113 are caulked and joined first, and the power semiconductor element 111, the metal wire 117, and the metal frame 112 are formed on one surface 113 a of the metal base 113 in a later process. Is mounted and coated with the mold resin 115, but the sheet metal radiating fins 116 attached to the metal base 113 have different lengths, which eliminates the need for setup change in the soldering process and the resin molding process.
  • the metal base 113 and the sheet metal radiating fins 116 are caulked. It is desirable to perform bonding.
  • the power module 91 includes a step of mounting the power semiconductor element 111 on the metal frame 112 and the metal frame 112 on one surface 113a of the metal base 113 in which a plurality of parallel grooves 114 are formed on the other surface 113b.
  • the caulking portion 116a formed by bending is caulked and joined in the groove 114 so as to be crushed, and the portion 116b protruding from the groove 114 of the caulking portion 116a is plastically deformed so as to be lower than the bottom surface 114a of the groove 114. It is desirable to manufacture by this process.
  • the sheet metal radiating fin 116 and the metal base 113 are joined by fixing a flat portion ( ⁇ display portion in FIG. 8) of the outer surface of the mold resin 115 on the base, A load such as a press is applied to the caulking portion 116a, and the caulking portion 116a is plastically deformed and fixed by caulking.
  • the lateral width of the sheet metal radiating fin 116 is formed to be larger than the lateral width of the metal base 113, and both side edges of the sheet metal radiating fin 116 protrude from the groove 114.
  • a portion that protrudes from the groove 114 of the caulking portion 116a when the caulking portion 116a of the sheet metal radiating fin 116 bent in a substantially V shape is plastically deformed so as to be crushed and caulked and joined into the groove 114 of the metal base 113. Since 116b is not crushed, it is displaced to a position lower than the bottom surface 114a of the groove 114. As a result, the portion 116b protruding from the groove 114 is caught at both ends of the groove 114, and even if vibration or the like is applied to the sheet metal radiating fin 116, the sheet metal radiating fin 116 slides along the groove 114. There is no slippage.
  • the caulking portion 116 a of the sheet metal radiating fin 116 is bent into a substantially V shape.
  • the groove 114 of the metal base 113 is formed with a tapered surface 114c that widens toward the opening and an inverse tapered surface 114b that widens toward the bottom.
  • the width A1 of the opening of the groove 114 and the width A2 of the bottom surface 114a are substantially the same.
  • the taper angle of the caulking portion 116a of the sheet metal radiating fin 116 and the taper angle of the taper surface 114c of the groove 114 are substantially the same.
  • the thermal expansion amounts of the width A1 of the opening and the width A2 of the bottom surface 14a are substantially the same, the thermal stresses of the tapered surface 114c and the reverse tapered surface 114b are substantially the same, and the thermal reliability is high.
  • the caulking portion 116a is caulked and joined in the groove 114 by the press blade 118 so as to crush the caulking portion 116a formed to be bent in a substantially V shape.
  • the metal base 113 warps so that the other surface 113b becomes a convex surface due to the heat shrinkage of the resin after molding, and the pitch of the grooves 114 increases.
  • the displacement of the grooves 114 at both ends is large, and the insertion of the sheet metal radiating fins 116 interferes with the grooves 114 and is difficult to insert, but the caulking portion 116a is substantially V-shaped, and the opening of the groove 114 Is a tapered surface 114c, so that the caulking portion 116a can be easily inserted.
  • the substantially V-shaped caulking portion 116a has a high deformability and can be sufficiently caulked even if the metal base 113 is warped.
  • the substantially V-shaped caulking portion 116 a is crushed by the press blade 118 and is pushed into the corner of the reverse tapered surface 114 b at the bottom of the groove 114 to be caulked and joined. After caulking and joining, a gap 114d is generated at the corner of the groove 114.
  • the reverse taper surface 114b at the bottom of the groove 114 makes it easy to enter the caulking portion 116a and can perform caulking joining with a weak press load.
  • the sheet metal radiating fins 116 are heated at the time of caulking, the bending elasticity of the sheet metal radiating fins 116 is reduced, and strong caulking can be performed without applying stress to the power semiconductor element 111. .
  • a high thermal conductive adhesive 119 may be filled in a gap 114d between the groove 114 of the metal base 113 and the sheet metal radiating fin 116 caulked and joined in the groove 114.
  • a soft silicon resin with a filler added to a high thermal conductivity is used as the high thermal conductive adhesive 119.
  • the heat dissipation of the power module 91 is improved. Further, by bonding the sheet metal heat radiation fin 116 and the metal base 113 with the high thermal conductive adhesive 119, the sheet metal heat radiation fin 116 is not displaced even under severe vibration conditions.
  • the cross-sectional shape of the groove 114 of the metal base 113 has been described in detail. However, the groove 114 may have a simple rectangular shape without the tapered surface 114c and the reverse tapered surface 114b. The gap 114d may not be filled with the high thermal conductive adhesive 119.
  • the power module 91 performs metal bonding with high thermal conductivity from the power semiconductor element 111 that is a heating element to the heat radiation fins 116 made of sheet metal, to increase heat dissipation,
  • the expensive power semiconductor element 111 is downsized to reduce the cost.
  • the sheet metal radiating fins 116 are caulked and joined to the metal base 113, so that power modules having different fin lengths can be easily manufactured, improving workability and reducing manufacturing costs. be able to.
  • the portion 116b protruding from the groove 114 of the caulking portion 116a is displaced to a position lower than the bottom surface 114a of the groove 114, the portion 116b is caught at both ends of the groove 114, and the sheet metal radiating fin 116 is vibrated. Is added, the sheet metal heat dissipating fin 116 does not slide and shift along the groove 114.
  • FIG. FIG. 13 is a front longitudinal cross-sectional view of the power module of Embodiment 7 which concerns on this invention.
  • the power module 92 of the seventh embodiment is different from the power module 91 of the sixth embodiment in that the metal frame 112 and the metal base 113 of the sixth embodiment are replaced with a metal substrate 123.
  • the power module 92 of the seventh embodiment includes the power semiconductor element 111 that generates heat, the power semiconductor element 111 mounted on one surface 123a, and a plurality of parallel grooves 114 formed on the other surface 123b.
  • the caulking portion 116a bent in a substantially V shape is caulked and joined in the groove 114 so as to crush, and the portion 116b protruding from the groove 114 of the caulking portion 116a is positioned lower than the bottom surface 114a of the groove 114. And a sheet metal heat dissipating fin 116 plastically deformed.
  • the power module 92 of the seventh embodiment includes the power semiconductor element 111 on the one surface 123a of the metal substrate 123 in which the insulating layer 123e is formed between the other surface 123b in which a plurality of parallel grooves 114 are formed and the one surface 123a.
  • the power semiconductor elements 111 and the power semiconductor elements 111 and the electrode terminals 112 a held by the mold resin 115 are electrically connected by metal wires 117.
  • the metal substrate 123 is made of aluminum, copper, or the like with high thermal conductivity.
  • the metal substrate 123 includes the resin insulating layer 123e, the metal substrate 123 has a lower thermal conductivity than that of solder bonding, but since the metal substrate 123 is insulated by the resin insulating layer 123e, a plurality of power semiconductor elements 111 can be mounted side by side.
  • the power module 91 of the sixth embodiment When used as an inverter, the power module 91 of the sixth embodiment is non-insulated, and thus it is necessary to arrange a plurality of power modules 91 for each circuit while keeping a space insulation distance. Since the power module 92 is insulated for each circuit, it is not necessary to take a space insulation distance and can be miniaturized.
  • the insulating layer 123e is made of a resin material and has a low elastic modulus, the stress generated in the power semiconductor element 111 is small, and the power due to the warp of the metal substrate 123 at the time of caulking the sheet metal radiating fin 116 and the metal substrate 123 is performed. Damage to the semiconductor element 111 can be prevented.
  • the power semiconductor circuit device (power module) according to the present invention is useful for a power conversion device such as an inverter or a converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 少なくとも電力半導体素子10を搭載したベース板(12)と、ベース板と電力半導体素子とを、ベース板の電力半導体素子を搭載する面の反対側の面を含むベース板の一部の表面を露出させた状態でモールドする樹脂(15)と、ベース板と押圧力により接合する放熱フィン(16)を備え、ベース板(12)の放熱フィン接合部に溝(14)を形成し、溝(14)に放熱フィン(16)をかしめ接合した電力半導体回路装置及びその製造方法。

Description

電力半導体回路装置およびその製造方法
 この発明は、電力半導体素子を備えた電力半導体回路装置およびその製造方法に係り、特に、電力半導体回路装置のベース板に放熱フィンを形成した電力半導体回路装置およびその製造方法に関するものである。
 従来、多くの電力半導体回路装置は、グリースなどを介して放熱部材であるヒートシンクに固着されて冷却されるように構成されている。グリースは、電力半導体回路装置とヒートシンクとの接触面の凹凸を埋め、接触熱抵抗を下げるために用いられるが、グリースの熱伝導率は金属類と比較して非常に小さいことから、装置のより一層の高放熱化を実現する際には、グリースを介さず電力半導体回路装置とヒートシンクとを固着させる必要がある。
 そこで、電力半導体回路装置の高放熱化実現の障害となっているグリースを介さずに、ヒートシンクのベース板と電力半導体回路装置のベース板とを一体にするため、電力半導体回路装置のベース板にヒートシンクの放熱フィンを高熱伝導率絶縁樹脂シートで熱圧着するか、もしくは一体に形成し、電力半導体回路装置のベース板に電力半導体素子や配線部材等の電子部品を搭載することにより、電力半導体回路装置の高放熱化を図っている。(例えば、特許文献1参照)
特開平11―204700号公報
 このような電力半導体回路装置にあっては、予め放熱フィンを高熱伝導率絶縁樹脂シートで熱圧着するか、もしくは一体に形成することにより構成されたベース板に、電力半導体素子や配線部材等の電子部品を搭載し、その後、モールド樹脂によるケース付けを行っている。しかし、電力半導体素子や配線部材等の電子部品を搭載する前に電力半導体回路装置のベース板に放熱フィンが付いていると、電力半導体回路装置のベース板の熱容量が大きくなり、はんだ付けが困難になるばかりでなく、ワイヤボンド工程でも従来の治具を用いることができず、ベース板と放熱フィンの形状ごとに特殊な治具を作らなければならない。そして、作る製品を変えるたびに治具交換等の装置の段取り替えも必要になる。また、放熱フィンが付いていることにより装置が大きくなるため、製品生産時に、収納容器に収納できる電力半導体回路装置が少量となり、人、もしくは専用の機械で常に供給する必要があり生産性が非常に悪くなる。
 これらの問題を解決するためには、電力半導体回路装置のベース板を、予め厚みの薄いベース板として、このベース板に電力半導体素子や配線部材等の電子部品を搭載し、最後に放熱フィンを取り付けることで解決できる。しかし、ベース板への放熱フィンの取り付けに、はんだや溶接等の熱的取り付け法を用いたのでは、電力半導体装置の熱容量が大きいために生産性悪く、一方、放熱フィンを、完成した電力半導体回路装置のベース板に機械的に形成しようとすると、放熱フィン形成時に電力半導体回路装置へストレスが加わり、電力半導体回路装置へのダメージが問題となる。
 この発明は、上記のような問題点を解決するためになされたもので、製造工程を簡素化することができ、放熱フィン形成時に、電力半導体回路装置へ加わるストレスを軽減し、電力半導体回路装置の高放熱化と生産性を両立させた電力半導体回路装置およびその製造方法を提供することを目的とするものである。
 この発明に係る電力半導体回路装置は、電力半導体素子を備えた電力半導体回路装置において、少なくとも上記電力半導体素子を搭載したベース板と、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態でモールドする樹脂と、上記ベース板と押圧力により接合する放熱フィンと、を備え、上記ベース板の上記放熱フィン接合部に溝を加工し、上記溝に上記放熱フィンをかしめによって固着したものである。
 また、この発明に係る電力半導体回路装置の製造方法は、ベース板の一面に少なくとも電力半導体素子を搭載すると共に、上記ベース板の反対側の面に接合用の溝を形成し、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態で、樹脂によりモールドし、その後、上記ベース板の上記溝に上記放熱フィンをかしめによって固着するようにしたものである。
 この発明に係る電力半導体回路装置によれば、製造工程において電力半導体回路装置にダメージを与えることなく放熱フィンが形成でき、また、製造工程を簡素化することができ、電力半導体回路装置の放熱仕様に合わせた放熱フィンを、作る製品ごとに治具交換等の装置の段取り替え無く、生産性よく形成できる。
 上述した、またその他の、この発明の目的、特徴、効果は、以下の実施の形態における詳細な説明および図面の記載からより明らかとなるであろう。
この発明の実施の形態1に係る電力半導体回路装置を示す断面模式図である。 この発明の実施の形態1に係る電力半導体素子に発生する応力の低減効果を示した図と、その低減効果を試算した際に用いた条件と電力半導体回路装置の断面を示す図である。 この発明の実施の形態2に係る電力半導体回路装置を示す断面模式図と放熱フィン切り起こし時の模式図である。 この発明の実施の形態3に係る電力半導体回路装置を示す断面模式図とモールド時のモールド金型とベース板の位置関係を表した図である。 この発明の実施の形態4に係る電力半導体回路装置を示す断面模式図とモールド時のモールド金型とベース板の位置関係を表した図である。 この発明の実施の形態5に係る電力半導体回路装置を示す断面模式図とベース板の上面から見た凸部の形状と配置を示した図である。 この発明の実施の形態6に係るパワーモジュールを示す正面縦断面図である。 この発明の実施の形態6のパワーモジュールの分解斜視図である。 この発明の実施の形態6のパワーモジュールの側面縦断面図である。 この発明の実施の形態における金属ベースの溝及び板金製放熱フィンの形状を示す縦断面図である。 この発明の実施の形態における金属ベースの溝内に板金製放熱フィンのかしめ部がかしめ接合された状態を示す縦断面図である。 この発明の実施の形態における金属ベースの溝と板金製放熱フィンとの間の隙間に高熱伝導性接着剤が充填された状態を示す縦断面図である。 この発明の実施の形態7に係るパワーモジュールを示す正面縦断面図である。
 以下、添付の図面を参照して、この発明に係る電力半導体回路装置(以下、パワーモジュールともいう。)およびその製造方法について好適な実施の形態を説明する。
なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、この発明の実施の形態1に係る電力半導体回路装置を示す断面模式図である。図1において、例えばIGBT(Insulated Gate Bipolar Transistor)、もしくはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)のような電力半導体素子10および電力半導体素子10を搭載した配線部材11は、 アルミニウムからなるベース板12に一括してはんだあるいは接着剤13により接着されている。ベース板12は、押出し加工、又は鋳造、あるいはダイキャストにより製作され、電力半導体素子10および電力半導体素子10を搭載した配線部材11を搭載した面と反対側の面、即ち、ベース板12の裏面には予め溝14が加工されている。
 図1(a)あるいは図1(b)に示すように、電力半導体素子10および電力半導体素子10を搭載した配線部材11と、ベース板12は、ベース板12の裏面とベース板12の側面における一部の表面を露出するように、エポキシ系のモールド樹脂15でトランスファモールドされている。
 ベース板12の裏面に加工された溝14には、放熱フィン16が装着される。この放熱フィン16は、一枚の純アルミ系の板部材を波状に形成して構成されており、放熱フィン16を変形させることにより、図1(b)に示すように、ベース板12の溝14にかしめ接合により装着される。更に詳細に説明すれば、放熱フィン16は、電力半導体素子10および電力半導体素子10を搭載した配線部材11と、ベース板12が、ベース板12の裏面とベース板12側面の一部の表面を露出するように、エポキシ系のモールド樹脂15でトランスファモールドされた後に、図1(a)の矢印で表示すように、ベース板12の溝14にかしめ接合される。
 実施の形態1に係る電力半導体回路装置は上記のように構成されているが、電力半導体素子10は複数個あってもよく、また、電力半導体素子10は、配線部材11を介さずにベース板12にはんだあるいは接着剤13により直接接着することにより搭載するものであってもよい。更に、電力半導体素子10と配線部材11は、ベース板12との絶縁のため、セラミック基板等の絶縁部材を介してベース板12に、はんだあるいは接着剤13で接着し、その絶縁部材をベース板12に接着するようにしても良い。
 ベース板12の裏面に加工された溝14に、かしめ接合により装着される放熱フィン16は、一枚の板を波状に形成したものでなく、一枚づつ独立して形成したものでも良い。また、放熱フィン16のベース板12への装着は、ベース板12を変形させてかしめても良く、両者間の押圧力による接合であれば良い。更に、放熱フィン16を100~150℃で加熱し、放熱フィン16を軟化させながらかしめ接合を行っても良い。なお、本実施の形態による形状においては、室温でかしめた時と比較し、放熱フィン16を100~150℃で加熱した時では、約70%のかしめ圧力で、室温でかしめた時と同様のかしまり具合となることを確認している。
 次に、本実施の形態のように、電力半導体素子10の周辺を隙間なくエポキシ系のモールド樹脂15でトランスファモールドした構造と、図2(a)に示す電力半導体素子10の周辺が中空もしくはゲル封止されているような中空構造でのかしめ時のかしめ圧力と電力半導体素子10に発生する応力の関係を図2(b)に示す。なお、図2(b)の横軸はかしめ圧力(MPa)、縦軸は電力半導体素子10に発生する応力(MPa)を示し、かしめ圧力は、かしめ接合時に放熱フィン16のかしめ刃がベース板12を押さえつける圧力である。
 かしめ圧力が同じであれば、本実施の形態によるトランスファモールド構造のほうが図2(a)に示す中空構造に比べ、図2(c)に示すように、かしめ接合時の支持構造がモールド樹脂14の上面両端の場合では、電力半導体素子10への応力を約1/2に低減できる。また、図2(d)のようにモールド樹脂15の上面全面で支持する場合では、電力半導体素子10への応力を1/10以上に低減することができる。従って、本実施の形態によるトランスファモールド構造によれば、極めてストレスが小さく、電力半導体素子10へのダメージの懸念の無い、ベース板12への放熱フィン16のかしめ接合ができる。
 また、電力半導体素子10の隙間にモールド樹脂15が入ることにより、電力半導体素子10に応力集中が発生することを防ぎ、電力半導体素子10の破壊耐量も増加し、大きなかしめ圧力に対しても電力半導体素子10へのダメージが発生しにくい。
 モールド材料としてはエポキシ系の材料が硬いため電力半導体素子10へのダメージ回避の点で好ましく、ポッティング、あるいはトランスファモールド、注型法などの方法で電力半導体素子10の周辺をエポキシ樹脂でモールドする構造がよく、さらに、かしめ圧力をモールド全面で受けることができるように、上面は可能な限りフラットな構造が好ましい。
 一方、製造工程は、電力半導体素子10を配線部材11に搭載する工程、配線部材11をベース板12に搭載する工程、配線部材11およびベース板12をモールド金型(図示せず)にセットして、電力半導体素子10をモールドする工程、ベース板12に放熱フィン16を装着する工程を経ることから、工程のはじめから放熱フィン16があることで従来問題となっていた、はんだ付け工程やワイヤボンド工程が難しくなること、回路装置が大きくなることによる生産性の悪化といった問題を解決できる。
 電力半導体素子10および電力半導体素子10を搭載した配線部材11を、放熱フィン16を直接形成することのできるベース板12に一括してはんだ付け、あるいは接着することにより、通常、ベース板12と放熱フィン16の接合に用いるグリース部を撤廃することが可能となり、電力半導体回路装置の高放熱化が可能となる。
 更に、かしめ接合により放熱フィン16とベース板12と接合するので、電力半導体回路装置の放熱仕様に合わせて放熱フィン16の高さと幅を変更することによって、設備の段取り変えなしに製造することが容易となる。
 放熱フィン16をベース板12の裏面にかしめ接合するにあたり、柔らかい純アルミ系の板部材を波状に加工して複数のフィンを繋げて形成したフィンを用いると良い。この場合、図1(b)に示すように、隣り合う放熱フィン16同士が互いに引っ張り合い、ベース板12に形成した溝14に押し付ける力が発生するため、ベース板12を大きく変形させなくても大きな強度と低い熱抵抗が得られる。したがって、電力半導体素子10をはじめとする電力半導体回路装置へのダメージをより一層引き起こすことがない極めて優れたベース板12への放熱フィン16の接合が実現できる。特に、放熱フィン16のフィン同士のピッチをベース板12に形成された溝14のピッチよりもやや小さくすることによって、ベース板12に形成された溝14の側面への放熱フィン16の押し付け力を一層増加させることができる。
 また、ベース板12の裏面とベース板12側面の一部の表面を露出させるために、図示しないモールド金型のベース板12を配置する周辺に、樹脂流入時にベース板12の周辺を押圧する押圧手段を設ける。この押圧手段を設けることにより、金型の隙間から樹脂が流入してできるモールド樹脂15のバリを防ぎ、接合部にモールド樹脂15のバリができることによって生じる、接合部の熱抵抗の増大や、接合強度の低下等が生じることなくかしめ接合が可能となる。
実施の形態2.
 次に、この発明の実施の形態2に係る電力半導体回路装置およびその製造方法について図3により説明する。
 実施の形態2に係る電力半導体回路装置は、実施の形態1と同様に、電力半導体素子10、電力半導体素子10を搭載した配線部材11は、アルミニウムからなるベース板30に一括してはんだ付け、あるいは接着されている。また、図3(a)に示すように、電力半導体素子10および電力半導体素子10を搭載した配線部材11と、ベース板30は、ベース板30の裏面とベース板30の側面における一部の表面を露出するように、エポキシ系のモールド樹脂15でトランスファモールドされている。
 ベース板30は、電力半導体素子10および電力半導体素子10を搭載した配線部材11を搭載した面と反対側の面、即ち、ベース板30の裏面は平面に加工されている。ベース板30の平面に加工された裏面には、放熱フィン31が形成される。この放熱フィン31は、図3(b)に示すように、モールド樹脂15の表面に押さえ治具32を当接させ、ベース板30の裏面を工具33などで切り起こすことにより形成されている。なお、放熱フィン31は、モールド樹脂15から露出しているベース板30の側面部分に形成してもよい。
 実施の形態2に係る電力半導体回路装置を製造する際には、工具33などでベース板30の裏面を切り起こす際に、電力半導体素子10を押す方向に力が加わるが、図2(a)あるいは図2(c)に示すように、押さえ治具32などでモールド樹脂15の上面を支持することで、電力半導体素子10に発生する応力を低減できる。また、放熱フィン31を後から形成することにより、先に放熱フィン31があることで従来問題となっていた、はんだ付け工程やワイヤボンド工程が難しくなること、あるいは嵩張ることによる生産性の悪化といった問題が解決できる。
 また、常温で放熱フィン31を形成することが可能であり、かしめ接合により放熱フィン31を形成する場合と比べて一層狭いフィンピッチが可能となり、放熱フィン31はベース板30から切り起こすため、ベース板30を予め加工する必要がない。また、放熱フィン31の形成面にモールド時のバリがあっても切り起こしの加工とともにバリも工具によって引き剥がされるため、バリが熱抵抗の悪化をまねくことがない。
 更に、放熱フィン31とベース板30の間の熱抵抗がかしめ接合に比べ小さいこと、放熱フィン31のピッチと高さを、設備の段取りかえなしに電力半導体回路装置の放熱仕様に合わせて変更できることから、放熱フィン31を後から形成することによって低熱抵抗化と生産性向上が可能である。
実施の形態3.
 次に、この発明の実施の形態3に係る電力半導体回路装置およびその製造方法について図4により説明する。
 実施の形態3に係る電力半導体回路装置は、実施の形態1あるいは実施の形態2と同様に、図4(a)に示すように、電力半導体素子10および電力半導体素子10を搭載した配線部材11と、ベース板40が、ベース板40の裏面とベース板40の側面における一部の表面を露出するように、エポキシ系のモールド樹脂15でトランスファモールドされている。
 ベース板40は、電力半導体素子10および電力半導体素子10を搭載した配線部材11を搭載する搭載面が矩形状に形成され、側面の4方向に、機械加工により階段部40aが形成されている。そして、図4(b)に示すように、階段部40aの下面をモールド金型41によって、押圧されることによりシール可能にモールドされる。なお、その他の構成については、実施の形態1と同様であり、同一符号を付してその説明を省略する。
 溝14に放熱フィン16をかしめ接合する際、放熱フィン16と溝14の間の位置ずれが大きい場合には、かしめ接合ができなくなることから、放熱フィン16と溝14の位置決めが重要となる。一般には、配線部材のパイロット穴などを用いてモールド金型41と位置決めしてモールドするが、実施の形態3における電力半導体回路装置では、ベース板40に配線部材11を接合することから、配線部材11とベース板40の位置ずれが小さくない。このような場合でも、ベース板40に形成した階段部40aでベース板40を位置決めすることによって、放熱フィン16を後付け加工の時の位置あわせが容易になる。
 また、階段部40aの下面を押付けシールすることにより、階段部40aでかしめ接合部へのモールド樹脂15の流入を防ぐことができ、かしめ接合部へのモールド樹脂15の流入を防いでモールドのバリをなくすことができるため放熱フィン16の形成が容易になる。
実施の形態4.
 次に、この発明の実施の形態4に係る電力半導体回路装置およびその製造方法について説明する。
 実施の形態4に係る電力半導体回路装置は、上記各実施の形態と同様に、図5(a)に示すように、電力半導体素子10および電力半導体素子10を搭載した配線部材11が、ベース板50に搭載されている。ベース板50の電力半導体素子10および電力半導体素子10を搭載した配線部材11の搭載面と反対側の面、即ち、ベース板50の裏面50bが、電力半導体素子10および電力半導体素子10を搭載した配線部材11の搭載面、即ち、ベース板50の表面50aよりも小さくなるようにベース板50の側面に傾斜部50cを設けている。そして、モールド金型51には、モールド時にベース板50の傾斜部50cを押付けシールする手段となる傾斜部51aが形成されている。傾斜部50cは、実施の形態3の図4(b)において説明した階段部としてもよい。なお、その他の構成については実施の形態1と同様であり、同一符号を付してその説明を省略する。
 上記のように、実施の形態4に係る電力半導体回路装置は、ベース板50の側面に、放熱フィン16側が電力半導体素子10および電力半導体素子10を搭載した配線部材11の搭載面側よりも小さくなる傾斜部50cを設けており、モールド工程において加わる圧力により、傾斜部50cがモールド金型51の傾斜部51aに押圧されることから、簡素な金型構造で樹脂をシールし、モールドによるバリをなくすことができる。
実施の形態5.
 次に、この発明の実施の形態5に係る電力半導体回路装置およびその製造方法について説明する。
 実施の形態5に係る電力半導体回路装置は、図6(a)、(b)に示すように、ベース板60の表面、即ち、電力半導体素子10および電力半導体素子10を搭載した配線部材11の搭載面に、その面と垂直に凸部60aが形成されている。この凸部60aは、ベース板60の各側面の端部から少し内側の位置に設けられ、図6(a)に示すように、凸部60aを含むようにモールド樹脂15でモールドされている。また、ベース板60の表面の面積は、モールド樹脂15によるモールド部の投影面積に比べて大きく、かつ放熱フィン16の最端位置よりモールド樹脂15の側面が外側にある。ベース板60に形成した凸部60aは凹部でもかまわない。なお、その他の構成については実施の形態1と同様であり、同一符号を付してその説明を省略する。
 実施の形態5に係る電力半導体回路装置によれば、電力半導体回路装置の放熱フィン16の形成部分におけるモールド樹脂15のバリをなくすことができる。
また、ベース板60にアルミニウムを用いたとき、モールド樹脂15はアルミニウムとの接着性が良好でないため剥がれ易いが、凸部60aを形成することにより、ベース板60に対してモールド樹脂15の接着力が増し、放熱フィン16を形成する際のストレスにより、モールド樹脂15が剥がれること防ぐことができる。
実施の形態6.
 図7は、本発明の実施の形態6における電力半導体回路装置であるパワーモジュールを示す正面縦断面図、図8は、実施の形態6のパワーモジュールの分解斜視図、図9は、実施の形態6のパワーモジュールの側面縦断面図、図10は、金属ベースの溝及び板金製放熱フィンの形状を示す縦断面図、図11は、金属ベースの溝内に板金製放熱フィンのかしめ部がかしめ接合された状態を示す縦断面図であり、図12は、金属ベースの溝と板金製放熱フィンとの間の隙間に高熱伝導性接着剤が充填された状態を示す縦断面図である。
 図7~図12に示すように、実施の形態6のパワーモジュール91は、発熱するパワー半導体素子111と、パワー半導体素子111が実装され、電極端子112aを有する金属フレーム112と、一面113aに金属フレーム112が設置され他面113bに複数の平行な溝114が形成された金属ベース113と、パワー半導体素子111及び金属フレーム112を被覆するとともに金属ベース113の一面113a及び該一面113a側の外周部113cを覆うモールド樹脂115と、略V字形に折り曲げ形成されたかしめ部116aを押し潰すように溝114内にかしめ接合され、かしめ部116aの溝114から食み出た部分116bが溝114の底面114aより低い位置になるように塑性変形された板金製放熱フィン116とを備えている。
 パワー半導体素子111としては、入力交流電力を直流に変換するコンバータ部のダイオードや、直流を交流に変換するインバータ部のバイポーラトランジスタ、IGBT、MOSFET、GTO等がある。
 パワー半導体素子111同士、及び、パワー半導体素子111と電極端子112aとは、金属ワイヤ117で電気的に接続される。金属ベース113は、熱伝導率の高いアルミニウムや銅等により形成されている。
 パワー半導体素子111と金属フレーム112、及び、金属フレーム112と金属ベース113とは、半田接合されていて、板金製放熱フィン116は電位を持っている。パワー半導体素子111から金属ベース113までの接合に、熱伝導率の高い半田を用いているので、小さな接合面積でも放熱性が高く、パワー半導体素子111を小型化することができる。
 実施の形態6の板金製放熱フィン116には、アルミ等の薄い1枚の帯状の金属板を複数回折り曲げて波状(矩形波状)に形成したコルゲート型放熱フィンを用いている。コルゲート型放熱フィン116は、1回のかしめ工程で金属ベース113とかしめ接合を行なうのに適しているが、コルゲート型放熱フィン116に替えて、帯状の金属板1枚を略V字形に1回折り曲げた板金製放熱フィン116を用いてもよい。
 モールド樹脂115としては、エポキシ樹脂等の熱硬化性樹脂を用いる。
PPS(polyphenylene sulfide)やPBT(polybutylene terephthalate)等の熱可塑性樹脂を用いてもよい。金属ベース113とのかしめ接合時に、コルゲート型放熱フィン116の位置決めをし易いように、モールド樹脂115のフィン側の面115aの縁部に突起115bを設け、コルゲート型放熱フィン116の側部フランジ116dに設けられた孔116eに突起115bを嵌め込んで固定している。突起115bは、溝114にかしめ接合後の板金製放熱フィン116の位置ずれの抑制にも寄与している。
 パワーモジュール91の製造方法として、板金製放熱フィン116と金属ベース113とのかしめ接合を先に行ない、後工程で、金属ベース113の一面113aに、パワー半導体素子111、金属ワイヤ117及び金属フレーム112を実装し、モールド樹脂115により被覆する方法があるが、金属ベース113に取付ける板金製放熱フィン116の長さが異なる場合に発生する、半田付け工程や樹脂モールド工程での段取り替えを不要とし、製造工程を簡素化するために、図8に示すように、パワー半導体素子111、金属ワイヤ117、金属フレーム112及び金属ベース113を樹脂モールドした後に、金属ベース113と板金製放熱フィン116とのかしめ接合を行なうようにするのが望ましい。
 即ち、実施の形態6のパワーモジュール91は、パワー半導体素子111を金属フレーム112に実装する工程と、他面113bに複数の平行な溝114が形成された金属ベース113の一面113aに金属フレーム112を設置する工程と、モールド樹脂115によりパワー半導体素子111及び金属フレーム112を被覆するとともに金属ベース113の一面113a及び一面113a側の外周部113cを覆う工程と、板金製放熱フィン116の略V字形に折り曲げ形成されたかしめ部116aを、押し潰すように溝114内にかしめ接合し、かしめ部116aの溝114から食み出た部分116bを溝114の底面114aより低い位置になるように塑性変形する工程と、により製造するのが望ましい。
 図8に示すように、板金製放熱フィン116と金属ベース113との接合は、モールド樹脂115外面の平坦部(図8の△△表示部)を台上に固定し、板金製放熱フィン116のかしめ部116aにプレス等の荷重を加え、かしめ部116aを塑性変形させてかしめ接合により固定する。
 このとき、モールド樹脂115の平坦部に、シャント等の大型部品実装による凸部やモールド樹脂流れを効率よくするための凹部があっても、この凹凸部に荷重が加わらないようにする逃がし冶具を用いることにより、かしめ接合を行なうことができる。
 次に、図9を参照して、かしめ接合後の板金製放熱フィン116の形状について説明する。板金製放熱フィン116の横幅は、金属ベース113の横幅よりも大きく形成されていて、板金製放熱フィン116の両側縁部は、溝114から食み出ている。
 略V字形に折り曲げ形成された板金製放熱フィン116のかしめ部116aを押し潰すように塑性変形させ、金属ベース113の溝114内にかしめ接合すると、かしめ部116aの溝114から食み出た部分116bは押し潰されないので、溝114の底面114aより低い位置に変位する。これにより、溝114から食み出た部分116bが溝114の両端に引っ掛かるようになり、板金製放熱フィン116に振動等が加わっても、板金製放熱フィン116が溝114に沿ってスライドしてずれてしまうことはない。
 次に、図10~図12を参照して金属ベース113の溝114の断面形状及び板金製放熱フィン116のかしめ部116aの断面形状の詳細について説明する。
プレス刃118により、板金製放熱フィン116のかしめ部116aと金属ベース113の溝114とのかしめ接合を行なうとき、金属ベース113に実装されたパワー半導体素子111は、金属ベース113の変形による応力の発生により破損する可能性があり、パワー半導体素子111が破損しない程度の弱いプレス荷重でかしめ接合を行なう必要がある。
 図10に示すように、板金製放熱フィン116のかしめ部116aは、略V字形に折り曲げ形成されている。金属ベース113の溝114には、開口部に向かって拡幅するテーパ面114cと、底部に向かって拡幅する逆テーパ面114bが形成されている。
溝114の開口部の幅A1と底面114aの幅A2は、略同一となっている。また、板金製放熱フィン116のかしめ部116aのテーパ角度と溝114のテーパ面114cのテーパ角度とは、略同一となっている。
 それ故、開口部の幅A1と底面14aの幅A2の熱膨張量が略同一となり、テーパ面114cと、逆テーパ面114bの熱応力が略同一となり、熱的信頼性が高い。
プレス刃118により、略V字形に折り曲げ形成されたかしめ部116aを押し潰すようにして、かしめ部116aを溝114内にかしめ接合する。
 金属ベース113は、モールド後の樹脂の熱収縮により、他面113bが凸面となるように反り、溝114のピッチが拡大する。特に、両端の溝114の変位が大きく、板金製放熱フィン116の挿入時に、溝114に干渉して挿入が難くなるが、かしめ部116aが、略V字形であり、また、溝114の開口部がテーパ面114cとなっているので、かしめ部116aの挿入は容易である。また、略V字形のかしめ部116aは、変形能力が高く、金属ベース113が反っていても、十分にかしめ接合を行なうことができる。
 図11に示すように、略V字形のかしめ部116aは、プレス刃118により押し潰され、溝114の底部の逆テーパ面114bの角に押込まれてかしめ接合される。かしめ接合後、溝114の隅部には、隙間114dが発生する。溝114の底部の逆テーパ面114bは、かしめ部116aを進入し易くしていて、弱いプレス荷重でかしめ接合を行なうことができる。
 また、かしめ接合時に、板金製放熱フィン116を加熱しておけば、板金製放熱フィン116の曲げ弾性が低下し、パワー半導体素子111にストレスを与えずに、強固なかしめ接合を行なうことができる。
 図12に示すように、金属ベース113の溝114と溝114内にかしめ接合された板金製放熱フィン116との間の隙間114dに、高熱伝導性接着剤119を充填するとよい。高熱伝導性接着剤119としては、柔らかいシリコン樹脂にフィラーを添加して高熱伝導率にしたものを用いる。
 隙間114dに高熱伝導性接着剤119を充填することにより、パワーモジュール91の放熱性が向上する。また、高熱伝導性接着剤119で、板金製放熱フィン116と金属ベース113を接着することにより、過酷な振動条件下であっても、板金製放熱フィン116がずれるようなことはない。
以上、金属ベース113の溝114の断面形状について詳細に説明したが、溝114は、テーパ面114c及び逆テーパ面114bを設けない単純矩形形状であってもよい。
また、隙間114dに、高熱伝導性接着剤119を充填しなくてもよい。
 実施の形態6のパワーモジュール91は、以上説明した構造により、発熱体であるパワー半導体素子111から板金製放熱フィン116まで、熱伝導率の高い金属接合を行なっており、放熱性を高くし、高価なパワー半導体素子111を小型化し、コストを低減している。また、樹脂モールド工程後に、金属ベース113に板金製放熱フィン116をかしめ接合するので、フィンの長さが異なるパワーモジュールも容易に製作することができ、作業性を向上させて製造コストを低減することができる。
 また、かしめ部116aの溝114から食み出た部分116bが、溝114の底面114aより低い位置に変位しているので、溝114の両端に引っ掛かるようになり、板金製放熱フィン116に振動等が加わっても、板金製放熱フィン116が溝114に沿ってスライドしてずれてしまうことはない。
実施の形態7.
 図13は、本発明に係る実施の形態7のパワーモジュールの正面縦断面図である。
実施の形態7のパワーモジュール92が、実施の形態6のパワーモジュール91と異なるところは、実施の形態6の金属フレーム112及び金属ベース113を、金属基板123に替えたことである。
 即ち、実施の形態7のパワーモジュール92は、発熱するパワー半導体素子111と、一面123aにパワー半導体素子111が実装され、他面123bに複数の平行な溝114が形成され、一面123aと他面123bとの間に樹脂から成る絶縁層123eが形成された金属基板123と、パワー半導体素子111を被覆するとともに金属基板123の一面123a及び該一面123a側の外周部123cまでを覆うモールド樹脂115と、略V字形に折り曲げ形成されたかしめ部116aを押し潰すように溝114内にかしめ接合され、かしめ部116aの溝114から食み出た部分116bが溝114の底面114aより低い位置になるように塑性変形された板金製放熱フィン116と、を備えている。
 また、実施の形態7のパワーモジュール92は、複数の平行な溝114が形成された他面123bと一面123aとの間に絶縁層123eが形成された金属基板123の一面123aにパワー半導体素子111を実装する工程と、モールド樹脂115によりパワー半導体素子111を被覆するとともに金属基板123の一面123a及び該一面123a側の外周部123cを覆う工程と、板金製放熱フィン116の略V字形に折り曲げ形成されたかしめ部116aを、押し潰すように溝114内にかしめ接合し、かしめ部116aの溝114から食み出た部分を該溝114の底面114aより低い位置になるように塑性変形する工程と、により製造するのが望ましい。
 パワー半導体素子111同士、及び、パワー半導体素子111とモールド樹脂115により保持された電極端子112aとは、金属ワイヤ117で電気的に接続されている。
金属基板123は、熱伝導率の高いアルミニウムや銅等により形成されている。
 金属基板123は、樹脂絶縁層123eを有するため、半田接合に比べて熱伝導率が低いが、樹脂絶縁層123eで絶縁されているため、複数のパワー半導体素子111を並べて実装することができる。
 インバータとして用いる場合、実施の形態6のパワーモジュール91は、非絶縁であるため、回路毎に複数個のパワーモジュール91を、空間絶縁距離をとりながら並べる必要があったが、実施の形態7のパワーモジュール92は、回路毎に絶縁されているため、空間絶縁距離をとる必要がなく、小型化することができる。
 また、絶縁層123eは樹脂材質であり、弾性率が低いことから、パワー半導体素子111に発生する応力が小さく、板金製放熱フィン116と金属基板123のかしめ接合時の金属基板123の反りによるパワー半導体素子111の破損を防止することができる。
 この発明に係る電力半導体回路装置(パワーモジュール)は、インバータ、あるいはコンバータ等の電力変換装置に有用である。
 10、111 電力半導体素子(パワー半導体素子)、11 配線部材、12、30、40、50、60 ベース板、13 はんだあるいは接着剤、14、114 溝、15、115 モールド樹脂、16、31 放熱フィン、32 押さえ治具、33 工具、40a 階段部、41、51 モールド金型、50a 表面、50b 裏面、50c、51a 傾斜部、60a 凸部、91、92 パワーモジュール、112 金属フレーム、112a 電極端子、113 金属ベース、113a 一面、113b 他面、113c 外周部、114a 底面、114b 逆テーパ面、14c テーパ面、114d 隙間、115a フィン側の面、115b 突起、116 板金製放熱フィン(コルゲート型放熱フィン)、116a かしめ部、116b 溝から食み出た部分、116d 側部フランジ、116e 孔、117 金属ワイヤ、118 プレス刃、119 高熱伝導性接着剤、123 金属基板、123a 一面、123b 他面、123c 外周部、123e 絶縁層(樹脂絶縁層)

Claims (16)

  1.  電力半導体素子を備えた電力半導体回路装置において、
     少なくとも上記電力半導体素子を搭載したベース板と、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態でモールドする樹脂と、上記ベース板と押圧力により接合する放熱フィンとを備え、上記ベース板の上記放熱フィン接合部に溝を加工し、上記溝に上記放熱フィンをかしめによって固着したことを特徴とする電力半導体回路装置。
  2.  電力半導体素子を備えた電力半導体回路装置において、
     少なくとも上記電力半導体素子を搭載したベース板と、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態でモールドする樹脂と、上記ベース板の上記露出した表面に、上記表面を切り起こして形成した放熱フィンとを備えたことを特徴とする電力半導体回路装置。
  3.  上記放熱フィンは、一枚の板を波状に形成したものであることを特徴とする請求項1に記載の電力半導体回路装置。
  4.  上記ベース板に形成された溝には、開口部に向かって拡幅するテーパ面と、底部に向かって拡幅する逆テーパ面が形成されていることを特徴とする請求項1に記載の電力半導体回路装置。
  5.  上記ベース板の溝と該溝内にかしめによって固着された放熱フィンとの間の隙間に、高熱伝導性接着剤が充填されていることを特徴とする請求項1に記載の電力半導体回路装置。
  6.  上記ベース板の少なくとも対向する二つの面に、階段状の段部を形成したことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
  7.  上記ベース板の電力半導体素子を搭載する面から該電力半導体素子を搭載する面の反対側の面にかけて形成された傾斜部を備えたことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
  8.  上記ベース板の電力半導体素子の搭載面の面積を、上記樹脂によるモールド部の投影面積に比べて大きくしたことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
  9.  上記ベース板の電力半導体素子の搭載面に、垂直方向の凸部または凹部を形成したことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
  10.  電力半導体素子を備えた電力半導体回路装置の製造方法において、
     ベース板の一面に少なくとも上記電力半導体素子を搭載すると共に、上記ベース板の反対側の面に接合用の溝を形成し、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態で樹脂によりモールドし、その後、上記ベース板の上記溝に上記放熱フィンをかしめによって固着することを特徴とする電力半導体回路装置の製造方法。
  11.  上記樹脂によるモールドは、上記ベース板の周辺を押圧する手段を有する金型によりモールドすることを特徴とする請求項10に記載の電力半導体回路装置の製造方法。
  12.  上記ベース板の周辺に段部もしくはテーパ部を形成することを特徴とする請求項11に記載の電力半導体回路装置の製造方法。
  13.  上記放熱フィンを上記ベース板に加熱しながらかしめによって固着して形成することを特徴とする請求項10~請求項12のいずれか一項に記載の電力半導体回路装置の製造方法。
  14.  上記放熱フィンは、V字形に折り曲げ形成されたかしめ部を有し、このかしめ部を押し潰すように上記溝内にかしめによって固着され、且つ前記かしめ部の前記溝から食み出た部分が該溝の底面より低い位置になるように塑性変形されたことを特徴とする請求項1に記載の電力半導体回路装置。
  15.  発熱するパワー半導体素子と、
     一面に上記パワー半導体素子が実装され、他面に複数の平行な溝が形成され、前記一面と他面との間に絶縁層が形成された金属基板と、
     上記パワー半導体素子を被覆するとともに上記金属基板の上記一面及び該一面側の外周部を覆うモールド樹脂と、
     V字形に折り曲げ形成されたかしめ部を有し、このかしめ部を押し潰すように上記溝内にかしめによって固着され、上記かしめ部の上記溝から食み出た部分が該溝の底面より低い位置になるように塑性変形された放熱フィンと、を備えることを特徴とする電力半導体回路装置。
  16.  パワー半導体素子を金属フレームに実装する工程と、
     他面に複数の平行な溝が形成された金属ベースの一面に前記金属フレームを設置する工程と、
     モールド樹脂により前記パワー半導体素子及び金属フレームを被覆するとともに前記金属ベースの前記一面及び該一面側の外周部を覆う工程と、
     板金製放熱フィンのV字形に折り曲げ形成されたかしめ部を、押し潰すように前記溝内にかしめによって固着し、前記かしめ部の前記溝から食み出た部分を該溝の底面より低い位置になるように塑性変形する工程と、を含むことを特徴とする電力半導体回路装置の製造方法。
PCT/JP2009/060264 2008-06-12 2009-06-04 電力半導体回路装置およびその製造方法 WO2009150995A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801190034A CN102047414B (zh) 2008-06-12 2009-06-04 电力半导体电路装置及其制造方法
JP2010516826A JP5566289B2 (ja) 2008-06-12 2009-06-04 電力半導体回路装置およびその製造方法
EP09762425.8A EP2293328B1 (en) 2008-06-12 2009-06-04 Method for manufacturing a power semiconductor circuit device
KR1020107025840A KR101186781B1 (ko) 2008-06-12 2009-06-04 전력 반도체 회로 장치 및 그 제조 방법
US12/988,035 US8659147B2 (en) 2008-06-12 2009-06-04 Power semiconductor circuit device and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008153935 2008-06-12
JP2008-153935 2008-06-12
JP2008-240318 2008-09-19
JP2008240318 2008-09-19

Publications (1)

Publication Number Publication Date
WO2009150995A1 true WO2009150995A1 (ja) 2009-12-17

Family

ID=41416702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060264 WO2009150995A1 (ja) 2008-06-12 2009-06-04 電力半導体回路装置およびその製造方法

Country Status (7)

Country Link
US (1) US8659147B2 (ja)
EP (1) EP2293328B1 (ja)
JP (1) JP5566289B2 (ja)
KR (1) KR101186781B1 (ja)
CN (1) CN102047414B (ja)
TW (1) TWI404177B (ja)
WO (1) WO2009150995A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222606A (ja) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp ヒートシンク及びヒートシンク一体型パワーモジュール
JP2012049167A (ja) * 2010-08-24 2012-03-08 Mitsubishi Electric Corp 電力半導体装置
JP2013055304A (ja) * 2011-09-06 2013-03-21 Nippon Tanshi Kk 端子ボックス用端子部材
US8426962B2 (en) 2010-10-13 2013-04-23 Mitsubishi Electric Corporation Semiconductor device
WO2013065474A1 (ja) * 2011-10-31 2013-05-10 ローム株式会社 半導体装置
JP2014056982A (ja) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp パワー半導体装置およびその製造方法
WO2016016985A1 (ja) * 2014-07-31 2016-02-04 三菱電機株式会社 半導体装置
JP2017537354A (ja) * 2014-11-28 2017-12-14 ヴァレオ、コンフォート、アンド、ドライビング、アシスタンスValeo Comfort And Driving Assistance バックライト装置、とりわけヘッドアップディスプレイ用のバックライト装置及び自動車用ヘッドアップディスプレイ
JP7515616B2 (ja) 2020-11-17 2024-07-12 三菱電機株式会社 パワー半導体モジュール及びその製造方法並びに電力変換装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145331B (zh) * 2012-01-31 2017-09-29 三菱电机株式会社 半导体装置和其制造方法
DE112013001113T5 (de) * 2012-02-24 2014-11-06 Mitsubishi Electric Corporation Halbleitervorrichtung und deren Herstellungsverfahren
DE112013001612B4 (de) * 2012-03-22 2022-05-12 Mitsubishi Electric Corporation Halbleiterbauteil und Verfahren zu dessen Herstellung
DE102012105110A1 (de) * 2012-06-13 2013-12-19 Osram Opto Semiconductors Gmbh Montageträger und Verfahren zur Montage eines Montageträgers auf einem Anschlussträger
US8643171B1 (en) * 2012-07-31 2014-02-04 Mitsubishi Electric Corporation Power semiconductor device
US9230878B2 (en) * 2013-04-12 2016-01-05 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Integrated circuit package for heat dissipation
CN105122446B (zh) * 2013-09-30 2019-07-19 富士电机株式会社 半导体装置、半导体装置的组装方法、半导体装置用部件以及单位模块
JP5996126B2 (ja) * 2013-12-05 2016-09-21 三菱電機株式会社 電力半導体装置
CN106062948B (zh) * 2014-01-21 2018-12-07 富士通株式会社 散热部件、散热部件的制造方法、电子装置、电子装置的制造方法、集成模块以及信息处理***
JP6093455B2 (ja) * 2014-01-27 2017-03-08 株式会社日立製作所 半導体モジュール
CN106575642B (zh) * 2014-07-10 2019-06-18 富士通株式会社 散热部件、散热部件的制造方法、电子装置、电子装置的制造方法、一体型模块、信息处理***
JP6341822B2 (ja) * 2014-09-26 2018-06-13 三菱電機株式会社 半導体装置
WO2016147226A1 (ja) * 2015-03-19 2016-09-22 パナソニックIpマネジメント株式会社 筐体、蛍光体ホイール装置、投影装置
US10615155B2 (en) * 2015-03-23 2020-04-07 Gd Midea Airconditioning Equipment Co., Ltd. Intelligent power module and manufacturing method thereof
CN106876348A (zh) * 2017-03-07 2017-06-20 中航华东光电有限公司 芯片封装结构及其制造方法
US10986756B2 (en) * 2017-12-28 2021-04-20 Hughes Network Systems Llc Cooling apparatus for an electrical component
US10833241B1 (en) * 2019-06-20 2020-11-10 International Business Machines Corporation Thermalization structure for cryogenic temperature devices
CN114374067B (zh) * 2022-01-04 2023-06-30 中信科移动通信技术股份有限公司 合路器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140755A (ja) * 1989-10-17 1991-06-14 Copeland Corp 冷凍装置
JPH11204700A (ja) 1998-01-19 1999-07-30 Hitachi Ltd 放熱フィン一体型パワーモジュール
JP2000151163A (ja) * 1998-11-18 2000-05-30 Showa Alum Corp ヒートシンクの製造法
JP2001053212A (ja) * 1999-08-10 2001-02-23 Motorola Inc Icパッケージおよびその製造方法
JP2001352020A (ja) * 2000-06-06 2001-12-21 Ricchisutoon:Kk 放熱素子の製造方法
JP2002299864A (ja) * 2001-03-29 2002-10-11 Ryosan Co Ltd コルゲートフィン型ヒートシンク
JP2003158226A (ja) * 2001-11-20 2003-05-30 Sony Corp 半導体装置
JP2007173272A (ja) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp 半導体装置およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814145C2 (de) * 1988-04-27 1998-07-23 Hess Joachim Vorrichtung zum Zuführen oder Abführen von Wärme
JPH02238653A (ja) 1989-03-13 1990-09-20 Hitachi Ltd 半導体装置
JP2602380B2 (ja) * 1991-10-23 1997-04-23 富士通株式会社 半導体装置及びその製造方法
US5247734A (en) * 1992-11-09 1993-09-28 Motorola, Inc. Method and apparatus of an improved heat sink
US5444909A (en) * 1993-12-29 1995-08-29 Intel Corporation Method of making a drop-in heat sink
US5533257A (en) * 1994-05-24 1996-07-09 Motorola, Inc. Method for forming a heat dissipation apparatus
US6208513B1 (en) * 1995-01-17 2001-03-27 Compaq Computer Corporation Independently mounted cooling fins for a low-stress semiconductor package
US5771966A (en) * 1995-12-15 1998-06-30 Jacoby; John Folded conducting member heatsinks and method of making same
DE29715585U1 (de) * 1997-08-28 1998-12-24 Hoogovens Aluminium Profiltechnik Bonn GmbH, 53117 Bonn Kühlvorrichtung für elektrische bzw. elektronische Bauelemente
JP3862861B2 (ja) * 1998-06-19 2006-12-27 稔之 新井 電装部品用ヒートシンクの製造方法
TW376171U (en) * 1998-11-24 1999-12-01 Foxconn Prec Components Co Ltd Radiating device
WO2005096376A1 (ja) * 2004-03-31 2005-10-13 Jisouken Co., Ltd. ヒートシンクの製造方法
JP2006041363A (ja) * 2004-07-29 2006-02-09 Hitachi Ltd 樹脂封止型半導体装置
JP3140755U (ja) 2008-01-21 2008-04-10 水谷電機工業株式会社 コルゲートフィン型放熱器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140755A (ja) * 1989-10-17 1991-06-14 Copeland Corp 冷凍装置
JPH11204700A (ja) 1998-01-19 1999-07-30 Hitachi Ltd 放熱フィン一体型パワーモジュール
JP2000151163A (ja) * 1998-11-18 2000-05-30 Showa Alum Corp ヒートシンクの製造法
JP2001053212A (ja) * 1999-08-10 2001-02-23 Motorola Inc Icパッケージおよびその製造方法
JP2001352020A (ja) * 2000-06-06 2001-12-21 Ricchisutoon:Kk 放熱素子の製造方法
JP2002299864A (ja) * 2001-03-29 2002-10-11 Ryosan Co Ltd コルゲートフィン型ヒートシンク
JP2003158226A (ja) * 2001-11-20 2003-05-30 Sony Corp 半導体装置
JP2007173272A (ja) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp 半導体装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2293328A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222606A (ja) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp ヒートシンク及びヒートシンク一体型パワーモジュール
JP2012049167A (ja) * 2010-08-24 2012-03-08 Mitsubishi Electric Corp 電力半導体装置
US8426962B2 (en) 2010-10-13 2013-04-23 Mitsubishi Electric Corporation Semiconductor device
DE102011081514B4 (de) 2010-10-13 2018-06-14 Mitsubishi Electric Corp. Halbleitervorrichtung
JP2013055304A (ja) * 2011-09-06 2013-03-21 Nippon Tanshi Kk 端子ボックス用端子部材
US9905499B2 (en) 2011-10-30 2018-02-27 Rohm Co., Ltd. Semiconductor device
US9070659B2 (en) 2011-10-31 2015-06-30 Rohm Co., Ltd. Semiconductor device
US9613883B2 (en) 2011-10-31 2017-04-04 Rohm Co., Ltd. Semiconductor device
WO2013065474A1 (ja) * 2011-10-31 2013-05-10 ローム株式会社 半導体装置
US10504822B2 (en) 2011-10-31 2019-12-10 Rohm Co., Ltd. Semiconductor device
JP2014056982A (ja) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp パワー半導体装置およびその製造方法
WO2016016985A1 (ja) * 2014-07-31 2016-02-04 三菱電機株式会社 半導体装置
JPWO2016016985A1 (ja) * 2014-07-31 2017-04-27 三菱電機株式会社 半導体装置
JP2017537354A (ja) * 2014-11-28 2017-12-14 ヴァレオ、コンフォート、アンド、ドライビング、アシスタンスValeo Comfort And Driving Assistance バックライト装置、とりわけヘッドアップディスプレイ用のバックライト装置及び自動車用ヘッドアップディスプレイ
JP7515616B2 (ja) 2020-11-17 2024-07-12 三菱電機株式会社 パワー半導体モジュール及びその製造方法並びに電力変換装置

Also Published As

Publication number Publication date
EP2293328A1 (en) 2011-03-09
CN102047414B (zh) 2013-05-29
KR20100134766A (ko) 2010-12-23
EP2293328B1 (en) 2019-11-20
CN102047414A (zh) 2011-05-04
TWI404177B (zh) 2013-08-01
US20110031612A1 (en) 2011-02-10
EP2293328A4 (en) 2014-06-11
JPWO2009150995A1 (ja) 2011-11-17
KR101186781B1 (ko) 2012-09-27
TW201003862A (en) 2010-01-16
JP5566289B2 (ja) 2014-08-06
US8659147B2 (en) 2014-02-25

Similar Documents

Publication Publication Date Title
JP5566289B2 (ja) 電力半導体回路装置およびその製造方法
JP5279632B2 (ja) 半導体モジュール
US8981552B2 (en) Power converter, semiconductor device, and method for manufacturing power converter
EP2674973B1 (en) Power semiconductor module
JP5432085B2 (ja) 電力半導体装置
JP5213884B2 (ja) 半導体装置モジュール
US20130026616A1 (en) Power device package module and manufacturing method thereof
WO2012137685A1 (ja) 半導体装置およびその製造方法
US20160190033A1 (en) Semiconductor module unit and semiconductor module
US10582607B2 (en) Circuit assembly having a heat transfer member
JP2006186170A (ja) 半導体装置
WO2022123870A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
JP5213919B2 (ja) 半導体装置
KR102228945B1 (ko) 반도체 패키지 및 이의 제조방법
CN115702491A (zh) 具有至少一个功率半导体元件的功率半导体模块
JP6644196B1 (ja) 半導体装置およびその製造方法ならびに電力変換装置
JP2009164240A (ja) 半導体装置
JP4883684B2 (ja) 絶縁型大電力用半導体装置の製造方法
JP4715283B2 (ja) 電力変換装置及びその製造方法
JP2018073923A (ja) 電力用半導体装置、電力用半導体装置の製造方法および電力変換装置
JP2017028131A (ja) パッケージ実装体
JP2010141034A (ja) 半導体装置及びその製造方法
JP7171516B2 (ja) パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法
JP6698879B2 (ja) 半導体装置、および半導体装置の製造方法
JP5465313B2 (ja) 半導体装置モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119003.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516826

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12988035

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107025840

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009762425

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE