WO2009150966A1 - ラテラルフッ素を有する4環液晶性化合物、液晶組成物および液晶表示素子 - Google Patents

ラテラルフッ素を有する4環液晶性化合物、液晶組成物および液晶表示素子 Download PDF

Info

Publication number
WO2009150966A1
WO2009150966A1 PCT/JP2009/060082 JP2009060082W WO2009150966A1 WO 2009150966 A1 WO2009150966 A1 WO 2009150966A1 JP 2009060082 W JP2009060082 W JP 2009060082W WO 2009150966 A1 WO2009150966 A1 WO 2009150966A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
liquid crystal
formulas
diyl
independently
Prior art date
Application number
PCT/JP2009/060082
Other languages
English (en)
French (fr)
Inventor
雅秀 小林
Original Assignee
チッソ株式会社
チッソ石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チッソ株式会社, チッソ石油化学株式会社 filed Critical チッソ株式会社
Priority to EP09762396.1A priority Critical patent/EP2305627B1/en
Priority to US12/996,758 priority patent/US8394294B2/en
Priority to KR1020107027477A priority patent/KR101577087B1/ko
Priority to CN200980121446.7A priority patent/CN102056881B/zh
Priority to JP2010516818A priority patent/JP5601199B2/ja
Publication of WO2009150966A1 publication Critical patent/WO2009150966A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/26Radicals substituted by halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/34One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/20Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hydrogen atoms and substituted hydrocarbon radicals directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/20Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hydrogen atoms and substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D309/22Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0407Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a carbocyclic ring, e.g. dicyano-benzene, chlorofluoro-benzene or cyclohexanone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0411Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a chlorofluoro-benzene, e.g. 2-chloro-3-fluoro-phenylene-1,4-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3006Cy-Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy

Definitions

  • the present invention relates to a liquid crystal compound, a liquid crystal composition, and a liquid crystal display element. More specifically, the present invention relates to a fluorobenzene derivative having fluorine at a lateral position, which is a liquid crystal compound, a liquid crystal composition having a nematic phase containing this compound, and a liquid crystal display element containing this composition.
  • a liquid crystal display element typified by a liquid crystal display panel, a liquid crystal display module or the like is a liquid crystal compound (in the present invention, a compound having a liquid crystal phase such as a nematic phase or a smectic phase, and a component of a liquid crystal composition that does not have a liquid crystal phase.
  • the liquid crystal display element uses an optical anisotropy, a dielectric anisotropy, etc., as an operation mode of this liquid crystal display element.
  • nematic Transmission nematic
  • STN super twisted nematic
  • BTN bistable twisted nematic
  • ECB electricallyelectriccontrolled birefringence
  • OCB optical compensated bend
  • IPS in-plane switching
  • VA vertical
  • Various modes such as an alignment) mode and a PSA (Polymer Sustained Alignment) mode are known.
  • the ECB mode, IPS mode, VA mode, etc. are operation modes utilizing the vertical alignment of liquid crystal molecules, and in particular, the IPS mode and VA mode are conventional display modes such as TN mode, STN mode, etc. It is known that the narrow viewing angle, which is a drawback, can be improved.
  • a liquid crystal display element in an operation mode such as an IPS mode and a VA mode still has problems as a display element as compared with a CRT. For example, an improvement in response speed, an improvement in contrast, and a reduction in driving voltage are caused. It is desired.
  • the display element that operates in the IPS mode or the VA mode is mainly composed of a liquid crystal composition having negative dielectric anisotropy.
  • the liquid crystal composition is used.
  • the liquid crystalline compound contained in the composition must have the following properties (1) to (8).
  • a composition containing a chemically and physically stable liquid crystal compound as in (1) When a composition containing a chemically and physically stable liquid crystal compound as in (1) is used for a display element, the voltage holding ratio can be increased. Further, as in (2) and (3), a composition containing a liquid crystal compound having a high clearing point or a low lower limit temperature of the liquid crystal phase can expand the temperature range of the nematic phase, and in a wide temperature range. It can be used as a display element.
  • the response speed is used as a display device a composition comprising a compound having a small compound viscosity, and a large elastic constant K 33 as in (7) as (4), (5)
  • a composition comprising a compound having a small compound viscosity, and a large elastic constant K 33 as in (7) as (4), (5)
  • the contrast of the display element can be improved.
  • the optical anisotropy needs to be small to large.
  • methods for improving the response speed by reducing the cell thickness have been studied, and accordingly, a liquid crystal composition having a large optical anisotropy is also required.
  • the threshold voltage of the liquid crystal composition containing this compound can be lowered, so that an appropriate negative voltage can be obtained as in (6).
  • the driving voltage of the display element can be lowered and the power consumption can be reduced.
  • a small driving voltage of the display device can be reduced by using a composition containing a compound having an elastic constant K 33 as a display device as described above, power consumption can be reduced.
  • the liquid crystal compound is generally used as a composition prepared by mixing with many other liquid crystal compounds in order to develop characteristics that are difficult to be exhibited by a single compound. Therefore, it is preferable that the liquid crystalline compound used for the display element has good compatibility with other liquid crystalline compounds as shown in (8). In addition, since the display element may be used in a wide temperature range including below freezing point, it may be preferable that the display element is a compound showing good compatibility from a low temperature range.
  • a first object of the present invention has heat, light stability to such becomes a nematic phase in a wide temperature range, a small viscosity, a large optical anisotropy, and a suitable elastic constant K 33, further It is to provide a liquid crystal compound having an appropriate negative dielectric anisotropy and excellent compatibility with other liquid crystal compounds.
  • the second object of the present invention is to have stability against heat, light, etc., low viscosity, large optical anisotropy, and appropriate negative dielectric anisotropy, and an appropriate elastic constant K 33.
  • a liquid crystal composition having a low threshold voltage, a high nematic phase maximum temperature (nematic phase-isotropic phase transition temperature) and a low nematic phase minimum temperature Is to provide.
  • the third object of the present invention is to provide a liquid crystal display device containing the above composition, which has a short response time, low power consumption and low driving voltage, high contrast, and can be used in a wide temperature range. It is.
  • a tetracyclic liquid crystal compound having fluorine in a lateral position in a specific structure having phenylene in which hydrogen on the benzene ring is replaced by fluorine heat, such as having a stability to light, a wide temperature range becomes a nematic phase, a small viscosity, a large optical anisotropy, and a suitable elastic constant K 33, further suitable negative dielectric anisotropy And has excellent compatibility with other liquid crystal compounds, and the liquid crystal composition containing this compound has stability against heat, light, etc., has a low viscosity, and has a large optical property.
  • R 1 and R 2 are independently hydrogen, alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons Or alkenyloxy having 2 to 9 carbon atoms;
  • Ring A 1 and Ring A 2 are independently 1,4-phenylene, trans-1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, tetrahydropyran-3, 6-diyl, 1,3-dioxane-2,5-diyl, 1,3-dioxane-3,6-diyl, pyrimidine-2,5-diyl, pyrimidine-3,6-diyl, pyridine-2,5- Diyl or pyrimidine-3,6-diyl;
  • L 1 and L 2 are independently hydrogen or fluorine, at least one of which is fluorine;
  • ring A 1 and ring A 2 are independently 1,4-phenylene, trans-1,4-cyclohexylene, tetrahydropyran-2,5-diyl, or tetrahydropyran.
  • R 3 and R 4 are independently alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, 2-9 alkoxyalkyl or alkenyloxy having 2-9 carbon atoms;
  • Ring A 3 and Ring A 4 are independently 1,4-phenylene, trans-1,4-cyclohexylene, tetrahydropyran-2,5-diyl, or tetrahydropyran-3,6-diyl;
  • L 3 and L 4 are independently hydrogen or fluorine, at least one of which is fluorine;
  • Z 3 and Z 4 are independently — (CH 2 ) 2 —, —CH ⁇ CH—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—.
  • R 5 and R 6 are independently alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, 2-9 alkoxyalkyl or alkenyloxy having 2-9 carbon atoms;
  • Z 5 and Z 6 are independently — (CH 2 ) 2 —, —CH ⁇ CH—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—.
  • R 7 and R 8 are independently alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, carbon number 2-9 alkoxyalkyl or alkenyloxy having 2-9 carbon atoms;
  • Z 7 and Z 8 are independently — (CH 2 ) 2 —, —CH ⁇ CH—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—.
  • R 9 and R 10 are independently alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, 2-9 alkoxyalkyl or alkenyloxy having 2-9 carbon atoms;
  • Z 9 and Z 10 are independently — (CH 2 ) 2 —, —CH ⁇ CH—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—.
  • a liquid crystal composition comprising a second component which is at least one compound selected from the group of compounds represented and having negative dielectric anisotropy.
  • Ring A 11 , Ring A 12 , Ring A 13 , and Ring A 14 are independently trans-1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro -1,4-phenylene, pyrimidine-2,5-diyl, pyrimidine-3,6-diyl, 1,3-dioxane-2,5-diyl, 1,3-dioxane-3,6-diyl, tetrahydropyran- 2,5-diyl or tetrahydropyran-3,6-diyl; Z 11 , Z 12 ,
  • a liquid crystal composition comprising a second component which is at least one compound selected from the group of compounds having a negative dielectric anisotropy.
  • the content of the first component is in the range of 5 to 60% by weight and the content of the second component is in the range of 40 to 95% by weight based on the total weight of the liquid crystal composition. 23].
  • a third component that is at least one compound selected from the group of compounds represented by formulas (g-1) to (g-6) is contained Item [22] or [23] The liquid crystal composition.
  • Ra 21 and Rb 21 are each independently hydrogen or alkyl having 1 to 10 carbons, and in this alkyl, —CH 2 — that is not adjacent to each other is —O— may be substituted, non-adjacent — (CH 2 ) 2 — may be replaced with —CH ⁇ CH—, and hydrogen may be replaced with fluorine;
  • Ring A 21 , Ring A 22 , and Ring A 23 are independently trans-1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4 -Phenylene, 2,3-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, pyrimidine-3,6-diyl, 1,3-dioxane-2,5-diyl, 1,3-dioxane-3 , 6-diyl, tetrahydropyran-2,5-diy
  • a third component which is at least one compound selected from the group of compounds represented by formulas (h-1) to (h-7) is contained Item [25] The liquid crystal composition.
  • Ra 22 and Rb 22 are independently straight chain alkyl having 1 to 8 carbon atoms, straight chain alkenyl having 2 to 8 carbon atoms, or 1 to 7 carbon atoms.
  • alkoxy Z 24 , Z 25 , and Z 26 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, or —OCH 2 —;
  • Y 1 and Y 2 are both fluorine, or one is fluorine and the other is chlorine.
  • a first component which is at least one compound selected from the compounds described in item [3], represented by formulas (e-1) to (e-3) described in item [22]
  • a second component which is at least one compound selected from the group of compounds described above, and at least one selected from the group of compounds represented by formulas (h-1) to (h-7) described in item [26]
  • a liquid crystal composition containing a third component which is one compound and having a negative dielectric anisotropy.
  • the content of the first component is in the range of 5 to 60% by weight
  • the content of the second component is in the range of 20 to 75% by weight, Item 26.
  • the liquid crystal composition according to any one of items [25] to [27], wherein the component content is in the range of 20 to 75% by weight.
  • the liquid crystalline compound of the present invention has stability against heat, light, etc., becomes a nematic phase over a wide temperature range, has a small viscosity, a large optical anisotropy, and an appropriate elastic constant K 33 (K 33 : bend elasticity). And a suitable negative dielectric anisotropy and excellent compatibility with other liquid crystal compounds. Further, the liquid crystalline compound of the present invention is particularly excellent in that the upper limit temperature of the nematic phase does not decrease and the viscosity tends to increase without increasing the optical anisotropy.
  • the liquid crystal composition of the present invention has a low viscosity, a large optical anisotropy, an appropriate elastic constant K 33 , and an appropriate negative dielectric anisotropy, a low threshold voltage,
  • the upper limit temperature of the nematic phase is high and the lower limit temperature of the nematic phase is low.
  • the liquid crystal composition of the present invention since the liquid crystal composition of the present invention has a large optical anisotropy, it is effective for an element that requires a large optical anisotropy.
  • the liquid crystal display element of the present invention is characterized by containing this liquid crystal composition, has a short response time, low power consumption and drive voltage, a large contrast ratio, and can be used in a wide temperature range.
  • TN mode, STN mode, ECB mode, OCB mode, IPS mode, VA mode, PSA mode, etc. and can be used suitably, especially IPS mode, VA mode, PSA mode liquid crystal It can be suitably used for a display element.
  • the amount of the compound expressed as a percentage means a weight percentage (% by weight) based on the total weight of the composition.
  • the liquid crystalline compound of the present invention has a structure represented by the formula (a) (hereinafter, these compounds are also referred to as “compound (a)”).
  • R 1 and R 2 are independently hydrogen, alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons Or alkenyloxy having 2 to 9 carbon atoms.
  • Ring A 1 and Ring A 2 are independently 1,4-phenylene, trans-1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, tetrahydropyran-3, 6-diyl, 1,3-dioxane-2,5-diyl, 1,3-dioxane-3,6-diyl, pyrimidine-2,5-diyl, pyrimidine-3,6-diyl, pyridine-2,5- Diyl or pyridine-3,6-diyl.
  • L 1 and L 2 are independently hydrogen or fluorine, at least one of which is fluorine, and Z 1 and Z 2 are independently a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—.
  • the compound (a) includes 1,4-phenylene in which hydrogen at the 2-position or 3-position is replaced with fluorine, 1,4-phenylene in which hydrogen at the 2-position and 3-position is replaced with fluorine,
  • 1,4-phenylene in which hydrogen at the 2-position and 3-position is replaced with fluorine have By having such a structure, a small viscosity, a suitable optical anisotropy, a suitable elastic constant K 33 , a large negative dielectric anisotropy, and excellent compatibility with other liquid crystal compounds are exhibited.
  • the upper limit temperature of the nematic phase does not decrease, and the viscosity is not increased, and the dielectric anisotropy is particularly large in terms of a negative value.
  • oxygen and oxygen adjacent groups such as CH 3 —O—O—CH 2 — and double bond sites such as CH 3 —CH ⁇ CH—CH ⁇ CH— are adjacent. Such groups are not preferred.
  • R 1 and R 2 include hydrogen, alkyl, alkoxy, alkoxyalkyl, alkenyl and alkenyloxy.
  • the chain of carbon-carbon bonds in these groups is preferably a straight chain.
  • the carbon-carbon bond chain is a straight chain, the temperature range of the liquid crystal phase can be widened, and the viscosity can be reduced.
  • R 1 or R 2 is an optically active group, it is useful as a chiral dopant, and the reverse twist generated in the liquid crystal display element by adding the compound to the liquid crystal composition. A domain (Reverse twisted domain) can be prevented.
  • alkyl, alkoxy, alkoxyalkyl and alkenyl are preferable, and alkyl, alkoxy and alkenyl are more preferable.
  • R 1 and R 2 are alkyl, alkoxy, and alkenyl
  • the temperature range of the liquid crystal phase of the liquid crystal compound can be expanded.
  • Alkenyl has a preferred configuration of —CH ⁇ CH—, depending on the position of the double bond in the alkenyl.
  • the steric configuration is preferably a trans configuration.
  • the alkenyl compound having the preferred configuration as described above has a wide temperature range of the liquid crystal phase, a large elastic constant ratio K 33 / K 11 (K 33 : bend elastic constant, K 11 : spray elastic constant), and compound Further, when this liquid crystal compound is added to the liquid crystal composition, the upper limit temperature (T NI ) of the nematic phase can be increased.
  • alkyl examples include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 Mention may be made of H 17 , —C 9 H 19 , and —C 10 H 21 ;
  • alkoxy include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 , —OC 7 H 15 , —OC 8 H 17 and —OC 9 H 19 may be mentioned;
  • alkoxyalkyl include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 OCH 3 , — (CH 2 ) 2 OC 2 H 5 , -(CH 2 ) 2 OC 3 H 7 ,
  • R 1 and R 2 —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —CH 2 OCH 3 , — (CH 2 ) 2 OCH 3 , — (CH 2 ) 3 OCH 3 , —CH 2 CH ⁇ CH 2 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2 CH ⁇ CH 2 , —CH 2 CH ⁇ CHC 2 H 5 , — (CH 2 ) 2 CH ⁇ CHCH 3 , — (CH 2 ) 3 CH ⁇ CH 2 , — (CH 2 ) 3 CH ⁇ CHCH 3 , — (CH 2 ) 3 CH ⁇ CHCH 3 , — (CH 2 ) 3 CH ⁇ CHC 2 H 5 , — (CH 2 ) 3 CH ⁇ CHC 2
  • Ring A 1 and Ring A 2 are 1,4-phenylene, trans-1,4-cyclohexylene, cyclohexene-1,4-diyl, trans-1,3-dioxane-2,5-diyl, trans-tetrahydro Pyran-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, and hydrogen in these rings may be replaced by fluorine.
  • Ring A 1 and ring A 2 include 1,4-phenylene, trans-1,4-cyclohexylene, cyclohexene-1,4-diyl, trans-1,3-dioxane-2,5-diyl, trans-tetrahydro Pyran-2,5-diyl is preferred.
  • 1,4-phenylene and trans-1,4-cyclohexylene are more preferable, and trans-1,4-cyclohexylene is most preferable.
  • the viscosity can be reduced, and when this liquid crystalline compound is added to the liquid crystal composition, the upper limit of the nematic phase is increased.
  • the temperature (T NI ) can be increased.
  • L 1 and L 2 each independently represent a hydrogen atom or a fluorine atom, and at least one of these is a fluorine atom.
  • one is preferably hydrogen and the other is fluorine because the melting point of the compound can be lowered.
  • L 1 and L 2 are fluorine because the dielectric anisotropy of the compound can be negatively increased.
  • Z 1 and Z 2 are a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—. is there.
  • Z 1 and Z 2 are a single bond, — (CH 2 ) 2 —, or —CH ⁇ CH—, it is preferable because the viscosity of the compound can be reduced.
  • —COO— or —OCO— is more preferable because the maximum temperature (T NI ) of the nematic phase of the compound can be increased.
  • —CH 2 O— or —OCH 2 — is more preferable because the dielectric anisotropy of the compound can be negatively increased.
  • a single bond, — (CH 2 ) 2 —, —CH 2 O— and —OCH 2 — are preferable, and a single bond and — (CH 2 ) 2 — are more preferable.
  • the configuration of other groups with respect to the double bond is preferably a trans configuration.
  • the temperature range of the liquid crystal phase of the liquid crystal compound can be expanded, and further, when this liquid crystal compound is added to the liquid crystal composition, the upper limit temperature (T NI ) of the nematic phase is increased. Can be high.
  • the liquid crystal compound (a) is 2 H (deuterium), an isotope such as 13 C may contain more than the amount of natural abundance.
  • physical properties such as dielectric anisotropy are adjusted to desired physical properties by appropriately selecting R 1 , R 2 , ring A 1 , ring A 2 , Z 1 and Z 2. It is possible.
  • Examples of preferred compounds of compound (a) include compounds (a-3) to (a-26).
  • R 5 and R 6 are independently alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, 2-9 alkoxyalkyl or alkenyloxy having 2-9 carbon atoms
  • Z 5 and Z 6 are a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—, — CH 2 O—, —OCH 2 —, —COO—, or —OCO—.
  • the compounds (a-3) to (a-8) have a 1,4-phenylene group, the compounds (a-3) to (a-8) have stability to heat and light, have a higher upper limit temperature of the nematic phase, and have an appropriate elastic constant K 33. It is more preferable from the viewpoint of having.
  • R 7 and R 8 are independently alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, carbon number 2-9 alkoxyalkyl or alkenyloxy having 2-9 carbon atoms
  • Z 7 and Z 8 are a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—. is there.
  • the compounds (a-9) to (a-14) have two 1,4-cyclohexylene groups, the compounds (a-9) to (a-14) have stability against heat and light, have a lower minimum temperature of the liquid crystal phase, and have a nematic phase. higher maximum temperature, has a suitable optical anisotropy and a suitable elastic constant K 33, and more desirable in view of possible small viscosity.
  • R 9 and R 10 are independently alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 9 carbons, 2-9 alkoxyalkyl or alkenyloxy having 2-9 carbon atoms
  • Z 9 and Z 10 are a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—. is there.
  • Compounds (a-15) to (a-26) have a 1,4-cyclohexylene group asymmetrically with respect to the whole compound, so that they have stability against heat and light, and the lower limit temperature of the liquid crystal phase is further increased. low, it has a suitable elastic constant K 33, and more desirable in view of possible small viscosity.
  • Compounds (a-3) to (a-26) have a large negative dielectric anisotropy, have stability against heat and light, become a nematic phase over a wide temperature range, and have an appropriate optical anisotropy. And an appropriate elastic constant K 33 .
  • Z 5 to Z 10 are —CH ⁇ CH— are preferred from the viewpoint of lowering the lower limit temperature of the liquid crystal phase and lowering the viscosity almost without lowering the upper limit temperature of the nematic phase.
  • a compound in which Z 5 to Z 10 are —COO— or —OCO— is more preferable because the maximum temperature of the nematic phase of the compound can be increased.
  • a compound in which Z 5 to Z 10 are — (CH 2 ) 2 — is more preferable from the viewpoint of lowering the lower limit temperature of the liquid crystal phase, higher compatibility, and lower viscosity. Further, a compound in which Z 5 to Z 10 are —CH 2 O— or —OCH 2 — is most preferable from the viewpoint that negative dielectric anisotropy can be made larger and viscosity can be made smaller.
  • the liquid crystal compounds are these compounds (a-3) to (a-26), they have a large negative dielectric anisotropy and are extremely compatible with other liquid crystal compounds. Furthermore, the heat has stability to such light, a small viscosity, and has a large optical anisotropy, and a suitable elastic constant K 33.
  • the liquid crystal composition containing the compound (a) is stable under the conditions in which the liquid crystal display element is normally used, and the compound precipitates as crystals (or a smectic phase) even when stored at a low temperature. There is no.
  • the compound (a) can be suitably applied to a liquid crystal composition used for a liquid crystal display element of a display mode such as PC, TN, STN, ECB, OCB, IPS, VA, PSA, and the like, IPS, VA, PSA.
  • the present invention can be particularly suitably applied to a liquid crystal composition used in a liquid crystal display element having a display mode such as.
  • the liquid crystalline compound (a) can be synthesized by appropriately combining synthetic methods of organic synthetic chemistry. Methods for introducing the desired end groups, rings, and linking groups into the starting materials include, for example, Organic Syntheses (John Wiley & Sons, Inc), Organic Reactions (Organic Reactions, John Wiley & Sons, Inc), It is described in books such as Comprehensive Organic Synthesis (Pergamon Press) and New Experimental Chemistry Course (Maruzen).
  • linking group Z 1 or Z 2 An example of a method for forming the linking group Z 1 or Z 2 (the same applies to Z 3 to Z 10 ) is shown.
  • a scheme for forming a linking group is shown below.
  • MSG 1 or MSG 2 is a monovalent organic group.
  • a plurality of MSG 1 (or MSG 2 ) used in the scheme may be the same or different.
  • Compounds (1A) to (1E) correspond to compound (a).
  • the compound obtained by treating the organic halogen compound (a1) with butyllithium or magnesium is reacted with formamide such as N, N-dimethylformamide (DMF) to obtain the aldehyde derivative (a3).
  • formamide such as N, N-dimethylformamide (DMF)
  • the resulting aldehyde (a3) is reacted with phosphorus ylide obtained by treating the phosphonium salt (a4) with a base such as potassium t-butoxide to synthesize the corresponding compound (1A) having a double bond.
  • a cis isomer may be generated depending on the reaction conditions. Therefore, when it is necessary to obtain a trans isomer, the cis isomer is isomerized to a trans isomer by a known method as necessary.
  • Compound (1B) can be synthesized by hydrogenating compound (1A) in the presence of a catalyst such as palladium on carbon (Pd / C).
  • An organic halogen compound (a1) is reacted with magnesium or butyllithium to prepare a Grignard reagent or a lithium salt.
  • a dihydroxyborane derivative (a5) is synthesized by reacting the prepared Grignard reagent or a lithium salt with a boric acid ester such as trimethyl borate and hydrolyzing with an acid such as hydrochloric acid.
  • a catalyst comprising, for example, an aqueous carbonate solution and tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ).
  • Compound (1C) can be synthesized.
  • the dihydroxyborane derivative (a5) is oxidized with an oxidizing agent such as hydrogen peroxide to obtain the alcohol derivative (a7).
  • the alcohol derivative (a8) is obtained by reducing the aldehyde derivative (a3) with a reducing agent such as sodium borohydride.
  • the obtained alcohol derivative (a8) is halogenated with hydrobromic acid or the like to obtain an organic halogen compound (a9).
  • the compound (1D) can be synthesized by reacting the alcohol derivative (a7) thus obtained with the organic halogen compound (a9) in the presence of potassium carbonate or the like.
  • ring A 1 or ring A 2 ⁇ Formation of ring A 1 or ring A 2> 1,4-phenylene, trans-1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl, 1,3-dioxane-2, Rings such as 5-diyl, 1,3-dioxane-3,6-diyl, pyrimidine-2,5-diyl, pyrimidine-3,6-diyl, pyridine-2,5-diyl, pyridine-3,6-diyl, pyridine-2,5-diyl, pyridine-3,6-diyl
  • starting materials are commercially available or synthetic methods are well known.
  • compound (b3) is obtained by reacting ethyl 4-iodobenzoate (b1) with dihydroxyborane derivative (b2) in the presence of a catalyst such as potassium carbonate or Pd / C.
  • a catalyst such as potassium carbonate or Pd / C.
  • the compound (b3) is reduced with lithium aluminum hydride or the like to obtain the compound (b4).
  • (b5) is obtained by chlorination with thionyl chloride or the like.
  • 1,2-difluorobenzene (b6) and sec-BuLi are reacted to prepare a lithium salt. This lithium salt is reacted with the carbonyl derivative (b7) to obtain the alcohol derivative (b8).
  • the resulting alcohol derivative (b8) is dehydrated in the presence of an acid catalyst such as p-toluenesulfonic acid to obtain a cyclohexene derivative (b9).
  • This compound (b9) is subjected to a hydrogenation reaction in the presence of a catalyst such as Pd / C to obtain a compound (b10).
  • the obtained compound (b10) is reacted with s-butyllithium to prepare a lithium salt.
  • This lithium salt is reacted with trimethoxyborane to obtain a dihydroxyborane derivative (b11).
  • the resulting compound (b11) is reacted with hydrogen peroxide to obtain a phenol derivative (b12).
  • the compound (b5) obtained by the above operation and the phenol derivative (b12) are subjected to an etherification reaction in the presence of a base such as potassium carbonate, whereby (b13), which is an example of the compound (a) of the present invention, is obtained.
  • a base such as potassium carbonate
  • the component of the liquid crystal composition is characterized by containing at least one kind of compound (a), but may contain two or more kinds of compounds (a) or may be composed only of compound (a). Moreover, when preparing the liquid crystal composition of this invention, a component can also be selected in consideration of the dielectric anisotropy of a compound (a), for example.
  • the liquid crystal composition selected from the components has a low viscosity, an appropriate negative dielectric anisotropy, an appropriate elastic constant K 33 , a low threshold voltage, and a nematic phase upper limit temperature. The (nematic phase-isotropic phase transition temperature) is high, and the minimum temperature of the nematic phase is low.
  • liquid crystal composition (1) In addition to the compound (a), the liquid crystal composition of the present invention includes liquid crystal compounds represented by the formulas (e-1) to (e-3) as the second component (hereinafter referred to as compounds (e-1) to (e), respectively.
  • a composition further containing at least one compound selected from the group of 3)) hereinafter also referred to as a liquid crystal composition (1)).
  • Ra 11 and Rb 11 are independently alkyl having 1 to 10 carbons, but in alkyl, —CH 2 — that is not adjacent to each other is —O -(CH 2 ) 2 -which may not be adjacent to each other may be replaced with —CH ⁇ CH—, and hydrogen may be replaced with fluorine.
  • ring A 11 , ring A 12 , ring A 13 , and ring A 14 are independently 1,4-phenylene, trans-1,4-cyclo Xylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl, 1,3-dioxane-2,5-diyl, 1,3-dioxane-3,6- Diyl, pyrimidine-2,5-diyl, pyrimidine-3,6-diyl, pyridine-2,5-diyl, or pyridine-3,6-diyl.
  • Z 11 , Z 12 , and Z 13 are each independently a single bond, —CH 2 —CH 2 —, —CH ⁇ CH—, —C ⁇ C -, -COO-, or CH 2 O-.
  • the viscosity of the liquid crystal composition can be reduced, and the lower limit temperature of the nematic phase can be lowered. Further, since the dielectric anisotropy of the compounds (e-1) to (e-3) is almost 0, the dielectric anisotropy of the liquid crystal composition containing the compounds can be adjusted to approach 0. .
  • Compound (e-1) or (e-2) is an effective compound for reducing the viscosity and increasing the voltage holding ratio of the liquid crystal composition containing it. Furthermore, the compound (e-3) is an effective compound for increasing the maximum temperature of the nematic phase of the liquid crystal composition containing it and increasing the voltage holding ratio.
  • the upper limit temperature of the nematic phase of the liquid crystal composition containing the ring is set to In the case where two or more rings are 1,4-phenylene, the optical anisotropy of a composition containing the ring can be increased.
  • more preferred compounds are compounds represented by formulas (2-1) to (2-74) (hereinafter also referred to as compounds (2-1) to (2-74), respectively).
  • Ra 11 and Rb 11 have the same meaning as in the compounds (e-1) to (e-3).
  • the second component is a compound (2-1) to (2-74)
  • a liquid crystal composition having excellent heat resistance and light resistance, a higher specific resistance value, and a wide nematic phase is prepared. be able to.
  • the first component is at least one compound selected from the group consisting of compounds represented by formulas (a-2) to (a-11), and the second component is a compound (e-1) to
  • the liquid crystal composition (1) which is at least one compound selected from the group of compounds represented by (e-3), is superior in heat resistance and light resistance, has a wider nematic phase, and has a higher voltage holding ratio. Is larger, the viscosity is lower, and an appropriate elastic constant K 33 is exhibited.
  • the content of the second component in the liquid crystal composition (1) of the present invention is not particularly limited, but it is preferable to increase the content from the viewpoint of lowering the viscosity.
  • the threshold voltage of the liquid crystal composition tends to increase when the content of the second component is increased, for example, when the liquid crystal composition of the present invention is used in a VA mode liquid crystal element
  • the second component The content of is in the range of 40 to 95% by weight with respect to the total weight of the liquid crystal compound contained in the liquid crystal composition (1), and the content of the first component is in the liquid crystal composition (1).
  • the range of 5 to 60% by weight is more preferable with respect to the total weight of the liquid crystal compound contained in the above.
  • liquid crystal composition (2) As the liquid crystal composition of the present invention, in addition to the first component and the second component, the liquid crystal compounds represented by the formulas (g-1) to (g-6) as the third component (hereinafter, compounds ( A liquid crystal composition containing at least one compound selected from the group of g-1) to (g-6)) is also preferred (hereinafter also referred to as liquid crystal composition (2)).
  • Ra 21 and Rb 21 are each independently hydrogen or alkyl having 1 to 10 carbons, but in alkyl, —CH 2 — May be replaced by —O—, non-adjacent — (CH 2 ) 2 — may be replaced with —CH ⁇ CH—, and hydrogen may be replaced with fluorine.
  • the rings A 21 , A 22 , and A 23 are independently trans-1,4-cyclohexylene, 1,4-phenylene, 2-fluoro- 1,4-phenylene, 3-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, pyrimidine-3,6-diyl, 1,3-dioxane- 2,5-diyl, 1,3-dioxane-3,6-diyl, tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl.
  • Z 21 , Z 22 , and Z 23 are each independently a single bond, —CH 2 —CH 2 —, —CH ⁇ CH—, —C ⁇ C —, —OCF 2 —, —CF 2 O—, —OCF 2 CH 2 CH 2 —, —CH 2 CH 2 CF 2 O—, —COO—, —OCO—, —OCH 2 —, or —CH 2 O -And Y 1 , Y 2 , Y 3 , and Y 4 are independently fluorine or chlorine.
  • q, r, and s are independently 0, 1, or 2, but q + r is 1 or 2, and q + r + s is 1, 2, or 3 and t is 0, 1, or 2.
  • the two rings A 21 may be the same or different, and the two Z 21 may be the same or different.
  • the two rings A 22 may be the same or different, and the two Z 22 may be the same or different.
  • the two rings A 23 may be the same or different, and the two Z 23 may be the same or different.
  • the liquid crystal composition (2) further containing the third component has a large negative dielectric anisotropy.
  • liquid crystal composition having a wide temperature range of the nematic phase of the liquid crystal composition, a small viscosity, a large negative dielectric anisotropy, and a large specific resistance value can be obtained.
  • a liquid crystal composition having an appropriate balance of physical properties can be obtained.
  • compounds represented by formulas (h-1) to (h-7) (hereinafter, compounds (h-1) to (Also referred to as (h-7)) is more preferable.
  • Ra 22 and Rb 22 are each independently a straight-chain alkyl having 1 to 8 carbon atoms, a straight-chain alkenyl having 2 to 8 carbon atoms, or 1 to 7 is alkoxy
  • Z 24 , Z 25 , and Z 26 are a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—
  • Y 1 and Y 2 are both fluorine, or one is fluorine and the other is chlorine.
  • the compounds (h-1) and (h-2) can reduce the viscosity of the liquid crystal composition containing the compounds, lower the threshold voltage value, and lower the minimum temperature of the nematic phase. be able to.
  • Compounds (h-2), (h-3) and (h-4) can lower the threshold voltage value without lowering the upper limit temperature of the nematic phase of the liquid crystal composition containing the compounds.
  • Compounds (h-3) and (h-6) can increase optical anisotropy, and compounds (h-4) and (h-7) can increase optical anisotropy. .
  • Compounds (h-5), (h-6) and (h-7) can lower the minimum temperature of the nematic phase of the liquid crystal composition containing the compounds (h-5), (h-6) and (h-7).
  • liquid crystal composition (2) a first component that is at least one compound selected from the group of compounds represented by formulas (a-1) to (a-26), and formulas (e-1) to (e) a second component which is at least one compound selected from the compound group consisting of e-3) and at least one compound selected from the compound groups represented by formulas (h-1) to (h-7)
  • a liquid crystal composition containing a third component is excellent in heat resistance and light resistance, has a wide nematic phase temperature range, a low viscosity, a high voltage holding ratio, an appropriate optical anisotropy, and an appropriate dielectric constant. isotropic, indicating a suitable elastic constant K 33. Furthermore, it is preferable in terms of a liquid crystal composition in which these physical properties are appropriately balanced.
  • the compounds (g-1) to (g-6) more preferable compounds are the compounds (3-1) to (3-118).
  • Ra 22 and Rb 22 are independently straight-chain alkyl having 1 to 8 carbon atoms, straight-chain alkenyl having 2 to 8 carbon atoms, or alkoxy having 1 to 7 carbon atoms.
  • a compound having a condensed ring such as compounds (g-3) to (g-6) can have a low threshold voltage, and from the viewpoint of heat resistance or light resistance, compound (3- 119) to (3-144) are preferable.
  • Ra 22 and Rb 22 have the same meaning as in compounds (g-3) to (g-6).
  • the content ratios of the first component, the second component, and the third component of the liquid crystal composition (2) according to the present invention are not particularly limited, but based on the total weight of the liquid crystal composition (2), the liquid crystal compound ( Preferably, the content of a) is in the range of 5 to 60% by weight, the content of the second component is in the range of 20 to 75% by weight, and the content of the third component is in the range of 20 to 75% by weight.
  • the heat resistance and light resistance are excellent, the temperature range of the nematic phase is wide, and the viscosity is small.
  • a high voltage holding ratio shows a suitable optical anisotropy, a suitable dielectric anisotropy, a suitable elastic constant K 33. Furthermore, a liquid crystal composition in which these physical properties are more appropriately balanced can be obtained.
  • liquid crystal composition in addition to the liquid crystal compound constituting the first component, the second component, and the third component added as necessary, for example, for the purpose of further adjusting the characteristics of the liquid crystal composition, Furthermore, other liquid crystal compounds may be added and used. Further, for example, from the viewpoint of cost, in the liquid crystal composition of the present invention, without adding a liquid crystal compound other than the liquid crystal compound constituting the first component, the second component, and the third component to be added as necessary. Sometimes used.
  • additives such as an optically active compound, a pigment
  • an optically active compound is added to the liquid crystal composition according to the present invention, a helical structure can be induced in the liquid crystal to give a twist angle.
  • a known chiral dopant is added as an optically active compound.
  • This chiral dopant has the effect of inducing the helical structure of the liquid crystal to adjust the necessary twist angle and preventing reverse twist.
  • Examples of the chiral dopant include optically active compounds (Op-1) to (Op-13).
  • the liquid crystal composition When the dye is added to the liquid crystal composition according to the present invention, the liquid crystal composition can be applied to a liquid crystal display element having a GH (guest host) mode.
  • GH guest host
  • an antifoaming agent is added to the liquid crystal composition according to the present invention, foaming can be suppressed during the transportation of the liquid crystal composition or in the process of synthesizing a liquid crystal display element from the liquid crystal composition. .
  • the liquid crystal composition according to the present invention When an ultraviolet absorber or an antioxidant is added to the liquid crystal composition according to the present invention, it is possible to prevent deterioration of the liquid crystal composition and the liquid crystal display element containing the liquid crystal composition.
  • the antioxidant can suppress a decrease in specific resistance when the liquid crystal composition is heated.
  • the ultraviolet absorber examples include a benzophenone ultraviolet absorber, a benzoate ultraviolet absorber, and a triazole ultraviolet absorber.
  • a specific example of the benzophenone-based ultraviolet absorber is 2-hydroxy-4-n-octoxybenzophenone.
  • a specific example of the benzoate ultraviolet absorber is 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate.
  • Specific examples of the triazole ultraviolet absorber include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydroxyphthalimide-methyl)- 5-methylphenyl] benzotriazole, and 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole.
  • antioxidants examples include a phenolic antioxidant and an organic sulfur antioxidant.
  • the antioxidant represented by the formula (I) is preferable.
  • w represents an integer of 1 to 15.
  • phenolic antioxidants include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl- 4-propylphenol, 2,6-di-t-butyl-4-butylphenol, 2,6-di-t-butyl-4-pentylphenol, 2,6-di-t-butyl-4-hexylphenol, 2 , 6-di-t-butyl-4-heptylphenol, 2,6-di-t-butyl-4-octylphenol, 2,6-di-t-butyl-4-nonylphenol, 2,6-di-t- Butyl-4-decylphenol, 2,6-di-t-butyl-4-undecylphenol, 2, 6-di-t-butyl-4-dodecylphenol, 2,6-di-t-butyl-4-tridecylphenol
  • organic sulfur antioxidant examples include dilauryl-3,3′-thiopropionate, dimyristyl-3,3′-thiopropionate, distearyl-3,3′-thiopropionate, pentaerythritol Tetrakis (3-laurylthiopropionate) and 2-mercaptobenzimidazole.
  • the addition amount of an additive typified by an ultraviolet absorber, an antioxidant and the like can be added and used within a range that does not impair the purpose of the present invention and can achieve the purpose of adding the additive.
  • the addition ratio is usually in the range of 10 ppm to 500 ppm, preferably in the range of 30 to 300 ppm, based on the total weight of the liquid crystal composition according to the present invention. More preferably, it is in the range of 40 to 200 ppm.
  • the liquid crystal composition according to the present invention includes impurities such as synthesis raw materials, by-products, reaction solvents, and synthesis catalysts mixed in the synthesis process of each compound constituting the liquid crystal composition, the liquid crystal composition preparation process, and the like. In some cases.
  • a polymerizable compound is mixed with the composition in order to adapt to a PSA (polymer-sustained alignment) mode element.
  • Preferred examples of the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, and epoxy compound (oxirane, oxetane). Particularly preferred examples are acrylate or methacrylate derivatives.
  • a desirable ratio of the polymerizable compound is 0.05% by weight or more for obtaining the effect thereof, and is 10% by weight or less for preventing defective display. A more desirable ratio is in the range of 0.1% to 2% by weight.
  • the polymerizable compound is preferably polymerized by UV irradiation or the like in the presence of a suitable initiator such as a photopolymerization initiator.
  • a suitable initiator such as a photopolymerization initiator.
  • Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature.
  • Irgacure 651 registered trademark
  • Irgacure 184 registered trademark
  • Darocure 1173 registered trademark
  • the polymerizable compound preferably contains a photopolymerization initiator in the range of 0.1% to 5% by weight. Particularly preferably, it contains a photopolymerization initiator in the range of 1 to 3% by weight.
  • liquid crystal composition according to the present invention for example, when the compound constituting each component is a liquid, the respective compounds are mixed and shaken, and when the compound includes a solid, the respective compounds are mixed. It can be prepared by making each liquid by heating and then shaking.
  • the liquid crystal composition according to the present invention can also be prepared by other known methods.
  • the upper limit temperature of the nematic phase can be set to 70 ° C. or more, the lower limit temperature of the nematic phase can be set to ⁇ 20 ° C. or less, and the temperature range of the nematic phase is wide. Therefore, a liquid crystal display element including this liquid crystal composition can be used in a wide temperature range.
  • the optical anisotropy can also be in the range of 0.10 to 0.13 and in the range of 0.05 to 0.18 by appropriately adjusting the composition and the like.
  • the dielectric anisotropy is usually in the range of ⁇ 5.0 to ⁇ 2.0, preferably the dielectric anisotropy in the range of ⁇ 4.5 to ⁇ 2.5.
  • a liquid crystal composition having properties can be obtained.
  • a liquid crystal composition having a dielectric anisotropy in the range of ⁇ 4.5 to ⁇ 2.5 can be suitably used as a liquid crystal display element operating in the IPS mode, VA mode, or PSA mode.
  • the liquid crystal composition according to the present invention has an operation mode such as a PC mode, a TN mode, an STN mode, an OCB mode, and a PSA mode. It can also be used for a liquid crystal display element having an operation mode such as a mode, an OCB mode, a VA mode, and an IPS mode and driven by a passive matrix (PM) method.
  • an operation mode such as a PC mode, a TN mode, an STN mode, an OCB mode, and a PSA mode. It can also be used for a liquid crystal display element having an operation mode such as a mode, an OCB mode, a VA mode, and an IPS mode and driven by a passive matrix (PM) method.
  • PM passive matrix
  • the liquid crystal composition according to the present invention includes a DS (dynamic scattering) mode element using a liquid crystal composition to which a conductive agent is added, and an NCAP (nematic curvilinear aligned phase) element prepared by microencapsulating the liquid crystal composition. It can also be used for PD (polymer dispersed) elements in which a three-dimensional network polymer is formed in a liquid crystal composition, for example, PN (polymer network) elements.
  • the liquid crystal composition according to the present invention has the above-described characteristics, and therefore, AM driven in an operation mode using a liquid crystal composition having a negative dielectric anisotropy such as a VA mode, an IPS mode, or a PSA mode.
  • the liquid crystal display element can be suitably used for a liquid crystal display element of the mode, and in particular, it can be suitably used for an AM liquid crystal display element driven in a VA mode.
  • 1 H-NMR analysis DRX-500 (manufactured by Bruker BioSpin Co., Ltd.) was used as the measuring apparatus. The measurement was carried out by dissolving the sample synthesized in Examples and the like in a deuterated solvent in which a sample such as CDCl 3 is soluble, and at room temperature under conditions of 500 MHz and 32 integrations.
  • s is a singlet
  • d is a doublet
  • t is a triplet
  • q is a quartet
  • quin is a quintet
  • sex is a sextet
  • m is a multiplet
  • br is broad.
  • Tetramethylsilane (TMS) was used as a reference material for the zero point of the chemical shift ⁇ value.
  • GC analysis A GC-14B gas chromatograph manufactured by Shimadzu Corporation was used as a measuring apparatus.
  • a capillary column CBP1-M25-025 (length: 25 m, inner diameter: 0.22 mm, film thickness: 0.25 ⁇ m) manufactured by Shimadzu Corporation; dimethylpolysiloxane; nonpolar) as the stationary liquid phase was used.
  • Helium was used as the carrier gas, and the flow rate was adjusted to 1 ml / min.
  • the temperature of the sample vaporizing chamber was set to 280 ° C., and the temperature of the detector (FID) portion was set to 300 ° C.
  • the sample was dissolved in toluene to prepare a 1% by weight solution, and 1 ⁇ l of the resulting solution was injected into the sample vaporization chamber.
  • a recorder a C-R6A type Chromatopac manufactured by Shimadzu Corporation or an equivalent thereof was used.
  • the obtained gas chromatogram shows the peak retention time and peak area value corresponding to the component compounds.
  • capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by Agilent Technologies Inc.
  • HP-1 length 30 m, inner diameter 0
  • Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m)
  • BP-1 from SGE International Corporation Pty. Ltd (length 30 m, inner diameter) 0.32 mm, film thickness of 0.25 ⁇ m) or the like
  • SGE International Corporation Pty. Ltd length 30 m, inner diameter 0.32 mm, film thickness of 0.25 ⁇ m
  • the peak area ratio in the gas chromatogram corresponds to the ratio of the component compounds.
  • the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample.
  • the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds.
  • an internal standard method using gas chromatogram is used.
  • test component liquid crystal compound component
  • reference liquid crystal compound reference material
  • the measurement is performed by the following method. First, 15% by weight of the obtained liquid crystal compound and 85% by weight of the mother liquid crystal are mixed to prepare a sample. Then, an extrapolated value is calculated from the measured value of the obtained sample according to the extrapolation method shown in the following equation. This extrapolated value is taken as the physical property value of this compound.
  • ⁇ Extrapolated value> (100 ⁇ ⁇ Measured value of sample> ⁇ ⁇ Weight% of mother liquid crystal> ⁇ ⁇ Measured value of mother liquid crystal> ) / ⁇ Weight% of compound>
  • the ratio of the compound to the mother liquid crystal is this ratio
  • the ratio of the compound to the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight:
  • the weight is changed in the order of 95% by weight, 1% by weight: 99% by weight, and the physical properties of the sample are measured with a composition in which the smectic phase or crystals no longer precipitate at 25 ° C., and an extrapolated value is obtained according to this equation. This is the physical property value of the compound.
  • mother liquid crystals i there are various types of mother liquid crystals used in this measurement.
  • the composition of the mother liquid crystals i is as follows.
  • liquid crystal composition itself was used as a sample for measuring the physical properties of the liquid crystal composition.
  • Method for measuring physical properties of compounds, etc. The physical properties were measured by the measurement method described later. Most of these are the methods described in the Standard of Electric Industries Association of Japan EIAJ / ED-2521A or a modified method thereof. Moreover, TFT was not attached to the TN element or VA element used for the measurement.
  • the values obtained using the compound itself as a sample and the values obtained using the liquid crystal composition itself as a sample are described as experimental data.
  • values obtained by extrapolation were used as physical property values.
  • Phase structure and transition temperature (°C) Measurement was carried out by the methods (1) and (2) below.
  • a compound is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measuring apparatus equipped with a polarizing microscope, and a phase state and its change are observed with a polarizing microscope while heating at a rate of 3 ° C./min. , Identified the type of phase.
  • (2) Using a scanning calorimeter DSC-7 system or Diamond DSC system manufactured by PerkinElmer, Inc., the temperature is raised and lowered at a rate of 3 ° C / min, and the start point of the endothermic peak or exothermic peak accompanying the phase change of the sample is excluded.
  • the transition temperature was determined by onset.
  • the crystal was expressed as C.
  • the smectic phase is represented as S and the nematic phase is represented as N.
  • the liquid (isotropic) was designated as I.
  • the smectic phase when the smectic B phase or the smectic A phase can be distinguished, they are represented as S B or S A , respectively.
  • C 50.0 N 100.0 I means that the transition temperature (CN) from the crystal to the nematic phase is 50.0 ° C., and the transition temperature from the nematic phase to the liquid ( NI) is 100.0 ° C. The same applies to other notations.
  • T NI Maximum temperature of nematic phase
  • a sample liquid crystal composition or a mixture of a compound and mother liquid crystal
  • a hot plate Metal FP-52 hot stage
  • the temperature at which a part of the sample changed from a nematic phase to an isotropic liquid was defined as the upper limit temperature of the nematic phase.
  • the upper limit temperature of the nematic phase may be simply abbreviated as “upper limit temperature”.
  • Viscosity (bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s) It measured using the E-type rotational viscometer.
  • Viscosity (Rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s) The measurement followed the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995).
  • a sample (a liquid crystal composition or a mixture of a compound and a mother liquid crystal) was put into a VA device having a distance (cell gap) between two glass substrates of 20 ⁇ m. This element was applied stepwise in increments of 1 volt in the range of 30 to 50 volts. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds).
  • the peak current and peak time of the transient current generated by this application were measured.
  • the value of rotational viscosity was obtained from these measured values and the paper by M. Imai et al., Formula (8) on page 40.
  • the dielectric anisotropy necessary for this calculation was a value measured by the following dielectric anisotropy.
  • Dielectric anisotropy ( ⁇ ; measured at 25 ° C) The dielectric anisotropy was measured by the following method. An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated with a spinner and then heated at 150 ° C. for 1 hour. A VA device having an interval (cell gap) of 20 ⁇ m was assembled from two glass substrates.
  • a polyimide alignment film was prepared on a glass substrate. After the alignment film of the obtained glass substrate was rubbed, a TN device in which the distance between the two glass substrates was 9 ⁇ m and the twist angle was 80 degrees was assembled.
  • a sample (a liquid crystal composition or a mixture of a compound and a mother liquid crystal) is put into the obtained VA element, 0.5 V (1 kHz, sine wave) is applied, and the dielectric constant ( ⁇ ) was measured.
  • a sample liquid crystal composition or a mixture of a compound and a mother liquid crystal
  • 0.5 V (1 kHz, sine wave) is applied, and the dielectric constant (in the minor axis direction of liquid crystal molecules ( ⁇ ) was measured.
  • the TN device used for the measurement has a polyimide alignment film, and the distance (cell gap) between the two glass substrates is 6 ⁇ m. This element was sealed with an adhesive that was polymerized by ultraviolet rays after a sample (a liquid crystal composition or a mixture of a compound and a mother liquid crystal) was added. The TN device was charged by applying a pulse voltage (60 microseconds at 5 V). The decaying voltage was measured with a high-speed voltmeter for 16.7 milliseconds, and the area A between the voltage curve and the horizontal axis in a unit cycle was obtained. The area B is an area when it is not attenuated. The voltage holding ratio is expressed as a percentage (%) of the area A with respect to the area B.
  • Elastic constant K 11 , K 33 ; measured at 25 ° C
  • an EC-1 type elastic constant measuring device manufactured by Toyo Corporation was used. A sample was put in a vertical alignment cell in which the distance between two glass substrates (cell gap) was 20 ⁇ m. A 20 to 0 volt charge was applied to the cell, and the capacitance and applied voltage were measured. Fitting the measured values of capacitance (C) and applied voltage (V) using “Liquid Crystal Device Handbook” (Nikkan Kogyo Shimbun), formulas (2.98) and (2.101) on page 75 The value of the elastic constant was obtained from the formula (2.100).
  • Second Step 1.4 g of lithium aluminum hydride was suspended in 100 ml of THF. To this suspension, 18.8 g of the compound (3) was added dropwise in the temperature range of ⁇ 20 ° C. to ⁇ 10 ° C., and further stirred in this temperature range for 2 hours. After confirming the completion of the reaction by GC analysis, ethyl acetate and a saturated aqueous ammonia solution were successively added to the reaction mixture under ice cooling, and the precipitate was removed by Celite filtration. The filtrate was extracted with ethyl acetate. The obtained organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate.
  • the product was further purified by recrystallization from heptane, dried, and concentrated under reduced pressure to obtain 12.0 g of (4-ethoxy-2,3-difluoro-4′-biphenyl) methanol (4).
  • the yield based on the compound (3) was 74.0%.
  • Step 3 Under a nitrogen atmosphere, 12.0 g of Compound (4), 50 ml of toluene and 0.12 ml of pyridine were added to the reactor, and the mixture was stirred at 45 ° C. for 1 hour. Thereafter, 3.6 ml of thionyl chloride was added in the temperature range of 45 ° C. to 55 ° C. and heated to reflux for 2 hours. The reaction solution was cooled to 25 ° C., poured into 200 ml of water and 200 ml of toluene, and mixed. Then, it left still and isolate
  • the obtained organic layer was separated, washed twice with saturated aqueous sodium hydrogen carbonate, three times with water, and dried over anhydrous magnesium sulfate.
  • Purified by preparative operation according to Further purification by recrystallization from Solmix A-11 and drying gave 9.4 g of 4'-chloromethyl-4-ethoxy-2,3-difluoro-biphenyl (5).
  • the yield based on the compound (4) was 73.2%.
  • Step 4 To a reactor under a nitrogen atmosphere, 100.0 g of 1,2-difluorobenzene (6) and 500 ml of THF were added and cooled to -74 ° C. Thereto, 876.5 ml of a 1.00 M sec-butyllithium, n-hexane, cyclohexane solution was added dropwise in the temperature range of -74 ° C. to -70 ° C., and the mixture was further stirred for 2 hours. Subsequently, a THF 200 ml solution containing 177.0 g of 4-pentylcyclohexanone (7) was dropped in a temperature range of ⁇ 75 ° C.
  • Step 5 215.1 g of Compound (8), 6.5 g of p-toluenesulfonic acid, and 500 ml of toluene were mixed, and this mixture was heated to reflux for 2 hours while removing distilled water. After cooling the reaction mixture to 30 ° C., 500 ml of water and 500 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with saturated aqueous sodium hydrogen carbonate and water, and dried over anhydrous magnesium sulfate.
  • Step 6 Dissolve 50.0 g of compound (9) in a mixed solvent of 150 ml of toluene and 150 ml of Solmix A-11, add 0.5 g of Pd / C, and continue at room temperature until hydrogen can no longer be absorbed in a hydrogen atmosphere. Stir. After completion of the reaction, Pd / C was removed, the solvent was further distilled off, and the resulting residue was purified by a preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. Purification by recrystallization from Solmix A-11 and drying gave 47.0 g of 4-pentyl- (2,3-difluorophenyl) cyclohexane (10). The yield based on the compound (9) was 94.0%.
  • Step 7 To a reactor under a nitrogen atmosphere, 20.0 g of 4-pentyl- (2,3-difluorophenyl) cyclohexane (10) and 100 ml of THF were added and cooled to -74 ° C. Thereto, 82.6 ml of a 1.00 M sec-butyllithium, n-hexane, cyclohexane solution was added dropwise in the temperature range of -74 ° C. to -70 ° C., and further stirred for 2 hours. Subsequently, 9.4 g of trimethyl borate was added dropwise to a 50 ml THF solution in a temperature range of ⁇ 74 ° C.
  • reaction mixture was poured into a container containing 1N hydrochloric acid 100 ml ice water 500 ml and mixed. 300 ml of ethyl acetate was added, and an extraction operation was performed by separating the organic layer and the aqueous layer. The obtained organic layer was separated, washed successively with water, saturated aqueous sodium hydrogen carbonate solution and brine, and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain 18.7 g of 2,3-difluoro-4- (4-propylcyclohexyl) -boronic acid (11). The yield based on the compound (10) was 80.3%.
  • Step 8 18.7 g of Compound (11) and 100 ml of acetic acid are added to a reactor under a nitrogen atmosphere, and 14.5 ml of 31% hydrogen peroxide solution is added dropwise at a temperature range of 25 ° C. to 30 ° C. at room temperature. The mixture was further stirred for 2 hours. Thereafter, the reaction mixture was poured into a container containing 100 ml of an aqueous sodium hydrogen sulfite solution and 300 ml of ethyl acetate, and mixed. Then, it left still and isolate
  • Step 9 Under a nitrogen atmosphere, add 3.0 g of 2,3-difluoro-4- (4-propylcyclohexyl) phenol (12) and 7.5 g of tripotassium phosphate (K 3 PO 4 ) to 100 ml of DMF. Stir at ° C. The compound (5) 2.0g was added there, and it stirred at 70 degreeC for 7 hours. The obtained reaction mixture was cooled to 30 ° C. and separated from a solid by filtration, and then 100 ml of toluene and 100 ml of water were added and mixed. Then, it left still and isolate
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4-ethoxy-2,3-difluoro-4 ′-[2,3-difluoro-4- (4- Pentylcyclohexyl) phenoxymethyl] -1,1′-biphenyl (No. 1123).
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • the obtained organic layer was separated, washed twice with saturated aqueous sodium hydrogen carbonate, three times with water, and dried over anhydrous magnesium sulfate.
  • Purified by preparative operation according to The product was further purified by recrystallization from Solmix A-11 and dried to obtain 47.6 g of 4-chloromethyl- (4-ethoxy-2,3-difluorophenyl) -cyclohexane (15).
  • the yield based on the compound (14) was 93.6%.
  • Step 3 Under a nitrogen atmosphere, 2.4 g of 4-ethoxy-2,3-difluorophenol (12) and 7.4 g of tripotassium phosphate (K 3 PO 4 ) were added to 100 ml of DMF, and the mixture was stirred at 70 ° C. The compound (15) 2.0g was added there, and it stirred at 70 degreeC for 7 hours. The obtained reaction mixture was cooled to 30 ° C. and separated from a solid by filtration, and then 100 ml of toluene and 100 ml of water were added and mixed. Then, it left still and isolate
  • K 3 PO 4 tripotassium phosphate
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is trans-4- (2,3-difluoro-4-ethoxyphenyl) -4- [2,3-difluoro: It was identified as -4- (4-pentylcyclohexyl) phenoxymethyl] cyclohexane (No. 943).
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • the obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate.
  • the obtained solution was concentrated under reduced pressure, and the resulting residue was purified by a fractionation operation by column chromatography using toluene as a developing solvent and silica gel as a filler.
  • the product was further purified by recrystallization from Solmix A-11 and dried to obtain 44.7 g of 4′-butoxy-2,3-difluoro-1,1′-biphenyl (18).
  • the yield based on the compound (16) was 78.1%.
  • Second Step 20.0 g of 4′-butoxy-2,3-difluoro-1,1′-biphenyl (18) and 200 ml of THF were added to a reactor under a nitrogen atmosphere and cooled to ⁇ 74 ° C.
  • 83.9 ml of a 1.00 M sec-butyllithium, n-hexane, cyclohexane solution was added dropwise in the temperature range of -74 ° C to -70 ° C, and the mixture was further stirred for 2 hours.
  • 9.5 g of trimethyl borate was added dropwise to a 50 ml THF solution in a temperature range of ⁇ 74 ° C.
  • reaction mixture was poured into a container containing 1N hydrochloric acid 100 ml ice water 500 ml and mixed. 300 ml of ethyl acetate was added, and an extraction operation was performed by separating the organic layer and the aqueous layer. The obtained organic layer was separated, washed successively with water, saturated aqueous sodium hydrogen carbonate solution and brine, and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain 21.3 g of 4′-butoxy-2,3-difluoro-1,1′-biphenyl-4-boronic acid (19). The yield based on the compound (18) was 91.3%.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is trans-4- (2,3-difluoro-4-ethoxyphenyl) -4- [2,3-difluoro: -4′-butoxy-1,1′-biphenoxymethyl] cyclohexane (No. 1041).
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • the resulting solution was purified by a preparative operation by column chromatography using toluene as a developing solvent and silica gel as a packing material, dried, and 4-butoxy- (2,3-difluorophenyl) cyclohexene (24 ) 71.6 g was obtained.
  • the compound (24) obtained was a colorless liquid, the boiling point was 131 to 132 ° C./3 mmHg, and the yield based on the compound (6) was 66.5%.
  • Step 4 8.5 g of Compound (25) and 50 ml of acetic acid are added to a reactor under a nitrogen atmosphere, and 4.9 ml of 31% hydrogen peroxide solution is added dropwise at a temperature range of 25 ° C. to 30 ° C. at room temperature. The mixture was further stirred for 2 hours. Thereafter, the reaction mixture was poured into a container containing 100 ml of an aqueous sodium hydrogen sulfite solution and 200 ml of ethyl acetate, and mixed. Then, it left still and isolate
  • Step 5 Under a nitrogen atmosphere, 2.8 g of compound (25) and 7.4 g of tripotassium phosphate (K 3 PO 4 ) were added to 100 ml of DMF, and the mixture was stirred at 70 ° C. The compound (15) 2.6g was added there, and it stirred at 70 degreeC for 7 hours. The obtained reaction mixture was cooled to 30 ° C. and separated from a solid by filtration, and then 100 ml of toluene and 100 ml of water were added and mixed. Then, it left still and isolate
  • K 3 PO 4 tripotassium phosphate
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is trans-4- (2,3-difluoro-4-ethoxyphenyl) -4- [2,3-difluoro: It was identified as -4- (4-butoxycyclohexenyl) phenoxymethyl] cyclohexane (No. 951).
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • Step 1 10.0 g of 4′-butoxy-2,3-difluoro-1,1′-biphenyl (18) and 100 ml of THF were added to a reactor under a nitrogen atmosphere, and the mixture was cooled to ⁇ 74 ° C. Thereto, 46.0 ml of a 1.00 M sec-butyllithium, n-hexane, cyclohexane solution was added dropwise in the temperature range of -74 ° C. to -70 ° C., and further stirred for 2 hours. Thereafter, 6.0 g of 1,4-dioxaspiro [4.5] decan-8-one (27) dissolved in 150 ml of THF was slowly dropped in the temperature range of ⁇ 74 ° C.
  • reaction mixture was added to a container containing 500 ml of 3% aqueous ammonium chloride cooled to 0 ° C. and 300 ml of toluene, mixed and then allowed to stand to separate and extract into an organic layer and an aqueous layer. The operation was performed. The obtained organic layer was separated, washed with water, saturated aqueous sodium hydrogen carbonate, and water, and dried over anhydrous magnesium sulfate.
  • Step 2 Compound (28) 15.9 g, p-toluenesulfonic acid 0.49 g, ethylene glycol 0.81 g, and toluene 250 ml were mixed, and this mixture was heated to reflux for 2 hours while removing distilled water. . After cooling the reaction mixture to 30 ° C., 200 ml of water and 300 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with saturated aqueous sodium hydrogen carbonate and water, and dried over anhydrous magnesium sulfate.
  • the obtained solution was purified by a fractionation operation by column chromatography using toluene as a developing solvent and silica gel as a filler. It was dissolved in a mixed solvent of 150 ml of toluene and 150 ml of Solmix A-11, 0.15 g of Pd / C was further added, and the mixture was stirred at room temperature under a hydrogen atmosphere until it did not absorb hydrogen.
  • Step 3 Compound (29) 10.6 g, 87% formic acid 20 ml, and toluene 200 ml were mixed, and the mixture was heated to reflux for 2 hours. After cooling the reaction mixture to 30 ° C., 200 ml of water and 300 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with water, saturated aqueous sodium hydrogen carbonate, and water, and dried over anhydrous magnesium sulfate.
  • Step 4 Under a nitrogen atmosphere, 7.6 g of well-dried methoxymethyltriphenylphosphonium chloride and 100 ml of THF were mixed and cooled to ⁇ 30 ° C. Thereafter, 2.5 g of potassium t-butoxide (t-BuOK) was added in two portions in the temperature range of ⁇ 30 ° C. to ⁇ 20 ° C. After stirring at ⁇ 20 ° C. for 30 minutes, 6.6 g of compound (29) dissolved in 100 ml of THF was added dropwise in the temperature range of ⁇ 30 to ⁇ 20 ° C. After stirring at ⁇ 10 ° C.
  • t-BuOK potassium t-butoxide
  • reaction solution is poured into a mixture of 200 ml of water and 200 ml of toluene, mixed, and allowed to stand to separate into two layers, an organic layer and an aqueous layer, and extracted into the organic layer.
  • the operation was performed.
  • the obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate.
  • the obtained solution was concentrated under reduced pressure, and the resulting residue was purified by a preparative operation by column chromatography using toluene as a developing solvent and silica gel as a filler.
  • Step 5 Compound (31) 6.6 g, 87% formic acid 8.0 g, and toluene 100 ml were mixed, and the mixture was heated to reflux for 2 hours. After cooling the reaction mixture to 30 ° C., 100 ml of water and 200 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with water, saturated aqueous sodium hydrogen carbonate, and water, and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain 6.3 g of a pale yellow solid.
  • This residue was dissolved in 50 ml of toluene, added to a mixed solution of 0.5 g of 95% sodium hydroxide and 32 ml of Solmix A-11 cooled to 7 ° C., and stirred at 10 ° C. for 2 hours. Then, 12.8 ml of 2N sodium hydroxide aqueous solution was added, and it stirred at 5 degreeC for 2 hours.
  • the obtained reaction solution was poured into a mixed solution of 200 ml of water and 200 ml of toluene, mixed and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer was performed.
  • Step 6 0.4 g of lithium aluminum hydride was suspended in 300 ml of THF. To this suspension, 6.4 g of the compound (32) was added dropwise in the temperature range of ⁇ 20 ° C. to ⁇ 10 ° C., and further stirred in this temperature range for 2 hours. After confirming the completion of the reaction by GC analysis, ethyl acetate and a saturated aqueous ammonia solution were successively added to the reaction mixture under ice cooling, and the precipitate was removed by Celite filtration. The filtrate was extracted with ethyl acetate. The obtained organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. 4.
  • the obtained organic layer was separated, washed twice with saturated aqueous sodium hydrogen carbonate, three times with water, and dried over anhydrous magnesium sulfate.
  • the product was purified by a preparative operation according to 1.
  • Step 8 Under a nitrogen atmosphere, 0.96 g of 4-ethoxy-2,3-difluorophenol (35) and 7.4 g of tripotassium phosphate (K 3 PO 4 ) were added to 100 ml of DMF, and the mixture was stirred at 70 ° C. The compound (34) 2.0g was added there, and it stirred at 70 degreeC for 7 hours. The obtained reaction mixture was cooled to 30 ° C. and separated from a solid by filtration, and then 100 ml of toluene and 100 ml of water were added and mixed. Then, it left still and isolate
  • the obtained organic layer was separated, washed with brine, and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure, and the resulting residue was purified by a fractionation operation by column chromatography using toluene as a developing solvent and silica gel as a filler.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is trans-4- (4-ethoxy-2,3-difluorophenyl) -4- [4′-butoxy- 2,3-difluoro-1,1′-biphenoxymethyl] cyclohexane (No. 3921) could be identified.
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • Second Step Compound (36) 15.7 g, p-toluenesulfonic acid 0.47 g, ethylene glycol 0.79 g, and toluene 200 ml were mixed, and this mixture was heated to reflux for 2 hours while removing distilled water. . After cooling the reaction mixture to 30 ° C., 200 ml of water and 300 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with saturated aqueous sodium hydrogen carbonate and water, and dried over anhydrous magnesium sulfate.
  • the obtained solution was purified by a fractionation operation by column chromatography using toluene as a developing solvent and silica gel as a filler. It was dissolved in a mixed solvent of 150 ml of toluene and 150 ml of Solmix A-11, 0.16 g of Pd / C was further added, and the mixture was stirred at room temperature under a hydrogen atmosphere until it did not absorb hydrogen.
  • Step 3 Compound (37) 13.2 g, 87% formic acid 15 ml, and toluene 100 ml were mixed, and the mixture was heated to reflux for 2 hours. After cooling the reaction mixture to 30 ° C., 200 ml of water and 300 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with water, saturated aqueous sodium hydrogen carbonate, and water, and dried over anhydrous magnesium sulfate.
  • Step 4 Under a nitrogen atmosphere, 8.6 g of methoxymethyltriphenylphosphonium chloride well dried and 100 ml of THF were mixed and cooled to ⁇ 30 ° C. Thereafter, 2.8 g of potassium t-butoxide (t-BuOK) was added in two portions in the temperature range of ⁇ 30 ° C. to ⁇ 20 ° C. After stirring at ⁇ 20 ° C. for 30 minutes, 7.6 g of compound (38) dissolved in 100 ml of THF was added dropwise in the temperature range of ⁇ 30 to ⁇ 20 ° C. After stirring at ⁇ 10 ° C.
  • t-BuOK potassium t-butoxide
  • reaction solution is poured into a mixture of 200 ml of water and 200 ml of toluene, mixed, and allowed to stand to separate into two layers, an organic layer and an aqueous layer, and extracted into the organic layer.
  • the operation was performed.
  • the obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate.
  • the obtained solution was concentrated under reduced pressure, and the resulting residue was purified by a preparative operation by column chromatography using toluene as a developing solvent and silica gel as a filler.
  • Step 5 Compound (39) 8.1 g, 87% formic acid 9.5 g, and toluene 100 ml were mixed, and the mixture was heated to reflux for 2 hours. After cooling the reaction mixture to 30 ° C., 100 ml of water and 200 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with water, saturated aqueous sodium hydrogen carbonate, and water, and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain a white solid.
  • This residue was dissolved in 50 ml of toluene, added to a mixed solution of 0.5 g of 95% sodium hydroxide and 32 ml of Solmix A-11 cooled to 7 ° C., and stirred at 10 ° C. for 2 hours. Then, 16 ml of 2N sodium hydroxide aqueous solution was added, and it stirred at 5 degreeC for 2 hours.
  • the obtained reaction solution was poured into a mixed solution of 200 ml of water and 200 ml of toluene, mixed and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer was performed. The obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate.
  • Step 6 0.45 g of lithium aluminum hydride was suspended in 100 ml of THF. To this suspension, 7.5 g of the compound (40) dissolved in 100 ml of THF was added dropwise in a temperature range of ⁇ 20 ° C. to ⁇ 10 ° C., and further stirred in this temperature range for 2 hours. After confirming the completion of the reaction by GC analysis, ethyl acetate and a saturated aqueous ammonia solution were successively added to the reaction mixture under ice cooling, and the precipitate was removed by Celite filtration. The filtrate was extracted with ethyl acetate. The obtained organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate.
  • Step 7 Under a nitrogen atmosphere, 7.4 g of Compound (41), 100 ml of toluene and 0.5 ml of pyridine were added to the reactor, and the mixture was stirred at 45 ° C. for 1 hour. Thereafter, 1.7 ml of thionyl chloride was added in the temperature range of 45 ° C. to 55 ° C. and heated to reflux for 2 hours. The reaction solution was cooled to 25 ° C., poured into 200 ml of water and 200 ml of toluene, and mixed. Then, it left still and isolate
  • the obtained organic layer was separated, washed twice with saturated aqueous sodium hydrogen carbonate, three times with water, and dried over anhydrous magnesium sulfate.
  • the obtained solution was concentrated under reduced pressure, and the obtained residue was purified by a preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler, dried, and dried with 4-chloromethyl- [ There were obtained 7.3 g of 4-pentyl- (2,3-difluorophenyl) cyclohexyl] -cyclohexane (42).
  • the yield based on the compound (41) was 94.1%.
  • Step 8 Under a nitrogen atmosphere, 0.96 g of 4-ethoxy-2,3-difluorophenol (34) and 7.4 g of tripotassium phosphate (K 3 PO 4 ) were added to 100 ml of DMF, and the mixture was stirred at 70 ° C. The compound (41) 2.0g was added there, and it stirred at 70 degreeC for 7 hours. The obtained reaction mixture was cooled to 30 ° C. and separated from a solid by filtration, and then 100 ml of toluene and 100 ml of water were added and mixed. Then, it left still and isolate
  • the obtained organic layer was separated, washed with brine, and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure, and the resulting residue was purified by a fractionation operation by column chromatography using toluene as a developing solvent and silica gel as a filler.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the resulting compound is 2,3-difluoro-4-ethoxy- [trans-4- ⁇ (trans-4-pentylcyclohexyl)- 2,3-difluorophenyl ⁇ cyclohexylmethyl] benzene (No. 3823) could be identified.
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • the obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4-ethoxy-2,3-difluoro-1,1′-biphenylbenzoic acid-trans-4-pentylcyclohexyl. -2,3-difluorophenyl ester (No. 1843).
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • the obtained organic layer was separated, washed with water, an aqueous sodium thiosulfate solution, and water, dried over anhydrous magnesium sulfate, and 4-ethoxy-2,3-difluoro- (trans-4-cyclohexyl) -carvone 8.8 g of acid (45) was obtained.
  • the yield based on the compound (13) was 83.1%.
  • Step 2 Under a nitrogen atmosphere, 1.0 g of compound (45), 1.0 g of 2,3-difluoro-4- (4-propylcyclohexyl) phenol (12), 0.75 g of 1,3-dicyclocarbodiimide (DCC) , And 0.04 g of 4-dimethylaminopyridine (DMAP) were added to 100 ml of toluene, and the mixture was stirred at 25 ° C. for 20 hours. After confirming the completion of the reaction by GC analysis, 100 ml of toluene and 100 ml of water were added and mixed. Then, it left still and isolate
  • DMAP 1,3-dicyclocarbodiimide
  • the obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is trans- (4-ethoxy-2,3-difluorophenyl) cyclohexylbenzoic acid-trans-4-pentylcyclohexyl- It could be identified as 2,3-difluorophenyl ester (No. 1663).
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • Second Step 18.1 g of Compound (47) and 200 ml of THF were added to a reactor under a nitrogen atmosphere and cooled to ⁇ 74 ° C.
  • 52.1 ml of a 1.00 M sec-butyllithium, n-hexane, cyclohexane solution was dropped in a temperature range of -74 ° C. to -70 ° C., and further stirred for 2 hours.
  • 3.8 g of DMF dissolved in 150 ml of THF was slowly added dropwise in the temperature range of ⁇ 74 ° C. to ⁇ 70 ° C. and stirred for 8 hours while returning to 25 ° C.
  • the obtained reaction mixture was added to a container containing 300 ml of 3% aqueous ammonium chloride cooled to 0 ° C. and 200 ml of toluene, mixed, then allowed to stand, and separated into an organic layer and an aqueous layer for extraction. The operation was performed. The obtained organic layer was separated, washed with water, saturated aqueous sodium hydrogen carbonate, and water, and dried over anhydrous magnesium sulfate.
  • Step 3 Compound (48) (3.0 g), 2-pentylpropane-1,3-diol (1.6 g), p-toluenesulfonic acid (0.02 g), and toluene (100 ml) were mixed, and the mixture was heated to reflux for 2 hours. It was. After cooling the reaction mixture to 30 ° C., 100 ml of water and 100 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with saturated aqueous sodium hydrogen carbonate and water, and dried over anhydrous magnesium sulfate.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the compound obtained is 2- (4-((trans-4- (4-ethoxy-2,3-difluorophenyl) cyclohexyl) Methoxy) -2,3-difluorophenyl) -5-pentyl-1,3-dioxane (No. 940) was identified.
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • Second Step 9 g of the compound (51), 0.15 g of p-toluenesulfonic acid, and 200 ml of toluene were mixed, and this mixture was heated to reflux for 2 hours while removing distilled water. After cooling the reaction mixture to 30 ° C., 200 ml of water and 300 ml of toluene were added to and mixed with the resulting liquid, and then allowed to stand to separate into two layers, an organic layer and an aqueous layer, and an extraction operation into the organic layer Went. The obtained organic layer was separated, washed with saturated aqueous sodium hydrogen carbonate and water, and dried over anhydrous magnesium sulfate.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 1- (4- (2,3-difluoro-4- (4-pentylcyclohexyl) phenyl) cyclohexa-3 -Ethyl) -4-ethoxy-2,3-difluorobenzene (No. 12) was identified.
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 1- (4- (2,3-difluoro-4- (4-pentylcyclohexyl) phenyl) cyclohexyl)- It was identified as 4-ethoxy-2,3-difluorobenzene (No. 13).
  • the measurement solvent is CDCl 3 .
  • the transition temperature is a measured value of the compound itself, and the maximum temperature (T NI ), dielectric anisotropy ( ⁇ ), and optical anisotropy ( ⁇ n) are measured values of a sample in which the compound is mixed with the mother liquid crystal (i).
  • T NI maximum temperature
  • dielectric anisotropy
  • ⁇ n optical anisotropy
  • 940, 951, 1041, 1123 were prepared by preparing a liquid crystal composition consisting of 95% by weight of the mother liquid crystal and 5% by weight of the compound, measuring the physical properties of the obtained liquid crystal composition, and extrapolating the measured values.
  • Compound No. Nos. 13 and 3921 were prepared by preparing a liquid crystal composition comprising 90% by weight of the mother liquid crystal and 10% by weight of the compound, measuring the physical properties of the obtained liquid crystal composition, and extrapolating the measured values.
  • Compound No. Nos. 12, 943, 1663, 1843, and 3823 were prepared by preparing a liquid crystal composition composed of 85% by weight of the base liquid crystal and 15% by weight of the compound, measuring the physical properties of the obtained liquid crystal composition, and extrapolating the measured values. is there.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4- (2,3-difluoro-4-ethoxy-1,1′-biphenylethyl) -trans-4: It could be identified as -propyl- (2-fluorophenyl) cyclohexane (F).
  • the measurement solvent is CDCl 3 .
  • the transition temperature of compound (F) was as follows. Transition temperature: C 81.5 N 209.5 I
  • the mother liquid crystal i having a nematic phase was prepared by mixing the five compounds described as the mother liquid crystal i described above.
  • the compound (No. 1843) has a low melting point, a high maximum temperature (T NI ), a large optical anisotropy ( ⁇ n), and a negative dielectric anisotropy ( ⁇ ). It turned out to be a compound.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4-ethoxy-2,3-difluoro-4 ′-(4-pentylcyclohexylphenoxymethyl) -1,1. It was identified as' -biphenyl (G).
  • the measurement solvent is CDCl 3 .
  • a liquid crystal composition iv was prepared.
  • the physical properties of the comparative compound (G) were calculated by measuring the physical properties of the obtained liquid crystal composition iv and extrapolating the measured values.
  • the optical anisotropy ( ⁇ n) is large, the dielectric anisotropy ( ⁇ ) is negatively large, the melting point is low, the viscosity ( ⁇ ) is small, and the elastic constant K 33. was found to be a large compound.
  • the chemical shift ⁇ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4-ethoxy-2,3,2 ′ ′, 3 ′′ -tetrafluoro-4 ′′-(4 -Pentylphenylethyl) -1,1 ''-terphenyl (H) was identified.
  • the measurement solvent is CDCl 3 .
  • the mother liquid crystal i was 95% by weight and the synthesized 4-ethoxy-2,3,2 ′ ′, 3 ′′ -tetrafluoro-4 ′′-(4-pentylphenylethyl) -1,1 ′ ′-terphenyl (
  • a liquid crystal composition vi comprising 5% by weight of H) was prepared.
  • the physical properties of the comparative compound (H) were calculated by measuring the physical properties of the obtained liquid crystal composition vi and extrapolating the measured values.
  • the compound (No. 1041) is a compound having a low melting point, a high maximum temperature (T NI ), and a negative dielectric anisotropy ( ⁇ ).
  • the compound has a high maximum temperature (T NI ), a large dielectric anisotropy ( ⁇ ), a low melting point, and a low viscosity ( ⁇ ) compared to the comparative compound (H). It was.
  • liquid crystal composition obtained by the present invention
  • the compounds used in the examples are represented by symbols based on the definitions in the following table.
  • 1,4-cyclohexylene has a trans configuration.
  • the ratio (percentage) of each compound is a weight percentage (% by weight) based on the total weight of the liquid crystal composition unless otherwise specified.
  • the characteristic values of the liquid crystal composition obtained at the end of each example are shown.
  • the number described in the part of the compound used in each example corresponds to the formula number indicating the compound used for the third component from the first component of the present invention described above, and the formula number is not described. In the case where “-” is simply described, this means that this compound is another compound that does not correspond to these components.
  • the characteristics were measured according to the following method. Many of these measuring methods are the methods described in EIAJ ED-2521A, or a modified method thereof, in accordance with the Standard of Electric Industries of Japan Standard.
  • nematic phase (NI; ° C) A sample was placed on a hot plate of a melting point measurement apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
  • upper limit temperature the upper limit temperature of the nematic phase
  • Viscosity ( ⁇ ; measured at 20 ° C .; mPa ⁇ s) An E-type rotational viscometer was used for the measurement.
  • Dielectric anisotropy ( ⁇ ; measured at 25 ° C.) An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated with a spinner and then heated at 150 ° C. for 1 hour. A VA device having an interval (cell gap) of 20 ⁇ m was assembled from two glass substrates.
  • a polyimide alignment film was prepared on a glass substrate. After the alignment film of the obtained glass substrate was rubbed, a TN device in which the distance between the two glass substrates was 9 ⁇ m and the twist angle was 80 degrees was assembled.
  • a sample (a liquid crystal composition or a mixture of a compound and a mother liquid crystal) is put into the obtained VA element, 0.5 V (1 kHz, sine wave) is applied, and the dielectric constant ( ⁇ ) was measured.
  • a sample liquid crystal composition or a mixture of a compound and a mother liquid crystal
  • 0.5 V (1 kHz, sine wave) is applied, and the dielectric constant (in the minor axis direction of liquid crystal molecules ( ⁇ ) was measured.
  • a composition having a negative value is a composition having a negative dielectric anisotropy.
  • VHR Voltage holding ratio
  • a sample was put in a cell having a polyimide alignment film and a distance (cell gap) between two glass substrates of 6 ⁇ m to produce a TN device.
  • the TN device was charged by applying a pulse voltage (5 V, 60 microseconds).
  • the waveform of the voltage applied to the TN device was observed with a cathode ray oscilloscope, and the area between the voltage curve and the horizontal axis in a unit cycle (16.7 milliseconds) was determined.
  • the area was similarly determined from the waveform of the voltage applied after removing the TN element.
  • VHR-1 The voltage holding ratio thus obtained is indicated as “VHR-1”.
  • this TN device was heated at 100 ° C. for 250 hours. After returning the TN device to 25 ° C., the voltage holding ratio was measured by the same method as described above. The voltage holding ratio obtained after this heating test was indicated as “VHR-2”. This heating test is an accelerated test, and was used as a test corresponding to the long-term durability test of the TN device.
  • the liquid crystalline compound of the present invention has stability against heat, light, etc., becomes a nematic phase over a wide temperature range, has a small viscosity, a large optical anisotropy, and an appropriate elastic constant K 33 , Appropriate negative dielectric anisotropy and excellent compatibility with other liquid crystal compounds, and liquid crystal compositions containing this compound have stability against heat, light, etc.
  • the liquid crystal display element containing this composition has a short response time, low power consumption and drive voltage, a large contrast ratio, and can be used in a wide temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Pyridine Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

 熱、光などに対する安定性を有し、広い温度範囲でネマチック相となり、粘度が小さく、大きな光学異方性、および適切な弾性定数K33を有し、さらに適切な負の誘電率異方性、および他の液晶性化合物との優れた相溶性を有する液晶性化合物を提供する。また、この液晶性化合物を含有する液晶組成物、およびこの液晶組成物を含有する液晶表示素子を提供する。  式(a)で表される液晶性化合物。 例えば、R1およびR2は、炭素数1~10のアルキル、炭素数2~10のアルケニル、または炭素数1~9のアルコキシであり;環Aおよび環Aは、1,4-フェニレンまたはトランス-1,4-シクロへキシレンであり;LおよびLは水素またはフッ素であり、これらのうち少なくとも1つはフッ素であり;ZおよびZは、単結合、-(CH22-、-CH=CH-、-CH2O-、または-OCH2-である。

Description

ラテラルフッ素を有する4環液晶性化合物、液晶組成物および液晶表示素子
 本発明は液晶性化合物、液晶組成物および液晶表示素子に関する。さらに詳しくは液晶性化合物であるラテラル位にフッ素を有するフルオロベンゼン誘導体、この化合物を含有したネマチック相を有する液晶組成物、およびこの組成物を含有する液晶表示素子に関する。
 液晶表示パネル、液晶表示モジュール等に代表される液晶表示素子は、液晶性化合物(本発明では、ネマチック相、スメクチック相などの液晶相を有する化合物、および液晶相を有しないが液晶組成物の成分として有用な化合物の総称を意味する。)が有する光学異方性、誘電率異方性などを利用したものであるが、この液晶表示素子の動作モードとしては、PC(phase change)モード、TN(twisted nematic)モード、STN(super twisted nematic)モード、BTN(bistable twisted nematic)モード、ECB(electrically controlled birefringence)モード、OCB(optically compensated bend)モード、IPS(in-plane switching)モード、VA(vertical alignment)モード、PSA(Polymer sustained alignment)モードなどの様々なモードが知られている。
 これら動作モードの中でもECBモード、IPSモード、VAモードなどは、液晶分子の垂直配向性を利用した動作モードであり、特にIPSモードおよびVAモードは、TNモード、STNモード等の従来の表示モードの欠点である視野角の狭さを改善可能であることが知られている。
 そして、従来からこれら動作モードの液晶表示素子に使用可能な、負の誘電率異方性を有する液晶組成物の成分として、ベンゼン環上の水素がフッ素で置き換えられた液晶性化合物が数多く検討されてきている(例えば、特許文献1~6参照。)。
 例えばベンゼン環上の水素がフッ素で置き換えられた化合物(A)および(B)が検討されている(特許文献1および2参照)。しかし、このような化合物は誘電率異方性が負に大きくない。
また、ラテラル位にフッ素を有するターフェニル化合物(C)が検討されている(特許文献3参照)。しかし、この化合物は融点が高く、相溶性に乏しい。
 また、エステル結合基とラテラル位フッ素を持つ化合物(D)が検討されている(特許文献4参照)。しかし、化合物(D)は誘電率異方性が負に大きくない。
 また、エチレン結合基とラテラル位フッ素を持つ化合物(E)および(F)が検討されている(特許文献5および6参照)。しかし、化合物(E)は相溶性に乏しく、化合物(F)は誘電率異方性が負に大きくない。
Figure JPOXMLDOC01-appb-I000009
特表平02-503441号公報 国際公開第89/02425号パンフレット 特開平11-116512号公報 国際公開第89/06678号パンフレット 国際公開第98/23564号パンフレット 特開2007-002132号公報
 したがって、IPSモードおよびVAモード等の動作モードの液晶表示素子であっても、CRTと比較すれば表示素子としてはいまだ問題があり、例えば、応答速度の向上、コントラストの向上、駆動電圧の低下が望まれている。
 上述したIPSモード、あるいはVAモードで動作する表示素子は、主として、負の誘電率異方性を有する液晶組成物から構成されているが、これらの特性等をさらに向上させるためには、この液晶組成物に含まれる液晶性化合物が、以下(1)~(8)で示す特性を有することが必要である。すなわち、
(1)化学的に安定であること、および物理的に安定であること、
(2)高い透明点(液晶相-等方相の転移温度)を有すること、
(3)液晶相(ネマチック相、スメクチック相等)の下限温度、特にネマチック相の下限温度が低いこと、
(4)粘度が小さいこと、
(5)適切な光学異方性を有すること、
(6)適切な負の誘電率異方性を有すること、
(7)適切な弾性定数K33(K33:ベンド弾性定数)を有すること、および
(8)他の液晶性化合物との相溶性に優れること、
である。
 (1)のように化学的、物理的に安定な液晶性化合物を含む組成物を表示素子に用いると、電圧保持率を大きくすることができる。
 また、(2)および(3)のように、高い透明点、あるいは液晶相の低い下限温度を有する液晶性化合物を含む組成物ではネマチック相の温度範囲を広げることが可能となり、幅広い温度領域で表示素子として使用することが可能となる。
 さらに、(4)のように粘度の小さい化合物、および(7)のように大きな弾性定数K33を有する化合物を含む組成物を表示素子として用いると応答速度を向上することができ、(5)のように適切な光学異方性を有する化合物を含む組成物を用いた表示素子の場合は、表示素子のコントラストの向上を図ることができる。素子の設計次第では、光学異方性は小さいものから大きなものまで必要である。最近ではセル厚を薄くすることにより応答速度を改善する手法が検討されており、それに伴い、大きな光学異方性を有する液晶組成物も必要となっている。
 加えて、液晶性化合物が負に大きな誘電率異方性を有する場合には、この化合物を含む液晶組成物のしきい値電圧を低くすることができるので、(6)のように適切な負の誘電率異方性を有する化合物を含む組成物を用いた表示素子の場合には、表示素子の駆動電圧を低くし、消費電力も小さくすることができる。さらに(7)のように小さな弾性定数K33を有する化合物を含む組成物を表示素子として用いることで表示素子の駆動電圧を小さくすることができ、消費電力も小さくすることができる。
 液晶性化合物は、単一の化合物では発揮することが困難な特性を発現させるために、他の多くの液晶性化合物と混合して調製した組成物として用いることが一般的である。したがって、表示素子に用いる液晶性化合物は、(8)のように、他の液晶性化合物等との相溶性が良好であることが好ましい。また、表示素子は、氷点下を含め幅広い温度領域で使用することもあるので、低い温度領域から良好な相溶性を示す化合物であることが好ましい場合もある。
 本発明の第一の目的は、熱、光などに対する安定性を有し、広い温度範囲でネマチック相となり、粘度が小さく、大きな光学異方性、および適切な弾性定数K33を有し、さらに、適切な負の誘電率異方性、および他の液晶性化合物との優れた相溶性を有する液晶性化合物を提供することである。
 本発明の第二の目的は、熱、光などに対する安定性を有し、粘度が低く、大きな光学異方性、および適切な負の誘電率異方性を有し、適切な弾性定数K33を有し、しきい値電圧が低く、さらに、この化合物を含有して、ネマチック相の上限温度(ネマチック相-等方相の相転移温度)が高く、ネマチック相の下限温度が低い液晶組成物を提供することである。
 本発明の第三の目的は、応答時間が短く、消費電力および駆動電圧が小さく、大きなコントラストを有し、広い温度範囲で使用可能である、上記組成物を含有する液晶表示素子を提供することである。
 本発明者らはこれらの課題に鑑み鋭意研究を行った結果、ベンゼン環上の水素がフッ素で置き換えられたフェニレンを有する特定構造の中において、ラテラル位にフッ素を有する4環液晶性化合物が、熱、光などに対する安定性を有し、広い温度範囲でネマチック相となり、粘度が小さく、大きな光学異方性、および適切な弾性定数K33を有し、さらに、適切な負の誘電率異方性、および他の液晶性化合物との優れた相溶性を有していること、また、この化合物を含有する液晶組成物が、熱、光などに対する安定性を有し、粘度が小さく、大きな光学異方性、適切な弾性定数K33、および適切な負の誘電率異方性を有し、しきい値電圧が低く、さらに、ネマチック相の上限温度が高く、ネマチック相の下限温度が低いこと、さらに、この組成物を含有する液晶表示素子が、応答時間が短く、消費電力および駆動電圧が小さく、コントラスト比が大きく、広い温度範囲で使用可能であることを見いだし、本発明を完成するに到った。
 すなわち、本発明は、以下〔1〕~〔30〕などに記載された事項を有している。
 〔1〕:式(a)で表される液晶性化合物。
Figure JPOXMLDOC01-appb-I000010
式(a)において、R1およびR2は独立して、水素、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
環Aおよび環Aは独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、ピリジン-2,5-ジイル、またはピリミジン-3,6-ジイルであり;
およびLは独立して、水素またはフッ素であり、これらのうち少なくとも1つはフッ素であり;
およびZは独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-COO-または-OCO-である。
 〔2〕:式(a)において、環Aおよび環Aが独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、またはテトラヒドロピラン-3,6-ジイルである項〔1〕に記載の化合物。
 〔3〕:式(a-1)または(a-2)で表される項〔2〕に記載の化合物。
Figure JPOXMLDOC01-appb-I000011
式(a-1)および(a-2)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
環Aおよび環Aは独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、またはテトラヒドロピラン-3,6-ジイルであり;
およびLは独立して、水素またはフッ素であり、これらのうち少なくとも1つはフッ素であり;
およびZは独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 〔4〕:式(a-3)~(a-8)のいずれか1つで表される項〔3〕に記載の化合物。
Figure JPOXMLDOC01-appb-I000012
式(a-3)~(a-8)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
およびZは独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 〔5〕:式(a-9)~(a-14)のいずれか1つで表される項〔3〕に記載の化合物。
Figure JPOXMLDOC01-appb-I000013
式(a-9)~(a-14)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
およびZは独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 〔6〕:式(a-15)~(a-26)のいずれか1つで表される項〔3〕に記載の化合物。
Figure JPOXMLDOC01-appb-I000014
式(a-15)~(a-26)において、RおよびR10は独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
およびZ10は独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 〔7〕:式(a-3)~(a-8)において、ZおよびZが-CH2O-である項〔4〕に記載の化合物。
 〔8〕:式(a-3)~(a-8)において、ZおよびZが-OCH2-である項〔4〕に記載の化合物。
 〔9〕:式(a-3)~(a-8)において、ZおよびZが-(CH2-である項〔4〕に記載の化合物。
 〔10〕:式(a-3)~(a-8)において、ZおよびZが-COO-である項〔4〕に記載の化合物。
 〔11〕:式(a-3)~(a-8)において、ZおよびZが-OCO-である項〔4〕に記載の化合物。
 〔12〕:式(a-9)~(a-14)において、ZおよびZが-CH2O-である項〔5〕に記載の化合物。
 〔13〕:式(a-9)~(a-14)において、ZおよびZが-OCH2-である項〔5〕に記載の化合物。
 〔14〕:式(a-9)~(a-14)において、ZおよびZが-(CH2-である項〔5〕に記載の化合物。
 〔15〕:式(a-9)~(a-14)において、ZおよびZが-COO-である項〔5〕に記載の化合物。
 〔16〕:式(a-9)~(a-14)において、ZおよびZが-OCO-である項〔5〕に記載の化合物。
 〔17〕:式(a-15)~(a-26)において、ZおよびZ10が-CH2O-である項〔6〕に記載の化合物。
 〔18〕:式(a-15)~(a-26)において、ZおよびZ10が-OCH2-である項〔6〕に記載の化合物。
 〔19〕:式(a-15)~(a-26)において、ZおよびZ10が-(CH2-である項〔6〕に記載の化合物。
 〔20〕:式(a-15)~(a-26)において、ZおよびZ10が-COO-である項〔6〕に記載の化合物。
 〔21〕:式(a-15)~(a-26)において、ZおよびZ10が-OCO-である項〔6〕に記載の化合物。
 〔22〕:項〔1〕~〔21〕のいずれか1項に記載される化合物から選択される少なくとも1つの化合物である第一成分と、式(e-1)~(e-3)で表される化合物群から選択される少なくとも1つの化合物である第二成分とを含有し、そして誘電率異方性が負である液晶組成物。
Figure JPOXMLDOC01-appb-I000015
式(e-1)~(e-3)において、Ra11およびRb11は独立して、炭素数1~10のアルキルであるが、このアルキル中において、相隣接しない-CH2-は-O-で置き換えられていてもよく、相隣接しない-(CH22-は-CH=CH-で置き換えられていてもよく、水素はフッ素で置き換えられていてもよく;
環A11、環A12、環A13、および環A14は独立して、トランス-1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、テトラヒドロピラン-2,5-ジイル、またはテトラヒドロピラン-3,6-ジイルであり;
11、Z12、およびZ13は独立して、単結合、-CH2-CH2-、-CH=CH-、-C≡C-、-COO-、または-CH2O-である。
 〔23〕:項〔3〕に記載の化合物群から選択される少なくとも1つの化合物である第一成分と項〔22〕に記載された式(e-1)~(e-3)で表される化合物群から選択される少なくとも1つの化合物である第二成分とを含有し、そして誘電率異方性が負である液晶組成物。
 〔24〕:液晶組成物の全重量に基づいて、第一成分の含有割合が5~60重量%の範囲であり、第二成分の含有割合が40~95重量%の範囲である、項〔23〕に記載の液晶組成物。
 〔25〕:第一成分、および第二成分に加えて、式(g-1)~(g-6)で表される化合物群から選択される少なくとも1つの化合物である第三成分を含有する項〔22〕または〔23〕に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000016
式(g-1)~(g-6)において、Ra21およびRb21は独立して、水素、または炭素数1~10のアルキルであり、このアルキル中において、相隣接しない-CH2-は-O-で置き換えられていてもよく、相隣接しない-(CH22-は-CH=CH-で置き換えられていてもよく、水素はフッ素で置き換えられていてもよく;
環A21、環A22、および環A23は独立して、トランス-1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイルであり;
21、Z22、およびZ23は独立して、単結合、-CH2-CH2-、-CH=CH-、-C≡C-、-OCF2-、-CF2O-、-OCF2CH2CH2-、-CH2CH2CF2O-、-COO-、-OCO-、-OCH2-、または-CH2O-であり;
1、Y2、Y3、およびY4は独立して、フッ素または塩素であり;
q、r、およびsは独立して、0、1、または2であり、q+rは1または2であり、q+r+sは1、2、または3であり;
tは0、1、または2である。
 〔26〕:第一成分、および第二成分に加えて、式(h-1)~(h-7)で表される化合物群から選択される少なくとも1つの化合物である第三成分を含有する項〔25〕に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000017
式(h-1)~(h-7)において、Ra22およびRb22は独立して、炭素数1~8の直鎖アルキル、炭素数2~8の直鎖アルケニル、または炭素数1~7のアルコキシであり;
24、Z25、およびZ26は独立して、単結合、-CH2CH2-、-CH2O-、または-OCH2-であり;
1、およびY2は、共にフッ素、または一方がフッ素で他方が塩素である。
 〔27〕:項〔3〕に記載される化合物から選択される少なくとも1つの化合物である第一成分、項〔22〕に記載される式(e-1)~(e-3)で表される化合物群から選択される少なくとも1つの化合物である第二成分、および項〔26〕に記載される式(h-1)~(h-7)で表される化合物群から選択される少なくとも1つの化合物である第三成分を含有し、そして誘電率異方性が負である液晶組成物。
 〔28〕:液晶組成物の全重量に基づいて、第一成分の含有割合が5~60重量%の範囲であり、第二成分の含有割合が20~75重量%の範囲であり、第三成分の含有割合が20~75重量%の範囲である、項〔25〕~〔27〕のいずれか1項に記載の液晶組成物。
 〔29〕:項〔22〕~〔28〕のいずれか1項に記載の液晶組成物を含有する液晶表示素子。
 〔30〕:液晶表示素子の動作モードが、VAモード、IPSモードまたはPSAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、項〔29〕に記載の液晶表示素子。
 本発明の液晶性化合物は、熱、光などに対する安定性を有し、広い温度範囲でネマチック相となり、粘度が小さく、大きな光学異方性、および適切な弾性定数K33(K33:ベンド弾性定数)を有し、さらに、適切な負の誘電率異方性、および他の液晶性化合物との優れた相溶性を有している。また、本発明の液晶性化合物は、ネマチック相の上限温度が低下せず、しかも、粘度が大きくなることなく、光学異方性が大きくなる傾向にある点で特に優れている。
 また、本発明の液晶組成物は、粘度が小さく、大きな光学異方性、適切な弾性定数K33、および適切な負の誘電率異方性を有し、しきい値電圧が低く、さらに、ネマチック相の上限温度が高く、ネマチック相の下限温度が低い。特に、本発明の液晶組成物は大きな光学異方性を有するため、大きな光学異方性が必要な素子に有効である。
 さらに、本発明の液晶表示素子はこの液晶組成物を含有することを特徴とし、応答時間が短く、消費電力および駆動電圧が小さく、コントラスト比が大きく、広い温度範囲で使用可能であり、PCモード、TNモード、STNモード、ECBモード、OCBモード、IPSモード、VAモード、PSAモードなどの表示モードの液晶表示素子に好適に使用することができ、特に、IPSモード、VAモード、PSAモードの液晶表示素子に好適に使用することができる。
 以下、本発明をさらに具体的に説明する。
 なお、以下説明中では、特に断りのない限り、百分率で表した化合物の量は組成物の全重量に基づいた重量百分率(重量%)を意味する。
〔化合物(a)〕
 本発明の液晶性化合物は、式(a)で示される構造を有する(以下、これら化合物を「化合物(a)」ともいう。)。
Figure JPOXMLDOC01-appb-I000018
 式(a)において、R1およびR2は独立して、水素、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシである。
 環Aおよび環Aは独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、ピリジン-2,5-ジイル、またはピリジン-3,6-ジイルである。
 LおよびL2は独立して、水素またはフッ素であり、これらのうち少なくとも1つはフッ素であり、ZおよびZは独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 化合物(a)は、上述のように、2位または3位の水素がフッ素で置き換えられた1,4-フェニレンと、2位および3位の水素がフッ素で置き換えられた1,4-フェニレンとを有する。このような構造を有することで、小さな粘度、適切な光学異方性、適切な弾性定数K33、負に大きな誘電率異方性、および他の液晶性化合物との優れた相溶性を示す。特に、ネマチック相の上限温度が低下せず、しかも、粘度が大きくなることなく、誘電率異方性が負に大きい点で特に優れている。
 式中、R、およびRは、水素、炭素数1~10のアルキル、または炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり、例えば、CH3(CH23-、-CH2-、CH3(CH22O-、CH3-O-(CH22-、CH3-O-CH2-O-、H2C=CH-(CH22-、CH3-CH=CH-CH2-またはCH3-CH=CH-O-などである。
 しかし、化合物の安定性を考慮すると、CH3-O-O-CH2-などの酸素と酸素とが隣接した基やCH3-CH=CH-CH=CH-などの二重結合部位が隣接した基は好ましくない。
 RおよびRとしては、より具体的には、水素、アルキル、アルコキシ、アルコキシアルキル、アルケニルおよびアルケニルオキシが挙げられる。
 これら基中の炭素-炭素結合の鎖は、直鎖であることが好ましい。炭素-炭素結合の鎖が、直鎖であると、液晶相の温度範囲を広くすることができ、粘度を小さくすることができる。また、R、およびRのいずれかが光学活性基である場合には、キラルドーパントとして有用であり、該化合物を液晶組成物に添加することにより、液晶表示素子に発生するリバース・ツイスト・ドメイン(Reverse twisted domain)を防止することができる。
 これらR、およびRとしては、アルキル、アルコキシ、アルコキシアルキルおよびアルケニルが好ましく、アルキル、アルコキシ、およびアルケニルがさらに好ましい。
 R、およびRがアルキル、アルコキシ、およびアルケニルである場合には、液晶性化合物の液晶相の温度範囲を広げることができる。
 アルケニルには、アルケニル中の二重結合の位置に依存して、-CH=CH-の好ましい立体配置がある。
 -CH=CHCH3、-CH=CHC25、-CH=CHC37、-CH=CHC49、-C24CH=CHCH3、-C24CH=CHC25などのように奇数位に二重結合を有するアルケニルでは、立体配置はトランス配置が好ましい。
 一方、-CH2CH=CHCH3、-CH2CH=CHC25、-CH2CH=CHC37などのように偶数位に二重結合を有するアルケニルでは、立体配置はシス配置が好ましい。上述のような好ましい立体配置を有するアルケニル化合物は、液晶相の温度範囲が広く、大きな弾性定数比K33/K11(K33:ベンド弾性定数、K11:スプレイ弾性定数)を有し、化合物の粘度を小さくすることができ、さらに、この液晶性化合物を液晶組成物に添加すると、ネマチック相の上限温度(TNI)を高くすることができる。
 アルキルの具体例としては、-CH3、-C25、-C37、-C49、-C511、-C613、-C715、-C817、-C919、および-C1021を挙げることができ;
アルコキシの具体例としては、-OCH3、-OC25、-OC37、-OC49、-OC511、-OC613、-OC715、-OC817、および-OC919を挙げることができ;
アルコキシアルキルの具体例としては、-CH2OCH3、-CH2OC25、-CH2OC37、-(CH22OCH3、-(CH22OC25、-(CH22OC37、-(CH23OCH3、-(CH24OCH3、および-(CH25OCH3を挙げることができ;
アルケニルの具体例としては、-CH=CH2、-CH=CHCH3、-CH2CH=CH2、-CH=CHC25、-CH2CH=CHCH3、-(CH22CH=CH2、-CH=CHC37、-CH2CH=CHC25、-(CH22CH=CHCH3、および-(CH23CH=CH2を挙げることができ;
アルケニルオキシの具体例としては、-OCH2CH=CH2、-OCH2CH=CHCH3、および-OCH2CH=CHC25を挙げることができる。
 よって、RおよびRの具体例の中でも、-CH3、-C25、-C37、-C49、-C511、-OCH3、-OC25、-OC37、-OC49、-OC511、-CH2OCH3、-(CH22OCH3、-(CH23OCH3、-CH2CH=CH2、-CH2CH=CHCH3、-(CH22CH=CH2、-CH2CH=CHC25、-(CH22CH=CHCH3、-(CH23CH=CH2、-(CH23CH=CHCH3、-(CH23CH=CHC25、-(CH23CH=CHC37、-OCH2CH=CH2、-OCH2CH=CHCH3、-OCH2CH=CHC25が好ましく、-CH3、-C25、-C37、-OCH3、-OC25、-OC37、-OC49、-(CH22CH=CH2、-(CH22CH=CHCH3、および-(CH22CH=CHC37がより好ましい。
 環Aおよび環Aは、1,4-フェニレン、トランス-1,4-シクロへキシレン、シクロヘキセン-1,4-ジイル、トランス-1,3-ジオキサン-2,5-ジイル、トランス-テトラヒドロピラン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイルであり、これらの環において水素はフッ素で置き換えられていてもよい。
 環A1および環Aとしては、1,4-フェニレン、トランス-1,4-シクロヘキシレン、シクロヘキセン-1,4-ジイル、トランス-1,3-ジオキサン-2,5-ジイル、トランス-テトラヒドロピラン-2,5-ジイルが好ましい。
 これら環の中でも、1,4-フェニレン、トランス-1,4-シクロへキシレン、がより好ましく、トランス-1,4-シクロヘキシレンが最も好ましい。
 中でも、これら環のうち少なくとも一つの環が、トランス-1,4-シクロヘキシレンであるときには、粘度を小さくすることができ、さらに、この液晶性化合物を液晶組成物に添加すると、ネマチック相の上限温度(TNI)を高くすることができる。
 LおよびL2はそれぞれ独立して水素原子またはフッ素原子を示すが、これらのうち少なくとも1つはフッ素原子である。
 LおよびLのうち、一方が水素で他方がフッ素であることが化合物の融点を下げることができるため好ましい。
 LおよびLのうち、両方がフッ素であることが化合物の誘電率異方性を負に大きくすることができるためより好ましい。
 ZおよびZは、単結合、-(CH22-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 ZおよびZが、単結合、-(CH22-、または-CH=CH-である場合は、化合物の粘度を小さくすることができるため好ましい。これらZおよびZの中でも、-COO-、または-OCO-である場合は、化合物のネマチック相の上限温度(TNI)を高くすることができるためより好ましい。さらに、-CH2O-、または-OCH2-である場合は、化合物の誘電率異方性を負に大きくすることができるためさらに好ましい。
化合物の安定性を考慮すると単結合、-(CH22-、-CH2O-および-OCH2-が好ましく、単結合および-(CH22-がさらに好ましい。
 ZおよびZが-CH=CH-の場合には、二重結合に対する他の基の立体配置は、トランス配置が好ましい。このような立体配置であることにより、この液晶性化合物の液晶相の温度範囲を広げることができ、さらに、この液晶性化合物を液晶組成物に添加すると、ネマチック相の上限温度(TNI)を高くすることができる。
 また、ZおよびZ中に-CH=CH-が含まれている場合には、液晶相の温度範囲を広げること、弾性定数比K33/K11(K33:ベンド弾性定数、K11:スプレイ弾性定数)を大きくすること、および化合物の粘度を小さくすることができ、さらに、この液晶性化合物を液晶組成物に添加したときにはネマチック相の上限温度(TNI)を高くすることができる。
 なお、化合物の物性に大きな差異がないので、液晶性化合物(a)は2H(重水素)、13Cなどの同位体を天然存在比の量より多く含んでもよい。
 これら液晶性化合物(a)では、R、R、環A、環A、ZおよびZを適宜選択することにより、誘電率異方性などの物性を所望の物性に調整することが可能である。
 化合物(a)の好ましい化合物の例として化合物(a-3)~(a-26)が挙げられる。
Figure JPOXMLDOC01-appb-I000019
 式(a-3)~(a-8)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり、ZおよびZは、単結合、-(CH22-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 化合物(a-3)~(a-8)物は、1,4-フェニレン基を持つため、熱や光に対する安定性を有し、ネマチック相の上限温度をより高く、適切な弾性定数K33を有するという観点でより好ましい。

Figure JPOXMLDOC01-appb-I000020
 式(a-9)~(a-14)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり、
およびZは、単結合、-(CH22-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 化合物(a-9)~(a-14)は、1,4-シクロへキシレン基を2つ持つため、熱や光に対する安定性を有し、液晶相の下限温度をより低く、ネマチック相の上限温度をより高く、適切な光学異方性および適切な弾性定数K33を有し、粘度を小さくできるという観点でより好ましい。
Figure JPOXMLDOC01-appb-I000021
式(a-15)~(a-26)において、RおよびR10は独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり、
およびZ10は、単結合、-(CH22-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
 化合物(a-15)~(a-26)では、1,4-シクロへキシレン基を化合物全体に対して非対称に持つため、熱や光に対する安定性を有し、液晶相の下限温度をより低く、適切な弾性定数K33を有し、粘度を小さくできるという観点でより好ましい。
 化合物(a-3)~(a-26)は、大きな負の誘電率異方性を有し、熱や光に対する安定性を有し、広い温度範囲でネマチック相となり、適切な光学異方性および適切な弾性定数K33を有する。このうち、Z~Z10が-CH=CH-である化合物は、液晶相の下限温度をより低く、ネマチック相の上限温度をほとんど下げることなく、粘度をより小さくできるという観点で好ましい。また、Z~Z10が-COO-、または-OCO-である化合物は化合物のネマチック相の上限温度を高くすることができるためより好ましい。また、Z~Z10が-(CH22-である化合物は、液晶相の下限温度をより低く、相溶性をより高く、粘度をより小さくできるという観点でさらに好ましい。さらに、Z~Z10が-CH2O-または-OCH2-である化合物は負の誘電率異方性を負により大きく、粘度をより小さくできるという観点で最も好ましい。
 液晶性化合物がこれら化合物(a-3)~(a-26)である場合には、負に大きな誘電率異方性を有し、他の液晶性化合物との相溶性が極めてよい。さらに、熱、光などに対する安定性を有し、粘度が小さく、大きな光学異方性、および適切な弾性定数K33を有している。また、この化合物(a)を含有する液晶組成物は、液晶表示素子が通常使用される条件下で安定であり、低い温度で保管してもこの化合物が結晶(またはスメクチック相)として析出することがない。
 したがって、化合物(a)は、PC、TN、STN、ECB、OCB、IPS、VA、PSAなどの表示モードの液晶表示素子に用いる液晶組成物に好適に適用することができ、IPS、VA、PSAなどの表示モードの液晶表示素子に用いる液晶組成物に、特に好適に適用することができる。
 〔化合物(a)の合成〕
 液晶性化合物(a)は、有機合成化学の合成手法を適切に組み合わせることにより合成することができる。出発物に目的の末端基、環、および結合基を導入する方法は、例えば、オーガニックシンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。
<結合基ZまたはZの形成>
 結合基ZまたはZ(Z~Z10も同様)を形成する方法の一例を示す。結合基を形成するスキームを以下示す。このスキームにおいて、MSG1またはMSG2は1価の有機基である。スキームで用いた複数のMSG1(またはMSG2)は、同一であってもよいし、または異なってもよい。化合物(1A)から(1E)は化合物(a)に相当する。
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
<2重結合の生成>
 一価の有機基MSG2を有する有機ハロゲン化合物(a1)とマグネシウムとを反応させ、グリニャール試薬を調製する。これら調製したグリニャール試薬あるいはリチウム塩と、アルデヒド誘導体(a2)とを反応させることにより、対応するアルコール誘導体を合成する。ついで、p-トルエンスルホン酸等の酸触媒を用いて、得られたアルコール誘導体の脱水反応を行うことにより、対応する化合物(1A)を合成することができる。
 有機ハロゲン化合物(a1)を、ブチルリチウム、もしくはマグネシウムで処理して得られた化合物を、N,N-ジメチルホルムアミド(DMF)などのホルムアミドと反応させて、アルデヒド誘導体(a3)を得る。ついで、得られたアルデヒド(a3)と、ホスホニウム塩(a4)をカリウムt-ブトキシド等の塩基で処理して得られるリンイリドとを反応させ、対応する2重結合を有する化合物(1A)を合成することができる。なお、この反応では、反応条件によってシス体が生成する場合もあるので、トランス体を得る必要がある場合には、必要に応じて公知の方法によりシス体をトランス体に異性化する。
<-(CH22-の生成>
 化合物(1A)を炭素担持パラジウム(Pd/C)のような触媒の存在下で水素化することにより、化合物(1B)を合成することができる。
<単結合の生成>
 有機ハロゲン化合物(a1)とマグネシウム、またはブチルリチウムとを反応させ、グリニャール試薬、またはリチウム塩を調製する。この調製したグリニャール試薬、またはリチウム塩とホウ酸トリメチルなどのホウ酸エステルを反応させ、塩酸などの酸で加水分解することによりジヒドロキシボラン誘導体(a5)を合成する。そのジヒドロキシボラン誘導体(a5)と有機ハロゲン化合物(a6)とを、例えば、炭酸塩水溶液とテトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh34)とからなる触媒の存在下で反応させることにより、化合物(1C)を合成することができる。
 また、一価の有機基MSG1を有する有機ハロゲン化合物(a6)にブチルリチウムを反応させ、さらに塩化亜鉛を反応させた後、得られた化合物を、例えば、ビストリフェニルホスフィンジクロロパラジウム(Pd(PPh32Cl2)触媒の存在下で化合物(a1)と反応させることにより、化合物(1C)を合成することもできる。
<-CH2O-または-OCH2-の生成>
 ジヒドロキシボラン誘導体(a5)を過酸化水素等の酸化剤により酸化し、アルコール誘導体(a7)を得る。別途、アルデヒド誘導体(a3)を水素化ホウ素ナトリウムなどの還元剤で還元してアルコール誘導体(a8)を得る。得られたアルコール誘導体(a8)を臭化水素酸等でハロゲン化して有機ハロゲン化合物(a9)を得る。このようにして得られたアルコール誘導体(a7)と有機ハロゲン化合物(a9)とを炭酸カリウムなどの存在下反応させることにより化合物(1D)を合成することができる。
<-COO-と-OCO-の生成 >
 化合物(a6)にn-ブチルリチウムを、続いて二酸化炭素を反応させてカルボン酸誘導体(a10)を得る。カルボン酸誘導体(a10)と、フェノール誘導体(a11)とをDDC(1,3-ジシクロヘキシルカルボジイミド)とDMAP(4-ジメチルアミノピリジン)の存在下で脱水させて-COO-を有する化合物(1E)を合成することができる。この方法によって-OCO-を有する化合物も合成することができる。
<-C≡C-の生成>
 ジクロロパラジウムとハロゲン化銅との触媒存在下で、化合物(a6)に2-メチル-3-ブチン-2-オールを反応させたのち、塩基性条件下で脱保護して化合物(a12)を得る。ジクロロパラジウムとハロゲン化銅との触媒存在下、化合物(a12)を化合物(a1)と反応させて、化合物(1F)を合成する。
<環Aまたは環Aの形成>
 1,4-フェニレン、トランス-1,4-シクロへキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、ピリジン-2,5-ジイル、ピリジン-3,6-ジイルなどの環に関しては出発物が市販されているか、または合成法がよく知られている。
〔化合物(a)の合成方法〕
 以下、液晶性化合物(a)、すなわち一般式(a)で示される液晶性化合物の合成例を示す。
Figure JPOXMLDOC01-appb-I000026
 まず、4-ヨード安息香酸エチル(b1)とジヒドロキシボラン誘導体(b2)とを炭酸カリウム、Pd/C等の触媒の存在下、反応させることにより化合物(b3)を得る。次いで、化合物(b3)を水素化リチウムアルミニウム等で還元して化合物(b4)を得る。ついで塩化チオニル等で塩素化することにより(b5)を得る。
別途、1,2-ジフルオロベンゼン(b6)とsec-BuLiとを反応させリチウム塩を調製する。このリチウム塩とカルボニル誘導体(b7)とを反応させて、アルコール誘導体(b8)を得る。p-トルエンスルホン酸等の酸触媒の存在下、得られたアルコール誘導体(b8)の脱水反応を行い、シクロヘキセン誘導体(b9)を得る。この化合物(b9)を、Pd/C等の触媒存在下、水素添加反応を行うことにより、化合物(b10)を得る。得られた化合物(b10)とs-ブチルリチウムとを反応させリチウム塩を調製する。このリチウム塩とトリメトキシボランとを反応させて、ジヒドロキシボラン誘導体(b11)を得る。得られた化合物(b11)と過酸化水素水とを反応させてフェノール誘導体(b12)を得る。
上述の操作で得られた化合物(b5)とフェノール誘導体(b12)とを炭酸カリウム等の塩基の存在下、エーテル化反応させることにより、本発明の化合物(a)の一例である(b13)を合成することができる。
〔液晶組成物〕
 以下、本発明の液晶組成物について説明をする。この液晶組成物の成分は、少なくとも一種の化合物(a)を含むことを特徴とするが、化合物(a)を2種以上含んでいてもよく、化合物(a)のみから構成されていてもよい。また本発明の液晶組成物を調製するときには、例えば、化合物(a)の誘電率異方性を考慮して成分を選択することもできる。成分を選択した液晶組成物は、粘度が低く、適切な負の誘電率異方性を有し、適切な弾性定数K33を有し、しきい値電圧が低く、さらに、ネマチック相の上限温度(ネマチック相-等方相の相転移温度)が高く、ネマチック相の下限温度が低い。
〔液晶組成物(1)〕
 本発明の液晶組成物は化合物(a)に加え、第二成分として式(e-1)~(e-3)で表される液晶性化合物(以下、それぞれ化合物(e-1)~(e-3)ともいう。)の群から選択された少なくとも1つの化合物をさらに含有する組成物が好ましい(以下、液晶組成物(1)ともいう。)。
Figure JPOXMLDOC01-appb-I000027
 式(e-1)~(e-3)中、Ra11、およびRb11は、独立して、炭素数1~10のアルキルであるが、アルキルにおいて、相隣接しない-CH2-は-O-で置き換えられていてもよく、相隣接しない-(CH22-は-CH=CH-で置き換えられていてもよく、水素はフッ素で置き換えられていてもよい。
 式(e-1)~(e-3)中、環A11、環A12、環A13、および環A14は、独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、ピリジン-2,5-ジイル、またはピリジン-3,6-ジイルである。
 式(e-1)~(e-3)中、Z11、Z12、およびZ13は、独立して、単結合、-CH2-CH2-、-CH=CH-、-C≡C-、-COO-、またはCH2O-である。
 化合物(a)に、第二成分を含有させることにより、その液晶組成物の粘度を小さくすることができ、ネマチック相の下限温度を低くすることができる。また、化合物(e-1)~(e-3)の誘電率異方性はほぼ0であるため、それを含む液晶組成物の誘電率異方性を0に近づくように調整することができる。
 化合物(e-1)または(e-2)は、それを含有する液晶組成物の粘度を小さく、電圧保持率を高くすることに有効な化合物である。さらに、化合物(e-3)は、それを含有する液晶組成物のネマチック相の上限温度を高くし、電圧保持率を高くすることに有効な化合物である。
 環A11、環A12、環A13、および環A14において、2つ以上の環がトランス-1,4-シクロヘキシレンの場合は、それを含有する液晶組成物のネマチック相の上限温度を高くすることができ、2つ以上の環が1,4-フェニレンの場合は、それを含有する組成物の光学異方性を大きくすることができる。
 第二成分の中でもより好ましい化合物は、式(2-1)~(2-74)で示される化合物である(以下、それぞれ化合物(2-1)~(2-74)ともいう。)。これらの化合物においてRa11、およびRb11は、化合物(e-1)~(e-3)の場合と同一の意味である。
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
 第二成分が化合物(2-1)~(2―74)である場合には、耐熱性、および耐光性に優れ、より高い比抵抗値を有し、ネマチック相の広い液晶組成物を調製することができる。
 特に、第一成分が、式(a-2)~(a-11)で表される化合物である化合物群から選択される少なくとも1つの化合物であり、第二成分が化合物(e-1)~(e-3)で表される化合物群から選択される少なくとも1つの化合物である液晶組成物(1)は、耐熱性、および耐光性により優れ、より幅広いネマチック相を有し、より電圧保持率が大きく、より粘度が小さく、そして、適切な弾性定数K33を示す。
 本発明の液晶組成物(1)中の第二成分の含有量は特に制限はないが、粘度を低くする観点からは含有量を多くすることが好ましい。ただし第二成分の含有量を多くすると液晶組成物のしきい値電圧が高くなる傾向にあるので、例えば、本発明の液晶組成物をVAモードの液晶素子に使用する場合には、第二成分の含有量は、液晶組成物(1)中に含まれる液晶性化合物の全重量に対して、40~95重量%の範囲であり、第一成分の含有量は、液晶組成物(1)中に含まれる液晶性化合物の全重量に対して、5~60重量%の範囲がより好ましい。
〔液晶組成物(2)〕
 本発明の液晶組成物としては、第一成分および第二成分に加えてさらに、第三成分として式(g-1)~(g-6)で表される液晶性化合物(以下、それぞれ化合物(g-1)~(g-6)ともいう。)の群から選択される少なくとも1つの化合物を含有させた液晶組成物も好ましい(以下、液晶組成物(2)ともいう。)。
Figure JPOXMLDOC01-appb-I000032
 式(g-1)~(g-6)中、Ra21、およびRb21は、独立して、水素、または炭素数1~10のアルキルであるが、アルキルにおいて、相隣接しない-CH2-は-O-で置き換えられていてもよく、相隣接しない-(CH22-は-CH=CH-で置き換えられていてもよく、水素はフッ素で置き換えられていてもよい。
 式(g-1)~(g-6)中、環A21、A22、およびA23は、独立して、トランス-1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイルである。
 式(g-1)~(g-6)中、Z21、Z22、およびZ23は、独立して、単結合、-CH2-CH2-、-CH=CH-、-C≡C-、-OCF2-、-CF2O-、-OCF2CH2CH2-、-CH2CH2CF2O-、-COO-、-OCO-、-OCH2-、または-CH2O-であり、Y1、Y2、Y3、およびY4は独立して、フッ素または塩素である。
 式(g-1)~(g-6)中、q、r、およびsは独立して、0、1、または2であるが、q+rは1または2であり、q+r+sは1、2、または3であり、tは0、1、または2である。
 qが2である時の2つ環A21は同じであっても、異なってもよく、2つのZ21は同じであっても、異なってもよい。
 rが2である時の2つ環A22は同じであっても、異なってもよく、2つのZ22は同じであっても、異なってもよい。
 sが2である時の2つ環A23は同じであっても、異なってもよく、2つのZ23は同じであっても、異なってもよい。
 第三成分をさらに含有する液晶組成物(2)は誘電率異方性が負に大きい。
 また、第三成分を含有させると、液晶組成物のネマチック相の温度範囲が広く、粘度が小さく、誘電率異方性が負に大きく、比抵抗値が大きな液晶組成物が得られ、さらにこれら物性が適切にバランスした液晶組成物が得られる。
 そして、第三成分の中でも、低粘性、耐熱性、および耐光性という観点からは、式(h-1)~(h-7)で表される化合物(以下、それぞれ化合物(h-1)~(h-7)ともいう。)の群から選択される少なくとも1つの化合物がより好ましい。
Figure JPOXMLDOC01-appb-I000033
 式(h-1)~(h-7)において、Ra22およびRb22は、独立して、炭素数1~8の直鎖アルキル、炭素数2~8の直鎖アルケニル、または炭素数1~7のアルコキシであり、Z24、Z25、およびZ26は、単結合、-CHCH-、-CHO-、-OCH-、-COO-、または-OCO-であり、Y、およびYは、共にフッ素、または一方がフッ素で他方が塩素である。
 例えば、化合物(h-1)および(h-2)は、それを含有する液晶組成物の粘度を小さくし、しきい値電圧値をより低くすることができ、ネマチック相の下限温度を低くすることができる。化合物(h-2)、(h-3)および(h-4)は、それを含有する液晶組成物のネマチック相の上限温度を下げることなく、しきい値電圧値を低くすることができる。
 化合物(h-3)および(h-6)は、光学異方性を大きくすることができ、化合物(h-4)および(h-7)は、光学異方性をより大きくすることができる。
化合物(h-5)、(h-6)および(h-7)は、それを含有する液晶組成物のネマチック相の下限温度を低くすることができる。
 特に、液晶組成物(2)の中でも、式(a-1)~(a-26)である化合物群から選択される少なくとも1つの化合物である第一成分と、式(e-1)~(e-3)からなる化合物群から選択される少なくとも1つの化合物である第二成分と、式(h-1)~(h-7)で表される化合物群から選択される少なくとも1つの化合物である第三成分を含有する液晶組成物は、耐熱性および耐光性に優れ、ネマチック相の温度範囲が広く、粘度が小さく、電圧保持率が高く、適切な光学異方性、適切な誘電率異方性、適切な弾性定数K33を示す。さらにこれら物性が適切にバランスした液晶組成物という点で好ましい。
 第三成分、すなわち化合物(g-1)~(g-6)の群の中でもより好ましい化合物は、化合物(3-1)~(3-118)である。これらの化合物においてRa22、およびRb22は独立して、炭素数1~8の直鎖アルキル、炭素数2~8の直鎖アルケニル、または炭素数1~7のアルコキシである。
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000037
 例えば、化合物(g-3)~(g-6)のような縮合環を有する化合物は、しきい値電圧値を低くすることができ、耐熱性、または耐光性といった観点から、化合物(3-119)~(3-144)が好ましい。これらの化合物においてRa22、およびRb22は、化合物(g-3)~(g-6)の場合と同一の意味である。
Figure JPOXMLDOC01-appb-I000038
 本発明の液晶組成物における第三成分の含有量に特に制限はないが、負の誘電率異方性の絶対値を小さくしないといった観点からは、含有量を多くすることが好ましい。
 本発明に係る液晶組成物(2)の第一成分、第二成分、および第三成分の含有割合は特に制限はされないが、液晶組成物(2)の全重量に基づいて、液晶性化合物(a)の含有割合が5~60重量%の範囲、第二成分の含有割合が20~75重量%の範囲、第三成分の含有割合が20~75重量%の範囲であることが好ましい。
 液晶組成物(2)の第一成分、第二成分、および第三成分の含有割合がこの範囲にある場合には、耐熱性、耐光性に優れ、ネマチック相の温度範囲が広く、粘度が小さく、電圧保持率が高く、適切な光学異方性、適切な誘電率異方性、適切な弾性定数K33を示す。さらにこれら物性がより適切にバランスした液晶組成物が得られる。
〔液晶組成物の態様等〕
 本発明に係る液晶組成物では、第一成分、第二成分、および必要に応じて添加する第三成分を構成する液晶性化合物に加えて、例えば液晶組成物の特性をさらに調整する目的で、さらに他の液晶性化合物を添加して使用する場合がある。また、例えばコストの観点から、本発明の液晶組成物では、第一成分、第二成分、および必要に応じて添加する第三成分を構成する液晶性化合物以外の液晶性化合物は添加せずに使用する場合もある。
 また本発明に係る液晶組成物には、さらに、光学活性化合物、色素、消泡剤、紫外線吸収剤、酸化防止剤、重合可能な化合物、重合開始剤等の添加物を添加してもよい。
 光学活性化合物を本発明に係る液晶組成物に添加した場合には、液晶にらせん構造を誘起して、ねじれ角を与えることなどができる。
 光学活性化合物として、公知のキラルド-プ剤を添加する。このキラルド-プ剤は液晶のらせん構造を誘起して必要なねじれ角を調整し、逆ねじれを防ぐといった効果を有する。キラルド-プ剤の例として、光学活性化合物(Op-1)~(Op-13)を挙げることができる。
Figure JPOXMLDOC01-appb-I000039
 色素を本発明に係る液晶組成物に添加した場合には、液晶組成物をGH(guest host)モードを有する液晶表示素子に適用することなどが可能となる。
 消泡剤を本発明に係る液晶組成物に添加した場合には、液晶組成物の運搬中、あるいは該液晶組成物から液晶表示素子を合成工程中で、発泡を抑制することなどが可能となる。
 紫外線吸収剤、あるいは酸化防止剤を本発明に係る液晶組成物に添加した場合には、液晶組成物や該液晶組成物を含む液晶表示素子の劣化を防止することなどが可能となる。例えば酸化防止剤は、液晶組成物を加熱したときに比抵抗の低下を抑制することが可能である。
 紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾエート系紫外線吸収剤、トリアゾール系紫外線吸収剤などを挙げることができる。
 ベンゾフェノン系紫外線吸収剤の具体例は、2-ヒドロキシ-4-n-オクトキシベンゾフェノンである。
 ベンゾエート系紫外線吸収剤の具体例は、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートである。
 トリアゾール系紫外線吸収剤の具体例は、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロキシフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾール、および2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾールである。
 酸化防止剤としては、フェノール系酸化防止剤、有機硫黄系酸化防止剤などを挙げることができる。
 特に、液晶組成物の物性を変化させずに酸化防止効果が高いという観点からは、式(I)で表される酸化防止剤が好ましい。
Figure JPOXMLDOC01-appb-I000040

 式(I)中、wは1から15の整数を示す。
 フェノール系酸化防止剤の具体例は、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジ-t-ブチル-4-プロピルフェノール、2,6-ジ-t-ブチル-4-ブチルフェノール、2,6-ジ-t-ブチル-4-ペンチルフェノール、2,6-ジ-t-ブチル-4-ヘキシルフェノール、2,6-ジ-t-ブチル-4-ヘプチルフェノール、2,6-ジ-t-ブチル-4-オクチルフェノール、2,6-ジ-t-ブチル-4-ノニルフェノール、2,6-ジ-t-ブチル-4-デシルフェノール、2,6-ジ-t-ブチル-4-ウンデシルフェノール、2,
6-ジ-t-ブチル-4-ドデシルフェノール、2,6-ジ-t-ブチル-4-トリデシルフェノール、2,6-ジ-t-ブチル-4-テトラデシルフェノール、2,6-ジ-t-ブチル-4-ペンタデシルフェノール、2,2’-メチレンビス(6-t-ブチルー4-メチルフェノール)、4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、2,6-ジ-t-ブチル-4-(2-オクタデシルオキシカルボニル)エチルフェノール、およびペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]である。
 有機硫黄系酸化防止剤の具体例は、ジラウリル-3,3’-チオプロピオネート、ジミリスチル-3,3’-チオプロピオネート、ジステアリル-3,3’-チオプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、および2-メルカプトベンズイミダゾールである。
 紫外線吸収剤、酸化防止剤などに代表される添加物の添加量は、本発明の目的を損なわず、かつ添加物を添加する目的を達成できる量の範囲で添加して用いることができる。
 例えば、紫外線吸収剤、あるいは酸化防止剤を添加する場合には、その添加割合は、本発明に係る液晶組成物の全重量に基づいて、通常10ppm~500ppmの範囲、好ましくは30~300ppmの範囲、より好ましくは40~200ppmの範囲である。
 なお、本発明に係る液晶組成物は、液晶組成物を構成する各化合物の合成工程、液晶組成物の調製工程等において混入する合成原料、副生成物、反応溶媒、合成触媒等の不純物を含んでいる場合もある。
 PSA(polymer sustained alignment)モードの素子に適合させるために重合可能な化合物が組成物に混合される。重合可能な化合物の好ましい例は、アクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)などの重合可能な基を有する化合物である。特に好ましい例は、アクリレート、またはメタクリレートの誘導体である。重合可能な化合物の好ましい割合は、その効果を得るために、0.05重量%以上であり、不良表示を防ぐために10重量%以下である。さらに好ましい割合は、0.1重量%から2重量%の範囲である。重合可能な化合物は、好ましくは光重合開始剤などの適切な開始剤存在下でUV照射などにより重合する。重合のための適切な条件、開始剤の適切なタイプ、および適切な量は、当業者には既知であり、文献に記載されている。例えば光開始剤であるIrgacure651(登録商標)、Irgacure184(登録商標)、またはDarocure1173(登録商標)(Ciba Geigy AG)がラジカル重合に対して適切である。重合可能な化合物は、好ましくは光重合開始剤を0.1重量%から5重量%の範囲で含む。特に好ましくは、光重合開始剤を1重量%から3重量%の範囲で含む
〔液晶組成物の調製方法〕
 本発明に係る液晶組成物は、例えば、各成分を構成する化合物が液体の場合には、それぞれの化合物を混合し振とうさせることにより、また固体を含む場合には、それぞれの化合物を混合し、加熱溶解によってお互い液体にしてから振とうさせることにより調製することができる。また、本発明に係る液晶組成物はその他の公知の方法により調製することも可能である。
〔液晶組成物の特性〕
 本発明に係る液晶組成物では、ネマチック相の上限温度を70℃以上とすること、ネマチック相の下限温度は-20℃以下とすることができ、ネマチック相の温度範囲が広い。したがって、この液晶組成物を含む液晶表示素子は広い温度領域で使用することが可能である。
 本発明に係る液晶組成物では、組成等を適宜調整することで、光学異方性を0.10~0.13の範囲、0.05~0.18の範囲とすることもできる。
 また、本発明に係る液晶組成物では、通常、-5.0~-2.0の範囲の誘電率異方性、好ましくは、-4.5~-2.5の範囲の誘電率異方性を有する液晶組成物を得ることができる。-4.5~-2.5の範囲の誘電率異方性を有する液晶組成物は、IPSモード、VAモード、またはPSAモードで動作する液晶表示素子として好適に使用することができる。
〔液晶表示素子〕
 本発明に係る液晶組成物は、PCモード、TNモード、STNモード、OCBモード、PSAモード等の動作モードを有し、AM方式で駆動する液晶表示素子だけでなく、PCモード、TNモード、STNモード、OCBモード、VAモード、IPSモード等の動作モードを有しパッシブマトリクス(PM)方式で駆動する液晶表示素子にも使用することができる。
 これらAM方式、およびPM方式の液晶表示素子は、反射型、透過型、半透過型、いずれの液晶ディスプレイ等にも適用ができる。
 また、本発明に係る液晶組成物は、導電剤を添加させた液晶組成物を用いたDS(dynamic scattering)モード素子や、液晶組成物をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)素子や、液晶組成物中に三次元の網目状高分子を形成させたPD(polymer dispersed)素子、例えばPN(polymer network)素子にも使用できる。
 中でも本発明に係る液晶組成物では、上述のような特性を有するので、VAモード、IPS、またはPSAモードなどの負の誘電率異方性を有する液晶組成物を利用した動作モードで駆動するAM方式の液晶表示素子に好適に用いることができ、特に、VAモードで駆動するAM方式の液晶表示素子に好適に用いることができる。
 なお、TNモード、VAモード等で駆動する液晶表示素子においては、電場の方向は、液晶層に対して垂直である。一方、IPSモード等で駆動する液晶表示素子においては、電場の方向は、液晶層に対して平行である。なお、VAモードで駆動する液晶表示素子の構造は、K. Ohmuro, S. Kataoka, T. Sasaki and Y. Koike, SID '97 Digest of Technical Papers, 28, 845 (1997)に報告されており、IPSモードで駆動する液晶表示素子の構造は、国際公開91/10936号パンフレット(ファミリー:US5576867)に報告されている。
 [実施例]
〔化合物(a)の実施例〕
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例によっては制限されない。なお特に断りのない限り、「%」は「重量%」を意味する。
 得られた化合物は、1H-NMR分析で得られる核磁気共鳴スペクトル、ガスクロマトグラフィー(GC)分析で得られるガスクロマトグラムなどにより同定したので、まず分析方法について説明をする。
1H-NMR分析
 測定装置は、DRX-500(ブルカーバイオスピン(株)社製)を用いた。測定は、実施例等で合成したサンプルを、CDCl3等のサンプルが可溶な重水素化溶媒に溶解し、室温で、500MHz、積算回数32回の条件で行った。なお、得られた核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、quinはクインテット、sexはセクステット、mはマルチプレット、brはブロードであることを意味する。また、化学シフトδ値のゼロ点の基準物質としてはテトラメチルシラン(TMS)を用いた。
GC分析
 測定装置は、島津製作所製のGC-14B型ガスクロマトグラフを用いた。カラムは、島津製作所製のキャピラリーカラムCBP1-M25-025(長さ25m、内径0.22mm、膜厚0.25μm);固定液相はジメチルポリシロキサン;無極性)を用いた。キャリアーガスとしてはヘリウムを用い、流量は1ml/分に調整した。試料気化室の温度を280℃、検出器(FID)部分の温度を300℃に設定した。
 試料はトルエンに溶解して、1重量%の溶液となるように調製し、得られた溶液1μlを試料気化室に注入した。
 記録計としては島津製作所製のC-R6A型Chromatopac、またはその同等品を用いた。得られたガスクロマトグラムには、成分化合物に対応するピークの保持時間およびピークの面積値が示されている。
 なお、試料の希釈溶媒としては、例えば、クロロホルム、ヘキサンを用いてもよい。また、カラムとしては、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm)、Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty.Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)などを用いてもよい。
 ガスクロマトグラムにおけるピークの面積比は成分化合物の割合に相当する。一般には、分析サンプルの成分化合物の重量%は、分析サンプルの各ピークの面積%と完全に同一ではないが、本発明において上述したカラムを用いる場合には、実質的に補正係数は1であるので、分析サンプル中の成分化合物の重量%は、分析サンプル中の各ピークの面積%とほぼ対応している。成分の液晶性化合物における補正係数に大きな差異がないからである。ガスクロクロマトグラムにより液晶組成物中の液晶性化合物の組成比をより正確に求めるには、ガスクロマトグラムによる内部標準法を用いる。一定量正確に秤量された各液晶性化合物成分(被検成分)と基準となる液晶性化合物(基準物質)を同時にガスクロ測定して、得られた被検成分のピークと基準物質のピークとの面積比の相対強度をあらかじめ算出する。基準物質に対する各成分のピーク面積の相対強度を用いて補正すると、液晶組成物中の液晶性化合物の組成比をガスクロ分析からより正確に求めることができる。
〔化合物等の物性の測定試料〕
 化合物の物性を測定する試料としては、化合物そのものを試料とする場合、化合物を母液晶と混合して試料とする場合の2種類がある。
 化合物を母液晶と混合した試料を用いる後者の場合には、以下の方法で測定を行う。まず、得られた液晶性化合物15重量%と母液晶85重量%とを混合して試料を作製する。そして、得られた試料の測定値から、下記式に示す式に示す外挿法にしたがって、外挿値を計算する。この外挿値をこの化合物の物性値とする。
 〈外挿値〉=(100×〈試料の測定値〉-〈母液晶の重量%〉×〈母液晶の測定値〉
)/〈化合物の重量%〉
化合物と母液晶との割合がこの割合であっても、スメクチック相、または結晶が25℃で析出する場合には、化合物と母液晶との割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更をしていき、スメクチック相、または結晶が25℃で析出しなくなった組成で試料の物性を測定しこの式にしたがって外挿値を求めて、これを化合物の物性値とする。
 本測定に用いる母液晶としては様々な種類が存在するが、例えば、母液晶iの組成は以下のとおりである。
 母液晶i:
Figure JPOXMLDOC01-appb-I000041
 なお、液晶組成物の物性を測定する試料としては、液晶組成物そのものを用いた。
〔化合物等の物性の測定方法〕
 物性の測定は後述する測定方法で行った。これらの多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。また、測定に用いたTN素子またはVA素子には、TFTを取り付けなかった。
 測定値のうち、化合物単体そのものを試料として得られた値と、液晶組成物そのものを試料として得られた値は、そのままの値を実験データとして記載した。化合物を母液晶に混合し試料として得られた場合には、外挿法で得られた値を物性値とした。
相構造および転移温度(℃)
 以下(1)、および(2)の方法で測定を行った。
(1)偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に化合物を置き、3℃/分の速度で加熱しながら相状態とその変化を偏光顕微鏡で観察し、相の種類を特定した。
(2)パーキンエルマー社製走査熱量計DSC-7システム、またはDiamond DSCシステムを用いて、3℃/分速度で昇降温し、試料の相変化に伴う吸熱ピーク、または発熱ピークの開始点を外挿により求め(on set)、転移温度を決定した。
 以下、結晶はCと表した。結晶の区別がつく場合は、それぞれC1またはC2と表した。また、スメクチック相はS、ネマチック相はNと表した。液体(アイソトロピック)はIと表した。スメクチック相の中で、スメクチックB相、またはスメクチックA相の区別がつく場合は、それぞれSB、またはSAと表した。転移温度の表記として、例えば、「C 50.0 N 100.0 I」とは、結晶からネマチック相への転移温度(CN)が50.0℃であり、ネマチック相から液体への転移温度(NI)が100.0℃であることを示す。他の表記も同様である。
ネマチック相の上限温度(TNI;℃)
 偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に、試料(液晶組成物、または化合物と母液晶との混合物)を置き、1℃/分の速度で加熱しながら偏光顕微鏡を観察した。試料の一部がネマチック相から等方性液体に変化したときの温度をネマチック相の上限温度とした。以下、ネマチック相の上限温度を、単に「上限温度」と略すことがある。
低温相溶性
 母液晶と化合物とを、化合物が、20重量%、15重量%、10重量%、5重量%、3重量%、および1重量%の量となるように混合した試料を作製し、試料をガラス瓶に入れる。このガラス瓶を、-10℃または-20℃のフリーザー中に一定期間保管したあと、結晶もしくはスメクチック相が析出しているかどうか観察をした。
粘度(バルク粘度;η;20℃で測定;mPa・s)
 E型回転粘度計を用いて測定した。
粘度(回転粘度;γ1;25℃で測定;mPa・s)
 測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。2枚のガラス基板の間隔(セルギャップ)が20μmのVA素子に試料(液晶組成物、または化合物と母液晶との混合物)を入れた。この素子に30ボルトから50ボルトの範囲で1ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。なお、この計算に必要な誘電率異方性は、下記誘電率異方性で測定した値を用いた。
光学異方性(屈折率異方性;25℃で測定;Δn)
 測定は、25℃の温度下で、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料(液晶組成物、または化合物と母液晶との混合物)を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性(Δn)の値は、Δn=n∥-n⊥の式から計算した。
誘電率異方性(Δε;25℃で測定)
 誘電率異方性は以下の方法によって測定した。
 よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板から、間隔(セルギャップ)が20μmであるVA素子を組み立てた。
 同様の方法で、ガラス基板にポリイミドの配向膜を調製した。得られたガラス基板の配向膜にラビング処理をした後、2枚のガラス基板の間隔が9μmであり、ツイスト角が80度であるTN素子を組み立てた。
 得られたVA素子に試料(液晶組成物、または化合物と母液晶との混合物)を入れ、0.5V(1kHz、サイン波)を印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。
 また、得られたTN素子に試料(液晶組成物、または化合物と母液晶との混合物)を入れ、0.5V(1kHz、サイン波)を印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。
 誘電率異方性の値は、Δε=ε∥-ε⊥の式から計算した。
電圧保持率(VHR;25℃で測定;%)
 測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は6μmである。この素子は試料(液晶組成物、または化合物と母液晶との混合物)を入れたあと紫外線によって重合する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を、高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率(%)で表現したものである。
弾性定数(K11、K33;25℃で測定)
 測定には株式会社東陽テクニカ製のEC-1型弾性定数測定器を用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである垂直配向セルに試料を入れた。このセルに20ボルトから0ボルト電荷を印加し、静電容量および印加電圧を測定した。測定した静電容量(C)と印加電圧(V)の値を『液晶デバイスハンドブック』(日刊工業新聞社)、75頁にある式(2.98)、式(2.101)を用いてフィッティングし、式(2.100)から弾性定数の値を得た。
 4-エトキシ-2,3-ジフルオロ-4’-[2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェノキシメチル]-1,1’-ビフェニル(No.1123)の合成
Figure JPOXMLDOC01-appb-I000042
第1工程
 窒素雰囲気下、反応器へ4-ヨード安息香酸エチル(1) 25.0g、4-エトキシ-2,3-ジフルオロフェニルボロン酸(2) 20.1g、炭酸カリウム 25.0g、炭素担持パラジウム(5%Pd/CのNXタイプ(50%湿潤品);エヌ・イー・ケムキャット製)(以下、Pd/Cと表す。) 0.25g、トルエン 100ml、エタノール 100mlおよび水 100mlを加え、2時間加熱還流させた。反応液を25℃まで冷却後、水 500mlおよびトルエン 500mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、得られた残渣を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにエタノールからの再結晶により精製し、乾燥させ、4-エトキシ-2,3-ジフルオロ-4’-ビフェニル安息香酸エチル(3) 18.8gを得た。化合物(1)からの収率は67.9%であった。
第2工程
 水素化リチウムアルミニウム 1.4gをTHF 100mlに懸濁した。この懸濁液に化合物(3) 18.8gを、-20℃から-10℃の温度範囲で滴下し、さらにこの温度範囲で2時間攪拌した。GC分析により反応終了を確認後、氷冷下、反応混合物に、順次、酢酸エチル、飽和アンモニア水溶液を加えていき、析出物をセライト濾過により除去した。濾液を酢酸エチルにより抽出した。得られた有機層を、水、飽和食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。さらにヘプタンからの再結晶により精製し、乾燥させ、減圧下濃縮をして、(4-エトキシ-2,3-ジフルオロ-4’-ビフェニル)メタノール(4) 12.0gを得た。化合物(3)からの収率は74.0%であった。
第3工程
 窒素雰囲気下、反応器へ化合物(4) 12.0g、トルエン 50mlおよびピリジン 0.12mlを加え、45℃で1時間攪拌した。その後、塩化チオニル 3.6mlを45℃から55℃の温度範囲で加え、2時間加熱還流させた。反応液を25 ℃まで冷却後、水  200mlおよびトルエン 200mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水で2回、水で3回洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下で濃縮し、得られた残渣を、トルエンとヘプタンとの混合溶媒(体積比 トルエン:ヘプタン=1:1)を展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11からの再結晶により精製し、乾燥させ、4’-クロロメチル-4-エトキシ-2,3-ジフルオロ-ビフェニル(5) 9.4gを得た。化合物(4)からの収率は73.2%であった。
第4工程
 窒素雰囲気下の反応器へ、1,2-ジフルオロベンゼン(6) 100.0gとTHF 500mlとを加えて、-74℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 876.5mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。続いて4-ペンチルシクロヘキサノン(7)を177.0g含んだTHF 200ml溶液を-75℃から-70℃の温度範囲で滴下し、25℃に戻しつつ8時間攪拌した。得られた反応混合物を1N HCl水溶液 500mlと酢酸エチル 500mlとが入った容器中に添加して混合した後、静置して、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、4-ペンチル-(2,3-ジフルオロフェニル)シクロへキサノール(8) 215.1gを得た。得られた化合物(8)は黄色油状物であった。
第5工程
 化合物(8) 215.1g、p-トルエンスルホン酸 6.5g、およびトルエン 500mlを混合し、この混合物を、留出する水を抜きながら2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 500mlとトルエン 500mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を、ヘプタンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、乾燥させ、4-ペンチル-(2,3-ジフルオロフェニル)シクロへキセン(9) 186.6gを得た。化合物(8)からの収率は92.7%であった。
第6工程
 トルエン 150ml、ソルミックスA-11 150mlとの混合溶媒に化合物(9) 50.0gを溶解させ、さらにPd/Cを0.5g加え、水素雰囲気下、水素を吸収しなくなるまで室温で攪拌した。反応終了後、Pd/Cを除去して、さらに溶媒を留去して、得られた残渣をヘプタンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、さらにソルミックスA-11からの再結晶により精製し、乾燥させ、4-ペンチル-(2,3-ジフルオロフェニル)シクロへキサン(10) 47.0gを得た。化合物(9)からの収率は94.0%であった。
第7工程
 窒素雰囲気下の反応器へ、4-ペンチル-(2,3-ジフルオロフェニル)シクロへキサン(10) 20.0gとTHF 100mlとを加えて、-74 ℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 82.6mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。続いて、ホウ酸トリメチル 9.4gのTHF 50ml溶液に-74℃から-65℃の温度範囲で滴下し、25 ℃に戻しつつ、さらに8時間攪拌した。その後、反応混合物を1N塩酸 100ml氷水 500mlとが入った容器中に注ぎ込み、混合した。酢酸エチル 300mlを加えて、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和炭酸水素ナトリウム水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、2,3-ジフルオロ-4-(4-プロピルシクロヘキシル)-ボロン酸(11) 18.7gを得た。化合物(10)からの収率は80.3%であった。
第8工程
 窒素雰囲気下の反応器へ、化合物(11) 18.7gと酢酸 100mlとを加えて、室温下、31%過酸化水素水 14.5mlを25℃から30℃の温度範囲で滴下し、さらに2時間攪拌した。その後、反応混合物を亜硫酸水素ナトリウム水溶液100ml、酢酸エチル300mlが入った容器中に注ぎ込み、混合した。その後、静置して有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、2,3-ジフルオロ-4-(4-プロピルシクロヘキシル)フェノール(12) 17.4gを得た。化合物(11)からの収率は99.0%であった。
第9工程
 窒素雰囲気下、DMF 100mlに2,3-ジフルオロ-4-(4-プロピルシクロヘキシル)フェノール(12)3.0g、およびリン酸三カリウム(KPO) 7.5gを加え、70℃で攪拌した。そこへ化合物(5) 2.0gを加え、70℃で、7時間攪拌した。得られた反応混合物を30℃まで冷却し、ろ過によって固形物と分離した後、トルエン 100ml、および水 100mlを加え混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をヘプタンとトルエンの混合溶媒(体積比 ヘプタン:トルエン=1:2)を展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11とヘプタンの混合溶媒(体積比 ソルミックスA-11:ヘプタン=1:2)からの再結晶により精製し、乾燥させ、4-エトキシ-2,3-ジフルオロ-4’-[2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェノキシメチル]-1,1’-ビフェニル(No.1123)2.2gを得た。化合物(5)からの収率は42.5%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4-エトキシ-2,3-ジフルオロ-4’-[2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェノキシメチル]-1,1’-ビフェニル(No.1123)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);7.51(dd,4H),7.09(td,1H),6.84(td,1H),6.80(td,1H),6.73(td,1H),5.15(s,2H),4.16(q,2H),2.74(td,1H),1.88-1.80(m,4H),1.49(t,3H),1.44(td,2H),1.35-1.18(m,9H),1.11-1.01(m,2H),0.89(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.1123)の物性値は以下の通りであった。
転移温度 :C 130.1 N 197.5 I
NI=192.6 ℃,Δε=-7.40 ,Δn=0.207 .
 トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェノキシメチル]シクロヘキサン(No.943)の合成
Figure JPOXMLDOC01-appb-I000043
第1工程
 水素化リチウムアルミニウム 4.2gをTHF 300mlに懸濁した。この懸濁液に4-(4-エトキシ-2,3-ジフルオロフェニル)-シクロヘキサンカルボアルデヒド(13) 50.0gを、-20℃から-10℃の温度範囲で滴下し、さらにこの温度範囲で2時間攪拌した。GC分析により反応終了を確認後、氷冷下、反応混合物に、順次、酢酸エチル、飽和アンモニア水溶液を加えていき、析出物をセライト濾過により除去した。濾液を酢酸エチルにより抽出した。得られた有機層を、水、飽和食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。さらにヘプタンからの再結晶により精製し、乾燥させ、減圧下濃縮をして、4-ヒドロキシメチル-(4-エトキシ-2,3-ジフルオロ)シクロヘキサン(14) 47.6gを得た。化合物(13)からの収率は94.5%であった。
第2工程
 窒素雰囲気下、反応器へ化合物(14) 47.6g、トルエン 300mlおよびピリジン 0.5mlを加え、45℃で1時間攪拌した。その後、塩化チオニル 14.0mlを45℃から55℃の温度範囲で加え、2時間加熱還流させた。反応液を25 ℃まで冷却後、水  300mlおよびトルエン 300mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水で2回、水で3回洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下で濃縮し、得られた残渣を、トルエンとヘプタンとの混合溶媒(体積比 トルエン:ヘプタン=1:1)を展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11からの再結晶により精製し、乾燥させ、4-クロロメチル-(4-エトキシ-2,3-ジフルオロフェニル)-シクロヘキサン(15) 47.6gを得た。化合物(14)からの収率は93.6%であった。
第3工程
 窒素雰囲気下、DMF 100mlに4-エトキシ-2,3-ジフルオロフェノール(12) 2.4g、およびリン酸三カリウム(KPO) 7.4gを加え、70℃で攪拌した。そこへ化合物(15) 2.0gを加え、70℃で、7時間攪拌した。得られた反応混合物を30℃まで冷却し、ろ過によって固形物と分離した後、トルエン 100ml、および水 100mlを加え混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をヘプタンとトルエンの混合溶媒(体積比 ヘプタン:トルエン=1:2)を展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11とヘプタンの混合溶媒(体積比 ソルミックスA-11:ヘプタン=1:2)からの再結晶により精製し、乾燥させ、トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェノキシメチル]シクロヘキサン(No.943)2.3gを得た。化合物(15)からの収率は62.2%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェノキシメチル]シクロヘキサン(No.943)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);6.84(td,2H),6.67(td,2H),4.09(q,2H),3.85(d,2H),2.80(tt,1H),2.74(tt,1H),2.03(d,2H),1.96-1.81(m,7H),1.56-1.38(m,7H),1.36-1.18(m,11H),1.12-1.02(m,2H),0.89(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.943)の物性値は以下の通りであった。
転移温度 :C 101.8 N 204.0 I
NI=187.3 ℃,Δε=-6.15 ,Δn=0.134 .
 トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4’-ブトキシ1,1’-ビフェノキシメチル]シクロヘキサン(No.1041)の合成
Figure JPOXMLDOC01-appb-I000044
第1工程
 窒素雰囲気下、反応器へ4-ブロモブトキシベンゼン(16) 50.0g、2,3-ジフルオロフェニルボロン酸(17) 37.9g、炭酸カリウム 90.5g、Pd(PhP)Cl 4.6g、トルエン200ml、ソルミックスA-11 200mlおよび水 200mlを加え、2時間加熱還流させた。反応液を25℃まで冷却後、水 500mlおよびトルエン 500mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、得られた残渣を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11からの再結晶により精製し、乾燥させ、4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル(18) 44.7gを得た。化合物(16)からの収率は78.1%であった。
第2工程
 窒素雰囲気下の反応器へ、4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル(18) 20.0gとTHF 200mlとを加えて、-74 ℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 83.9mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。続いて、ホウ酸トリメチル 9.5gのTHF 50ml溶液に-74℃から-65℃の温度範囲で滴下し、25 ℃に戻しつつ、さらに8時間攪拌した。その後、反応混合物を1N塩酸 100ml氷水 500mlとが入った容器中に注ぎ込み、混合した。酢酸エチル 300mlを加えて、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和炭酸水素ナトリウム水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル-4-ボロン酸(19) 21.3gを得た。化合物(18)からの収率は91.3%であった。
第3工程
 窒素雰囲気下の反応器へ、化合物(19) 10.0gと酢酸 50mlとを加えて、室温下、31%過酸化水素水 4.5mlを25℃から30℃の温度範囲で滴下し、さらに2時間攪拌した。その後、反応混合物を亜硫酸水素ナトリウム水溶液100ml、酢酸エチル200mlが入った容器中に注ぎ込み、混合した。その後、静置して有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、4’-ブトキシ-4-ヒドロキシ-2,3-ジフルオロ-1,1’-ビフェニル(20) 8.9gを得た。化合物(19)からの収率は97.9%であった。
第4工程
 窒素雰囲気下、DMF 100mlに化合物(20) 2.3g、およびリン酸三カリウム(KPO) 7.4gを加え、70℃で攪拌した。そこへ化合物(15) 2.0gを加え、70℃で、7時間攪拌した。得られた反応混合物を30℃まで冷却し、ろ過によって固形物と分離した後、トルエン 100ml、および水 100mlを加え混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11と酢酸エチルの混合溶媒(体積比 ソルミックスA-11:酢酸エチル=2:1)からの再結晶により精製し、乾燥させ、トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4’-ブトキシ1,1’-ビフェノキシメチル]シクロヘキサン(No.1041)2.0gを得た。化合物(15)からの収率は54.4%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4’-ブトキシ-1,1’-ビフェノキシメチル]シクロヘキサン(No.1041)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);7.42(d,2H),7.07(td,1H),6.96(d,2H),6.86(td,1H),6.78(td,1H),6.68(td,1H),4.09(q,2H),4.00(t,2H),3.91(d,2H),2.82(tt,1H),2.07(m,2H),1.94(m,3H),1.79(quint,2H),1.55-1.48(m,4H),1,44(t,3H),1.34-1,23(m,2H),0.99(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.1041)の物性値は以下の通りであった。
転移温度 :C 124.4 N 223.8 I
NI=202.6℃,Δε=-6.44,Δn=0.167
 トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4-(4-ブトキシシクロヘキセニル)フェノキシメチル]シクロヘキサン(No.951)の合成
Figure JPOXMLDOC01-appb-I000045
第1工程
 窒素雰囲気下の反応器へ、1,2-ジフルオロベンゼン(21) 57.0gとTHF 1000mlとを加えて、-74℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 500.0mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。続いて4-ブトキシシクロヘキサノン(22)を85.1g含んだTHF 200ml溶液を-75℃から-70℃の温度範囲で滴下し、25℃に戻しつつ8時間攪拌した。得られた反応混合物を1N HCl水溶液 500mlと酢酸エチル 500mlとが入った容器中に添加して混合した後、静置して、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、4-ブトキシ-(2,3-ジフルオロフェニル)シクロへキサノール(23) 130.1gを得た。得られた化合物(23)は黄色油状物であった。
第2工程
 化合物(23) 130.1g、p-トルエンスルホン酸 1.3g、およびトルエン 500mlを混合し、この混合物を、留出する水を抜きながら2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 500mlとトルエン 500mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、乾燥させ、4-ブトキシ-(2,3-ジフルオロフェニル)シクロへキセン(24) 71.6gを得た。得られた化合物(24)は無色液体、沸点は131~132℃/3mmHgであり、化合物(6)からの収率は66.5%であった。
第3工程
 窒素雰囲気下の反応器へ、4-ブトキシ-(2,3-ジフルオロフェニル)シクロへキセン(24) 11.0gとTHF 200mlとを加えて、-74 ℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 50.0mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。続いて、ホウ酸トリメチル 5.2gのTHF 50ml溶液に-74℃から-65℃の温度範囲で滴下し、25 ℃に戻しつつ、さらに8時間攪拌した。その後、反応混合物を1N塩酸 100ml氷水 500mlとが入った容器中に注ぎ込み、混合した。酢酸エチル 300mlを加えて、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和炭酸水素ナトリウム水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、4-(4-ブトキシシクロへキセニル)-2,3-ジフルオロフェニル ボロン酸(25) 10.7gを得た。化合物(24)からの収率は83.6%であった。
第4工程
 窒素雰囲気下の反応器へ、化合物(25) 8.5gと酢酸 50mlとを加えて、室温下、31%過酸化水素水 4.9mlを25℃から30℃の温度範囲で滴下し、さらに2時間攪拌した。その後、反応混合物を亜硫酸水素ナトリウム水溶液100ml、酢酸エチル200mlが入った容器中に注ぎ込み、混合した。その後、静置して有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、4-(4-ブトキシシクロへキセニル)-2,3-ジフルオロフェノール (26) 2.8gを得た。化合物(25)からの収率は49.1%であった。
第5工程
 窒素雰囲気下、DMF 100mlに化合物(25) 2.8g、およびリン酸三カリウム(KPO) 7.4gを加え、70℃で攪拌した。そこへ化合物(15) 2.6gを加え、70℃で、7時間攪拌した。得られた反応混合物を30℃まで冷却し、ろ過によって固形物と分離した後、トルエン 100ml、および水 100mlを加え混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11と酢酸エチルの混合溶媒(体積比 ソルミックスA-11:酢酸エチル=2:1)からの再結晶により精製し、乾燥させ、トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4-(4-ブトキシシクロヘキセニル)フェノキシメチル]シクロヘキサン(No.951)1.6gを得た。化合物(15)からの収率は33.4%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、トランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4-(4-ブトキシシクロヘキセニル)フェノキシメチル]シクロヘキサン(No.951)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);6.89(td,1H),6.85(td,1H),6.68(td,1H),6.67(td,1H),5.82(m,1H),4.09(q,2H),3.86(d,2H),3.62(m,1H),3.51(m,2H),2.81(tt,1H),2.59-2.38(m,3H),2.23-2.14(m,1H),2.08-2.00(m,3H),1.96-1.84(m,3H),1.79-1.70(m,1H),1.62-1.34(m,9H),1.26(qd,2H),0.93(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.951)の物性値は以下の通りであった。
転移温度 :C 96.0 N 158.4 I
NI=147.9℃,Δε=-6.90,Δn=0.154
 2,3-ジフルオロ-4-エトキシ-[トランス-4-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)シクロヘキシルメチル]ベンゼン(No.3921)の合成
Figure JPOXMLDOC01-appb-I000046
第1工程
 窒素雰囲気下の反応器へ、4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル(18) 10.0gとTHF 100mlとを加えて、-74 ℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 46.0mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。その後、THF 150mlに溶解した1,4-ジオキサスピロ[4.5]デカン-8-オン(27)6.0gを、-74℃から-70℃の温度範囲でゆっくり滴下し、25℃に戻しつつ8時間攪拌した。得られた反応混合物を、0℃に冷却した3% 塩化アンモニウム水溶液 500mlとトルエン 300mlとが入った容器中に添加して混合した後、静置して、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、8-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)-1,4-ジオキサスピロ[4.5]デカ-8-オール(28) 15.9gを得た。得られた化合物(28)は黄色油状物であった。
第2工程
 化合物(28) 15.9g、p-トルエンスルホン酸 0.49g、エチレングリコール0.81g、およびトルエン 250mlを混合し、この混合物を、留出する水を抜きながら2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 200mlとトルエン 300mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。それを、トルエン 150ml、ソルミックスA-11 150mlとの混合溶媒に溶解させ、さらにPd/Cを0.15g加え、水素雰囲気下、水素を吸収しなくなるまで室温で攪拌した。反応終了後、Pd/Cを除去して、さらに溶媒を留去して、得られた残渣を、ヘプタンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、さらにソルミックスA-11からの再結晶により精製し、乾燥させ、8-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)-1,4-ジオキサスピロ[4.5]デカン(29) 10.6gを得た。得られた化合物(29)は黄色油状物であった。
第3工程
 化合物(29) 10.6g、87%蟻酸 20ml、およびトルエン 200mlを混合し、この混合物を、2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 200mlとトルエン 300mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、さらにヘプタンからの再結晶により精製し、乾燥させ、1-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)-シクロヘキサン-4-オン(30)6.6gを得た。化合物(29)からの収率は69.9%であった。
第4工程
 窒素雰囲気下、良く乾燥させたメトキシメチルトリフェニルホスホニウムクロリド 7.6gとTHF 100mlを混合し、-30℃まで冷却した。その後、カリウムt-ブトキシド(t-BuOK) 2.5gを-30℃~-20℃の温度範囲で、2回に分けて投入した。-20℃で30分攪拌した後、THF 100mlに溶解した化合物(29) 6.6gを-30~-20℃の温度範囲で滴下した。-10℃で30分攪拌した後、反応液を水 200mlとトルエン 200mlの混合液へ注ぎ込み、混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し得られた残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。得られた溶離液を減圧下、濃縮し、1-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)-4-メトキシメチレンシクロヘキサン(31)6.6gを得た。化合物(30)からの収率は92.7%であった。
第5工程
 化合物(31) 6.6g、87%蟻酸 8.0g、およびトルエン 100mlを混合し、この混合物を、2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 100mlとトルエン 200mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、淡黄色固体 6.3gを得た。この残渣をトルエン50mlに溶解し、7℃に冷却した95%水酸化ナトリウム 0.5gとソルミックスA-11 32mlの混合液へ添加し、10℃で2時間攪拌した。その後、2N 水酸化ナトリウム水溶液 12.8mlを添加し、5℃で2時間攪拌した。得られた反応液を水 200mlとトルエン 200mlの混合液へ注ぎ込み、混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣を濃縮し、トルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、乾燥させ、1-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)-シクロヘキサンカルボアルデヒド(32)6.3gを得た。化合物(31)からの収率は99.1%であった。
第6工程
 水素化リチウムアルミニウム 0.4gをTHF 300mlに懸濁した。この懸濁液に化合物(32) 6.4gを、-20℃から-10℃の温度範囲で滴下し、さらにこの温度範囲で2時間攪拌した。GC分析により反応終了を確認後、氷冷下、反応混合物に、順次、酢酸エチル、飽和アンモニア水溶液を加えていき、析出物をセライト濾過により除去した。濾液を酢酸エチルにより抽出した。得られた有機層を、水、飽和食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。さらにヘプタンからの再結晶により精製し、乾燥させ、減圧下濃縮をして、4-ヒドロキシメチル-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)シクロヘキサン(33) 5.9gを得た。化合物(32)からの収率は91.8%であった。
第7工程
 窒素雰囲気下、反応器へ化合物(33) 5.9g、トルエン 100mlおよびピリジン 0.5mlを加え、45℃で1時間攪拌した。その後、塩化チオニル 1.4mlを45℃から55℃の温度範囲で加え、2時間加熱還流させた。反応液を25 ℃まで冷却後、水  200mlおよびトルエン 200mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水で2回、水で3回洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下で濃縮し、得られた残渣を、トルエンとヘプタンとの混合溶媒(体積比 トルエン:ヘプタン=1:1)を展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11からの再結晶により精製し、乾燥させ、4-クロロメチル-(4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェニル)-シクロヘキサン(34) 4.9gを得た。化合物(31)からの収率は78.5%であった。
第8工程
 窒素雰囲気下、DMF 100mlに4-エトキシ-2,3-ジフルオロフェノール(35) 0.96g、およびリン酸三カリウム(KPO) 7.4gを加え、70℃で攪拌した。そこへ化合物(34) 2.0gを加え、70℃で、7時間攪拌した。得られた反応混合物を30℃まで冷却し、ろ過によって固形物と分離した後、トルエン 100ml、および水 100mlを加え混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11と酢酸エチルの混合溶媒(体積比 ソルミックスA-11:酢酸エチル=2:1)からの再結晶により精製し、乾燥させ、トランス-4-(4-エトキシ-2,3-ジフルオロフェニル)-4-[4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェノキシメチル]シクロヘキサン(No.3921)1.4gを得た。化合物(15)からの収率は50.7%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、トランス-4-(4-エトキシ-2,3-ジフルオロフェニル)-4-[4’-ブトキシ-2,3-ジフルオロ-1,1’-ビフェノキシメチル]シクロヘキサン(No.3921)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);7.46(d,1H),7.11(t,1H),7.01(t,1H),6.97(d,2H),6.64(m,2H),4.06(q,2H),4.01(t,2H),3.84(d,2H),2.92(tt,1H),2.10-2.03(m,2H),2.03-1.87(m,3H),1.79(quint,2H),1.63-1.46(m,5H),1.43(t,3H),1.29(qd,2H),0,99(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.3921)の物性値は以下の通りであった。
転移温度 :C 85.4 C 96.2 N 228.4 I
NI=204.6℃,Δε=-6.93,Δn=0.217
 2,3-ジフルオロ-4-エトキシ-[トランス-4-{(トランス-4-ペンチルシクロヘキシル)-2,3-ジフルオロフェニル}シクロヘキシルメチル]ベンゼン(No.3823)の合成
Figure JPOXMLDOC01-appb-I000047
第1工程
 窒素雰囲気下の反応器へ、4-ペンチル-(2,3-ジフルオロフェニル)シクロへキサン(10) 10.0gとTHF 100mlとを加えて、-74 ℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 45.0mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。その後、THF 150mlに溶解した1,4-ジオキサスピロ[4.5]デカン-8-オン(26)5.9gを、-74℃から-70℃の温度範囲でゆっくり滴下し、25℃に戻しつつ8時間攪拌した。得られた反応混合物を、0℃に冷却した3% 塩化アンモニウム水溶液 500mlとトルエン 300mlとが入った容器中に添加して混合した後、静置して、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、8-[4-ペンチル-(2,3-ジフルオロフェニル)シクロへキシル]-1,4-ジオキサスピロ[4.5]デカ-8-オール(36) 15.7gを得た。得られた化合物(36)は黄色油状物であった。
第2工程
 化合物(36) 15.7g、p-トルエンスルホン酸 0.47g、エチレングリコール0.79g、およびトルエン 200mlを混合し、この混合物を、留出する水を抜きながら2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 200mlとトルエン 300mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。それを、トルエン 150ml、ソルミックスA-11 150mlとの混合溶媒に溶解させ、さらにPd/Cを0.16g加え、水素雰囲気下、水素を吸収しなくなるまで室温で攪拌した。反応終了後、Pd/Cを除去して、さらに溶媒を留去して、得られた残渣を、ヘプタンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、さらにソルミックスA-11からの再結晶により精製し、乾燥させ、8-[4-ペンチル-(2,3-ジフルオロフェニル)シクロへキシル]-1,4-ジオキサスピロ[4.5]デカン(37) 13.2gを得た。化合物(36)からの収率は87.8%であった。
第3工程
 化合物(37) 13.2g、87%蟻酸 15ml、およびトルエン 100mlを混合し、この混合物を、2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 200mlとトルエン 300mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、さらにヘプタンからの再結晶により精製し、乾燥させ、1-[4-ペンチル-(2,3-ジフルオロフェニル)シクロへキシル]-シクロヘキサン-4-オン(38)7.6gを得た。化合物(37)からの収率は64.6%であった。
第4工程
 窒素雰囲気下、良く乾燥させたメトキシメチルトリフェニルホスホニウムクロリド 8.6gとTHF 100mlを混合し、-30℃まで冷却した。その後、カリウムt-ブトキシド(t-BuOK) 2.8gを-30℃~-20℃の温度範囲で、2回に分けて投入した。-20℃で30分攪拌した後、THF 100mlに溶解した化合物(38) 7.6gを-30~-20℃の温度範囲で滴下した。-10℃で30分攪拌した後、反応液を水 200mlとトルエン 200mlの混合液へ注ぎ込み、混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し得られた残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。得られた溶離液を減圧下、濃縮し、1-[4-ペンチル-(2,3-ジフルオロフェニル)シクロへキシル]-4-メトキシメチレンシクロヘキサン(39)8.1gを得た。化合物(38)からの収率は99.0%であった。
第5工程
 化合物(39) 8.1g、87%蟻酸 9.5g、およびトルエン 100mlを混合し、この混合物を、2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 100mlとトルエン 200mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、白色固体 を得た。この残渣をトルエン50mlに溶解し、7℃に冷却した95%水酸化ナトリウム 0.5gとソルミックスA-11 32mlの混合液へ添加し、10℃で2時間攪拌した。その後、2N 水酸化ナトリウム水溶液 16mlを添加し、5℃で2時間攪拌した。得られた反応液を水 200mlとトルエン 200mlの混合液へ注ぎ込み、混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣を濃縮し、トルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、乾燥させ、1-[4-ペンチル-(2,3-ジフルオロフェニル)シクロへキシル]-シクロヘキサンカルボアルデヒド(40)7.5gを得た。化合物(39)からの収率は97.1%であった。
第6工程
 水素化リチウムアルミニウム 0.45gをTHF 100mlに懸濁した。この懸濁液にTHF 100mlに溶解した化合物(40) 7.5gを、-20℃から-10℃の温度範囲で滴下し、さらにこの温度範囲で2時間攪拌した。GC分析により反応終了を確認後、氷冷下、反応混合物に、順次、酢酸エチル、飽和アンモニア水溶液を加えていき、析出物をセライト濾過により除去した。濾液を酢酸エチルにより抽出した。得られた有機層を、水、飽和食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。さらにヘプタンからの再結晶により精製し、乾燥させ、減圧下濃縮をして、4-ヒドロキシメチル-[4-ペンチル-(2,3-ジフルオロフェニル)シクロへキシル]-シクロヘキサン(41)7.4gを得た。化合物(40)からの収率は98.1%であった。
第7工程
 窒素雰囲気下、反応器へ化合物(41) 7.4g、トルエン 100mlおよびピリジン 0.5mlを加え、45℃で1時間攪拌した。その後、塩化チオニル 1.7mlを45℃から55℃の温度範囲で加え、2時間加熱還流させた。反応液を25 ℃まで冷却後、水  200mlおよびトルエン 200mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水で2回、水で3回洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下で濃縮し、得られた残渣を、ヘプタンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、乾燥させ、4-クロロメチル-[4-ペンチル-(2,3-ジフルオロフェニル)シクロへキシル]-シクロヘキサン(42) 7.3gを得た。化合物(41)からの収率は94.1%であった。
第8工程
 窒素雰囲気下、DMF 100mlに4-エトキシ-2,3-ジフルオロフェノール(34) 0.96g、およびリン酸三カリウム(KPO) 7.4gを加え、70℃で攪拌した。そこへ化合物(41) 2.0gを加え、70℃で、7時間攪拌した。得られた反応混合物を30℃まで冷却し、ろ過によって固形物と分離した後、トルエン 100ml、および水 100mlを加え混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11と酢酸エチルの混合溶媒(体積比 ソルミックスA-11:酢酸エチル=2:1)からの再結晶により精製し、乾燥させ、2,3-ジフルオロ-4-エトキシ-[トランス-4-{(トランス-4-ペンチルシクロヘキシル)-2,3-ジフルオロフェニル}シクロヘキシルメチル]ベンゼン(No.3823)1.8gを得た。化合物(42)からの収率は65.3%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、2,3-ジフルオロ-4-エトキシ-[トランス-4-{(トランス-4-ペンチルシクロヘキシル)-2,3-ジフルオロフェニル}シクロヘキシルメチル]ベンゼン(No.3823)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);6.88(m,2H),6.62(m,2H),4.06(q,2H),3.83(d,2H),2.86(tt,1H),2.79(tt,1H),2.04(m,2H),1.93(m,2H),1.85(m,5H),1.59-1.38(m,7H),1.36-1.27(m,11H),1.04(m,2H),0.89(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.3823)の物性値は以下の通りであった。
転移温度 :C -33.1 C 91.5 N 209.3 I
NI=179.3℃,Δε=-6.10,Δn=0.134
 4-エトキシ-2,3-ジフルオロ-1,1'-ビフェニル安息香酸-トランス-4-ペンチルシクロヘキシル-2,3-ジフルオロフェニル エステル(No.1843)の合成
Figure JPOXMLDOC01-appb-I000048
第1工程
 化合物(3)29.1g、水酸化ナトリウム11.4g、ソルミックスA-11 100ml、水100mlを混合し、この混合物を、2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に6N 塩酸水溶液 100mlとトルエン 200mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥させ、4-エトキシ-2,3-ジフルオロ-4’-ビフェニル安息香酸(44)13.0gを得た。化合物(3)からの収率は49.2%であった。
第2工程
窒素雰囲気下、化合物(44) 1.97g、2,3-ジフルオロ-4-(4-プロピルシクロヘキシル)フェノール(12) 2.0g、1,3-ジシクロカルボジイミド(DCC) 1.5g、および4-ジメチルアミノピリジン(DMAP) 0.09gをトルエン100ml中に加え、25℃で20時間攪拌した。GC分析により反応が終了していることを確認後、トルエン100mlおよび水 100mlを加え、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタンとTHFの混合溶媒(体積比 ヘプタン:THF=2:1)からの再結晶により精製し、乾燥させ、4-エトキシ-2,3-ジフルオロ-1,1'-ビフェニル安息香酸-トランス-4-ペンチルシクロヘキシル-2,3-ジフルオロフェニル エステル(No.1843 )2.65gを得た。化合物(12)からの収率は69.0%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4-エトキシ-2,3-ジフルオロ-1,1'-ビフェニル安息香酸-トランス-4-ペンチルシクロヘキシル-2,3-ジフルオロフェニル エステル(No.1843)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);8.26(d,2H),7.66(d,2H),7.16(td,1H),7.03(td,1H),6.99(td,1H),6.84(td,1H),4.18(q,2H),2.85(tt,1H),1.89(m,4H),1.53-1.43(m,5H),1.37-1.19(m,9H),1.14-1.04(m,2H),0.90(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した外挿値とした、化合物(No.1843)の物性値は以下の通りであった。
転移温度 :C 90.9 N 304.5 I
NI=247.9℃,Δε=-5.82,Δn=0.227
 トランス-(4-エトキシ-2,3-ジフルオロフェニル)シクロヘキシル安息香酸-トランス-4-ペンチルシクロヘキシル-2,3-ジフルオロフェニル エステル(No.1663)の合成
Figure JPOXMLDOC01-appb-I000049
第1工程
 化合物(13)10.0g、アセトン50mlを混合し、この混合物を、35℃で30分攪拌した。この混合物にJones試薬(8N)を4.7mlを30~40℃の温度範囲で加えた後、35℃で2時間攪拌させた。反応混合物を30℃まで冷却した後、得られた液にトルエン 200mlと水200mlを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水、チオ硫酸ナトリウム水溶液、および水で洗浄し、無水硫酸マグネシウムで乾燥させ、4-エトキシ-2,3-ジフルオロ-(トランス-4-シクロヘキシル)-カルボン酸(45)8.8gを得た。化合物(13)からの収率は83.1%であった。
第2工程
 窒素雰囲気下、化合物(45) 1.0g、2,3-ジフルオロ-4-(4-プロピルシ クロヘキシル)フェノール(12) 1.0g、1,3-ジシクロカルボジイミド(DCC) 0.75g、および4-ジメチルアミノピリジン(DMAP) 0.04gをトルエン100ml中に加え、25℃で20時間攪拌した。GC分析により反応が終了していることを確認後、トルエン100mlおよび水 100mlを加え、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタンとTHFの混合溶媒(体積比 ヘプタン:THF=2:1)からの再結晶により精製し、乾燥させ、トランス-(4-エトキシ-2,3-ジフルオロフェニル)シクロヘキシル安息香酸-トランス-4-ペンチルシクロヘキシル-2,3-ジフルオロフェニル エステル(No.1663 )1.39gを得た。化合物(12)からの収率は71.5%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、トランス-(4-エトキシ-2,3-ジフルオロフェニル)シクロヘキシル安息香酸-トランス-4-ペンチルシクロヘキシル-2,3-ジフルオロフェニル エステル(No.1663)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);6.88(m,2H),6.62(m,2H),4.06(q,2H),3.83(d,2H),2.86(tt,1H),2.79(tt,1H),2.04(m,2H),1.93(m,2H),1.85(m,5H),1.59-1.38(m,7H),1.36-1.27(m,11H),1.04(m,2H),0.89(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.1663)の物性値は以下の通りであった。
転移温度 :C 92.6 N 289.4 I
NI=219.9℃,Δε=-7.37,Δn=0.140
2-(4-((トランス-4-(4-エトキシ-2,3-ジフルオロフェニル)シクロヘキシル)メトキシ)-2,3-ジフルオロフェニル)-5-ペンチル-1,3-ジオキサン(No.940)の合成
Figure JPOXMLDOC01-appb-I000050
第1工程
 窒素雰囲気下、DMF 200mlに2,3-ジフルオロフェノール(46) 13.8g、およびリン酸三カリウム(KPO) 73.4gを加え、70℃で攪拌した。そこへ化合物(15) 20.0gを加え、70℃で、7時間攪拌した。得られた反応混合物を30℃まで冷却し、ろ過によって固形物と分離した後、トルエン 300ml、および水 300mlを加え混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA-11と酢酸エチルの混合溶媒(体積比 ソルミックスA-11:酢酸エチル=2:1)からの再結晶により精製し、乾燥させ、2,3-ジフルオロ-4-エトキシ-[トランス-4-(2,3-ジフルオロフェノキシメチル)シクロヘキシル]ベンゼン(47)19.8gを得た。化合物(15)からの収率は74.8%であった。
第2工程
 窒素雰囲気下の反応器へ、化合物(47) 18.1gとTHF 200mlとを加えて、-74 ℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 52.1mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。その後、THF 150mlに溶解したDMF 3.8gを、-74℃から-70℃の温度範囲でゆっくり滴下し、25℃に戻しつつ8時間攪拌した。得られた反応混合物を、0℃に冷却した3% 塩化アンモニウム水溶液 300mlとトルエン 200mlとが入った容器中に添加して混合した後、静置して、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、得られた残渣をTHFとヘプタンの混合溶媒(体積比 THF:ヘプタン=1:5)からの再結晶により精製し、乾燥させ、2,3-ジフルオロ-4-エトキシ-[トランス-4-(2,3-ジフルオロフェノキシメチル)シクロヘキシル]ベンズアルデヒド(48)16.0gを得た。化合物(47)からの収率は82.4%であった。
第3工程
 化合物(48) 3.0g、2-ペンチルプロパン-1,3-ジオール 1.6g、p-トルエンスルホン酸 0.02g、およびトルエン 100mlを混合し、この混合物を、2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 100mlとトルエン 100mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。その後、減圧下、溶媒を留去し、得られた残渣をTHFとヘプタンの混合溶媒(体積比 THF:ヘプタン=1:5)からの再結晶により精製し、乾燥させ、2-(4-((トランス-4-(4-エトキシ-2,3-ジフルオロフェニル)シクロヘキシル)メトキシ)-2,3-ジフルオロフェニル)-5-ペンチル-1,3-ジオキサン(No.940) 1.9gを得た。化合物(48)からの収率は48.3%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、2-(4-((トランス-4-(4-エトキシ-2,3-ジフルオロフェニル)シクロヘキシル)メトキシ)-2,3-ジフルオロフェニル)-5-ペンチル-1,3-ジオキサン(No.940)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);7.28(m,2H),6.84(t,1H),6.74(t,1H),6.67(t,1H),5.63(s,1H),4.21(dd,2H),4.12(q,2H),3.88(d,2H),3.54(t,2H),2.80(tt,1H),2.12(m,1H),2.02(m,2H),1.91(m,3H),1.55-1.48(m,2H),1.44(t,3H),1.36-1.20(m,8H),1.10(m,2H),0.89(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.940)の物性値は以下の通りであった。
転移温度 :C 102.5 N 185.8 I
NI=174.6℃,Δε=-3.69,Δn=0.137
1-(4-(2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェニル)シクロヘキサ-3-エニル)-4-エトキシ-2,3-ジフルオロベンゼン(No.12)の合成
Figure JPOXMLDOC01-appb-I000051
第1工程
 窒素雰囲気下の反応器へ、4-ペンチル-(2,3-ジフルオロフェニル)シクロへキサン(10) 5.0gとTHF 100mlとを加えて、-74 ℃まで冷却した。そこへ、1.00M sec-ブチルリチウム,n-ヘキサン、シクロヘキサン溶液 23.0mlを-74℃から-70℃の温度範囲で滴下し、さらに2時間攪拌した。その後、THF 150mlに溶解した1-(4-エトキシ-2,3-ジフルオロフェニル)-シクロヘキサン-4-オン(50)4.8gを、-74℃から-70℃の温度範囲でゆっくり滴下し、25℃に戻しつつ8時間攪拌した。得られた反応混合物を、0℃に冷却した3% 塩化アンモニウム水溶液 500mlとトルエン 300mlとが入った容器中に添加して混合した後、静置して、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、1-(2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェニル)-4-(4-エトキシ-2,3-ジフルオロフェニル)シクロヘキサノール(51) 9.7gを得た。得られた化合物(51)は黄色固形物であった。
第2工程
 化合物(51) 9.7g、p-トルエンスルホン酸 0.15g、およびトルエン 200mlを混合し、この混合物を、留出する水を抜きながら2時間加熱還流させた。反応混合物を30℃まで冷却した後、得られた液に水 200mlとトルエン 300mlとを加え混合した後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、飽和重曹水、および水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を、ヘプタンとトルエンの混合溶媒(体積比 ヘプタン:トルエン=2:3)を展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。溶媒を留去して、得られた残渣を、トルエンを展開溶媒とし、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、さらにソルミックスA-11と酢酸エチルの混合溶媒(体積比 ソルミックスA-11:酢酸エチル=2:1)からの再結晶により精製し、乾燥させ、1-(4-(2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェニル)シクロヘキサ-3-エニル)-4-エトキシ-2,3-ジフルオロベンゼン(No.12) 4.7gを得た。化合物(10)からの収率は49.8%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、1-(4-(2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェニル)シクロヘキサ-3-エニル)-4-エトキシ-2,3-ジフルオロベンゼン(No.12)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);6.98-6.88(m,3H),6.70(t,1H),6.02(m,1H),4.11(q,2H),3.20(m,1H),2.82(tt,1H),2.65-2.40(m,3H),2.36-2.27(m,1H),2.05-2.00(m,1H),2.00-1.84(m,5H),1.55-1.42(m,5H),1.38-1.20(m,9H),1.14-1.03(m,2H),0.90(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.12)の物性値は以下の通りであった。
転移温度 :C 83.1 N 218.4 I
NI=184.6℃,Δε=-6.46,Δn=0.140
1-(4-(2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェニル)シクロヘキシル)-4-エトキシ-2,3-ジフルオロベンゼン(No.13)の合成
Figure JPOXMLDOC01-appb-I000052
第1工程
 トルエン 150ml、ソルミックスA-11 150mlとの混合溶媒に化合物(No.832) 3.5gを溶解させ、さらにラネーニッケルを0.35g加え、水素雰囲気下、水素を吸収しなくなるまで室温で攪拌した。反応終了後、ラネーニッケルを除去して、さらに溶媒を留去して、得られた残渣をヘプタンとトルエンの混合溶媒(体積比 ヘプタン:トルエン=2:3)を展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製し、さらに得られた残渣を酢酸エチルとソルミックスA-11の混合溶媒(体積比 酢酸エチル:ソルミックス=1:2)からの再結晶により精製し、乾燥させ、1-(4-(2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェニル)シクロヘキシル)-4-エトキシ-2,3-ジフルオロベンゼン(No.13) 3.1gを得た。化合物(No.12)からの収率は85.4%であった。
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、1-(4-(2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェニル)シクロヘキシル)-4-エトキシ-2,3-ジフルオロベンゼン(No.13)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);6.96-6.86(m,3H),6.70(t,1H),4.10(q,2H),2.97-2.85(m,2H),2.80(tt,1H),1.98(d,4H),1.86(d,4H),1.65(m,4H),1.53-1.41(m,5H),1.36-1.18(m,9H),1.13-1.02(m,2H),0.89(t,3H).
 転移温度は化合物自体の測定値とし、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した、化合物(No.13)の物性値は以下の通りであった。
転移温度 :C 144.9 N 263.2 I
NI=191.6℃,Δε=-4.22,Δn=0.137
 実施例1~11に記載された合成方法と同様の方法により以下に示す、化合物(No.1)~(No.4890)を合成することができる。付記したデータは前記した手法に従い、測定した値である。転移温度は化合物自体の測定値であり、上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、化合物を母液晶(i)に混合した試料の測定値を、上記外挿法に従って換算した値である。なお、化合物No.940、951、1041、1123は母液晶95重量%、化合物5重量%とからなる液晶組成物を調製し、得られた液晶組成物の物性を測定し、測定値を外挿したもの、
化合物No.13、3921は母液晶90重量%、化合物10重量%とからなる液晶組成物を調製し、得られた液晶組成物の物性を測定し、測定値を外挿したもの、
化合物No.12、943、1663、1843、3823は母液晶85重量%、化合物15重量%とからなる液晶組成物を調製し、得られた液晶組成物の物性を測定し、測定値を外挿したものである。
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000055
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-I000058
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
Figure JPOXMLDOC01-appb-I000062
Figure JPOXMLDOC01-appb-I000063
Figure JPOXMLDOC01-appb-I000064
Figure JPOXMLDOC01-appb-I000065
Figure JPOXMLDOC01-appb-I000066
Figure JPOXMLDOC01-appb-I000067
Figure JPOXMLDOC01-appb-I000068
Figure JPOXMLDOC01-appb-I000069
Figure JPOXMLDOC01-appb-I000070
Figure JPOXMLDOC01-appb-I000071
Figure JPOXMLDOC01-appb-I000072
Figure JPOXMLDOC01-appb-I000073
Figure JPOXMLDOC01-appb-I000074
Figure JPOXMLDOC01-appb-I000075
Figure JPOXMLDOC01-appb-I000076
Figure JPOXMLDOC01-appb-I000077
Figure JPOXMLDOC01-appb-I000078
Figure JPOXMLDOC01-appb-I000079
Figure JPOXMLDOC01-appb-I000080
Figure JPOXMLDOC01-appb-I000081
Figure JPOXMLDOC01-appb-I000082
Figure JPOXMLDOC01-appb-I000083
Figure JPOXMLDOC01-appb-I000084
Figure JPOXMLDOC01-appb-I000085
Figure JPOXMLDOC01-appb-I000086
Figure JPOXMLDOC01-appb-I000087
Figure JPOXMLDOC01-appb-I000088
Figure JPOXMLDOC01-appb-I000089
Figure JPOXMLDOC01-appb-I000090
Figure JPOXMLDOC01-appb-I000091
Figure JPOXMLDOC01-appb-I000092
Figure JPOXMLDOC01-appb-I000093
Figure JPOXMLDOC01-appb-I000094
Figure JPOXMLDOC01-appb-I000095
Figure JPOXMLDOC01-appb-I000096
Figure JPOXMLDOC01-appb-I000097
Figure JPOXMLDOC01-appb-I000098
Figure JPOXMLDOC01-appb-I000099
Figure JPOXMLDOC01-appb-I000100
Figure JPOXMLDOC01-appb-I000101
Figure JPOXMLDOC01-appb-I000102
Figure JPOXMLDOC01-appb-I000103
Figure JPOXMLDOC01-appb-I000104
Figure JPOXMLDOC01-appb-I000105
Figure JPOXMLDOC01-appb-I000106
Figure JPOXMLDOC01-appb-I000107
Figure JPOXMLDOC01-appb-I000108
Figure JPOXMLDOC01-appb-I000109
Figure JPOXMLDOC01-appb-I000110
Figure JPOXMLDOC01-appb-I000111
Figure JPOXMLDOC01-appb-I000112
Figure JPOXMLDOC01-appb-I000113
Figure JPOXMLDOC01-appb-I000114
Figure JPOXMLDOC01-appb-I000115
Figure JPOXMLDOC01-appb-I000116
Figure JPOXMLDOC01-appb-I000117
Figure JPOXMLDOC01-appb-I000118
Figure JPOXMLDOC01-appb-I000119
Figure JPOXMLDOC01-appb-I000120
Figure JPOXMLDOC01-appb-I000121
Figure JPOXMLDOC01-appb-I000122
Figure JPOXMLDOC01-appb-I000123
Figure JPOXMLDOC01-appb-I000124
Figure JPOXMLDOC01-appb-I000125
Figure JPOXMLDOC01-appb-I000126
Figure JPOXMLDOC01-appb-I000127
Figure JPOXMLDOC01-appb-I000128
Figure JPOXMLDOC01-appb-I000129
Figure JPOXMLDOC01-appb-I000130
Figure JPOXMLDOC01-appb-I000131
Figure JPOXMLDOC01-appb-I000132
Figure JPOXMLDOC01-appb-I000133
Figure JPOXMLDOC01-appb-I000134
Figure JPOXMLDOC01-appb-I000135
Figure JPOXMLDOC01-appb-I000136
Figure JPOXMLDOC01-appb-I000137
Figure JPOXMLDOC01-appb-I000138
Figure JPOXMLDOC01-appb-I000139
Figure JPOXMLDOC01-appb-I000140
Figure JPOXMLDOC01-appb-I000141
Figure JPOXMLDOC01-appb-I000142
Figure JPOXMLDOC01-appb-I000143
Figure JPOXMLDOC01-appb-I000144
Figure JPOXMLDOC01-appb-I000145
Figure JPOXMLDOC01-appb-I000146
Figure JPOXMLDOC01-appb-I000147
Figure JPOXMLDOC01-appb-I000148
Figure JPOXMLDOC01-appb-I000149
Figure JPOXMLDOC01-appb-I000150
Figure JPOXMLDOC01-appb-I000151
Figure JPOXMLDOC01-appb-I000152
Figure JPOXMLDOC01-appb-I000153
Figure JPOXMLDOC01-appb-I000154
Figure JPOXMLDOC01-appb-I000155
Figure JPOXMLDOC01-appb-I000156
Figure JPOXMLDOC01-appb-I000157
Figure JPOXMLDOC01-appb-I000158
Figure JPOXMLDOC01-appb-I000159
Figure JPOXMLDOC01-appb-I000160
Figure JPOXMLDOC01-appb-I000161
Figure JPOXMLDOC01-appb-I000162
Figure JPOXMLDOC01-appb-I000163
Figure JPOXMLDOC01-appb-I000164
Figure JPOXMLDOC01-appb-I000165
Figure JPOXMLDOC01-appb-I000166
Figure JPOXMLDOC01-appb-I000167
Figure JPOXMLDOC01-appb-I000168
Figure JPOXMLDOC01-appb-I000169
Figure JPOXMLDOC01-appb-I000170
Figure JPOXMLDOC01-appb-I000171
Figure JPOXMLDOC01-appb-I000172
Figure JPOXMLDOC01-appb-I000173
Figure JPOXMLDOC01-appb-I000174
Figure JPOXMLDOC01-appb-I000175
Figure JPOXMLDOC01-appb-I000176
Figure JPOXMLDOC01-appb-I000177
Figure JPOXMLDOC01-appb-I000178
Figure JPOXMLDOC01-appb-I000179
Figure JPOXMLDOC01-appb-I000180
Figure JPOXMLDOC01-appb-I000181
Figure JPOXMLDOC01-appb-I000182
Figure JPOXMLDOC01-appb-I000183
Figure JPOXMLDOC01-appb-I000184
Figure JPOXMLDOC01-appb-I000185
Figure JPOXMLDOC01-appb-I000186
Figure JPOXMLDOC01-appb-I000187
Figure JPOXMLDOC01-appb-I000188
Figure JPOXMLDOC01-appb-I000189
Figure JPOXMLDOC01-appb-I000190
Figure JPOXMLDOC01-appb-I000191
Figure JPOXMLDOC01-appb-I000192
Figure JPOXMLDOC01-appb-I000193
Figure JPOXMLDOC01-appb-I000194
Figure JPOXMLDOC01-appb-I000195
Figure JPOXMLDOC01-appb-I000196
Figure JPOXMLDOC01-appb-I000197
Figure JPOXMLDOC01-appb-I000198
Figure JPOXMLDOC01-appb-I000199
Figure JPOXMLDOC01-appb-I000200
Figure JPOXMLDOC01-appb-I000201
Figure JPOXMLDOC01-appb-I000202
Figure JPOXMLDOC01-appb-I000203
Figure JPOXMLDOC01-appb-I000204
Figure JPOXMLDOC01-appb-I000205
Figure JPOXMLDOC01-appb-I000206
Figure JPOXMLDOC01-appb-I000207
Figure JPOXMLDOC01-appb-I000208
Figure JPOXMLDOC01-appb-I000209
Figure JPOXMLDOC01-appb-I000210
Figure JPOXMLDOC01-appb-I000211
Figure JPOXMLDOC01-appb-I000212
Figure JPOXMLDOC01-appb-I000213
Figure JPOXMLDOC01-appb-I000214
Figure JPOXMLDOC01-appb-I000215
〔比較例1〕
 比較例として、4-(2,3-ジフルオロ-4-エトキシ-1,1’-ビフェニルエチル)-トランス-4-プロピル-(2-フルオロフェニル)シクロヘキサン(F)を合成した。
Figure JPOXMLDOC01-appb-I000216
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4-(2,3-ジフルオロ-4-エトキシ-1,1’-ビフェニルエチル)-トランス-4-プロピル-(2-フルオロフェニル)シクロヘキサン(F)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);7.43(d,2H),7.26(t,3H),7.14(t,1H),7.09(td,1H),6.93(d,1H),6.86(d,1H),6.79(t,1H),4.15(q,2H),2.93(m,4H),2.79(tt,1H),1.85(m,4H),1.53-1.41(m,5H),1.39-1.18(m,5H),1.12-1.02(m,2H),0.90(t,3H).
 化合物(F)の転移温度は以下の通りであった。
転移温度 :C  81.5 N 209.5 I
 前述した母液晶iとして記載された5つの化合物を混合し、ネマチック相を有する母液晶iを調製した。この母液晶iの物性は以下のとおりであった。
上限温度(TNI)=74.6℃;粘度(η20)=18.9mPa・s;光学異方性(Δn)=0.087;誘電率異方性(Δε)=-1.3。
 この母液晶i 85重量%と、合成した4-(2,3-ジフルオロ-4-エトキシ-1,1’-ビフェニルエチル)-トランス-4-プロピル-(2-フルオロフェニル)シクロヘキサン(F)の15重量%とからなる液晶組成物iiを調製した。得られた液晶組成物iiの物性を測定し、測定値を外挿することで比較化合物(E)の物性の外挿値を算出した。その値は以下のとおりであった。
上限温度(TNI)=195.3℃;
光学異方性(Δn)=0.207;
誘電率異方性(Δε)=-4.76;
化合物(No.1843)の物性
 母液晶i 85重量%と、実施例7で得られた4-エトキシ-2,3-ジフルオロ-1,1'-ビフェニル安息香酸-トランス-4-ペンチルシクロヘキシル-2,3-ジフルオロフェニル エステル(No.1843)の15重量%とからなる液晶組成物iiiを調製した。得られた液晶組成物iiiの物性を測定し、測定値を外挿することで化合物(No.1843)の物性値を算出した。その値は以下のとおりであった。
上限温度(TNI)=247.9℃;
光学異方性(Δn)=0.227;
誘電率異方性(Δε)=-5.82;
 このことから化合物(No.1843 )は、融点が低く、上限温度(TNI)が高く、光学異方性(Δn)を大きく、誘電率異方性(Δε)を負に大きくすることができる化合物であることがわかった。
 また、比較化合物(F)と比較して、上限温度(TNI)が高く、光学異方性(Δn)が大きく、誘電率異方性(Δε)が負に大きい化合物であることがわかった。
〔比較例2〕
 比較例として、4-エトキシ-2,3-ジフルオロ-4’-(4-ペンチルシクロヘキシルフェノキシメチル)-1,1’-ビフェニル(G)を合成した。
Figure JPOXMLDOC01-appb-I000217
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4-エトキシ-2,3-ジフルオロ-4’-(4-ペンチルシクロヘキシルフェノキシメチル)-1,1’-ビフェニル(G)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);7.50(q,4H),7.14(d,2H),7.09(td,1H),6.92(d,1H),6.78(t,1H),4.17(q,2H),2.42(tt,1H),1.86(m,4H),1.53-1.17(m,13H),1.08-0.98(m,2H),0.89(t,3H).
 化合物(G)の転移温度は以下の通りであった。
転移温度 :C  136.2 S 164.4 N 219.7 I
 母液晶i 95重量%と、合成した4-エトキシ-2,3-ジフルオロ-4’-(トランス-4-ペンチルシクロヘキシルフェノキシメチル)-1,1’-ビフェニル(G)の5重量%とからなる液晶組成物ivを調製した。得られた液晶組成物ivの物性を測定し、測定値を外挿することで比較化合物(G)の物性値を算出した。その値は以下のとおりであった。
光学異方性(Δn)=0.167;
誘電率異方性(Δε)=-4.33;
粘度(η)=139.3mPa・s
 また、液晶組成物vの弾性定数K33は14.37pNであった。
化合物(No.1123)の物性
 母液晶i 95重量%と、実施例1で得られた4-エトキシ-2,3-ジフルオロ-4’-[2,3-ジフルオロ-4-(4-ペンチルシクロヘキシル)フェノキシメチル]-1,1’-ビフェニル(No.1123)の5重量%とからなる液晶組成物vを調製した。得られた液晶組成物vの物性を測定し、測定値を外挿することで化合物(No.1123)の物性値を算出した。その値は以下のとおりであった。
光学異方性(Δn)=0.207;
誘電率異方性(Δε)=-7.40;
粘度(η)=91.7 mPa・s
 また、液晶組成物vの弾性定数K33は15.79 pNであった。
 このことから化合物(No.1123)は、融点が低く、上限温度(TNI)が高く、光学異方性(Δn)を大きく、粘度(η)が小さく、誘電率異方性(Δε)を負に大きくすることができる化合物であることがわかった。
 また、比較化合物(G)と比較して、光学異方性(Δn)が大きく、誘電率異方性(Δε)が負に大きく、融点が低く、粘度(η)が小さく、弾性定数K33が大きい化合物であることがわかった。
〔比較例3〕
 比較例として、化合物(E)に類似の4-エトキシ-2,3,2’’,3’’-テトラフルオロ-4’’-(4-ペンチルフェニルエチル)-1,1’’-ターフェニル(H)を合成した。
Figure JPOXMLDOC01-appb-I000218
 1H-NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4-エトキシ-2,3,2’ ’,3’’-テトラフルオロ-4’’-(4-ペンチルフェニルエチル)-1,1’ ’-ターフェニル(H)であることが同定できた。なお、測定溶媒はCDCl3である。
 化学シフトδ(ppm);7.60(dd,4H),7.18-7.10(m,6H),6.97(t,1H),6.82(td,1H),4.18(q,2H),3.00(m,2H),2.93(m,2H),2.58(t,2H),1.61(m,2H),1.49(t,3H),1.39-1.27(m,4H),0.89(t,3H).
 化合物(H)の転移温度は以下の通りであった。
転移温度 :C  146.1 N 209.0 I
 母液晶i 95重量%と、合成した4-エトキシ-2,3,2’ ’,3’’-テトラフルオロ-4’’-(4-ペンチルフェニルエチル)-1,1’ ’-ターフェニル(H)の5重量%とからなる液晶組成物viを調製した。得られた液晶組成物viの物性を測定し、測定値を外挿することで比較化合物(H)の物性値を算出した。その値は以下のとおりであった。
光学異方性(Δn)=0.167;
誘電率異方性(Δε)=-4.33;
粘度(η)=139.3mPa・s
 また、液晶組成物viの弾性定数K33は14.37 pNであった。
化合物(No.1041)の物性
 母液晶i 95重量%と、実施例3で得られたトランス-4-(2,3-ジフルオロ-4-エトキシフェニル)-4-[2,3-ジフルオロ-4’-ブトキシ1,1’-ビフェノキシメチル]シクロヘキサン(No.1041)の5重量%とからなる液晶組成物viiを調製した。得られた液晶組成物viiの物性を測定し、測定値を外挿することで化合物(No.1041)の物性値を算出した。その値は以下のとおりであった。
上限温度(TNI)=202.6℃;
誘電率異方性(Δε)=-6.44;
粘度(η)=101.7 mPa・s
 このことから化合物(No.1041)は、融点が低く、上限温度(TNI)が高く、誘電率異方性(Δε)を負に大きくすることができる化合物であることがわかった。
 また、比較化合物(H)と比較して、上限温度(TNI)が高く、誘電率異方性(Δε)が負に大きく、融点が低く、粘度(η)が小さい化合物であることがわかった。
〔液晶組成物の実施例〕
 以下、本発明で得られる液晶組成物を実施例により詳細に説明する。なお、実施例で用いる化合物は、下記表の定義に基づいて記号により表す。なお、表中、1,4-シクロへキシレンの立体配置はトランス配置である。各化合物の割合(百分率)は、特に断りのない限り、液晶組成物の全重量に基づいた重量百分率(重量%)である。各実施例の最後に得られた液晶組成物の特性値を示す。
 なお、各実施例で使用する化合物の部分に記載した番号は、上述した本発明の第一成分から第三成分に用いる化合物を示す式番号に対応をしており、式番号を記載せずに、単に「-」と記載をしている場合には、この化合物はこれら成分には対応をしていないその他の化合物であることを意味している。
 化合物の記号による表記方法を以下に示す。
Figure JPOXMLDOC01-appb-I000219
 特性の測定は以下の方法にしたがって行った。これら測定方法の多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。
(1)ネマチック相の上限温度(NI;℃)
 偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。以下、ネマチック相の上限温度を「上限温度」と略することがある。
(2)ネマチック相の下限温度(TC;℃)
 ネマチック相を有する試料を0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、TCを≦-20℃と記載した。以下、ネマチック相の下限温度を「下限温度」と略すことがある。
(3)光学異方性(Δn;25℃で測定)
 波長が589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により測定した。まず、主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。そして、偏光の方向がラビングの方向と平行であるときの屈折率(n∥)、および偏光の方向がラビングの方向と垂直であるときの屈折率(n⊥)を測定した。光学異方性の値(Δn)は、(Δn)=(n∥)-(n⊥)の式から算出した。
(4)粘度(η;20℃で測定;mPa・s)
 測定にはE型回転粘度計を用いた。
(5)誘電率異方性(Δε;25℃で測定)
 よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板から、間隔(セルギャップ)が20μmであるVA素子を組み立てた。
 同様の方法で、ガラス基板にポリイミドの配向膜を調製した。得られたガラス基板の配向膜にラビング処理をした後、2枚のガラス基板の間隔が9μmであり、ツイスト角が80度であるTN素子を組み立てた。
 得られたVA素子に試料(液晶組成物、または化合物と母液晶との混合物)を入れ、0.5V(1kHz、サイン波)を印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。
 また、得られたTN素子に試料(液晶組成物、または化合物と母液晶との混合物)を入れ、0.5V(1kHz、サイン波)を印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。
 誘電率異方性の値は、Δε=ε∥-ε⊥の式から計算した。
 この値が負である組成物が、負の誘電率異方性を有する組成物である。
(6)電圧保持率(VHR;25℃と100℃で測定;%)
 ポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)が6μmであるセルに試料を入れてTN素子を作製した。25℃において、このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。TN素子に印加した電圧の波形を陰極線オシロスコープで観測し、単位周期(16.7ミリ秒)における電圧曲線と横軸との間の面積を求めた。TN素子を取り除いたあと印加した電圧の波形から同様にして面積を求めた。電圧保持率(%)の値は、(電圧保持率)=(TN素子がある場合の面積値)/(TN素子がない場合の面積値)×100の値から算出した。
 このようにして得られた電圧保持率を「VHR-1」として示した。つぎに、このTN素子を100℃、250時間加熱した。このTN素子を25℃に戻したあと、上述した方法と同様の方法により電圧保持率を測定した。この加熱試験をした後に得た電圧保持率を「VHR-2」として示した。なお、この加熱テストは促進試験であり、TN素子の長時間耐久試験に対応する試験として用いた。
5-HB(2F,3F)O1HB(2F,3F)-O2(No.943) 6%
5-HB(2F,3F)O1BB(2F,3F)-O2(No.1123)6%
3-HH-4                  (2-1)   5%
3-HB(2F,3F)-O2          (3-1)  16%
5-HB(2F,3F)-O2          (3-1)  21%
2-HHB(2F,3F)-1          (3-29)  5%
3-HHB(2F,3F)-1          (3-29)  7%
3-HHB(2F,3F)-O2         (3-29) 14%
5-HHB(2F,3F)-O2         (3-29) 20%
 NI=83.8℃;Δn=0.095;η=34.4mPa・s;Δε=-5.0.
4O-BB(2F,3F)O1HB(2F,3F)-O2(No.1041)6%
3-HB-O1                 (2-4)  15%
3-HH-4                  (2-1)   5%
3-HB(2F,3F)-O2          (3-1)  12%
5-HB(2F,3F)-O2          (3-1)  12%
2-HHB(2F,3F)-1          (3-29) 12%
3-HHB(2F,3F)-1          (3-29)  6%
3-HHB(2F,3F)-O2         (3-29) 13%
5-HHB(2F,3F)-O2         (3-29) 13%
3-HHB-1                 (2-25)  6%
 NI=91.2℃;TC≦-20℃;Δn=0.094;η=39.8mPa・s.
4O-ChB(2F,3F)O1HB(2F,3F)-O2(No.951)5%
3-HB-O1                 (2-4)  10%
3-HH-4                  (2-1)   5%
3-HB(2F,3F)-O2          (3-1)  12%
5-HB(2F,3F)-O2          (3-1)  12%
2-HHB(2F,3F)-1          (3-29) 12%
3-HHB(2F,3F)-1          (3-29) 12%
3-HHB(2F,3F)-O2         (3-29) 13%
5-HHB(2F,3F)-O2         (3-29) 13%
6-HEB(2F,3F)-O2         (3-29)  6%
 NI=88.7℃;TC≦-20℃;Δn=0.091;η=40.8mPa・s;Δε=-4.0.
5-HB(2F,3F)H1OB(2F,3F)-O2(No.3823)9%
3-HH-4                  (2-1)   8%
3-H2B(2F,3F)-O2         (3-3)  22%
5-H2B(2F,3F)-O2         (3-3)  22%
2-HHB(2F,3Cl)-O2        (3-59)  2%
3-HHB(2F,3Cl)-O2        (3-59)  3%
4-HHB(2F,3Cl)-O2        (3-59)  2%
5-HHB(2F,3Cl)-O2        (3-59)  2%
3-HBB(2F,3Cl)-O2        (3-93)  9%
V-HHB-1                 (2-25)  6%
3-HHB-3                 (2-25)  6%
3-HHEBH-3               (2-74)  3%
3-HHEBH-4               (2-74)  3%
3-HHEBH-5               (2-74)  3%
 NI=94.7℃;TC≦-20℃;Δn=0.098;η=30.0mPa・s;Δε=-4.1.
5-HB(2F,3F)H1OB(2F,3F)-O2(No.3823)3%
4O-BB(2F,3F)H1OB(2F,3F)-O2(No.3921)4%
3-HH-4                  (2-1)  15%
3-H2B(2F,3F)-O2         (3-3)  15%
5-H2B(2F,3F)-O2         (3-3)  15%
3-HHB(2F,3Cl)-O2        (3-59)  5%
2-HBB(2F,3F)-O2         (3-93)  3%
3-HBB(2F,3F)-O2         (3-93)  9%
5-HBB(2F,3F)-O2         (3-93)  9%
3-HHB-1                 (2-25)  3%
3-HHB-3                 (2-25)  4%
3-HHB-O1                (2-25)  3%
3-HB-O2                 (2-4)  12%
 NI=89.3℃;TC≦-20℃;Δn=0.106;η=25.7mPa・s;Δε=-4.5.
上記組成物100部に光学活性化合物(Op-5)を0.25部添加したときのピッチは61.3μmであった。
2O-B(2F,3F)BEB(2F,3F)H-5(No.1843) 3%
2O-B(2F,3F)HEB(2F,3F)H-5(No.1663) 3%
2-HH-3                  (2-1)   5%
3-HH-O1                 (2-1)   4%
3-HH-O3                 (2-1)   5%
5-HH-O1                 (2-1)   4%
3-HB(2F,3F)-O2          (3-1)  12%
5-HB(2F,3F)-O2          (3-1)  11%
3-HHB(2F,3F)-O2         (3-59) 14%
5-HHB(2F,3F)-O2         (3-59) 15%
3-HHB(2F,3F)-2          (3-59) 24%
5-HB(2F,3F)O1HB(2F,3F)-O2(No.943) 5%
5-HB(2F,3F)O1BB(2F,3F)-O2(No.1123)5%
3-HH-5                  (2-1)   5%
3-HH-4                  (2-1)   5%
3-HH-O1                 (2-1)   6%
3-HH-O3                 (2-1)   6%
3-HB-O1                 (2-4)   5%
3-HB-O2                 (2-4)   5%
3-HB(2F,3F)-O2          (3-1)  10%
5-HB(2F,3F)-O2          (3-1)  10%
3-HHB(2F,3F)-O2         (3-59) 12%
5-HHB(2F,3F)-O2         (3-59) 13%
3-HHB(2F,3F)-2          (3-59)  4%
2-HHB(2F,3F)-1          (3-59)  4%
3-HHEH-3                (2-46)  5%
5-HB(2F,3F)O1HB(2F,3F)-O2(No.943) 6%
5-HB(2F,3F)O1BB(2F,3F)-O2(No.1123)6%
2-H2H-3                 (2-2)   5%
3-H2H-V                 (2-2)  17%
3-HBBH-5                (2-69)  3%
1O1-HBBH-4              (2-69)  3%
5-HBB(3F)B-2            (2-73)  3%
V-HB(2F,3F)-O2          (3-1)   7%
5-HB(2F,3F)-O2          (3-1)   7%
3-H2B(2F,3F)-O2         (3-3)  12%
5-H2B(2F,3F)-O2         (3-3)  12%
3-HBB(2F,3F)-O2         (3-93)  8%
5-HBB(2F,3F)-O2         (3-93)  8%
2-BB(2F,3F)B-3          (3-57)  3%
5-GB(2F,3F)O1HB(2F,3F)-O2(No.940) 3%
4O-BB(2F,3F)H1OB(2F,3F)-O2(No.3921)4%
3-HH-4                  (2-1)  15%
3-H2B(2F,3F)-O2         (3-3)  15%
5-H2B(2F,3F)-O2         (3-3)  15%
3-HHB(2F,3Cl)-O2        (3-59)  5%
2-HBB(2F,3F)-O2         (3-93)  3%
3-HBB(2F,3F)-O2         (3-93)  9%
5-HBB(2F,3F)-O2         (3-93)  9%
3-HHB-1                 (2-25)  3%
3-HHB-3                 (2-25)  4%
3-HHB-O1                (2-25)  3%
3-HB-O2                 (2-4)  12%
 NI=89.1℃;Δn=0.106;η=26.6mPa・s;Δε=-4.4.
5-HB(2F,3F)chB(2F,3F)-O2(No.12) 5%
3-HB-O1                 (2-4)  10%
3-HH-4                  (2-1)   5%
3-HB(2F,3F)-O2          (3-1)  12%
5-HB(2F,3F)-O2          (3-1)  12%
2-HHB(2F,3F)-1          (3-59) 12%
3-HHB(2F,3F)-1          (3-59) 12%
3-HHB(2F,3F)-O2         (3-59) 13%
5-HHB(2F,3F)-O2         (3-59) 13%
6-HEB(2F,3F)-O2         (3-29)  6%
 NI=90.5℃;TC≦-20℃;Δn=0.091;η=38.6mPa・s;Δε=-4.0.
5-HB(2F,3F)chB(2F,3F)-O2(No.12) 3%
5-HB(2F,3F)HB(2F,3F)-O2 (No.13) 4%
3-HH-4                  (2-1)  15%
3-H2B(2F,3F)-O2         (3-3)  15%
5-H2B(2F,3F)-O2         (3-3)  15%
3-HHB(2F,3Cl)-O2        (3-59)  5%
2-HBB(2F,3F)-O2         (3-93)  3%
3-HBB(2F,3F)-O2         (3-93)  9%
5-HBB(2F,3F)-O2         (3-93)  9%
3-HHB-1                 (2-25)  3%
3-HHB-3                 (2-25)  4%
3-HHB-O1                (2-25)  3%
3-HB-O2                 (2-4)  12%
 NI=88.9℃;Δn=0.103;η=25.5mPa・s;Δε=-4.4.
5-HB(2F,3F)HB(2F,3F)-O2 (No.13) 6%
3-HB-O1                 (2-4)  15%
3-HH-4                  (2-1)   5%
3-HB(2F,3F)-O2          (3-1)  12%
5-HB(2F,3F)-O2          (3-1)  12%
2-HHB(2F,3F)-1          (3-59) 12%
3-HHB(2F,3F)-1          (3-59)  6%
3-HHB(2F,3F)-O2         (3-59) 13%
5-HHB(2F,3F)-O2         (3-59) 13%
3-HHB-1                 (2-25)  6%
 NI=90.6℃;Δn=0.092;η=39.4mPa・s;Δε=-3.5.
 本発明の液晶性化合物が、熱、光などに対する安定性を有し、広い温度範囲でネマチック相となり、粘度が小さく、大きな光学異方性、および適切な弾性定数K33を有し、さらに、適切な負の誘電率異方性、および他の液晶性化合物との優れた相溶性を有していること、また、この化合物を含有する液晶組成物が、熱、光などに対する安定性を有し、粘度が小さく、大きな光学異方性、適切な弾性定数K33、および適切な負の誘電率異方性を有し、しきい値電圧が低く、さらに、ネマチック相の上限温度が高く、ネマチック相の下限温度が低いこと、さらに、この組成物を含有する液晶表示素子が、応答時間が短く、消費電力および駆動電圧が小さく、コントラスト比が大きく、広い温度範囲で使用可能であるので、液晶表示パネル、液晶表示モジュール等に使用することができる。

Claims (30)

  1.  式(a)で表される液晶性化合物。
    Figure JPOXMLDOC01-appb-I000001

    式(a)において、R1およびR2は独立して、水素、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
    環Aおよび環Aは独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、ピリジン-2,5-ジイル、またはピリミジン-3,6-ジイルであり;
    およびLは独立して、水素またはフッ素であり、これらのうち少なくとも1つはフッ素であり;
    およびZは独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-COO-または-OCO-である。
  2.  式(a)において、環Aおよび環Aが独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、またはテトラヒドロピラン-3,6-ジイルである請求項1に記載の化合物。
  3.  式(a-1)または(a-2)で表される請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-I000002

    式(a-1)および(a-2)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
    環Aおよび環Aは独立して、1,4-フェニレン、トランス-1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、またはテトラヒドロピラン-3,6-ジイルであり;
    およびLは独立して、水素またはフッ素であり、これらのうち少なくとも1つはフッ素であり;
    およびZは独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
  4.  式(a-3)~(a-8)のいずれか1つで表される請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-I000003

    式(a-3)~(a-8)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
    およびZは独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
  5.  式(a-9)~(a-14)のいずれか1つで表される請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-I000004

    式(a-9)~(a-14)において、RおよびRは独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
    およびZは独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
  6.  式(a-15)~(a-26)のいずれか1つで表される請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-I000005

    式(a-15)~(a-26)において、RおよびR10は独立して、炭素数1~10のアルキル、炭素数2~10のアルケニル、炭素数1~9のアルコキシ、炭素数2~9のアルコキシアルキル、または炭素数2~9のアルケニルオキシであり;
    およびZ10は独立して、-(CH22-、-CH=CH-、-CH2O-、-OCH2-、-COO-、または-OCO-である。
  7.  式(a-3)~(a-8)において、ZおよびZが-CH2O-である請求項4に記載の化合物。
  8.  式(a-3)~(a-8)において、ZおよびZが-OCH2-である請求項4に記載の化合物。
  9.  式(a-3)~(a-8)において、ZおよびZが-(CH2-である請求項4に記載の化合物。
  10.  式(a-3)~(a-8)において、ZおよびZが-COO-である請求項4に記載の化合物。
  11.  式(a-3)~(a-8)において、ZおよびZが-OCO-である請求項4に記載の化合物。
  12.  式(a-9)~(a-14)において、ZおよびZが-CH2O-である請求項5に記載の化合物。
  13.  式(a-9)~(a-14)において、ZおよびZが-OCH2-である請求項5に記載の化合物。
  14.  式(a-9)~(a-14)において、ZおよびZが-(CH2-である請求項5に記載の化合物。
  15.  式(a-9)~(a-14)において、ZおよびZが-COO-である請求項5に記載の化合物。
  16.  式(a-9)~(a-14)において、ZおよびZが-OCO-である請求項5に記載の化合物。
  17.  式(a-15)~(a-26)において、ZおよびZ10が-CH2O-である請求項6に記載の化合物。
  18.  式(a-15)~(a-26)において、ZおよびZ10が-OCH2-である請求項6に記載の化合物。
  19.  式(a-15)~(a-26)において、ZおよびZ10が-(CH2-である請求項6に記載の化合物。
  20.  式(a-15)~(a-26)において、ZおよびZ10が-COO-である請求項6に記載の化合物。
  21.  式(a-15)~(a-26)において、ZおよびZ10が-OCO-である請求項6に記載の化合物。
  22.  請求項1~21のいずれか1項に記載される化合物から選択される少なくとも1つの化合物である第一成分と、式(e-1)~(e-3)で表される化合物群から選択される少なくとも1つの化合物である第二成分とを含有し、そして誘電率異方性が負である液晶組成物。
    Figure JPOXMLDOC01-appb-I000006

    式(e-1)~(e-3)において、Ra11およびRb11は独立して、炭素数1~10のアルキルであるが、このアルキル中において、相隣接しない-CH2-は-O-で置き換えられていてもよく、相隣接しない-(CH22-は-CH=CH-で置き換えられていてもよく、水素はフッ素で置き換えられていてもよく;
    環A11、環A12、環A13、および環A14は独立して、トランス-1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、テトラヒドロピラン-2,5-ジイル、またはテトラヒドロピラン-3,6-ジイルであり;
    11、Z12、およびZ13は独立して、単結合、-CH2-CH2-、-CH=CH-、-C≡C-、-COO-、または-CH2O-である。
  23.  請求項3に記載の化合物群から選択される少なくとも1つの化合物である第一成分と請求項22に記載された式(e-1)~(e-3)で表される化合物群から選択される少なくとも1つの化合物である第二成分とを含有し、そして誘電率異方性が負である液晶組成物。
  24.  液晶組成物の全重量に基づいて、第一成分の含有割合が5~60重量%の範囲であり、第二成分の含有割合が40~95重量%の範囲である、請求項23に記載の液晶組成物。
  25.  第一成分、および第二成分に加えて、式(g-1)~(g-6)で表される化合物群から選択される少なくとも1つの化合物である第三成分を含有する請求項22または23に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000007

    式(g-1)~(g-6)において、Ra21およびRb21は独立して、水素、または炭素数1~10のアルキルであり、このアルキル中において、相隣接しない-CH2-は-O-で置き換えられていてもよく、相隣接しない-(CH22-は-CH=CH-で置き換えられていてもよく、水素はフッ素で置き換えられていてもよく;
    環A21、環A22、および環A23は独立して、トランス-1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、ピリミジン-3,6-ジイル、1,3-ジオキサン-2,5-ジイル、1,3-ジオキサン-3,6-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイルであり;
    21、Z22、およびZ23は独立して、単結合、-CH2-CH2-、-CH=CH-、-C≡C-、-OCF2-、-CF2O-、-OCF2CH2CH2-、-CH2CH2CF2O-、-COO-、-OCO-、-OCH2-、または-CH2O-であり;
    1、Y2、Y3、およびY4は独立して、フッ素または塩素であり;
    q、r、およびsは独立して、0、1、または2であり、q+rは1または2であり、q+r+sは1、2、または3であり;
    tは0、1、または2である。
  26.  第一成分、および第二成分に加えて、式(h-1)~(h-7)で表される化合物群から選択される少なくとも1つの化合物である第三成分を含有する請求項25に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000008

    式(h-1)~(h-7)において、Ra22およびRb22は独立して、炭素数1~8の直鎖アルキル、炭素数2~8の直鎖アルケニル、または炭素数1~7のアルコキシであり;
    24、Z25、およびZ26は独立して、単結合、-CH2CH2-、-CH2O-、または-OCH2-であり;
    1、およびY2は、共にフッ素、または一方がフッ素で他方が塩素である。
  27.  請求項3に記載される化合物から選択される少なくとも1つの化合物である第一成分、請求項22に記載される式(e-1)~(e-3)で表される化合物群から選択される少なくとも1つの化合物である第二成分、および請求項26に記載される式(h-1)~(h-7)で表される化合物群から選択される少なくとも1つの化合物である第三成分を含有し、そして誘電率異方性が負である液晶組成物。
  28.  液晶組成物の全重量に基づいて、第一成分の含有割合が5~60重量%の範囲であり、第二成分の含有割合が20~75重量%の範囲であり、第三成分の含有割合が20~75重量%の範囲である、請求項25~27のいずれか1項に記載の液晶組成物。
  29.  請求項22~28のいずれか1項に記載の液晶組成物を含有する液晶表示素子。
  30.  液晶表示素子の動作モードが、VAモード、PSAモード、またはIPSモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、請求項29に記載の液晶表示素子。
PCT/JP2009/060082 2008-06-09 2009-06-02 ラテラルフッ素を有する4環液晶性化合物、液晶組成物および液晶表示素子 WO2009150966A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09762396.1A EP2305627B1 (en) 2008-06-09 2009-06-02 Tetracyclic liquid crystalline compound having lateral fluorine, liquid crystal composition and liquid crystal display element
US12/996,758 US8394294B2 (en) 2008-06-09 2009-06-02 Four-ring liquid crystal compound having lateral fluorine, liquid crystal composition and liquid crystal display device
KR1020107027477A KR101577087B1 (ko) 2008-06-09 2009-06-02 라테랄 불소를 갖는 4 고리 액정성 화합물, 액정 조성물 및 액정 표시 소자
CN200980121446.7A CN102056881B (zh) 2008-06-09 2009-06-02 液晶性化合物、液晶组成物以及液晶显示元件
JP2010516818A JP5601199B2 (ja) 2008-06-09 2009-06-02 ラテラルフッ素を有する4環液晶性化合物、液晶組成物および液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008150972 2008-06-09
JP2008-150972 2008-06-09

Publications (1)

Publication Number Publication Date
WO2009150966A1 true WO2009150966A1 (ja) 2009-12-17

Family

ID=41416675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060082 WO2009150966A1 (ja) 2008-06-09 2009-06-02 ラテラルフッ素を有する4環液晶性化合物、液晶組成物および液晶表示素子

Country Status (7)

Country Link
US (1) US8394294B2 (ja)
EP (1) EP2305627B1 (ja)
JP (1) JP5601199B2 (ja)
KR (1) KR101577087B1 (ja)
CN (1) CN102056881B (ja)
TW (1) TWI475096B (ja)
WO (1) WO2009150966A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021534A1 (ja) * 2009-08-19 2011-02-24 チッソ株式会社 テトラヒドロピラン化合物、液晶組成物および液晶表示素子
WO2011040373A1 (ja) * 2009-10-01 2011-04-07 チッソ株式会社 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子
JP2011529129A (ja) * 2008-07-28 2011-12-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶ディスプレイ
JP2012513482A (ja) * 2008-12-22 2012-06-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶ディスプレイ
JP2013112631A (ja) * 2011-11-28 2013-06-10 Dic Corp 重合性液晶化合物
WO2013187373A1 (ja) * 2012-06-15 2013-12-19 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
JP2014031322A (ja) * 2012-08-01 2014-02-20 Dic Corp 化合物、液晶組成物および液晶表示素子
WO2014125911A1 (ja) 2013-02-13 2014-08-21 Jnc株式会社 ジフルオロメチレンオキシを有する液晶性化合物、液晶組成物および液晶表示素子
WO2014129268A1 (ja) 2013-02-20 2014-08-28 Jnc株式会社 液晶性化合物、液晶組成物および液晶表示素子
JP2014234357A (ja) * 2013-05-31 2014-12-15 Dic株式会社 化合物、液晶組成物、及び表示素子
WO2018043145A1 (ja) * 2016-09-01 2018-03-08 Dic株式会社 液晶表示素子
KR20180101346A (ko) 2016-01-20 2018-09-12 제이엔씨 주식회사 2원자 결합기와 2,3-디플루오로페닐렌을 가지는 4환 액정성 화합물, 액정 조성물 및 액정 표시 소자
JP2020011937A (ja) * 2018-07-20 2020-01-23 Dic株式会社 液晶化合物、液晶組成物及び液晶表示素子
JP2022119164A (ja) * 2021-02-03 2022-08-16 株式会社Jactaコラボレーション 化合物、化合物を含有する液晶組成物、及び、液晶組成物を使用した液晶表示素子

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851033B (zh) * 2011-07-01 2014-04-09 河北迈尔斯通电子材料有限公司 2,3,2',3'-四氟二苯乙烷类负性液晶材料及其制备方法
KR102101686B1 (ko) * 2012-05-28 2020-04-17 디아이씨 가부시끼가이샤 유전율 이방성이 음인 액정 조성물, 및 당해 액정 조성물을 사용한 액정 표시 소자
CN102838466A (zh) * 2012-10-08 2012-12-26 莱阳市盛华科技有限公司 4-(2,3-二氟-4-烷氧基)苯基环己酮的合成方法
TWI464242B (zh) 2012-10-26 2014-12-11 Ind Tech Res Inst 負介電異方性液晶化合物、液晶顯示器、與光電裝置
TWI623609B (zh) * 2013-03-06 2018-05-11 Dainippon Ink & Chemicals Nematic liquid crystal composition and liquid crystal display element using same
WO2015034018A1 (ja) * 2013-09-06 2015-03-12 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
CN104774621B (zh) * 2014-01-15 2017-07-28 江苏和成显示科技股份有限公司 负性液晶化合物及包含该液晶化合物的组合物及其应用
KR20160136118A (ko) * 2015-05-19 2016-11-29 주식회사 동진쎄미켐 액정 화합물 및 이를 포함하는 액정 조성물
EP3327505A4 (en) * 2015-07-23 2019-04-03 Mitsubishi Gas Chemical Company, Inc. NEW COMPOUND AND METHOD FOR PRODUCING THE SAME
US20170283698A1 (en) * 2016-03-31 2017-10-05 Jnc Corporation Liquid crystal composition and liquid crystal display device
DE102019008481A1 (de) * 2018-12-21 2020-06-25 Merck Patent Gmbh Kontinuierliches Verfahren zur Funktionalisierung von fluorierten Benzolverbindungen im Strömungsrohr
CN115850222A (zh) * 2022-12-05 2023-03-28 Tcl华星光电技术有限公司 有机化合物、液晶组合物以及液晶显示面板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002425A1 (en) 1987-09-09 1989-03-23 MERCK Patent Gesellschaft mit beschränkter Haftung Fluorinated oligophenyls and their use in liquid crystal materials
WO1989006678A1 (en) 1988-01-14 1989-07-27 MERCK Patent Gesellschaft mit beschränkter Haftung Fluorinated oligophenyl derivatives
JPH024725A (ja) * 1988-03-10 1990-01-09 Merck Patent Gmbh ジハロゲノベンゼン誘導体
JPH02503441A (ja) 1988-03-10 1990-10-18 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ジフルオロベンゼン誘導体
WO1991010936A1 (de) 1990-01-09 1991-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrooptisches flüssigkristallschaltelement
US5576867A (en) 1990-01-09 1996-11-19 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90°
WO1998023564A1 (fr) 1996-11-28 1998-06-04 Chisso Corporation Derives de benzene a substitution de fluor, composition a cristaux liquides et element d'affichage a cristaux liquides
JPH11116512A (ja) 1987-09-09 1999-04-27 Merck Patent Gmbh フツ素化オリゴフエニル化合物および液晶材料におけるそれらの使用
JP2007002132A (ja) 2005-06-24 2007-01-11 Chisso Corp 液晶組成物および液晶表示素子
JP2008088165A (ja) * 2006-09-06 2008-04-17 Chisso Corp アルケニルを有するシクロヘキセン誘導体、液晶組成物および液晶表示素子
WO2009034867A1 (ja) * 2007-09-10 2009-03-19 Chisso Corporation 液晶性化合物、液晶組成物および液晶表示素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503441B2 (ja) 1986-09-22 1996-06-05 井関農機株式会社 果実の箱詰装置
EP1043299B1 (en) * 1996-04-02 2008-10-15 Chisso Corporation Liquid crystalline compound, liquid crystal composition comprising the liquid crystalline compound, and liquid crystal display device using the liquid crystal composition
JP4320824B2 (ja) * 1998-06-02 2009-08-26 チッソ株式会社 Δεが負の値を有するアルケニル化合物、液晶組成物および液晶表示素子
EP1903090B1 (en) 2006-09-06 2011-07-27 JNC Corporation Cyclohexene derivative having alkenyl, liquid crystal composition and liquid crystal display device
CN101868439B (zh) * 2007-09-06 2014-02-05 Jnc株式会社 具有侧向氟的4、5环液晶性化合物、液晶组成物以及液晶显示元件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002425A1 (en) 1987-09-09 1989-03-23 MERCK Patent Gesellschaft mit beschränkter Haftung Fluorinated oligophenyls and their use in liquid crystal materials
JPH11116512A (ja) 1987-09-09 1999-04-27 Merck Patent Gmbh フツ素化オリゴフエニル化合物および液晶材料におけるそれらの使用
WO1989006678A1 (en) 1988-01-14 1989-07-27 MERCK Patent Gesellschaft mit beschränkter Haftung Fluorinated oligophenyl derivatives
JPH024725A (ja) * 1988-03-10 1990-01-09 Merck Patent Gmbh ジハロゲノベンゼン誘導体
JPH02503441A (ja) 1988-03-10 1990-10-18 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ジフルオロベンゼン誘導体
WO1991010936A1 (de) 1990-01-09 1991-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrooptisches flüssigkristallschaltelement
US5576867A (en) 1990-01-09 1996-11-19 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90°
WO1998023564A1 (fr) 1996-11-28 1998-06-04 Chisso Corporation Derives de benzene a substitution de fluor, composition a cristaux liquides et element d'affichage a cristaux liquides
JP2007002132A (ja) 2005-06-24 2007-01-11 Chisso Corp 液晶組成物および液晶表示素子
JP2008088165A (ja) * 2006-09-06 2008-04-17 Chisso Corp アルケニルを有するシクロヘキセン誘導体、液晶組成物および液晶表示素子
WO2009034867A1 (ja) * 2007-09-10 2009-03-19 Chisso Corporation 液晶性化合物、液晶組成物および液晶表示素子

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Comprehensive Organic Synthesis", PERGAMON PRESS
"New Experimental Chemistry Course (Shin Jikken Kagaku Kouza", MARUZEN CO., LTD.
"Organic Reactions", JOHN WILEY & SONS, INC
"Organic Syntheses", JOHN WILEY & SONS, INC
M. IMAI ET AL., MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 259, no. 37, 1995
See also references of EP2305627A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163707A (ja) * 2008-07-28 2015-09-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶ディスプレイ
JP2015163708A (ja) * 2008-07-28 2015-09-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶ディスプレイ
JP2011529129A (ja) * 2008-07-28 2011-12-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶ディスプレイ
JP2015061916A (ja) * 2008-12-22 2015-04-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶ディスプレイ
JP2012513482A (ja) * 2008-12-22 2012-06-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶ディスプレイ
US9090823B2 (en) 2008-12-22 2015-07-28 Merck Patent Gmbh Liquid crystal display
JP5699934B2 (ja) * 2009-08-19 2015-04-15 Jnc株式会社 テトラヒドロピラン化合物、液晶組成物および液晶表示素子
WO2011021534A1 (ja) * 2009-08-19 2011-02-24 チッソ株式会社 テトラヒドロピラン化合物、液晶組成物および液晶表示素子
US9663716B2 (en) 2009-08-19 2017-05-30 Jnc Corporation Tetrahydropyran compound, liquid crystal composition and liquid crystal display device
US20120145958A1 (en) * 2009-08-19 2012-06-14 Jnc Petrochemical Corporation Tetrahydropyran compound, liquid crystal composition and liquid crystal display device
US9109157B2 (en) 2009-10-01 2015-08-18 Jnc Corporation Liquid crystal compound having negative dielectric anisotropy, liquid crystal composition and liquid crystal display device using the same
WO2011040373A1 (ja) * 2009-10-01 2011-04-07 チッソ株式会社 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子
JP2013112631A (ja) * 2011-11-28 2013-06-10 Dic Corp 重合性液晶化合物
JP5561570B2 (ja) * 2012-06-15 2014-07-30 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
JPWO2013187373A1 (ja) * 2012-06-15 2016-02-04 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
US9175221B2 (en) 2012-06-15 2015-11-03 Dic Corporation Nematic liquid crystal composition and liquid crystal display element using same
WO2013187373A1 (ja) * 2012-06-15 2013-12-19 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
JP2014031322A (ja) * 2012-08-01 2014-02-20 Dic Corp 化合物、液晶組成物および液晶表示素子
WO2014125911A1 (ja) 2013-02-13 2014-08-21 Jnc株式会社 ジフルオロメチレンオキシを有する液晶性化合物、液晶組成物および液晶表示素子
WO2014129268A1 (ja) 2013-02-20 2014-08-28 Jnc株式会社 液晶性化合物、液晶組成物および液晶表示素子
JP2014234357A (ja) * 2013-05-31 2014-12-15 Dic株式会社 化合物、液晶組成物、及び表示素子
KR20180101346A (ko) 2016-01-20 2018-09-12 제이엔씨 주식회사 2원자 결합기와 2,3-디플루오로페닐렌을 가지는 4환 액정성 화합물, 액정 조성물 및 액정 표시 소자
WO2018043145A1 (ja) * 2016-09-01 2018-03-08 Dic株式会社 液晶表示素子
JPWO2018043145A1 (ja) * 2016-09-01 2018-08-30 Dic株式会社 液晶表示素子
JP2020011937A (ja) * 2018-07-20 2020-01-23 Dic株式会社 液晶化合物、液晶組成物及び液晶表示素子
JP7279312B2 (ja) 2018-07-20 2023-05-23 Dic株式会社 液晶化合物、液晶組成物及び液晶表示素子
JP2022119164A (ja) * 2021-02-03 2022-08-16 株式会社Jactaコラボレーション 化合物、化合物を含有する液晶組成物、及び、液晶組成物を使用した液晶表示素子
JP7297269B2 (ja) 2021-02-03 2023-06-26 株式会社Jactaコラボレーション 化合物、化合物を含有する液晶組成物、及び、液晶組成物を使用した液晶表示素子

Also Published As

Publication number Publication date
TW201006914A (en) 2010-02-16
US8394294B2 (en) 2013-03-12
US20110090450A1 (en) 2011-04-21
EP2305627B1 (en) 2014-09-17
KR101577087B1 (ko) 2015-12-11
KR20110015429A (ko) 2011-02-15
CN102056881A (zh) 2011-05-11
JPWO2009150966A1 (ja) 2011-11-17
EP2305627A1 (en) 2011-04-06
JP5601199B2 (ja) 2014-10-08
EP2305627A4 (en) 2012-03-07
TWI475096B (zh) 2015-03-01
CN102056881B (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5601199B2 (ja) ラテラルフッ素を有する4環液晶性化合物、液晶組成物および液晶表示素子
JP5652202B2 (ja) ラテラルフッ素を有する3環液晶性化合物、液晶組成物および液晶表示素子
JP5487967B2 (ja) ラテラルフッ素を有する4、5環液晶性化合物、液晶組成物および液晶表示素子
JP5549599B2 (ja) 液晶性化合物、液晶組成物および液晶表示素子
JP5958608B2 (ja) 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子
JP5509852B2 (ja) 液晶性化合物、液晶組成物および液晶表示素子
JP5163019B2 (ja) アルケニルを有するシクロヘキセン誘導体、液晶組成物および液晶表示素子
JP5637137B2 (ja) 液晶性化合物、液晶組成物および液晶表示素子
KR101408570B1 (ko) 클로로플루오로벤젠계 액정성 화합물, 액정 조성물 및 액정표시 소자
JP5163018B2 (ja) クロロフルオロベンゼン系液晶性化合物、液晶組成物および液晶表示素子
JP5672043B2 (ja) 5環化合物、液晶組成物および液晶表示素子
JP5392256B2 (ja) 誘電率異方性が負の液晶性化合物、液晶組成物および液晶表示素子
WO2009136534A1 (ja) 誘電率異方性が負の液晶性化合物、液晶組成物および液晶表示素子
JP2011246411A (ja) 誘電率異方性が負のトランスモノフルオロエチレン液晶性化合物、これを用いた液晶組成物および液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121446.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762396

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516818

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107027477

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12996758

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762396

Country of ref document: EP