WO2009146975A1 - Hochdruckpumpe - Google Patents

Hochdruckpumpe Download PDF

Info

Publication number
WO2009146975A1
WO2009146975A1 PCT/EP2009/054737 EP2009054737W WO2009146975A1 WO 2009146975 A1 WO2009146975 A1 WO 2009146975A1 EP 2009054737 W EP2009054737 W EP 2009054737W WO 2009146975 A1 WO2009146975 A1 WO 2009146975A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
pressure
guide sleeve
guide piece
pump head
Prior art date
Application number
PCT/EP2009/054737
Other languages
English (en)
French (fr)
Inventor
Hans-Christoph Magel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP09757358A priority Critical patent/EP2304220B1/de
Publication of WO2009146975A1 publication Critical patent/WO2009146975A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/442Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means preventing fuel leakage around pump plunger, e.g. fluid barriers

Definitions

  • the invention relates to a high-pressure pump for a
  • Fuel injection device of an internal combustion engine having the features of the preamble of claim 1.
  • Fuel injectors of the aforementioned type continue to increase. System pressures up to 2000 bar are already possible, for example, in diesel injection systems in which only piston pumps are used. With increasing pressure, however, the leakage losses between
  • Object of the present invention is to provide a high-pressure pump or a piston pump, which keeps low possible leakage losses even at working pressures over 2000 bar, it is simple and inexpensive to manufacture.
  • the object is achieved by a high-pressure pump with the features of claim 1.
  • Fuel injection device of an internal combustion engine has a pump piston guided in a guide piece and a pump head, wherein the guide piece, the pump piston and the pump head limit a working space, which is in communication with an inlet and / or outlet for the fuel to be delivered.
  • the pump piston is additionally guided in a guide sleeve which is arranged in the working space such that the working pressure prevailing during operation of the pump in the working space rests on the outer circumferential surface and advantageously also on the end face of the guide sleeve facing the pump head.
  • the applied to the pump head end face of the separate guide sleeve working pressure causes the guide sleeve is pressed against the guide piece, so that the pump head facing away from the end face of the guide sleeve sealingly abuts the guide piece.
  • the applied to the outer peripheral surface of the separate guide sleeve working pressure also causes the voltage applied to the inner peripheral surface and often leading to the expansion of the sealing gap pressure is at least partially compensated by the applied pressure on the outer peripheral surface by both circumferential surfaces are acted upon by a compressive force, respectively other is opposite. An expansion of the sealing gap and concomitant leakage losses can thus be avoided as far as possible.
  • the separate guide sleeve is simply used for this purpose in an enlarged working space, which is bounded on the outer circumference side by a hollow cylindrical projection of the guide piece or the pump head.
  • the additional material of the guide sleeve can be saved in the formation of the hollow cylindrical projection of the guide piece or the pump head, so that the use of an additional guide sleeve does not have to lead to changed outer dimensions or a changed weight of the pump.
  • a simple cylindrical guide sleeve is also easy and inexpensive to manufacture.
  • the pump head facing end face of the guide sleeve is additionally acted upon by the spring force of a spring.
  • the spring may for example be a arranged between the end face of the guide sleeve and the pump head screw or plate spring. The additional spring force ensures the required contact pressure of the guide sleeve on the guide piece during operation of the pump.
  • the end face facing away from the pump head or the end face of the guide sleeve facing the guide piece may be provided with a biting edge which forms a circular or annular sealing edge resting against the guide piece.
  • the guide piece facing the end face of the guide sleeve is preferably formed conical, wherein further preferably the biting edge on the outside, i. at the working room bounding
  • Outer circumferential surface of the guide sleeve is arranged.
  • the arrangement of a biting edge has the advantage that the contact area is reduced to a circular or annular surface, whereby the surface pressure in the contact area is increased.
  • the surface pressure is preferably chosen so high that it leads to a slight deformation of at least one contact surface, whereby an even greater tightness is ensured.
  • a leakage space formed further between the guide piece facing end face of the guide sleeve and the guide piece a leakage space formed.
  • a leakage space can also contribute to this end face outside arranged B Basedkante. If this is done, namely, the end face tapered or receives a cutout, resulting in cooperating with a flat contact surface on the guide piece a cavity that can be used as a leakage space.
  • a leakage space can also be produced by a corresponding end-side recess in the guide sleeve and / or in the guide piece. The leakage chamber intercepts any fuel escaping via the sealing gap between pump piston and guide sleeve.
  • the pump head has a projecting into the working space, cylindrical projection on the outer peripheral surface of which prevails during operation of the pump in the working space prevailing working pressure.
  • the inlet and / or outlet for the fuel to be delivered is also arranged in the cylindrical projection of the pump head.
  • the proposed design of the pump head with a cylindrical projecting into the working space approach causes despite the preferably arranged herein inlet and / or outlet holes increased strength of the pump head is achieved. Because of the Bohrungsverschneidungen the pump head is a weak point in terms of the compressive strength of the pump, which is usually an increase in the working pressure in the way.
  • the size of the end face of the cylindrical projection of the pump head determines the effective area and thus the pressure force with which this surface is acted upon operation of the pump in the delivery stroke. The size of the end face can therefore influence the stress ratio in the material, so that it has a positive effect on the strength of this area.
  • the inlet and the outlet bore in the pump head in particular with formation of a cylindrical approach, there may be arranged only the outlet in the pump head or the cylindrical extension of the pump head and the fuel to be delivered to the working space via a hole in the guide piece and be supplied via the leakage space.
  • the bore in the guide piece is arranged such that it opens into the leakage space, which is formed between the guide sleeve and guide piece. It thus replaces an inlet bore formed in the pump head, so that by dispensing with such a bore, the strength of the pump head can be further increased.
  • the hydraulic pressure in the leakage chamber increases until the guide sleeve is lifted out of its position on the guide piece, originally sealing seat.
  • the fuel can now reach the working space via the leakage chamber.
  • the guide sleeve is thus formed as it were as a filling valve.
  • the pressure of the pump in the working space falls below the pressure in the leakage chamber and the valve opens.
  • the guide sleeve formed as a valve is additionally held by spring force in its valve seat, the spring force is to be dimensioned such that an opening of the valve is ensured in the suction phase.
  • the opening pressure can be adjusted via the sealing seat of the guide sleeve and the spring force.
  • the fuel to be delivered to the working space can be supplied via flow channels formed in the guide region of the guide piece and via the leakage space.
  • the flow channels open into the leakage space, from where the fuel with increasing pressure, which causes a lifting of the guide sleeve, enters the working space.
  • the mode of action thus corresponds to that mentioned above in connection with an inlet bore arranged in the guide piece.
  • the guide sleeve forms at the same time a filling valve, which closes the leakage chamber in the delivery stroke with respect to the working space sealing and allows the suction line of the fuel through the leakage chamber.
  • a metering unit may be provided to allow control of the delivery rate of the pump.
  • Fig. 1 is a schematic longitudinal section through a first embodiment
  • Fig. 2 is a schematic longitudinal section through a second embodiment.
  • the guide piece 1, the pump piston 2 and the pump head 3 define a working space 4, in which a separate, the pump piston 2 tightly enclosing guide sleeve 7 is inserted.
  • the the Guide piece 1 facing end face of the guide sleeve 7 rests against the bottom of the guide piece 1.
  • An arranged between the guide sleeve 7 and the pump head 3 spring 8 causes an additional contact pressure.
  • it is a plate spring 8
  • a coil spring is used. The drive of the high-pressure pump takes place in both
  • the guide sleeve 7 leads in both embodiments that an expansion of the sealing gap between the pump piston 2 and guide sleeve 7 is counteracted by the fact that on the outer peripheral side of the guide sleeve 7 also prevails during operation of the pump in the working space prevailing working pressure and thus applied to the inner peripheral surface Working pressure at least partially compensated. Should fuel still escape via the sealing gap between pump piston 2 and guide sleeve 7, this is collected in a formed between the guide sleeve 7 and guide piece 1 leakage chamber 10.
  • the guide piece 1 facing end face of the guide sleeve 7 is formed conical, so that the outer peripheral side of the end face an annular biting edge 9 is formed as a sealing edge.
  • the guide sleeve 7 consists essentially of a simple tubular body which is easy and thus inexpensive to produce.
  • the simple geometric shape also allows the use of high-strength materials that are difficult to work and therefore often find no use in the formation of complicated designs.
  • FIG. 1 of a high-pressure pump has an inlet and an outlet 5, 6 for the fuel to be delivered in the pump head 3.
  • this has a cylindrical projection 11 which projects into the working space 4 and rests on the outer peripheral surface of the prevailing during operation of the pump in the working space working pressure.
  • the spring 8 is supported against the end face of the cylindrical projection 11.
  • the pump head 3 of the embodiment of FIG. 2 only one outlet 6. As a result, the latter already has a higher strength.
  • the end face of the cylindrical shoulder 11 of the pump head 3 is loaded by means of the spring 8, but a region lying opposite the cylindrical projection 11.
  • the inlet bore instead of the inlet bore, several axially extending and opening into the leakage chamber 10 flow channels in the guide portion 13 of the guide piece 1 are provided.
  • piston pump Any piston pump may be made according to the invention described above.
  • the advantages of the invention are therefore in all types of piston pump, such as the single or multi-piston pump, the series pump, the V-pump, the axial piston pump, usable.
  • the structure of the pump is essentially composed of basically known components produced by conventional manufacturing processes. The costs can thus be kept low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft eine Hochdruckpumpe für eine Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine mit einem in einem Führungsstück (1) axial geführten Pumpenkolben (2) und einem Pumpenkopf (3), wobei das Führungsstück, der Pumpenkolben und der Pumpenkopf einen Arbeitsraum (4) begrenzen, der in Verbindung mit einem Zulauf (5) und/oder einem Abgang (6) für den zu fördernden Kraftstoff steht. Erfindungsgemäß ist der Pumpenkolben (2) zusätzlich in einer Führungshülse (7) geführt, die in dem Arbeitsraum (4) derart angeordnet ist, dass der bei Betrieb der Pumpe im Arbeitsraum vorherrschende Arbeitsdruck an der Außenumfangsf lache und an der dem Pumpenkopf (3) zugewandten Stirnfläche der Führungshülse (7) anliegt.

Description

Hochdruckpumpe
Die Erfindung betrifft eine Hochdruckpumpe für eine
Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Derartige Hochdruckpumpen finden heute insbesondere bei Coraraon- Rail-Einspritzsystemen ihren Einsatz. Die Aufgabe der Pumpe besteht dabei darin, den Kraftstoff unter hohem Druck der als „Rail" bezeichneten gemeinsamen Speicherleitung zuzuführen, von der aus der Kraftstoff über Injektoren in den Brennraum eingespritzt wird. Common-Rail-Einspritzsysteme haben bereits durch Steigerung des Systemdrucks einen entscheidenden Beitrag zur Reduzierung des Schadstoffausstoßes beitragen können. Der Vorteil des Common-Rail-Einspritzsystems liegt insbesondere in der Unabhängigkeit des Einspritzdruckes von Drehzahl und Last.
Es ist ein allgemeines Anliegen, den Systemdruck bei
Kraftstoffeinspritzvorrichtungen der vorstehend genannten Art weiter zu erhöhen. Systemdrücke bis 2000 bar sind beispielsweise bei Dieseleinspritzsystemen, bei denen ausschließlich Kolbenpumpen zum Einsatz gelangen, bereits möglich. Mit steigendem Druck nehmen jedoch die Leckageverluste zwischen
Pumpenkolben und Kolbenführung zu, da der Dichtspalt durch den hohen Arbeitsdruck eine Aufweitung erfährt. In der Folge sinkt der Wirkungsgrad der Pumpe. Es gilt daher Leckageverluste zu vermeiden .
Aufgabe der vorliegenden Erfindung ist es, eine Hochdruckpumpe bzw. eine Kolbenpumpe zu schaffen, die auch bei Arbeitsdrücken über 2000 bar mögliche Leckageverluste gering hält , dabei einfach aufgebaut und kostengünstig zu fertigen ist. Die Aufgabe wird gelöst durch eine Hochdruckpumpe mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen beschrieben.
Die vorgeschlagene Hochdruckpumpe für eine
Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine besitzt einen in einem Führungsstück axial geführten Pumpenkolben und einen Pumpenkopf, wobei das Führungsstück, der Pumpenkolben und der Pumpenkopf einen Arbeitsraum begrenzen, der in Verbindung mit einem Zulauf und/oder einem Abgang für den zu fördernden Kraftstoff steht.
Erfindungsgemäß ist der Pumpenkolben zusätzlich in einer Führungshülse geführt, die in dem Arbeitsraum derart angeordnet ist, dass der bei Betrieb der Pumpe im Arbeitsraum vorherrschende Arbeitsdruck an der Außenumfangsflache und vorteilhafterweise auch an der dem Pumpenkopf zugewandten Stirnfläche der Führungshülse anliegt. Der an der dem Pumpenkopf zugewandten Stirnfläche der separaten Führungshülse anliegende Arbeitsdruck bewirkt, dass die Führungshülse gegen das Führungsstück gedrückt wird, so dass die dem Pumpenkopf abgewandte Stirnseite der Führungshülse dichtend am Führungsstück anliegt. Der an der Außenumfangsflache der separaten Führungshülse anliegende Arbeitsdruck bewirkt ferner, dass der an der Innenumfangsflache anliegende und häufig zur Aufweitung des Dichtspalts führende Druck durch den an der Außenumfangsflache anliegenden Druck zumindest teilweise kompensiert wird, indem beide Umfangsflachen von einer Druckkraft beaufschlagt werden, die der jeweils anderen entgegengesetzt ist. Eine Aufweitung des Dichtspaltes und damit einhergehende Leckageverluste können somit weiterstgehend vermieden werden. Die separate Führungshülse wird hierzu einfach in einen vergrößerten Arbeitsraum eingesetzt, der außenumfangseitig von einem hohlzylindrischen Ansatz des Führungsstücks oder des Pumpenkopfes begrenzt wird. Das zusätzliche Material der Führungshülse kann dabei bei der Ausbildung des hohlzylindrischen Ansatzes des Führungsstücks oder des Pumpenkopfes eingespart werden, so dass der Einsatz einer zusätzlichen Führungshülse nicht zu veränderten Außenabmessungen oder einem veränderten Gewicht der Pumpe führen muss. Eine einfache zylinderförmige Führungshülse ist zudem leicht und kostengünstig herzustellen.
Nach einer bevorzugten Ausführungsform wird die dem Pumpenkopf zugewandte Stirnfläche der Führungshülse zusätzlich von der Federkraft einer Feder beaufschlagt. Die Feder kann beispielsweise eine zwischen der Stirnfläche der Führungshülse und dem Pumpenkopf angeordnete Schrauben- oder Tellerfeder sein. Die zusätzliche Federkraft stellt den erforderlichen Anpressdruck der Führungshülse am Führungsstück während des Betriebes der Pumpe sicher.
Alternativ oder ergänzend kann die dem Pumpenkopf abgewandte Stirnfläche bzw. die dem Führungsstück zugewandte Stirnfläche der Führungshülse mit einer Beißkante versehen sein, die eine kreis- oder ringförmige, am Führungsstück anliegende Dichtkante ausbildet. Hierzu ist die dem Führungsstück zugewandte Stirnfläche der Führungshülse bevorzugt konisch verlaufend ausgebildet, wobei weiterhin bevorzugt die Beißkante außenseitig, d.h. an der den Arbeitsraum begrenzenden
Außenumfangsflache der Führungshülse angeordnet ist. Die Anordnung einer Beißkante besitzt den Vorteil, dass der Anlagebereich auf eine kreis- oder ringförmige Fläche reduziert wird, wodurch die Flächenpressung im Anlagebereich erhöht wird. Die Flächenpressung wird vorzugsweise so hoch gewählt, dass sie zu einer geringfügigen Verformung wenigstens einer Anlagefläche führt, wodurch eine noch größere Dichtigkeit gewährleistet wird.
Vorteilhafterweise ist ferner zwischen der dem Führungsstück zugewandten Stirnfläche der Führungshülse und dem Führungsstück ein Leckageraum ausgebildet. Zur Ausbildung eines Leckageraumes kann auch eine an dieser Stirnfläche außenseitig angeordnete Beißkante beitragen. Wird hierzu nämlich die Stirnfläche konisch verlaufend ausgeführt oder erhält einen Freischnitt, ergibt sich zusammenwirkend mit einer ebenen Anlagefläche am Führungsstück ein Hohlraum, der als Leckageraum genutzt werden kann. Darüber hinaus kann ein Leckageraum auch durch eine entsprechende stirnseitige Ausnehmung in der Führungshülse und/oder in dem Führungsstück hergestellt werden. Der Leckageraum fängt etwaigen über den Dichtspalt zwischen Pumpenkolben und Führungshülse austretenden Kraftstoff auf. Dabei liegt an der den Leckageraum begrenzenden Stirnfläche der Führungshülse ein geringerer Druck als an den den Arbeitsraum begrenzenden Oberflächen an. Es ist somit sichergestellt, dass die Führungshülse in dichtender Anlage mit dem Führungsstück gehalten wird. Dies gilt insbesondere bei der Ausführungsform, bei der die Anpresskraft zusätzlich durch die Federkraft einer Feder bewirkt wird.
Weiterhin bevorzugt weist der Pumpenkopf einen in den Arbeitsraum hineinragenden, zylinderförmigen Ansatz auf, an dessen Außenumfangsflache der bei Betrieb der Pumpe im Arbeitsraum vorherrschende Arbeitsdruck anliegt. Vorzugsweise ist ferner in dem zylinderförmigen Ansatz des Pumpenkopfes der Zulauf und/oder der Abgang für den zu fördernden Kraftstoff angeordnet. Die vorgeschlagene Ausbildung des Pumpenkopfes mit einem zylinderförmigen in den Arbeitsraum hineinragenden Ansatz bewirkt, dass trotz der vorzugsweise hierin angeordneten Zulauf- und/oder Abgangsbohrungen eine erhöhte Festigkeit des Pumpenkopfes erzielt wird. Denn aufgrund der Bohrungsverschneidungen stellt der Pumpenkopf eine Schwachstelle im Hinblick auf die Druckfestigkeit der Pumpe dar, die in der Regel einer Erhöhung des Arbeitsdruckes im Wege steht. Durch die am zylinderförmigen Ansatz des Pumpenkopfes anliegenden Druckverhältnisse werden jedoch Druckspannungen im Material bewirkt, dank derer die Bohrungsverschneidungen nicht mehr zu einem Festigkeitsproblem führen. Es können daher ohne Weiteres sowohl die Zugangsbohrung, als auch die Abgangsbohrung in diesem Bereich ausgeführt werden. Die Größe der Stirnfläche des zylinderförmigen Ansatzes des Pumpenkopfes bestimmt die wirksame Fläche und damit die Druckkraft, mit der diese Fläche bei Betrieb der Pumpe im Förderhub beaufschlagt wird. Über die Größe der Stirnfläche kann daher das Spannungsverhältnis im Material beeinflusst werden, so dass es sich positiv auf die Festigkeit dieses Bereiches auswirkt.
Gleichwohl hinsichtlich der Ausbildung der Zulauf- und der Abgangsbohrung im Pumpenkopf insbesondere bei Ausbildung eines zylinderförmigen Ansatzes keine Bedenken bestehen, kann auch lediglich der Abgang im Pumpenkopf oder dem zylinderförmigen Ansatz des Pumpenkopfes angeordnet sein und der zu fördernde Kraftstoff dem Arbeitsraum über eine Bohrung in dem Führungsstück und über den Leckageraum zugeführt werden. Die Bohrung im Führungsstück ist derart angeordnet, dass sie in den Leckageraum, der zwischen Führungshülse und Führungsstück ausgebildet ist, mündet. Sie ersetzt somit eine im Pumpenkopf ausgebildete Zulaufbohrung, so dass durch Verzicht auf eine solche Bohrung die Festigkeit des Pumpenkopfes weiterhin erhöht werden kann. Mit Zuleitung des Kraftstoffes steigt der hydraulische Druck im Leckageraum bis die Führungshülse aus ihrem am Führungsstück anliegenden, ursprünglich dichtenden Sitz gehoben wird. Der Kraftstoff kann nunmehr über den Leckageraum in den Arbeitsraum gelangen. Die Führungshülse ist somit gleichsam als Füllventil ausgebildet. In der Saugphase der Pumpe fällt der Druck der Pumpe im Arbeitsraum unterhalb des Druckes im Leckageraum und das Ventil öffnet sich. Sofern die als Ventil ausgebildete Führungshülse zusätzlich durch Federkraft in ihrem Ventilsitz gehalten wird, ist die Federkraft derart zu bemessen, dass ein Öffnen des Ventil in der Saugphase gewährleistet ist. Der Öffnungsdruck kann über den Dichtsitz der Führungshülse und die Federkraft eingestellt werden.
Alternativ kann anstelle einer Bohrung im Führungsstück der zu fördernde Kraftstoff dem Arbeitsraum über im Führungsbereich des Führungsstücks ausgebildete Strömungskanäle und über den Leckageraum zugeführt werden. Die Strömungskanäle münden in den Leckageraum, von wo aus der Kraftstoff mit steigendem Druck, der ein Anheben der Führungshülse bewirkt, in den Arbeitsraum gelangt. Die Wirkungsweise entspricht somit der vorstehend im Zusammenhang mit einer im Führungsstück angeordneten Zulaufbohrung genannten. In beiden Fällen bildet die Führungshülse zugleich ein Füllventil aus, das im Förderhub den Leckageraum gegenüber dem Arbeitsraum dichtend abschließt und im Sauhub die Zuleitung des Kraftstoffs über den Leckageraum ermöglicht. Zugleich verhindert die Führungshülse eine Aufweitung des Dichtspaltes zwischen ihr und dem Pumpenkolben, so dass auch bei Erhöhung des Arbeitsdruckes eine Zunahme der Leckageverluste verhindert wird. Im Zulaufpfad kann eine Zumesseinheit vorgesehen sein, um eine Regelung der Fördermenge der Pumpe zu ermöglichen.
Konkrete Ausführungsformen der Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 einen schematischen Längsschnitt durch eine erste Ausführungsform und
Fig. 2 einen schematischen Längsschnitt durch eine zweite Ausführungsform.
Beiden Ausführungsformen gemein ist, dass das Führungsstück 1, der Pumpenkolben 2 und der Pumpenkopf 3 einen Arbeitsraum 4 begrenzen, in dem eine separate, den Pumpenkolben 2 dicht umschließende Führungshülse 7 eingesetzt ist. Die dem Führungsstück 1 zugewandte Stirnfläche der Führungshülse 7 liegt dabei am Boden des Führungsstücks 1 an. Durch den im Arbeitsraum 4 bei Betrieb der Pumpe vorherrschenden Arbeitsdruck wird die Führungshülse 7 in dichtender Anlage mit dem Führungsstück 2 gehalten. Eine zwischen der Führungshülse 7 und dem Pumpenkopf 3 angeordnete Feder 8 bewirkt einen zusätzlichen Anpressdruck. Bei der Ausführung entsprechend Fig. 1 handelt es sich um eine Tellerfeder 8 , während bei der Ausführung entsprechend Fig. 2 eine Schraubenfeder ihren Einsatz findet. Der Antrieb der Hochdruckpumpe erfolgt bei beiden
Ausführungsbeispielen über einen um eine Welle rotierenden Exzenter 14, auf dem eine mit dem Pumpenkolben 2 verbundene Rolle 15 abläuft. Zur Rückstellung des Pumpenkolbens 2 ist dieser ebenfalls federbelastet.
Die Führungshülse 7 führt bei beiden Ausführungsformen dazu, dass einer Aufweitung des Dichtspaltes zwischen Pumpenkolben 2 und Führungshülse 7 dadurch entgegen gewirkt wird, dass an der Außenumfangseite der Führungshülse 7 ebenfalls der bei Betrieb der Pumpe im Arbeitsraum vorherrschende Arbeitsdruck anliegt und somit den an der Innenumfangsflache anliegenden Arbeitsdruck zumindest teilweise kompensiert. Sollten dennoch Kraftstoff über den Dichtspalt zwischen Pumpenkolben 2 und Führungshülse 7 austreten, wird dieser in einem zwischen Führungshülse 7 und Führungsstück 1 ausgebildeten Leckageraum 10 aufgefangen. Zur Ausbildung des Leckageraumes 10 ist die dem Führungsstück 1 zugewandte Stirnfläche der Führungshülse 7 konisch verlaufend ausgebildet, so dass außenumfangseitig an der Stirnfläche eine ringförmige Beißkante 9 als Dichtkante ausgebildet wird. Diese schließt den Leckageraum 10 gegenüber dem Arbeitsraum 4 dichtend ab. Die Ausbildung einer Beißkante 9 ist nicht zwingend erforderlich, erhöht jedoch den Anpressdruck im Anlagebereich und damit die Dichtigkeit dieses Bereiches. Ob mit oder ohne Ausbildung einer Beißkante besteht die Führungshülse 7 im Wesentlichen aus einem einfachen Rohrkörper, der leicht und damit kostengünstig herstellbar ist. Die einfache geometrische Form erlaubt ferner die Verwendung hochfester Materialien, die schwer zu bearbeiten sind und daher bei der Ausbildung komplizierter Bauformen häufig keine Verwendung finden .
Das in Fig. 1 dargestellte Beispiel einer erfindungsgemäßen Hochdruckpumpe weist einen Zulauf und einen Abgang 5, 6 für den zu fördernden Kraftstoff im Pumpenkopf 3 auf. Um trotz der Bohrungen die Festigkeit des Pumpenkopfes 3 zu erhöhen, weist dieser einen zylinderförmigen Ansatz 11 auf, der in den Arbeitsraum 4 hineinragt und an dessen Außenumfangsflache der bei Betrieb der Pumpe im Arbeitraum vorherrschende Arbeitsdruck anliegt. Die Feder 8 stützt sich dabei gegen die Stirnfläche des zylinderförmigen Ansatzes 11 ab.
Im Unterschied zum Beispiel der Fig. 1 weist der Pumpenkopf 3 des Ausführungsbeispiels der Fig. 2 lediglich einen Abgang 6 auf. Dadurch weist letzterer bereits eine höhere Festigkeit auf. Zudem wird nicht die Stirnfläche des zylinderförmigen Absatzes 11 des Pumpenkopfes 3 mittels der Feder 8 belastet, sondern ein gegenüber dem zylinderförmigen Ansatz 11 zurückliegender Bereich. Der Zulauf des Kraftstoffes erfolgt vorliegend über einen in den Leckageraum 10 mündende Bohrung 12 im Führungsstück 1. Alternativ (nicht dargestellt) können anstelle der Zulaufbohrung auch mehrere sich axial erstreckende und in den Leckageraum 10 mündende Strömungskanäle im Führungsbereich 13 des Führungsstücks 1 vorgesehen werden.
Jede beliebige Kolbenpumpe kann entsprechend der vorstehend beschriebenen Erfindung ausgeführt werden. Die erfindungsgemäßen Vorteile sind daher bei allen Kolbenpumpentypen, wie beispielsweise der Ein- oder Mehrkolbenpumpe, der Reihenpumpe, der V-Pumpe, der Axialkolbenpumpe, nutzbar. Der Aufbau der Pumpe setzt sich im Wesentlichen aus grundsätzlich bekannten, nach konventionellen Fertigungsverfahren hergestellten Komponenten zusammen. Die Kosten können somit gering gehalten werden.

Claims

Patentansprüche :
1. Hochdruckpumpe für eine Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine mit einem in einem Führungsstück (1) axial geführten Pumpenkolben (2) und einem Pumpenkopf (3), wobei das Führungsstück, der Pumpenkolben und der Pumpenkopf einen Arbeitsraum (4) begrenzen, der in Verbindung mit einem Zulauf (5) und/oder einem Abgang (6) für den zu fördernden Kraftstoff steht, dadurch gekennzeichnet, dass der Pumpenkolben (2) zusätzlich in einer Führungshülse (7) geführt ist, die in dem Arbeitsraum (4) derart angeordnet ist, dass der bei Betrieb der Pumpe im Arbeitsraum vorherrschende Arbeitsdruck an der Außenumfangsflache und an der dem Pumpenkopf zugewandten Stirnfläche der Führungshülse (7) anliegt.
2. Hochdruckpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die dem Pumpenkopf (3) zugewandte Stirnfläche der Führungshülse (7) zusätzlich von der Federkraft einer Feder (8) beaufschlagt wird.
3. Hochdruckpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die dem Führungsstück (1) zugewandte Stirnfläche der Führungshülse (7) mit einer Beißkante (9) versehen ist, die eine kreis- oder ringförmige, am Führungsstück (1) anliegende Dichtkante bildet.
4. Hochdruckpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen der dem Führungsstück (1) zugewandten Stirnfläche der Führungshülse (7) und dem
Führungsstück (1) ein Leckageraum (10) ausgebildet ist.
5. Hochdruckpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Pumpenkopf (3) einen in den Arbeitsraum (4) hineinragenden, zylinderförmigen Ansatz (11) aufweist, an dessen Außenumfangsflache der bei Betrieb der Pumpe im Arbeitsraum (4) vorherrschende Arbeitsdruck anliegt.
6. Hochdruckpumpe nach Anspruch 5, dadurch gekennzeichnet, dass in dem zylinderförmigen Ansatz (11) des Pumpenkopfes (3) der Zulauf (5) und/oder der Abgang (6) für den zu fördernden Kraftstoff angeordnet ist
7. Hochdruckpumpe nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass lediglich der Abgang (6) im Pumpenkopf (3) oder dem zylinderförmigen Ansatz (11) des Pumpenkopfes (3) angeordnet ist und der zu fördernde Kraftstoff dem Arbeitsraum (4) über eine Bohrung (12) in dem Führungsstück (1) und über den Leckageraum (10) zugeführt wird, wobei die Führungshülse (7) als Füllventil dient.
8. Hochdruckpumpe nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass lediglich der Abgang (6) im Pumpenkopf (3) oder dem zylinderförmigen Ansatz (9) des Pumpenkopfes (3) angeordnet ist und der zu fördernde Kraftstoff dem Arbeitsraum (4) über im Führungsbereich (13) des Führungsstücks (1) ausgebildete Strömungskanäle und über den Leckageraum (10) zugeführt wird, wobei die Führungshülse (7) als Füllventil dient.
9. Hochdruckpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass im Zulaufpfad eine Zumesseinheit zur Regelung der Pumpenfördermenge vorgesehen ist.
PCT/EP2009/054737 2008-06-03 2009-04-21 Hochdruckpumpe WO2009146975A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09757358A EP2304220B1 (de) 2008-06-03 2009-04-21 Hochdruckpumpe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002169.5 2008-06-03
DE200810002169 DE102008002169A1 (de) 2008-06-03 2008-06-03 Hochdruckpumpe

Publications (1)

Publication Number Publication Date
WO2009146975A1 true WO2009146975A1 (de) 2009-12-10

Family

ID=40910754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054737 WO2009146975A1 (de) 2008-06-03 2009-04-21 Hochdruckpumpe

Country Status (3)

Country Link
EP (1) EP2304220B1 (de)
DE (1) DE102008002169A1 (de)
WO (1) WO2009146975A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533010A (ja) * 2009-07-08 2012-12-20 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. ポンプ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2620354T3 (es) * 2012-12-20 2017-06-28 Robert Bosch Gmbh Bomba de combustible de pistón para un motor de combustión interna
GB201322264D0 (en) * 2013-12-17 2014-01-29 Delphi Tech Holding Sarl High Pressure Pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899136A (en) * 1996-12-18 1999-05-04 Cummins Engine Company, Inc. Low leakage plunger and barrel assembly for high pressure fluid system
DE19914713A1 (de) * 1999-03-31 2000-10-05 Siemens Ag Druckbeaufschlagte Stelleinrichtung
WO2003076807A1 (de) * 2002-03-08 2003-09-18 Robert Bosch Gmbh Hochdruckelement für einspritzanlagen mit verringerter leckage
EP1348868A1 (de) * 2001-01-05 2003-10-01 Hitachi, Ltd. Fluidpumpe und hochdruckkraftstoffförderpumpe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899136A (en) * 1996-12-18 1999-05-04 Cummins Engine Company, Inc. Low leakage plunger and barrel assembly for high pressure fluid system
DE19914713A1 (de) * 1999-03-31 2000-10-05 Siemens Ag Druckbeaufschlagte Stelleinrichtung
EP1348868A1 (de) * 2001-01-05 2003-10-01 Hitachi, Ltd. Fluidpumpe und hochdruckkraftstoffförderpumpe
WO2003076807A1 (de) * 2002-03-08 2003-09-18 Robert Bosch Gmbh Hochdruckelement für einspritzanlagen mit verringerter leckage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533010A (ja) * 2009-07-08 2012-12-20 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. ポンプ装置

Also Published As

Publication number Publication date
EP2304220A1 (de) 2011-04-06
EP2304220B1 (de) 2012-07-11
DE102008002169A1 (de) 2009-12-10

Similar Documents

Publication Publication Date Title
EP1411238B1 (de) Druckbegrenzungsventil für ein Kraftstoffeinspritzsystem
DE4401074B4 (de) Pumpenanordnung, insbesondere zur Förderung von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine
EP2207955B1 (de) Kraftstoffüberströmventil für eine kraftstoffeinspritzeinrichtung und kraftstoffeinspritzeinrichtung mit kraftstoffüberströmventil
DE10327411B4 (de) Druckbegrenzungsventil sowie Kraftstoffsystem mit einem solchen Druckbegrenzungsventil
EP2519744B1 (de) Pumpe mit einer einem ventil zugeorneten dämpfanordnung
DE102004013307A1 (de) Kraftstoffhochdruckpumpe mit einem Druckbegrenzungsventil
DE19541507A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE102005022661A1 (de) Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
EP2888469B1 (de) Common-rail-system
EP1403509B1 (de) Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
EP2522854A1 (de) Ventilanordnung für eine Kraftstoffhochdruckpumpe sowie Kraftstoffhochdruckpumpe
EP2406488A1 (de) Saugventil für eine kraftstoffhochdruckpumpe
DE102008000511B4 (de) Injektor
EP1910663A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung
EP1357283A2 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP2156050B1 (de) Druckverstärkungssystem für mindestens einen kraftstoffinjektor
EP2304220B1 (de) Hochdruckpumpe
WO2003018991A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO1992008051A1 (de) Kolbenpumpe, insbesondere radialkolbenpumpe
DE102008002170A1 (de) Hochdruckpumpe
DE102020210846A1 (de) Kraftstoffhochdruckpumpe
EP1759115B1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
DE102020206034A1 (de) Kraftstoffhochdruckpumpe
EP3430261A1 (de) Hochdruckpumpe mit einem fluiddämpfer
WO2017050463A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09757358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009757358

Country of ref document: EP