WO2009122768A1 - 固体電解質形燃料電池とその製造方法 - Google Patents

固体電解質形燃料電池とその製造方法 Download PDF

Info

Publication number
WO2009122768A1
WO2009122768A1 PCT/JP2009/051531 JP2009051531W WO2009122768A1 WO 2009122768 A1 WO2009122768 A1 WO 2009122768A1 JP 2009051531 W JP2009051531 W JP 2009051531W WO 2009122768 A1 WO2009122768 A1 WO 2009122768A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
solid electrolyte
fuel cell
cell
Prior art date
Application number
PCT/JP2009/051531
Other languages
English (en)
French (fr)
Inventor
秀朗 中居
喜樹 植田
直哉 森
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2009517788A priority Critical patent/JP4420139B2/ja
Publication of WO2009122768A1 publication Critical patent/WO2009122768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell and a method for manufacturing the same.
  • a flat solid electrolyte fuel cell (also referred to as a solid oxide fuel cell (SOFC)) includes a plurality of flat plate-shaped power generation elements each composed of an anode (negative electrode), a solid electrolyte, and a cathode (positive electrode). And a separator (also referred to as an interconnector) disposed between a plurality of cells.
  • the separator is a fuel gas as an anode gas specifically supplied to the anode in order to electrically connect the plurality of cells in series with each other and to separate the gas supplied to each of the plurality of cells.
  • hydrogen hydrogen
  • oxidant gas for example, air
  • the separator is formed from a heat-resistant metal material or a conductive ceramic material such as lanthanum chromite (LaCrO 3 ).
  • a separator is formed using such a conductive material, a member that performs the functions of electrical connection and gas separation can be formed using a single material.
  • the separator is joined to the three-layer members constituting the cell, that is, the three-layer members constituting the anode (fuel electrode), the electrolyte and the cathode (air electrode), and leakage of fuel gas and oxidant gas.
  • the peripheral portions of the separator and the three-layer member are hermetically sealed.
  • the laminate composed of separators and cells is connected to a manifold for supplying fuel gas and oxidant gas to each of the plurality of cells. Also in this case, in order to prevent the leakage of the fuel gas and the oxidant gas, the separator and the peripheral portions of the three-layer members and the manifold, and the manifolds are hermetically sealed.
  • Patent Document Japanese Patent Laid-Open No. 6-68885
  • yttria stabilized zirconia (YSZ) or the like as a solid electrolyte material
  • lanthanum manganite or lanthanum cobaltite as an air electrode material
  • NiO-YSZ as a fuel electrode material
  • Lanthanum chromite is used as a material for the separator.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-132914 discloses a base material whose interconnector structure is made of YSZ and a plurality of conductive vias made of metal housed in the base material. What is comprised is illustrated. JP-A-6-68885 JP 2003-132914 A
  • the material forming the interconnector is lanthanum chromite.
  • Lanthanum chromite and YSZ, which is a solid electrolyte material, are greatly different in heat shrinkage behavior during firing. Therefore, in Patent Document 1, by sandwiching the stress relaxation layer, the stress between the materials resulting from the difference in thermal shrinkage behavior during firing is relaxed by positively cracking the stress relaxation layer, thereby preventing the entire damage. Thus, a solid oxide fuel cell that is integrally sintered is manufactured. However, it is difficult to produce a solid oxide fuel cell without cracks or breakage by integral sintering even if a stress relaxation layer is used.
  • Patent Document 2 exemplifies using YSZ as a base material for an interconnector.
  • YSZ is used as the interconnector material instead of lanthanum chromite, the difference in thermal shrinkage behavior during firing between the interconnector and the solid electrolyte can be reduced, so that there is no crack or breakage in the solid oxide fuel cell Can be easily manufactured by integral sintering.
  • an object of the present invention is to provide a solid oxide fuel cell that can be manufactured by co-sintering and that can prevent cracks caused by reduction shrinkage behavior during initial power generation, and a method for manufacturing the same. is there.
  • a solid oxide fuel cell includes a cell composed of a stack of an anode layer, a solid electrolyte layer, and a cathode layer that are sequentially stacked, and the anode gas and cathode gas supplied to the cell are isolated from the outside air. And an isolation part.
  • the cell and the isolation part are formed by co-sintering.
  • the anode layer and the separator are formed so that the contact edge of the anode layer that contacts the surface of the solid electrolyte layer does not contact the contact edge of the separator that contacts the surface of the solid electrolyte layer in the cross section of the laminate. ing.
  • the anode layer and the cathode layer are formed so that the anode layer contact edge is not aligned with the contact edge of the cathode layer contacting the surface of the solid electrolyte layer.
  • the anode layer contact edge that contacts the surface of the solid electrolyte layer is not in contact with the contact edge of the isolation portion that contacts the surface of the solid electrolyte layer. Also, the anode layer contact edge is not aligned with the contact edge of the cathode layer that contacts the surface of the solid electrolyte layer. For these reasons, even if the anode layer exhibits a reduction shrinkage behavior due to the hydrogen gas as the fuel gas supplied to the anode during initial power generation, and stress is generated from the reduction shrinkage behavior, the contact edge of the isolated portion is affected by the stress. Does not work to hold down the anode layer contact edge. Therefore, cracks resulting from the reduction shrinkage behavior during initial power generation can be prevented, and the cell is unlikely to be damaged during initial power generation.
  • the separator includes an inter-cell separator disposed between a plurality of cells, and the inter-cell separator includes an anode gas and a cathode gas supplied to each of the plurality of cells.
  • the inter-cell separator includes an anode gas and a cathode gas supplied to each of the plurality of cells.
  • the solid oxide fuel cell of the present invention has an anode gas supply path for supplying anode gas to each of the plurality of cells, and a cathode gas supply path for supplying cathode gas to each of the plurality of cells. It is preferable that a gas supply path structure is further provided, and the cell, the inter-cell separation part, and the gas supply path structure are formed by co-sintering.
  • an anode gas flow passage is formed between the inter-cell separator and the anode layer so as to come into contact with the surface of the anode layer, and between the inter-cell separator and the cathode layer.
  • the cathode gas flow passage is preferably formed so as to be in contact with the surface of the cathode layer.
  • the anode gas can be easily supplied to the surface of the anode layer, and the cathode gas can be easily supplied to the surface of the cathode layer.
  • the anode gas flow passage is arranged to extend in the first direction so as to supply the anode gas to the surface of the anode layer, and has a first width.
  • the cathode gas flow passage is disposed to extend in a second direction intersecting the first direction to supply the cathode gas to the surface of the cathode layer, has a second width, the cell, and the anode
  • the gas flow passage and the side wall portion of the cathode gas flow passage are formed by co-sintering, where x is the first width of the anode gas flow passage and x is the second width of the cathode gas flow passage.
  • y preferably has a relationship of x ⁇ 0.5 mm, y ⁇ 0.5 mm, and x + 3y ⁇ 8 mm.
  • the anode layer and the solid constituting the cell by the heat shrinkage behavior during firing
  • the amount of warpage generated in the laminate of the electrolyte layer and the cathode layer can be suppressed, and as a result, both the pressure loss in the anode gas flow passage and the cathode gas flow passage can be suppressed.
  • a method for manufacturing a solid oxide fuel cell according to the present invention is a method for manufacturing a solid oxide fuel cell having any one of the above-described features, wherein an anode layer contact edge is formed on a disappeared material that disappears by heating.
  • the anode layer so that the anode contact edge and the separator contact edge do not contact after sintering by filling between the material to be formed and the material forming the separator contact edge and then co-sintering And forming an isolation part.
  • the anode layer and the isolation part can be easily formed so that the anode layer contact edge and the isolation part contact edge do not contact each other.
  • the present invention since it can be manufactured by co-sintering and cracks caused by reduction shrinkage behavior at the time of initial power generation can be prevented, the cell is less likely to be damaged at the time of initial power generation. An electrolyte fuel cell can be obtained.
  • FIG. 1 is a plan view showing a schematic configuration of a unit module of a solid oxide fuel cell of a type (parallel flow type) in which fuel gas and air flow in the same direction as Embodiment 1 of the present invention.
  • FIG. FIG. 2 is a cross-sectional view showing a cross section viewed from the direction along the line II-II in FIG. 1 as a schematic configuration of a solid oxide fuel cell including a plurality of unit modules of a parallel flow type solid oxide fuel cell.
  • FIG. 3 is a cross-sectional view showing a cross section seen from the direction along line III-III in FIG. 1 as a schematic configuration of a solid oxide fuel cell including a plurality of unit modules of a parallel flow type solid oxide fuel cell.
  • FIG. 1 is a plan view showing a schematic configuration of a unit module of a solid oxide fuel cell of a type (parallel flow type) in which fuel gas and air flow in the same direction as Embodiment 1 of the present invention.
  • FIG. FIG. 2
  • FIG. 4 is a cross-sectional view showing a cross section viewed from a direction along line IV-IV in FIG. 1 as a schematic configuration of a unit module of a parallel flow type solid oxide fuel cell. It is a top view which shows the schematic structure of a solid oxide form fuel cell as Embodiment 2 of this invention.
  • FIG. 6 is a cross-sectional view showing a cross section seen from the direction along the line VI-VI in FIG. 5 as a schematic configuration of a solid oxide fuel cell including a plurality of unit modules.
  • FIG. 6 is a cross-sectional view showing a cross section viewed from a direction along the line VII-VII in FIG. 5 as a schematic configuration of a solid oxide fuel cell including a plurality of unit modules.
  • FIG. 6 is a plan view showing a schematic configuration of a solid oxide fuel cell as Embodiment 3 of the present invention.
  • FIG. 9 is a cross-sectional view showing a cross section viewed from a direction along the line IX-IX in FIG. 8 as a schematic configuration of a solid oxide fuel cell including a plurality of unit modules.
  • FIG. 9 is a cross-sectional view showing a cross section seen from a direction along the line XX in FIG. 8 as a schematic configuration of a unit module of a solid oxide fuel cell as Embodiment 3 of the present invention. It is a fragmentary sectional perspective view showing one cell which constitutes a unit module of a cross flow type solid oxide fuel cell.
  • FIG. 2 It is a top view which shows arrangement
  • FIG. 2 It is sectional drawing which shows the part which comprises a solid oxide form fuel cell support structure.
  • 11 Fuel electrode layer, 11a: Gap, 12: Solid electrolyte layer, 13: Air electrode layer, 20: Solid electrolyte fuel cell support structure, 21: Electrical insulator, 21a: Inter-cell separator, 21b: Isolator 21c: gas supply path structure, 22: electric conductor, 23: fuel gas supply path, 23a: fuel gas flow path, 24: air supply path, 24a: air flow path, 100, 200, 300: solid electrolyte type Fuel cell.
  • FIG. 1 is a plan view showing a schematic configuration of a unit module of a solid oxide fuel cell of a type (parallel flow type) in which fuel gas and air flow in the same direction as Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section seen from the direction along the line II-II in FIG. 1 as a schematic configuration of a solid electrolyte fuel cell having a plurality of unit modules of a parallel flow type solid oxide fuel cell. It is.
  • FIG. 3 is a cross-sectional view showing a cross section viewed from the direction along the line III-III in FIG. 1 as a schematic configuration of a solid oxide fuel cell having a plurality of unit modules of a parallel flow type solid oxide fuel cell. It is.
  • FIG. 1 shows a schematic configuration of a unit module of a solid oxide fuel cell as one embodiment 1 of the present invention.
  • a fuel electrode layer 11 a solid electrolyte layer 12, an air electrode layer 13 are shown.
  • the planar arrangement is shown.
  • the solid oxide fuel cell 100 including a plurality of unit modules (solid electrolyte fuel cell modules) of a solid oxide fuel cell includes a solid oxide fuel cell support structure (hereinafter, “ A support structure 20).
  • a support structure 20 A plurality of unit modules are laminated inside the support structure 20.
  • a fuel electrode layer 11 having a thickness of 100 to 300 ⁇ m as an anode layer constituting the cell 10, and a thickness.
  • a solid electrolyte layer 12 having a thickness of 10 to 50 ⁇ m and an air electrode layer 13 having a thickness of 100 to 300 ⁇ m as a cathode layer.
  • the unit module is configured by laminating the air electrode layer 13, the solid electrolyte layer 12, and the fuel electrode layer 11 sequentially in the upward direction inside the support structure 20.
  • the unit module may be configured by sequentially laminating the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 in the upward direction.
  • the solid oxide fuel cell 100 has a plurality of cells 10 and is arranged so that a current collector plate 30 having a thickness of 10 to 20 ⁇ m is electrically connected to the cell located at the uppermost position via a support structure 20.
  • a current collector plate 40 having a thickness of 10 to 20 ⁇ m is disposed so as to be electrically connected to the cell located at the bottom via the support structure 20.
  • Each of the plurality of cells 10 includes a fuel electrode layer 11, a solid electrolyte layer 12, and an air electrode layer 13 that are sequentially stacked.
  • the support structure 20 includes an isolation part 21b including an inter-cell isolation part 21a having a thickness of about 100 ⁇ m arranged between the plurality of cells 10 and a gas supply path structure part 21c.
  • the inter-cell separator 21 a includes an electrical insulator 21 that separates the fuel gas as the anode gas and the air that is the oxidant gas as the cathode gas supplied to each of the plurality of cells 10. And a plurality of electrical conductors 22 electrically connecting the plurality of cells 10 to each other.
  • the current collector plate 30 is electrically connected to the fuel electrode layer 11 of the uppermost cell through the electric conductor 22, and the current collector plate 40 is electrically connected to the air electrode layer 13 of the lowermost cell through the electric conductor 22. Has been.
  • the isolation part 21b is formed from the electrical insulator 21 so as to isolate the fuel gas and air supplied to each of the plurality of cells 10 from the outside air.
  • the fuel gas supply path 23 is arranged so as to contact a part of one side surface of each fuel electrode layer 11 of the plurality of cells 10.
  • the air supply path 24 is disposed so as to contact a part of one side surface of the air electrode layer 13 of each of the plurality of cells 10.
  • the fuel gas is supplied through the fuel gas supply path 23, and the air is supplied through the air supply path 24.
  • the fuel gas and air flow in the same direction from left to right in FIG.
  • the main body of the gas supply path structure 21c that is, the wall part forming the fuel gas supply path 23 and the air supply path 24, is an electrical insulator 21 that forms the inter-cell separation part 21a. And is formed continuously with the electrical insulator 21 forming the inter-cell separation portion 21a.
  • the electrical insulator that forms the isolation portion 21b is also made of the same electrical insulator as the electrical insulator 21 that forms the inter-cell isolation portion 21a, and is formed continuously with the electrical insulator 21 that forms the inter-cell isolation portion 21a. Yes.
  • the electrical insulator 21 is made of, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) with an addition amount of 3 mol%, or ceria with an addition amount of 12 mol% (YSZ). It is formed using zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ) stabilized with CeO 2 ).
  • the electric conductor 22 may be, for example, a silver (Ag) -platinum (Pt) alloy, a silver (Ag) -palladium (Pd) alloy, or the like, or lanthanum chromite (LaCrO 3 ) to which alkaline earth metal is added, lanthanum ferrate ( LaFeO 3 ).
  • the solid electrolyte layer 12 includes, for example, zirconia (ZrO 2 ) (scandia ceria stabilized zirconia stabilized with 10 mol% scandia (Sc 2 O 3 ) and 1 mol% ceria (CeO 2 ) added: ScCeSZ), zirconia (ZrO 2 ) stabilized with 11 mol% scandia (Sc 2 O 3 ) (scandia stabilized zirconia: ScSZ), or yttria (Y 2 O 3 ) with 8 mol% addition It is formed using stabilized zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) or the like.
  • the fuel electrode layer 11 is made of, for example, nickel oxide (NiO), zirconia (ZrO 2 ) stabilized with scandia (Sc 2 O 3 ) added in an amount of 10 mol% and ceria (CeO 2 ) added in an amount of 1 mol%.
  • NiO nickel oxide
  • ZrO 2 zirconia stabilized with scandia
  • CeO 2 ceria
  • ScCeSZ sincandiaceria stabilized zirconia
  • ZrO 2 a mixture with zirconia
  • yttria stabilized zirconia: YSZ yttria stabilized zirconia
  • the air electrode layer 13 is stabilized with, for example, La 0.8 Sr 0.2 MnO 3 , scandia (Sc 2 O 3 ) added in an amount of 10 mol%, and ceria (CeO 2 ) added in an amount of 1 mol%.
  • Zirconia (ZrO 2 ) scandiaceria stabilized zirconia: ScCeSZ
  • a mixture with zirconia (ZrO 2 ) yttria stabilized zirconia: YSZ
  • La 0.8 Sr 0.2 Co 0.2 Fe 0.8 O 3 may be used instead of La 0.8 Sr 0.2 MnO 3 .
  • the current collector plates 30 and 40 are made of, for example, silver (Ag).
  • the main body of the gas supply path structure portion 21c that functions as a manifold, and the isolation portion 21b that separates fuel gas and air from the outside air are provided. Since it is formed of an electrical insulator 21 that forms an inter-cell separation portion 21a that functions as a separator, and is formed continuously with the electrical insulator 21 that forms the inter-cell separation portion 21a, the two functions of a separator and a manifold are provided. The part which fulfills is formed continuously. For this reason, the sealing member between separators and a cell-manifold becomes unnecessary. Thereby, the sealing performance with respect to the gas as the whole battery can be improved, the number of members can be reduced, and as a result, the number of manufacturing steps can be reduced.
  • the solid oxide fuel cell module according to the present invention is provided on the surface of the solid oxide fuel cell support structure 20 having the above-described features and the inter-cell separation portion 21a of the solid oxide fuel cell support structure 20.
  • the cell 10 is provided with a disposed air electrode layer 13, a solid electrolyte layer 12 formed on the air electrode layer 13, and a fuel electrode layer 11 formed on the solid electrolyte layer 12. Since it is supported by the inter-cell separator 21a of the battery support structure 20, the thickness of the solid electrolyte layer 12 can be reduced to, for example, 100 ⁇ m or less. As a result, the electrical resistance of the solid electrolyte layer 12 can be lowered.
  • the material constituting the solid electrolyte layer 12 and the electrical insulator 21 contains stabilized zirconia or partially stabilized zirconia as a main component, so that a solid oxide fuel cell support structure is provided. Since the difference in coefficient of thermal expansion can be reduced between the material constituting the electrical insulator 21 of the body 20 and the material constituting the solid electrolyte layer 12, even if a heat cycle is given during operation, etc. Since the thermal stress acting on the electrolyte layer 12 is small, the destruction of the solid electrolyte layer 12 due to the thermal stress can be suppressed.
  • the solid oxide fuel cell support structure The electrical insulator 21 and the solid electrolyte layer 12 of the body 20, and thus the electrical insulator 21 of the solid electrolyte fuel cell support structure 20 and the cell 10 including the solid electrolyte layer 12 can be manufactured by co-sintering. That is, the cell 10, the inter-cell separation part 21a, the isolation part 21b, and the gas supply path structure part 21c are integrally formed by co-sintering.
  • the material constituting the solid electrolyte layer 12 and the electrical insulator 21 contains stabilized zirconia or partially stabilized zirconia as a main component, the inter-cell separator 21a, the separator 21b, and the gas supply path structure Since the difference in heat shrinkage behavior during firing between the material constituting 21c and the solid electrolyte layer 12 can be reduced, it is easy to manufacture a solid electrolyte fuel cell free from cracks and breakage by co-sintering become.
  • FIG. 4 is a cross-sectional view showing a cross section seen from the direction along line IV-IV in FIG. 1 as a schematic configuration of a unit module of a parallel flow type solid oxide fuel cell.
  • (A) and (B) show comparative forms I and II for the present invention
  • (C), (D) and (E) show embodiments I, II and III of the present invention.
  • the contact edge or outer wall end face of the fuel electrode layer 11 is aligned or aligned with the contact edge of the air electrode layer 13 in contact with the surface of the solid electrolyte layer 12, in other words, the solid electrolyte layer 12.
  • the fuel electrode layer 11 and the air electrode layer 13 are formed so as to be aligned or aligned with the outer wall end face of the air electrode layer 13 reaching the surface.
  • the fuel electrode in order to distribute the fuel gas from the fuel gas supply path 23 to the surface of the fuel electrode layer 11, the fuel electrode is interposed between the inter-cell separator 21 a and the fuel electrode layer 11.
  • a plurality of fuel gas flow passages 23 a are formed so as to contact the surface of the layer 11.
  • a fuel gas flow passage 23 a including a plurality of openings is formed in the fuel electrode layer 11 so as to be in contact with the inner surface of the fuel electrode layer 11.
  • a plurality of air flows so as to contact the surface of the air electrode layer 13 between the inter-cell separation part 21 a and the air electrode layer 13.
  • a path 24a is formed.
  • an air flow passage 24 a including a plurality of openings is formed inside the air electrode layer 13 so as to contact the inner surface of the air electrode layer 13.
  • the contact edge of the fuel electrode layer 11 that contacts the surface of the solid electrolyte layer 12 in other words, the solid electrolyte layer
  • the outer wall end surface of the fuel electrode layer 11 reaching the surface of 12 is in contact with the contact edge of the isolation portion 21b that surrounds the vicinity of the contact edge of the fuel electrode layer 11 and contacts the surface of the solid electrolyte layer 12;
  • the fuel electrode layer 11 and the isolating portion 21b are formed so as to be in contact with the inner wall end face of the isolating portion 21b reaching the surface of the solid electrolyte layer 12 so as to coincide with each other.
  • the contact edge or outer wall end face of the fuel electrode layer 11 is aligned or aligned with the contact edge of the air electrode layer 13 in contact with the surface of the solid electrolyte layer 12, in other words, the solid electrolyte layer 12.
  • the fuel electrode layer 11 and the air electrode layer 13 are formed so as to be aligned or aligned with the outer wall end face of the air electrode layer 13 reaching the surface.
  • a gas flow path including a groove and an opening is formed to circulate the fuel gas from the fuel gas supply path 23 to the surface of the fuel electrode layer 11. It has not been.
  • a gas flow path composed of a groove, an opening, or the like is not formed to allow air to flow from the air supply path 24 to the surface of the air electrode layer 13.
  • the outer wall end surface of the fuel electrode layer 11 that reaches the surface of 12 surrounds the vicinity of the contact edge of the fuel electrode layer 11 and does not contact the contact edge of the isolation portion 21b that contacts the surface of the solid electrolyte layer 12.
  • the fuel electrode layer 11 and the isolating portion 21b are formed so as not to coincide with each other, in other words, so as not to contact the inner wall end face of the isolating portion 21b reaching the surface of the solid electrolyte layer 12. .
  • the contact edge or inner wall end surface of the isolation part 21b is separated from the contact edge or outer wall end surface of the fuel electrode layer 11, There is a gap 11 a between the contact edge or inner wall end surface of the isolation part 21 b and the contact edge or outer wall end surface of the fuel electrode layer 11.
  • the gap 11a may be filled with a material different from that of the electrical insulator 21 forming the isolation part 21b.
  • the contact edge or the outer wall end face of the fuel electrode layer 11 is not aligned with the contact edge of the air electrode layer 13 that contacts the surface of the solid electrolyte layer 12, in other words, the solid electrolyte.
  • the fuel electrode layer 11 and the air electrode layer 13 are formed so as not to align with the outer wall end face of the air electrode layer 13 that reaches the surface of the layer 12 so as not to align.
  • the contact edge or inner wall end surface of the isolation portion 21b is aligned or aligned with the contact edge or outer wall end surface of the air electrode layer 13.
  • the isolation part 21b and the air electrode layer 13 are formed.
  • Embodiment II of the present invention in order to circulate the fuel gas from the fuel gas supply path 23 to the surface of the fuel electrode layer 11, the inter-cell separator 21a and the fuel electrode layer 11 are provided.
  • a plurality of fuel gas flow passages 23 a are formed so as to be in contact with the surface of the fuel electrode layer 11.
  • a fuel gas flow passage 23 a including a plurality of openings is formed in the fuel electrode layer 11 so as to be in contact with the inner surface of the fuel electrode layer 11.
  • a path 24a is formed.
  • an air flow passage 24 a including a plurality of openings is formed inside the air electrode layer 13 so as to contact the inner surface of the air electrode layer 13.
  • the outer wall end surface of the fuel electrode layer 11 that reaches the surface of 12 surrounds the vicinity of the contact edge of the fuel electrode layer 11 and does not contact the contact edge of the isolation portion 21b that contacts the surface of the solid electrolyte layer 12.
  • the fuel electrode layer 11 and the isolating portion 21b are formed so as not to coincide with each other, in other words, so as not to contact the inner wall end face of the isolating portion 21b reaching the surface of the solid electrolyte layer 12.
  • the contact edge or inner wall end surface of the isolation part 21b is separated from the contact edge or outer wall end surface of the fuel electrode layer 11, There is a gap 11 a between the contact edge or inner wall end surface of the isolation part 21 b and the contact edge or outer wall end surface of the fuel electrode layer 11.
  • the gap 11a may be filled with a material different from that of the electrical insulator 21 forming the isolation part 21b.
  • a material that shrinks when reduced such as NiO, or a material that acts to press down the contact edge of the anode layer, such as dense Al 2 O 3 , is not suitable as a material to be filled.
  • the material to be filled is preferably one that relieves stress without shrinking due to reduction, and examples of applicable materials include porous Al 2 O 3 .
  • the contact edge or the outer wall end face of the fuel electrode layer 11 is not aligned with the contact edge of the air electrode layer 13 that contacts the surface of the solid electrolyte layer 12, in other words, the solid electrolyte.
  • the fuel electrode layer 11 and the air electrode layer 13 are formed so as not to align with the outer wall end face of the air electrode layer 13 that reaches the surface of the layer 12 so as not to align.
  • the contact edge or inner wall end surface of the isolation portion 21b is aligned or aligned with the contact edge or outer wall end surface of the air electrode layer 13.
  • the isolation part 21b and the air electrode layer 13 are formed.
  • the contact edge of the fuel electrode layer 11 that contacts the surface of the solid electrolyte layer 12 is used. However, it does not touch the contact edge of the isolation part 21b that covers the contact edge of the fuel electrode layer 11 and contacts the surface of the solid electrolyte layer 12. Further, the contact edge of the fuel electrode layer 11 is not aligned with the contact edge of the air electrode layer 13 that contacts the surface of the solid electrolyte layer 12.
  • the fuel electrode layer 11 is interposed between the inter-cell separation portion 21a and the fuel electrode layer 11.
  • a fuel gas flow passage 23a is formed so as to be in contact with the surface, and an air flow passage 24a is formed between the inter-cell separation portion 21a and the air electrode layer 13 so as to be in contact with the surface of the air electrode layer 13. It is preferable.
  • the fuel gas can be easily supplied to the surface of the fuel electrode layer 11 and the air can be easily supplied to the surface of the air electrode layer 13.
  • Embodiment 1 of the solid oxide fuel cell according to the present invention includes a fuel gas supply path 23 for supplying fuel gas to each of the plurality of cells 10 as shown in FIGS.
  • a gas supply path structure portion 21c having an air supply path 24 for supplying air to each of the cells, and the cell 10, the inter-cell separation portion 21a and the gas supply path structure portion 21c are formed by co-sintering. Is preferred.
  • the inter-cell separation portion 21a that functions as an interconnector and the gas supply path structure portion 21c that functions as a manifold can be integrally formed.
  • the number of members can be reduced, and as a result, the number of manufacturing steps can be reduced.
  • the contact edge of the fuel electrode layer 11 that contacts the surface of the solid electrolyte layer 12 in other words, the fuel electrode layer 11 that reaches the surface of the solid electrolyte layer 12.
  • the outer wall end surface of the outer wall surrounds the vicinity of the contact edge of the fuel electrode layer 11 and does not coincide with the contact edge of the isolation portion 21b that contacts the surface of the solid electrolyte layer 12.
  • the fuel electrode layer 11 and the isolation part 21b are formed so as not to coincide with each other so as not to contact the inner wall end face of the isolation part 21b reaching the surface of the solid electrolyte layer 12.
  • the contact edge or inner wall end surface of the isolation part 21b is separated from the contact edge or outer wall end surface of the fuel electrode layer 11, There is a gap 11 a between the contact edge or inner wall end surface of the isolation part 21 b and the contact edge or outer wall end surface of the fuel electrode layer 11.
  • FIG. 5 shows a schematic configuration of a solid oxide fuel cell as Embodiment 2 of the present invention, and in particular, a plan view showing a planar arrangement of the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13. It is.
  • FIG. 6 is a cross-sectional view showing a cross section seen from the direction along line VI-VI in FIG. 5 as a schematic configuration of a solid oxide fuel cell having a plurality of unit modules.
  • FIG. 7 is a cross-sectional view showing a cross section seen from a direction along the line VII-VII in FIG. 5 as a schematic configuration of a solid oxide fuel cell having a plurality of unit modules.
  • the solid oxide fuel cell 200 of the second embodiment is of a type in which fuel gas and air flow in opposite directions (counterflow type).
  • the fuel gas supply path 23 is disposed so as to be in contact with part of both side surfaces of each fuel electrode layer 11 of the plurality of cells 10. Yes.
  • the air supply path 24 is disposed so as to contact a part of both side surfaces of the air electrode layer 13 of each of the plurality of cells 10.
  • the fuel gas is supplied through the fuel gas supply path 23, and the air is supplied through the air supply path 24.
  • the fuel gas flows to the right from the fuel gas supply path 23 arranged on the left side, and flows to the left from the fuel gas supply path 23 arranged on the right side.
  • FIG. 4 shows a cross-sectional view taken along the line IV-IV in FIG. 5 as a schematic configuration of a solid oxide fuel cell having a plurality of unit modules of a counter flow type solid oxide fuel cell.
  • the cross section is the same.
  • the contact edge of the fuel electrode layer 11 that contacts the surface of the solid electrolyte layer 12 in other words, the fuel that reaches the surface of the solid electrolyte layer 12.
  • the end face of the outer wall of the electrode layer 11 surrounds the vicinity of the contact edge of the fuel electrode layer 11 and does not coincide with the contact edge of the isolation portion 21 b that contacts the surface of the solid electrolyte layer 12.
  • the fuel electrode layer 11 and the isolation part 21b are formed so as not to be in contact with each other so as not to contact the end face of the inner wall of the isolation part 21b reaching the surface of the solid electrolyte layer 12.
  • the contact edge or inner wall end surface of the isolation part 21b is separated from the contact edge or outer wall end surface of the fuel electrode layer 11, There is a gap 11 a between the contact edge or inner wall end surface of the isolation part 21 b and the contact edge or outer wall end surface of the fuel electrode layer 11.
  • FIG. 8 shows a schematic configuration of a solid oxide fuel cell as Embodiment 3 of the present invention, and in particular, a plan view showing a planar arrangement of the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13. It is.
  • FIG. 9 is a cross-sectional view showing a cross section seen from the direction along line IX-IX in FIG. 8 as a schematic configuration of a solid oxide fuel cell including a plurality of unit modules.
  • FIG. 10 is a cross-sectional view showing a cross section of the unit module of the solid oxide fuel cell as viewed from the direction along the line XX in FIG. 8 as Embodiment 3 of the present invention. In FIG. 10, the electric conductor 22 is not shown.
  • the gas supply path structure portion 21c is disposed so as to contact one side surface of each fuel electrode layer 11 of the plurality of cells 10.
  • a fuel gas supply path 23 as an anode gas supply path for supplying fuel gas, and a cathode gas path for supplying air, arranged so as to be in contact with a side surface on one side of the air electrode layer 13.
  • an air supply path 24 arranged so as to be in contact with a side surface on one side of the air electrode layer 13.
  • the fuel gas flows from the fuel gas supply path 23 disposed on the left side toward the right, and the air flows downward from the air supply path 24 disposed on the upper side.
  • the solid oxide fuel cell 300 according to the third embodiment is a type in which the flow of fuel gas and the flow of air are orthogonal (cross flow type).
  • cross section shown in FIG. 10 as a schematic configuration of the unit module of the cross flow type solid oxide fuel cell is similar to the cross section shown in FIG.
  • a plurality of fuel gas flow passages 23 a are formed so as to be in contact with the surface of the fuel electrode layer 11.
  • a fuel gas flow passage 23 a including a plurality of openings is formed in the fuel electrode layer 11 so as to be in contact with the inner surface of the fuel electrode layer 11.
  • the air electrode layer 13 is interposed between the inter-cell separation portion 21a and the air electrode layer 13.
  • a plurality of air flow passages 24a are formed so as to contact the surface.
  • an air flow passage 24 a including a plurality of openings is formed inside the air electrode layer 13 so as to contact the inner surface of the air electrode layer 13.
  • Embodiment 3 in the cross section of the laminate of the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 shown in FIG. 10, the contact edge of the fuel electrode layer 11 that contacts the surface of the solid electrolyte layer 12, In other words, the outer wall end face of the fuel electrode layer 11 that reaches the surface of the solid electrolyte layer 12 covers the contact edge of the fuel electrode layer 11 and contacts the contact edge of the isolation portion 21 b that contacts the surface of the solid electrolyte layer 12.
  • the fuel electrode layer 11 and the isolating portion 21b are formed so as not to coincide with each other, so as not to coincide with each other, in other words, so as not to make contact with the inner wall end face of the isolating portion 21b reaching the surface of the solid electrolyte layer 12.
  • the contact edge or inner wall end surface of the isolation part 21b is separated from the contact edge or outer wall end surface of the fuel electrode layer 11, There is a gap 11 a between the contact edge or inner wall end surface of the isolation part 21 b and the contact edge or outer wall end surface of the fuel electrode layer 11.
  • the gap 11a may be filled with a material different from that of the electrical insulator 21 forming the isolation part 21b.
  • the contact edge or the outer wall end face of the fuel electrode layer 11 is not aligned with the contact edge of the air electrode layer 13 that contacts the surface of the solid electrolyte layer 12, in other words, the solid electrolyte.
  • the fuel electrode layer 11 and the air electrode layer 13 are formed so as not to align with the outer wall end face of the air electrode layer 13 that reaches the surface of the layer 12 so as not to align.
  • Embodiment 4 of the present invention in Embodiment 3 shown in FIGS. 8 to 10, the relationship between the first width y of the fuel gas flow passage 23a and the second width x of the air flow passage 24a is defined.
  • FIG. 11 is a partial cross-sectional perspective view showing one cell constituting a unit module of a cross-flow type solid oxide fuel cell.
  • FIG. 12 is a plan view showing the arrangement of the gas flow passages.
  • the cells constituting the unit module of the cross-flow type solid oxide fuel cell extend in the first direction so as to supply the fuel gas to the surface of the fuel electrode layer 11.
  • the cell and the side walls of the plurality of fuel gas flow passages 23a and the air flow passages 24a are formed by co-sintering.
  • the first width of the fuel gas flow passage 23a is y and the second width of the air flow passage 24a is x
  • x and y have a relationship of x ⁇ 0.5 mm, y ⁇ 0.5 mm, and x + 3y ⁇ 8 mm. It is preferable to have.
  • the fuel electrode layer 11 constituting the cell is formed by the thermal contraction behavior during firing. Further, it is possible to suppress the amount of warpage generated in the laminate of the solid electrolyte layer 12 and the air electrode layer 13, and as a result, it is possible to suppress both the pressure loss in the fuel gas flow passage 23a and the air flow passage 24a.
  • the disappearing material that disappears by heating for example, the carbon-containing material, and the material that forms the contact edge of the fuel electrode layer 11 are used.
  • the contact edge of the fuel electrode layer 11 and the contact edge of the isolation part 21b do not contact after sintering.
  • the fuel electrode layer 11 and the isolation part 21b are formed so that the gap 11a is formed as shown in FIGS. 4C to 4E and FIG.
  • the fuel electrode layer 11 and the isolation part 21b can be easily formed so that the contact edge of the fuel electrode layer 11 and the contact edge of the isolation part 21b do not contact each other.
  • Example 1 the material powder of each member constituting the unit module of the parallel flow type solid oxide fuel cell shown in FIGS. 1 to 3 was prepared as follows.
  • Fuel electrode layer 11 Zirconia (ZrO 2 ) stabilized with 60% by weight of nickel oxide (NiO), scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol% (Scandiaceria stabilized zirconia: ScCeSZ) A mixture with 40% by weight.
  • ZrO 2 Zirconia stabilized with 60% by weight of nickel oxide (NiO), scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol%
  • ScCeSZ ScCeSZ
  • Solid electrolyte layer 12 zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) stabilized with scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol%.
  • Air electrode layer 13 stabilized with 60 wt% La 0.8 Sr 0.2 MnO 3 , 10 mol% scandia (Sc 2 O 3 ) and 1 mol% ceria (CeO 2 ) Mixture with 40% by weight of zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ).
  • ZrSiO 4 zircon
  • ZrO 2 zirconia
  • CeSZ ceria stabilized zirconia
  • a green sheet was produced as follows for the portion 20a constituting the solid oxide fuel cell support structure 20.
  • a conductive paste filling layer for forming the electric conductors 22a and 22b arranged at two kinds of positions was prepared by filling 50% by weight of silver and 50% by weight of palladium.
  • a conductive paste filling layer for forming the electric conductors 22 of one kind of arrangement is formed on one sheet 25. Also good.
  • an elongated through hole for forming the fuel gas supply passage 23 and the air supply passage 24 was formed as shown in FIGS. 2 to 3 by drilling with a mechanical puncher.
  • the fuel gas supply passage 23 and the air supply passage 24 shown in FIGS. A green sheet made of the electrical insulator 21 was produced so that the green sheets of the electrode layer 11 and the air electrode layer 13 could be fitted together. Further, the green sheet is drilled by a mechanical puncher to form a long and narrow through hole for forming a fuel gas supply path 23 and an air supply path 24 in the electrical insulator 21 as shown in FIGS. Formed.
  • green sheets of the air electrode layer 13, the solid electrolyte layer 12, and the fuel electrode layer 11 shown in FIGS. 1 to 3 were produced as follows. Note that the combinations of the shapes of the air electrode layer 13, the solid electrolyte layer 12, and the fuel electrode layer 11 are four of Comparative Examples I and II, and Embodiments I and II, as shown in FIGS. Kinds were made.
  • the solid electrolyte layer After mixing various raw material powders of the solid electrolyte layer 12, polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (weight ratio is 1: 4), the solid electrolyte layer is obtained by a doctor blade method. Twelve green sheets were produced.
  • green sheets of the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 were produced in the shape shown in FIG.
  • elongated through holes for forming the fuel gas supply passage 23 and the air supply passage 24 were formed as shown in FIG.
  • a strip-shaped sheet made of carbon powder and a fuel are formed at the positions where the gap 11a and the fuel gas flow passage 23a are formed.
  • the strip-shaped green sheets constituting the polar layer 11 were alternately arranged.
  • a strip-shaped sheet made of carbon powder and the air electrode layer 13 are formed at the location where the air flow passage 24a is formed.
  • the strip-shaped green sheets to be placed are alternately sandwiched.
  • the width of the fuel gas flow passage 23a and the air flow passage 24a was 2 mm, the distance between the flow passages was 2 mm, the height was 0.15 mm, and the width of the gap 11a was 1 mm.
  • the green sheets of the solid oxide fuel cell support structure 20 produced as described above are laminated in order, and the green sheets of the air electrode layer 13, the solid electrolyte layer 12, and the fuel electrode layer 11 are further laminated thereon. 2 in order, the solid oxide fuel cell support structure 20 shown in FIG. 2 (the thickness of the inter-cell separation part 21a after firing: 100 ⁇ m) / the air electrode layer 13 (thickness after firing: 300 ⁇ m) / solid electrolyte 5 solid oxide fuel cell unit modules each having a layer 12 (thickness after firing: 50 ⁇ m) / fuel electrode layer 11 (thickness after firing: 300 ⁇ m) are stacked, and a gas passage is not formed at the top.
  • the portion 20a of the electrolyte fuel cell support structure 20 was laminated.
  • This laminate was pressure bonded by cold isostatic pressing (CIP) for 2 minutes at a pressure of 1000 kgf / cm 2 and a temperature of 80 ° C.
  • This pressure-bonded body was degreased at a temperature in the range of 400 to 500 ° C., and then fired by being held at a temperature in the range of 1300 to 1400 ° C. for 2 hours.
  • the carbon powder disappeared, and the gap 11a, the fuel gas flow passage 23a, and the air flow passage 24a could be formed.
  • current collector plates 30 and 40 made of silver and having a thickness of 20 ⁇ m were fixed to the upper and lower surfaces of each sample of the solid oxide fuel cell produced as described above.
  • the open circuit voltage (OCV) of the fuel cell of each obtained sample was measured. Specifically, the fuel cell of each sample is heated to 800 ° C., hydrogen gas containing 5% water vapor and air are supplied through the fuel gas supply path 23 and the air supply path 24, respectively, and the air is supplied. The open circuit voltage when supplied at normal pressure (1 atm) was measured. Each sample was checked for cracks and gas leaks. Further, the pressure loss at a gas flow rate of 1.0 L / min was evaluated. If the pressure loss was 0.1 kgf / cm 2 or less, it was determined that there was no problem in operation. Furthermore, the uniformity of gas flow rate was evaluated by simulation.
  • Table 1 shows the measurement results.
  • Embodiment I there is a gap 11a between the contact edge or inner wall end surface of the isolation part 21b and the contact edge or outer wall end surface of the fuel electrode layer 11, so that it is compared with Comparative Example I. Therefore, fuel gas flows easily and pressure loss is small.
  • Embodiment I there is no gap between the contact edge or inner wall end surface of the isolation part 21b and the contact edge or outer wall end surface of the fuel electrode layer 11 even though no gas flow passage is formed. Since 11a exists, the fuel gas flows through this gap, and the in-plane uniformity of the gas flow velocity is lower than that of the comparative form I.
  • Example 2 First, the material powder of each member constituting the unit module of the cross flow type solid oxide fuel cell shown in FIGS. 8 to 10 was prepared as follows.
  • Fuel electrode layer 11 Zirconia (ZrO 2 ) stabilized with 60% by weight of nickel oxide (NiO), scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol% (Scandiaceria stabilized zirconia: ScCeSZ) A mixture with 40% by weight.
  • ZrO 2 Zirconia stabilized with 60% by weight of nickel oxide (NiO), scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol%
  • ScCeSZ ScCeSZ
  • Solid electrolyte layer 12 zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) stabilized with scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol%.
  • Air electrode layer 13 stabilized with 60 wt% La 0.8 Sr 0.2 MnO 3 , 10 mol% scandia (Sc 2 O 3 ) and 1 mol% ceria (CeO 2 ) Mixture with 40% by weight of zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ).
  • ZrSiO 4 zircon
  • ZrO 2 zirconia
  • CeSZ ceria stabilized zirconia
  • a green sheet was produced as follows for the portion 20a constituting the solid oxide fuel cell support structure 20.
  • a conductive paste filling layer for forming the electric conductors 22a and 22b arranged at two kinds of positions was prepared by filling 50% by weight of silver and 50% by weight of palladium.
  • a conductive paste filling layer for forming the electric conductors 22 of one kind of arrangement is formed on one sheet 25. Also good.
  • an elongated through hole for forming the fuel gas supply passage 23 and the air supply passage 24 was formed as shown in FIGS. 9 to 10 by drilling with a mechanical puncher.
  • the fuel gas supply passage 23 and the air supply passage 24 shown in FIGS. A green sheet made of the electrical insulator 21 was produced so that the green sheets of the electrode layer 11 and the air electrode layer 13 could be fitted together. Further, the green sheet is drilled by a mechanical puncher to form a long and narrow through hole for forming a fuel gas supply path 23 and an air supply path 24 in the electrical insulator 21 as shown in FIGS. Formed.
  • green sheets of the air electrode layer 13, the solid electrolyte layer 12, and the fuel electrode layer 11 shown in FIGS. 8 to 10 were produced as follows.
  • the solid electrolyte layer After mixing various raw material powders of the solid electrolyte layer 12, polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (weight ratio is 1: 4), the solid electrolyte layer is obtained by a doctor blade method. Twelve green sheets were produced.
  • green sheets of the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 were produced in the shape shown in FIG.
  • elongated through holes for forming the fuel gas supply path 23 and the air supply path 24 were formed as shown in FIG.
  • a strip-like sheet made of carbon powder and a strip shape constituting the fuel electrode layer 11 are formed at the positions where the gap 11 a and the fuel gas flow passage 23 a are formed.
  • the green sheets were alternately sandwiched.
  • a strip-shaped sheet made of carbon powder and a strip-shaped green sheet constituting the air electrode layer 13 are formed at a position where the air flow passage 24 a is formed. Are placed alternately.
  • the height of the fuel gas flow passage 23a and the air flow passage 24a was 0.10 mm, the distance between the flow passages was 2 mm, and various widths were produced.
  • the width of the gap 11a was 1 mm.
  • the green sheets of the solid oxide fuel cell support structure 20 produced as described above are laminated in order, and the green sheets of the air electrode layer 13, the solid electrolyte layer 12, and the fuel electrode layer 11 are further laminated thereon. 2 in order, the solid oxide fuel cell support structure 20 shown in FIG. 2 (thickness of the inter-cell separation part 21a after firing: 100 ⁇ m) / air electrode layer 13 (thickness after firing: 300 ⁇ m) / solid electrolyte 5 solid oxide fuel cell unit modules each having a layer 12 (thickness after firing: 50 ⁇ m) / fuel electrode layer 11 (thickness after firing: 300 ⁇ m) are stacked, and a gas passage is not formed at the top.
  • the portion 20a of the electrolyte fuel cell support structure 20 was laminated.
  • This laminate was pressure bonded by cold isostatic pressing (CIP) for 2 minutes at a pressure of 1000 kgf / cm 2 and a temperature of 80 ° C.
  • This pressure-bonded body was degreased at a temperature in the range of 400 to 500 ° C., and then fired by being held at a temperature in the range of 1300 to 1400 ° C. for 2 hours.
  • the carbon powder disappeared, and the gap 11a, the fuel gas flow passage 23a, and the air flow passage 24a could be formed.
  • the obtained fuel cell of each sample was heated to 900 ° C., hydrogen gas containing 5% water vapor and air were supplied through the fuel gas supply path 23 and the air supply path 24, respectively, and the gas flow rate was 1
  • the pressure loss at 0.0 L / min was evaluated.
  • Example 3 A solid electrolyte fuel in which the widths of the fuel gas flow passage 23a and the air flow passage 24a are variously changed in the same manner as in Example 2 except that the height of the fuel gas flow passage 23a and the air flow passage 24a is 0.15 mm. A battery sample was prepared.
  • the obtained fuel cell of each sample was heated to 900 ° C., hydrogen gas containing 5% water vapor and air were supplied through the fuel gas supply path 23 and the air supply path 24, respectively, and the gas flow rate was 1
  • the pressure loss at 0.0 L / min was evaluated.
  • FIG. 15 shows the measurement result of the pressure loss in the air flow passage 24a.
  • the pressure loss of the air flow passage 24a is 0. It can be seen that it is 0.7 kgf / cm 2 or more.
  • the laminated body of the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 in the region where the fuel gas supply path 23 and the air supply path 24 intersect greatly warps toward the air electrode layer 13. was observed.
  • the height of the fuel gas flow passage 23a and the air flow passage 24a was increased by 0.05 mm compared to the second embodiment, but x and y were x ⁇ 0.5 mm, y ⁇ 0.5 mm, and x + 3y> 8 mm.
  • x and y were x ⁇ 0.5 mm, y ⁇ 0.5 mm, and x + 3y> 8 mm.
  • the pressure loss in the fuel gas flow passage 23a was 0.1 kgf / cm 2 or less.
  • FIG. 16 shows that among the samples prepared in Example 2, x and y are x ⁇ 0.5 mm, y ⁇ 0.5 mm, and x + 3y ⁇ 8 mm (y ⁇ ⁇ 1 / 3 * x + 8/3 mm). It is a figure which shows the relationship between ratio of x / y and the pressure loss of the airflow path 24a about the sample which has a relationship. FIG. 16 shows that the pressure loss of the air flow passage 24a can be further reduced in the sample having the relationship of x / y ⁇ 3/2 (the region where y ⁇ 2/3 * x in FIG. 14).
  • the solid electrolyte fuel cell according to the present invention eliminates the need for the seal member between the separator and the cell-manifold, which is necessary in the conventional solid oxide fuel cell, and therefore improves the sealing performance against gas as a whole battery. In addition to reducing the number of components, it is possible to prevent cracks arising from the reduction and shrinkage behavior during initial power generation, so that the cell is less likely to be damaged during initial power generation. An electrolyte fuel cell can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

 共焼結によって製作することができるとともに初期発電時の還元収縮挙動から生じるクラックを防止することが可能な固体電解質形燃料電池とその製造方法を提供する。固体電解質形燃料電池(100)は、順に積層された燃料極層(11)、固体電解質層(12)および空気極層(13)の積層体から構成されるセル(10)と、セル(10)に供給される燃料ガスと空気を外気から隔離する隔離部(21b)とを備える。セル(10)および隔離部(21b)が共焼結によって形成されている。積層体の断面において固体電解質層(12)の表面に接触する燃料極層(11)の接触端縁は、固体電解質層(12)の表面に接触する隔離部(21b)の接触端縁に接しておらず、固体電解質層(12)の表面に接触する空気極層(13)の接触端縁に整合していない。

Description

固体電解質形燃料電池とその製造方法
 この発明は、固体電解質形燃料電池とその製造方法に関するものである。
 一般的に、平板型の固体電解質形燃料電池(固体酸化物燃料電池(SOFC)ともいう)は、各々がアノード(負極)、固体電解質およびカソード(正極)からなる発電要素としての平板状の複数のセルと、複数のセルの間に配置されるセパレータ(インタコネクタともいう)とから構成される。セパレータは、複数のセルを相互に電気的に直列に接続し、かつ、複数のセルの各々に供給されるガスを分離するために、具体的にはアノードに供給されるアノードガスとしての燃料ガス(たとえば水素)と、カソードに供給されるカソードガスとしての酸化剤ガス(たとえば空気)とを分離するために複数のセルの間に配置される。
 従来から、セパレータは、耐熱性の金属材料またはランタンクロマイト(LaCrO)などの導電性のセラミック材料から形成されている。このような導電性材料を用いてセパレータを形成すると、一種類の材料で上記の電気的接続とガスの分離という機能を果たす部材を構成することができる。
 一方、セパレータは、セルを構成する三層の部材、すなわち、アノード(燃料極)、電解質およびカソード(空気極)を構成する三層の部材に接合され、かつ、燃料ガスと酸化剤ガスの漏れを防止するためにセパレータと三層の部材の周縁部が気密にシールされて配置される。
 また、セパレータとセルとからなる積層体は、複数のセルの各々に燃料ガスと酸化剤ガスを供給するためにマニホールドに接続される。この場合においても、燃料ガスと酸化剤ガスの漏れを防止するためにセパレータおよび三層の部材の周縁部とマニホールドとの間、さらにマニホールド間が気密にシールされて配置される。
 そこで、セパレータ間とセル‐マニホールド間にシール部材を配置する必要性をなくすことが可能な平板型の固体電解質形燃料電池の製作方法として、たとえば、特開平6-68885号公報(以下、特許文献1という)には、固体電解質、空気極、燃料極、セパレータ(インターコネクタ)およびマニホールドの各部材を一体焼結(共焼結)させて固体電解質形燃料電池を製作する方法が提案されている。この公報で提案された固体電解質形燃料電池では、固体電解質の材料としてイットリア安定化ジルコニア(YSZ)等、空気極の材料としてランタンマンガナイト、ランタンコバルタイト等、燃料極の材料としてNiO-YSZ、セパレータの材料としてランタンクロマイトが用いられている。
 なお、たとえば、特開2003-132914号公報(以下、特許文献2という)には、インターコネクタ構造がYSZからなる基材と、基材の内部に収容される金属からなる複数の導電性ビアとから構成されるものが例示されている。
特開平6-68885号公報 特開2003-132914号公報
 特許文献1に開示された固体電解質形燃料電池では、インターコネクタを形成する材料がランタンクロマイトである。ランタンクロマイトと固体電解質の材料であるYSZとは、焼成時の熱収縮挙動が大きく異なる。そこで、特許文献1では、応力緩和層を挟み込むことにより、焼成時の熱収縮挙動の違いから生じる材料間の応力を、応力緩和層が積極的に割れることによって緩和し、全体の破損を防止して一体焼結された固体電解質形燃料電池が製作される。しかし、応力緩和層を用いても、クラックや破損のない固体電解質形燃料電池を一体焼結によって製作することは困難である。
 ところで、特許文献2には、インターコネクタの基材としてYSZを用いることが例示されている。ランタンクロマイトの代わりにYSZをインターコネクタの材料として用いると、インターコネクタと固体電解質との間の焼成時の熱収縮挙動の差を小さくすることができるので、クラックや破損のない固体電解質形燃料電池を一体焼結によって製作することが容易になる。
 しかしながら、上記のように材料間の焼成時の熱収縮挙動の差を小さくして一体焼結によって固体電解質形燃料電池を製作することができたとしても、初期発電時にクラックが生じやすいことが本願発明者の実験によってわかった。本願発明者によれば、このクラックの発生原因は次のように推測される。初期発電時にアノードに供給される燃料ガスとしての水素ガスによって、燃料極の材料として用いられるNiO-YSZ(焼成段階)を構成する材料のうち、NiO(酸化ニッケル)がNi(金属ニッケル)に還元される。この還元収縮挙動から生じる材料間の応力が原因と考えられる。
 そこで、この発明の目的は、共焼結によって製作することができるとともに、初期発電時の還元収縮挙動から生じるクラックを防止することが可能な固体電解質形燃料電池とその製造方法を提供することである。
 この発明に従った固体電解質形燃料電池は、順に積層されたアノード層、固体電解質層およびカソード層の積層体から構成されるセルと、セルに供給されるアノードガスとカソードガスを外気から隔離する隔離部とを備える。セルおよび隔離部が共焼結によって形成されている。積層体の断面において固体電解質層の表面に接触するアノード層の接触端縁と、固体電解質層の表面に接触する隔離部の接触端縁とが接しないように、アノード層と隔離部が形成されている。アノード層接触端縁が、固体電解質層の表面に接触するカソード層の接触端縁に整合しないように、アノード層とカソード層が形成されている。
 この発明の固体電解質形燃料電池においては、固体電解質層の表面に接触するアノード層接触端縁が、固体電解質層の表面に接触する隔離部の接触端縁に接していない。また、アノード層接触端縁が、固体電解質層の表面に接触するカソード層の接触端縁に整合していない。これらのことから、初期発電時にアノードに供給される燃料ガスとしての水素ガスによって、アノード層が還元収縮挙動を示し、その還元収縮挙動から応力が生じたとしても、その応力によって隔離部接触端縁がアノード層接触端縁を押さえつけるように働かない。したがって、初期発電時の還元収縮挙動から生じるクラックを防止することができるので、初期発電時にセルが破損しがたくなる。
 この発明の固体電解質形燃料電池において、隔離部は、複数のセルの間に配置されたセル間分離部を含み、セル間分離部は、複数のセルの各々に供給されるアノードガスとカソードガスを互いに分離する電気絶縁体と、この電気絶縁体内に形成されかつ複数のセルを相互に電気的に接続する電気導電体とから形成されることが好ましい。
 また、この発明の固体電解質形燃料電池は、複数のセルの各々にアノードガスを供給するためのアノードガス供給路と、複数のセルの各々にカソードガスを供給するためのカソードガス供給路を有するガス供給路構造部をさらに備え、セル、セル間分離部およびガス供給路構造部が共焼結によって形成されていることが好ましい。
 このように構成することにより、インターコネクタの機能を果たすセル間分離部とマニホールドの機能を果たすガス供給路構造部との間を一体的に形成することができるので、電池全体としてのガスに対するシール性を高めることができ、部材点数を少なくすることができ、その結果として製造工程数を削減することができる。
 さらに、この発明の固体電解質形燃料電池において、セル間分離部とアノード層との間でアノード層の表面に接触するようにアノードガス流通路が形成され、セル間分離部とカソード層との間でカソード層の表面に接触するようにカソードガス流通路が形成されていることが好ましい。
 このように構成することにより、アノードガスをアノード層の表面に容易に供給することができ、またカソードガスをカソード層の表面に容易に供給することができる。
 この場合、この発明の固体電解質形燃料電池において、アノードガス流通路は、アノード層の表面にアノードガスを供給するために第1の方向に延びるように配置されて、第1の幅を有し、カソードガス流通路は、カソード層の表面にカソードガスを供給するために第1の方向と交差する第2の方向に延びるように配置されて、第2の幅を有し、セルと、アノードガス流通路とカソードガス流通路の側壁部とが共焼結によって形成されており、アノードガス流通路の第1の幅をy、カソードガス流通路の第2の幅をxとすると、xとyは、x≧0.5mm、y≧0.5mmおよびx+3y≦8mmの関係を有することが好ましい。
 このように構成することにより、アノードガスの流れとカソードガスの流れが直交するタイプ(直交流タイプ)の固体電解質形燃料電池において、焼成時の熱収縮挙動によって、セルを構成するアノード層、固体電解質層およびカソード層の積層体に生じる反り量を抑制することができ、その結果としてアノードガス流通路とカソードガス流通路の圧力損失をともに抑制することが可能となる。
 この発明に従った固体電解質形燃料電池の製造方法は、上述のいずれかの特徴を有する固体電解質形燃料電池の製造方法であって、加熱によって消失する消失材料を、アノード層接触端縁を形成する材料と隔離部接触端縁を形成する材料との間に充填した後、共焼結することによって、焼結後においてアノード層接触端縁と隔離部接触端縁とが接触しないようにアノード層と隔離部を形成する。
 このように製造することにより、アノード層接触端縁と隔離部接触端縁が接触しないようにアノード層と隔離部を容易に形成することができる。
 以上のようにこの発明によれば、共焼結によって製作することができるとともに、初期発電時の還元収縮挙動から生じるクラックを防止することができるので、初期発電時にセルが破損しがたくなる固体電解質形燃料電池を得ることができる。
この発明の実施の形態1として、燃料ガスと空気が同じ方向に流れるタイプ(並行流タイプ)の固体電解質形燃料電池の単位モジュールの概略的な構成を示す平面図である。 並行流タイプの固体電解質形燃料電池の単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図1のII-II線に沿った方向から見た断面を示す断面図である。 並行流タイプの固体電解質形燃料電池の単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図1のIII-III線に沿った方向から見た断面を示す断面図である。 並行流タイプの固体電解質形燃料電池の単位モジュールの概略的な構成として図1のIV-IV線に沿った方向から見た断面を示す断面図である。 この発明の実施の形態2として、固体電解質形燃料電池の概略的な構成を示す平面図である。 単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図5のVI-VI線に沿った方向から見た断面を示す断面図である。 単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図5のVII-VII線に沿った方向から見た断面を示す断面図である。 この発明の実施の形態3として、固体電解質形燃料電池の概略的な構成を示示す平面図である。 単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図8のIX-IX線に沿った方向から見た断面を示す断面図である。 この発明の実施の形態3として、固体電解質形燃料電池の単位モジュールの概略的な構成として図8のX-X線に沿った方向から見た断面を示す断面図である。 直交流タイプの固体電解質形燃料電池の単位モジュールを構成する一つのセルを示す部分断面斜視図である。 図11に示された直交流タイプの固体電解質形燃料電池の単位モジュールにおけるガス流通路の配置を示す平面図である。 固体電解質形燃料電池支持構造体を構成する一部分を示す断面図である。 実施例2で測定された空気流通路の圧力損失と、燃料ガス流通路幅および空気流通路幅との関係を示す図である。 実施例3で測定された空気流通路の圧力損失と、燃料ガス流通路幅および空気流通路幅との関係を示す図である。 実施例2で測定された空気流通路の圧力損失と、空気流通路幅と燃料ガス流通路幅の比との関係を示す図である。
符号の説明
 11:燃料極層、11a:隙間、12:固体電解質層、13:空気極層、20:固体電解質形燃料電池支持構造体、21:電気絶縁体、21a:セル間分離部、21b:隔離部、21c:ガス供給路構造部、22:電気導電体、23:燃料ガス供給路、23a:燃料ガス流通路、24:空気供給路、24a:空気流通路、100,200,300:固体電解質形燃料電池。
 以下、この発明の実施の形態を図面に基づいて説明する。
 (実施形態1)
 図1は、この発明の実施の形態1として、燃料ガスと空気が同じ方向に流れるタイプ(並行流タイプ)の固体電解質形燃料電池の単位モジュールの概略的な構成を示す平面図である。図2は、並行流タイプの固体電解質形燃料電池の単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図1のII-II線に沿った方向から見た断面を示す断面図である。図3は、並行流タイプの固体電解質形燃料電池の単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図1のIII-III線に沿った方向から見た断面を示す断面図である。
 図1には、この発明の一つの実施の形態1として、固体電解質形燃料電池の単位モジュールの概略的な構成が示されており、特に燃料極層11、固体電解質層12、空気極層13の平面的な配置が示されている。
 図2と図3に示すように、固体電解質形燃料電池の単位モジュール(固体電解質形燃料電池モジュール)を複数備えた固体電解質形燃料電池100は、固体電解質形燃料電池支持構造体(以下、「支持構造体」という)20を備える。支持構造体20の内部には、複数の単位モジュールが積層されて構成されており、各単位モジュールにおいては、セル10を構成するアノード層としての厚みが100~300μmの燃料極層11と、厚みが10~50μmの固体電解質層12と、カソード層としての厚みが100~300μmの空気極層13とが順に積層されて形成されている。なお、図2では、支持構造体20の内部において、上方向に空気極層13、固体電解質層12および燃料極層11が順に積層されて形成されることによって単位モジュールが構成されているが、上方向に燃料極層11、固体電解質層12および空気極層13が順に積層されて形成されることによって単位モジュールが構成されてもよい。
 固体電解質形燃料電池100は、複数のセル10を有し、最上部に位置するセルには支持構造体20を介して厚みが10~20μmの集電板30が電気的に接続するように配置され、最下部に位置するセルには支持構造体20を介して厚みが10~20μmの集電板40が電気的に接続するように配置されている。複数のセル10の各々は、順に積層された燃料極層11と固体電解質層12と空気極層13とからなる。支持構造体20は、複数のセル10の間に配置される厚みが100μm程度のセル間分離部21aを含む隔離部21bと、ガス供給路構造部21cとから構成される。
 セル間分離部21aは、複数のセル10の各々に供給されるアノードガスとしての燃料ガスとカソードガスとしての酸化剤ガスである空気とを互いに分離する電気絶縁体21と、電気絶縁体21内に形成されかつ複数のセル10を相互に電気的に接続する複数の電気導電体22とから形成される。集電板30は電気導電体22を通じて最上部のセルの燃料極層11に電気的に接続され、集電板40は電気導電体22を通じて最下部のセルの空気極層13に電気的に接続されている。
 隔離部21bは、複数のセル10の各々に供給される燃料ガスと空気を外気から隔離するように電気絶縁体21から形成されている。
 図1~図3に示すように、固体電解質形燃料電池100では、燃料ガス供給路23は、複数のセル10の各々の燃料極層11の一方側の側面の一部に接触するように配置されている。空気供給路24は、複数のセル10の各々の空気極層13の一方側の側面の一部に接触するように配置されている。燃料ガスは燃料ガス供給路23を通じて供給され、空気は空気供給路24を通じて供給される。燃料ガスと空気は、図1において左から右に向かって同じ方向に流れる。
 図2と図3に示すように、ガス供給路構造部21cの本体、すなわち、燃料ガス供給路23と空気供給路24を形成する壁部は、セル間分離部21aを形成する電気絶縁体21と同じ電気絶縁体からなり、セル間分離部21aを形成する電気絶縁体21に連続して形成されている。隔離部21bを形成する電気絶縁体も、セル間分離部21aを形成する電気絶縁体21と同じ電気絶縁体からなり、セル間分離部21aを形成する電気絶縁体21に連続して形成されている。
 なお、電気絶縁体21は、たとえば、添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)、添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)等を用いて形成される。
 電気導電体22は、たとえば、銀(Ag)‐白金(Pt)合金、銀(Ag)‐パラジウム(Pd)合金等、あるいはアルカリ土類金属を添加したランタンクロマイト(LaCrO)、ランタンフェレート(LaFeO)を用いて形成される。
 固体電解質層12は、たとえば、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)、添加量11モル%のスカンジア(Sc)で安定化されたジルコニア(ZrO)(スカンジア安定化ジルコニア:ScSZ)、あるいは添加量8モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)等を用いて形成される。
 燃料極層11は、たとえば、酸化ニッケル(NiO)と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)または添加量8モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)との混合物等を用いて形成される。
 空気極層13は、たとえば、La0.8Sr0.2MnOと、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)または添加量8モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)との混合物等を用いて形成される。あるいはLa0.8Sr0.2MnOの代わりにLa0.8Sr0.2Co0.2Fe0.8を用いてもよい。
 集電板30と40は、たとえば、銀(Ag)から形成される。
 以上のように構成された本発明の固体電解質形燃料電池支持構造体20においては、マニホールドの機能を果たすガス供給路構造部21cの本体と、燃料ガスと空気を外気から隔離する隔離部21bは、セパレータの機能を果たすセル間分離部21aを形成する電気絶縁体21からなり、セル間分離部21aを形成する電気絶縁体21に連続して形成されているので、セパレータとマニホールドの二つの機能を果たす部分が連続して形成されている。このため、セパレータ間とセル‐マニホールド間のシール部材が不要となる。これにより、電池全体としてのガスに対するシール性を高めることができ、部材点数を少なくすることができ、その結果として製造工程数を削減することができる。
 この発明に従った固体電解質形燃料電池モジュールは、上述の特徴を有する固体電解質形燃料電池支持構造体20と、この固体電解質形燃料電池支持構造体20のセル間分離部21aの表面の上に配置された空気極層13と、空気極層13の上に形成された固体電解質層12と、固体電解質層12の上に形成された燃料極層11とを備え、セル10が固体電解質形燃料電池支持構造体20のセル間分離部21aによって支持されるので、固体電解質層12の厚みを、たとえば、100μm以下に薄くすることができる。その結果、固体電解質層12の電気抵抗を低くすることができる。
 また、この発明の固体電解質形燃料電池において、固体電解質層12と電気絶縁体21を構成する材料は、安定化ジルコニアまたは部分安定化ジルコニアを主成分として含むことにより、固体電解質形燃料電池支持構造体20の電気絶縁体21を構成する材料と、固体電解質層12を構成する材料とにおいて、熱膨張係数の差を小さくすることができるので、運転時等にヒートサイクルが与えられても、固体電解質層12に作用する熱応力が小さいため、熱応力による固体電解質層12の破壊を抑制することができる。
 また、固体電解質形燃料電池支持構造体20の電気絶縁体21を構成する材料と、固体電解質層12を構成する材料とにおいて、焼結挙動を近づけることができるので、固体電解質形燃料電池支持構造体20の電気絶縁体21と固体電解質層12、ひいては、固体電解質形燃料電池支持構造体20の電気絶縁体21と固体電解質層12を含むセル10とを共焼結により製造することができる。すなわち、セル10、セル間分離部21a、隔離部21bおよびガス供給路構造部21cが共焼結によって一体的に形成されている。
 上記のように、固体電解質層12と電気絶縁体21を構成する材料が安定化ジルコニアまたは部分安定化ジルコニアを主成分として含むことにより、セル間分離部21a、隔離部21bおよびガス供給路構造部21cを構成する材料と固体電解質層12との間の焼成時の熱収縮挙動の差を小さくすることができるので、クラックや破損のない固体電解質形燃料電池を共焼結によって製作することが容易になる。
 しかしながら、上記のように材料間の焼成時の熱収縮挙動の差を小さくして共焼結によって固体電解質形燃料電池を製作することができたとしても、初期発電時にクラックが生じやすい。初期発電時に燃料極層11に供給される燃料ガスとしての水素ガスによって、燃料極層11の材料として用いられるNiO(酸化ニッケル)と、安定化ジルコニアまたは部分安定化ジルコニアとの混合物(焼成段階)を構成する材料のうち、NiO(酸化ニッケル)がNi(金属ニッケル)に還元される。この還元収縮挙動から生じる材料間の応力がクラックの原因と考えられる。
 図4は、並行流タイプの固体電解質形燃料電池の単位モジュールの概略的な構成として図1のIV-IV線に沿った方向から見た断面を示す断面図である。図4において、(A)(B)は本発明に対する比較形態IとIIを示し、(C)(D)(E)は本発明の実施形態I、II、IIIを示す。
 図4の(A)に示すように、燃料ガス供給路23から燃料極層11の表面に燃料ガスを流通させるために溝や開口などからなるガス流通路が形成されていない。また、空気供給路24から空気極層13の表面に空気を流通させるために溝や開口などからなるガス流通路が形成されていない。
 この比較形態Iでは、燃料極層11、固体電解質層12および空気極層13の積層体の断面において、固体電解質層12の表面に接触する燃料極層11の接触端縁、いいかえれば固体電解質層12の表面に到達する燃料極層11の外側壁端面は、その燃料極層11の接触端縁の近傍を包囲しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接し、一致するように、いいかえれば固体電解質層12の表面に到達する隔離部21bの内側壁端面に接し、一致するように、燃料極層11と隔離部21bが形成されている。また、上記の燃料極層11の接触端縁または外側壁端面は、固体電解質層12の表面に接触する空気極層13の接触端縁に整合または整列するように、いいかえれば固体電解質層12の表面に到達する空気極層13の外側壁端面に整合または整列するように、燃料極層11と空気極層13が形成されている。
 上記のように構成された比較形態Iでは、固体電解質層12の表面に接触する燃料極層11の接触端縁において、初期発電時にクラックが生じやすいことが本願発明者の実験によってわかった。
 また、図4の(B)に示すように、燃料ガス供給路23から燃料極層11の表面に燃料ガスを流通させるために、セル間分離部21aと燃料極層11との間で燃料極層11の表面に接触するように複数の燃料ガス流通路23aが形成されている。具体的には、この形態例では、燃料極層11の内側面に接触するように、燃料極層11の内部に複数の開口からなる燃料ガス流通路23aが形成されている。また、空気供給路24から空気極層13の表面に空気を流通させるために、セル間分離部21aと空気極層13との間で空気極層13の表面に接触するように複数の空気流通路24aが形成されている。具体的には、この形態例では、空気極層13の内側面に接触するように、空気極層13の内部に複数の開口からなる空気流通路24aが形成されている。
 この比較形態IIでは、燃料極層11、固体電解質層12および空気極層13の積層体の断面において、固体電解質層12の表面に接触する燃料極層11の接触端縁、いいかえれば固体電解質層12の表面に到達する燃料極層11の外側壁端面は、その燃料極層11の接触端縁の近傍を包囲しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接し、一致するように、いいかえれば固体電解質層12の表面に到達する隔離部21bの内側壁端面に接し、一致するように、燃料極層11と隔離部21bが形成されている。また、上記の燃料極層11の接触端縁または外側壁端面は、固体電解質層12の表面に接触する空気極層13の接触端縁に整合または整列するように、いいかえれば固体電解質層12の表面に到達する空気極層13の外側壁端面に整合または整列するように、燃料極層11と空気極層13が形成されている。
 上記のように構成された比較形態IIでも、固体電解質層12の表面に接触する燃料極層11の接触端縁において、初期発電時にクラックが生じやすいことが本願発明者の実験によってわかった。
 図4の(C)に示すように、本発明の実施形態Iでは、燃料ガス供給路23から燃料極層11の表面に燃料ガスを流通させるために溝や開口などからなるガス流通路が形成されていない。また、空気供給路24から空気極層13の表面に空気を流通させるために溝や開口などからなるガス流通路が形成されていない。
 この実施形態Iでは、燃料極層11、固体電解質層12および空気極層13の積層体の断面において、固体電解質層12の表面に接触する燃料極層11の接触端縁、いいかえれば固体電解質層12の表面に到達する燃料極層11の外側壁端面は、その燃料極層11の接触端縁の近傍を包囲しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接しないように、一致しないように、いいかえれば固体電解質層12の表面に到達する隔離部21bの内側壁端面に接しないように、一致しないように、燃料極層11と隔離部21bが形成されている。この形態例では、上記のような構成を実現するために、上記の隔離部21bの接触端縁または内側壁端面は上記の燃料極層11の接触端縁または外側壁端面から離隔しており、隔離部21bの接触端縁または内側壁端面と燃料極層11の接触端縁または外側壁端面との間には隙間11aが存在している。この隙間11aは、隔離部21bを形成する電気絶縁体21と異なる材料で充填されていてもよい。
 また、上記の燃料極層11の接触端縁または外側壁端面は、固体電解質層12の表面に接触する空気極層13の接触端縁に整合しないように、整列しないように、いいかえれば固体電解質層12の表面に到達する空気極層13の外側壁端面に整合しないように、整列しないように、燃料極層11と空気極層13が形成されている。この形態例では、上記のような構成を実現するために、上記の隔離部21bの接触端縁または内側壁端面が上記の空気極層13の接触端縁または外側壁端面に整合または整列するように、隔離部21bと空気極層13が形成されている。
 上記のように構成された実施形態Iでは、固体電解質層12の表面に接触する燃料極層11の接触端縁において、初期発電時にクラックが生じるのを防止することができることが本願発明者の実験によってわかった。
 図4の(D)に示すように、本発明の実施形態IIでは、燃料ガス供給路23から燃料極層11の表面に燃料ガスを流通させるために、セル間分離部21aと燃料極層11との間で燃料極層11の表面に接触するように複数の燃料ガス流通路23aが形成されている。具体的には、この形態例では、燃料極層11の内側面に接触するように、燃料極層11の内部に複数の開口からなる燃料ガス流通路23aが形成されている。また、空気供給路24から空気極層13の表面に空気を流通させるために、セル間分離部21aと空気極層13との間で空気極層13の表面に接触するように複数の空気流通路24aが形成されている。具体的には、この形態例では、空気極層13の内側面に接触するように、空気極層13の内部に複数の開口からなる空気流通路24aが形成されている。
 この実施形態IIでは、燃料極層11、固体電解質層12および空気極層13の積層体の断面において、固体電解質層12の表面に接触する燃料極層11の接触端縁、いいかえれば固体電解質層12の表面に到達する燃料極層11の外側壁端面は、その燃料極層11の接触端縁の近傍を包囲しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接しないように、一致しないように、いいかえれば固体電解質層12の表面に到達する隔離部21bの内側壁端面に接しないように、一致しないように、燃料極層11と隔離部21bが形成されている。この形態例では、上記のような構成を実現するために、上記の隔離部21bの接触端縁または内側壁端面は上記の燃料極層11の接触端縁または外側壁端面から離隔しており、隔離部21bの接触端縁または内側壁端面と燃料極層11の接触端縁または外側壁端面との間には隙間11aが存在している。この隙間11aは、隔離部21bを形成する電気絶縁体21と異なる材料で充填されていてもよい。NiOのように還元されることによって収縮するものや、緻密質のAlのようにアノード層接触端縁を押さえつけるように働くものは充填される材料として不適である。充填される材料は還元によって収縮することなく、応力を緩和するものが望ましく、適用可能な材料として例えば多孔質のAlを挙げることができる。
 また、上記の燃料極層11の接触端縁または外側壁端面は、固体電解質層12の表面に接触する空気極層13の接触端縁に整合しないように、整列しないように、いいかえれば固体電解質層12の表面に到達する空気極層13の外側壁端面に整合しないように、整列しないように、燃料極層11と空気極層13が形成されている。この形態例では、上記のような構成を実現するために、上記の隔離部21bの接触端縁または内側壁端面が上記の空気極層13の接触端縁または外側壁端面に整合または整列するように、隔離部21bと空気極層13が形成されている。
 上記のように構成された実施形態IIでも、固体電解質層12の表面に接触する燃料極層11の接触端縁において、初期発電時にクラックが生じるのを防止することができることが本願発明者の実験によってわかった。
 なお、図4の(E)で示される実施形態IIIのように、上記の隙間11aの上方に延びるように燃料極層11が形成されていても、上記の実施形態IIと同様の作用効果を達成することができることが本願発明者の実験によってわかった。
 この発明の固体電解質形燃料電池モジュールの実施形態I~IIIにおいては、図4の(C)~(E)で示すように、固体電解質層12の表面に接触する燃料極層11の接触端縁が、燃料極層11の接触端縁を被覆しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接していない。また、燃料極層11の接触端縁が、固体電解質層12の表面に接触する空気極層13の接触端縁に整合していない。これらのことから、初期発電時に燃料極層11に供給される燃料ガスとしての水素ガスによって、燃料極層11が還元収縮挙動を示し、その還元収縮挙動から応力が生じたとしても、その応力によって隔離部21bの接触端縁が燃料極層11の接触端縁を押さえつけるように働かない。したがって、初期発電時の還元収縮挙動から生じるクラックを防止することができるので、初期発電時にセルが破損しがたくなる。
 この発明の固体電解質形燃料電池モジュールの実施形態I~IIIにおいて、図4の(C)~(E)で示すように、セル間分離部21aと燃料極層11との間で燃料極層11の表面に接触するように燃料ガス流通路23aが形成され、セル間分離部21aと空気極層13との間で空気極層13の表面に接触するように空気流通路24aが形成されていることが好ましい。
 このように構成することにより、燃料ガスを燃料極層11の表面に容易に供給することができ、また空気を空気極層13の表面に容易に供給することができる。
 また、この発明の固体電解質形燃料電池の実施形態1は、図2と図3に示すように複数のセル10の各々に燃料ガスを供給するための燃料ガス供給路23と、複数のセル10の各々に空気を供給するための空気供給路24を有するガス供給路構造部21cをさらに備え、セル10、セル間分離部21aおよびガス供給路構造部21cが共焼結によって形成されていることが好ましい。
 このように構成することにより、インターコネクタの機能を果たすセル間分離部21aとマニホールドの機能を果たすガス供給路構造部21cとの間を一体的に形成することができるので、電池全体としてのガスに対するシール性を高めることができ、部材点数を少なくすることができ、その結果として製造工程数を削減することができる。
 なお、実施形態1においては、図3に示す断面構造においても、固体電解質層12の表面に接触する燃料極層11の接触端縁、いいかえれば固体電解質層12の表面に到達する燃料極層11の外側壁端面は、その燃料極層11の接触端縁の近傍を包囲しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接しないように、一致しないように、いいかえれば固体電解質層12の表面に到達する隔離部21bの内側壁端面に接しないように、一致しないように、燃料極層11と隔離部21bが形成されている。この形態例では、上記のような構成を実現するために、上記の隔離部21bの接触端縁または内側壁端面は上記の燃料極層11の接触端縁または外側壁端面から離隔しており、隔離部21bの接触端縁または内側壁端面と燃料極層11の接触端縁または外側壁端面との間には隙間11aが存在している。
 (実施形態2)
 図5は、この発明の実施の形態2として、固体電解質形燃料電池の概略的な構成を示し、特に燃料極層11、固体電解質層12、空気極層13の平面的な配置を示す平面図である。図6は、単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図5のVI-VI線に沿った方向から見た断面を示す断面図である。図7は、単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図5のVII-VII線に沿った方向から見た断面を示す断面図である。この実施の形態2の固体電解質形燃料電池200は、燃料ガスと空気が互いに逆の方向に流れるタイプ(対向流タイプ)である。
 図5~図7に示すように、固体電解質形燃料電池200では、燃料ガス供給路23は、複数のセル10の各々の燃料極層11の両側面の一部に接触するように配置されている。空気供給路24は、複数のセル10の各々の空気極層13の両側面の一部に接触するように配置されている。燃料ガスは燃料ガス供給路23を通じて供給され、空気は空気供給路24を通じて供給される。図5において、燃料ガスは、左側に配置された燃料ガス供給路23から右に向かって流れるとともに、右側に配置された燃料ガス供給路23から左に向かって流れる。一方、図5において、空気は左側に配置された空気供給路24から右に向かって流れるとともに、右側に配置された空気供給路24から左に向かって流れる。
 その他の構成は、図1~図3に示される固体電解質形燃料電池100と同様である。また、対向流タイプの固体電解質形燃料電池の単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図5のIV-IV線に沿った方向から見た断面は、図4に示される断面と同様である。
 この実施形態2においても、上述したような実施形態1と同様の作用効果を達成することができる。
 なお、実施形態2においては、図6と図7に示す断面構造においても、固体電解質層12の表面に接触する燃料極層11の接触端縁、いいかえれば固体電解質層12の表面に到達する燃料極層11の外側壁端面は、その燃料極層11の接触端縁の近傍を包囲しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接しないように、一致しないように、いいかえれば固体電解質層12の表面に到達する隔離部21bの内側壁端面に接しないように、一致しないように、燃料極層11と隔離部21bが形成されている。この形態例では、上記のような構成を実現するために、上記の隔離部21bの接触端縁または内側壁端面は上記の燃料極層11の接触端縁または外側壁端面から離隔しており、隔離部21bの接触端縁または内側壁端面と燃料極層11の接触端縁または外側壁端面との間には隙間11aが存在している。
 (実施形態3)
 図8は、この発明の実施の形態3として、固体電解質形燃料電池の概略的な構成を示し、特に燃料極層11、固体電解質層12、空気極層13の平面的な配置を示す平面図である。図9は、単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成として図8のIX-IX線に沿った方向から見た断面を示す断面図である。図10は、この発明の実施の形態3として、固体電解質形燃料電池の単位モジュールの概略的な構成として図8のX-X線に沿った方向から見た断面を示す断面図である。なお、図10では、電気導電体22の図示を省略している。
 図8~図10に示すように、固体電解質形燃料電池300では、ガス供給路構造部21cは、複数のセル10の各々の燃料極層11の一方側の側面に接触するように配置された、燃料ガスを供給するためのアノードガス供給路としての燃料ガス供給路23と、空気極層13の一方側の側面に接触するように配置された、空気を供給するためのカソードガス通路としての空気供給路24とを有する。図8において、燃料ガスは、左側に配置された燃料ガス供給路23から右に向かって流れるとともに、空気は、上側に配置された空気供給路24から下に向かって流れる。このように、この実施の形態3の固体電解質形燃料電池300は、燃料ガスの流れと空気の流れが直交するタイプ(直交流タイプ)である。
 また、直交流タイプの固体電解質形燃料電池の単位モジュールの概略的な構成として図10に示される断面は、図4の(D)に示される断面と類似している。
 図9~図10に示すように、本発明の実施形態3では、燃料ガス供給路23から燃料極層11の表面に燃料ガスを流通させるために、セル間分離部21aと燃料極層11との間で燃料極層11の表面に接触するように複数の燃料ガス流通路23aが形成されている。具体的には、この形態例では、燃料極層11の内側面に接触するように、燃料極層11の内部に複数の開口からなる燃料ガス流通路23aが形成されている。
 また、図9~図10に示すように、空気供給路24から空気極層13の表面に空気を流通させるために、セル間分離部21aと空気極層13との間で空気極層13の表面に接触するように複数の空気流通路24aが形成されている。具体的には、この形態例では、空気極層13の内側面に接触するように、空気極層13の内部に複数の開口からなる空気流通路24aが形成されている。
 この実施形態3では、図10に示される燃料極層11、固体電解質層12および空気極層13の積層体の断面において、固体電解質層12の表面に接触する燃料極層11の接触端縁、いいかえれば固体電解質層12の表面に到達する燃料極層11の外側壁端面は、その燃料極層11の接触端縁を被覆しかつ固体電解質層12の表面に接触する隔離部21bの接触端縁に接しないように、一致しないように、いいかえれば固体電解質層12の表面に到達する隔離部21bの内側壁端面に接しないように、一致しないように、燃料極層11と隔離部21bが形成されている。この形態例では、上記のような構成を実現するために、上記の隔離部21bの接触端縁または内側壁端面は上記の燃料極層11の接触端縁または外側壁端面から離隔しており、隔離部21bの接触端縁または内側壁端面と燃料極層11の接触端縁または外側壁端面との間には隙間11aが存在している。この隙間11aは、隔離部21bを形成する電気絶縁体21と異なる材料で充填されていてもよい。
 また、上記の燃料極層11の接触端縁または外側壁端面は、固体電解質層12の表面に接触する空気極層13の接触端縁に整合しないように、整列しないように、いいかえれば固体電解質層12の表面に到達する空気極層13の外側壁端面に整合しないように、整列しないように、燃料極層11と空気極層13が形成されている。
 上記のように構成された実施形態3でも、固体電解質層12の表面に接触する燃料極層11の接触端縁において、初期発電時にクラックが生じるのを防止することができることが本願発明者の実験によってわかった。
 その他の構成は、図1~図3に示される固体電解質形燃料電池100と同様である。
 この実施形態3においても、上述したような実施形態1と同様の作用効果を達成することができる。
 (実施形態4)
 この発明の実施の形態4として、図8~図10に示される実施形態3において、燃料ガス流通路23aの第1の幅yと空気流通路24aの第2の幅xとの関係が規定される。
 図11は、直交流タイプの固体電解質形燃料電池の単位モジュールを構成する一つのセルを示す部分断面斜視図である。図12は、ガス流通路の配置を示す平面図である。
 図11~図12に示すように、直交流タイプの固体電解質形燃料電池の単位モジュールを構成するセルは、燃料極層11の表面に燃料ガスを供給するために第1の方向に延びるようにほぼ平行に配置された、第1の幅yを有する複数の燃料ガス流通路23aと、空気極層13の表面に空気を供給するために第1の方向と交差する第2の方向に延びるようにほぼ平行に配置された、第2の幅xを有する複数の空気流通路24aとを備える。セルと、複数の燃料ガス流通路23aと空気流通路24aの側壁部とが共焼結によって形成されている。燃料ガス流通路23aの第1の幅をy、空気流通路24aの第2の幅をxとすると、xとyは、x≧0.5mm、y≧0.5mmおよびx+3y≦8mmの関係を有することが好ましい。
 このように構成することにより、燃料ガスの流れと空気の流れが直交するタイプ(直交流タイプ)の固体電解質形燃料電池300において、焼成時の熱収縮挙動によって、セルを構成する燃料極層11、固体電解質層12および空気極層13の積層体に生じる反り量を抑制することができ、その結果として燃料ガス流通路23aと空気流通路24aの圧力損失をともに抑制することが可能となる。
 なお、上述の実施形態1~3に従った固体電解質形燃料電池の製造方法において、加熱によって消失する消失材料を、たとえば、炭素含有材料を、燃料極層11の接触端縁を形成する材料と隔離部21bの接触端縁を形成する材料との間に充填した後、共焼結することによって、焼結後に燃料極層11の接触端縁と隔離部21bの接触端縁とが接触しないように、たとえば、図4の(C)~(E)と図10に示すように隙間11aが形成されるように燃料極層11と隔離部21bを形成する。
 このように製造することにより、燃料極層11の接触端縁と隔離部21bの接触端縁とが接触しないように燃料極層11と隔離部21bを容易に形成することができる。
 以下、この発明の実施例について説明する。
 (実施例1)
 まず、図1~図3に示す並行流タイプの固体電解質形燃料電池の単位モジュールを構成する各部材の材料粉末を以下のとおり準備した。
 燃料極層11:酸化ニッケル(NiO)60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物。
 固体電解質層12:添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)。
 空気極層13:La0.8Sr0.2MnO60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物。
 図2に示す固体電解質形燃料電池支持構造体20にて部分20aについては、次の材料を作製するための各種原材料粉末を準備した。
 添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)に10重量%のジルコン(ZrSiO)を添加したもの(電気絶縁材料)。
 以上のように準備された材料を用いて、まず、図2に示すように、固体電解質形燃料電池支持構造体20を構成する部分20aについてグリーンシートを以下のように作製した。
 部分20aについては、各種原材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質形燃料電池支持構造体20の部分20aのグリーンシートを作製した。
 部分20aのグリーンシートでは、図2~図3に示すように電気絶縁体21に複数の電気導電体22を形成するための貫通孔を形成した。
 具体的には、図13の(B)に示すように、2枚のシート25aと25bに互いの貫通孔の位置が重ならないように2種類の配置の貫通孔を形成し、これらの貫通孔に50重量%の銀と50重量%のパラジウムとからなるペーストを充填することにより、2種類の位置に配置された電気導電体22aと22bを形成するための導電性ペースト充填層を作製した。電気導電体22aと22bを形成するための導電性ペースト充填層同士が接続するように、電気導電体22bを形成するための導電性ペースト充填層が配置されたシート25bの表面上に、別のシート25aに電気導電体22aを形成するために配置された導電性ペースト充填層に接続するように、上記と同じ組成のペーストを印刷した。その後、図13の(B)に示すように、2枚のシート25aと25bを積層することにより、部分20aのグリーンシートを作製した。
 なお、図13の(A)に示すように、部分20aのグリーンシートとして、1枚のシート25に、1種類の配置の電気導電体22を形成するための導電性ペースト充填層を形成してもよい。
 また、部分20aには、メカパンチャーにより穴あけ加工を施すことによって、図2~図3に示すように燃料ガス供給路23と空気供給路24を形成するための細長い貫通孔を形成した。
 次に、部分20a以外の固体電解質形燃料電池支持構造体20を構成する部分については、各種原材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質形燃料電池支持構造体20の部分のグリーンシートを作製した。
 部分20a以外の固体電解質形燃料電池支持構造体20を構成する部分のグリーンシートでは、図1~図3に示す燃料ガス供給路23と空気供給路24を形成するための隙間を存在させて燃料極層11と空気極層13のグリーンシートを嵌め合わせすることができるように、電気絶縁体21からなるグリーンシートを作製した。また、そのグリーンシートには、メカパンチャーにより穴あけ加工を施すことによって、図2と図3に示すように電気絶縁体21に燃料ガス供給路23と空気供給路24を形成するための細長い貫通孔を形成した。
 次に、図1~図3に示す空気極層13、固体電解質層12および燃料極層11のグリーンシートを以下のようにして作製した。なお、空気極層13、固体電解質層12および燃料極層11の形状の組み合わせについては、図4の(A)~(D)に示すように比較形態IとII、実施形態IとIIの4種類を作製した。
 焼成後、ガス拡散に必要な気孔が十分に形成されるように、燃料極層11と空気極層13のそれぞれの材料粉末100重量部に対してカーボン粉末を20~40重量部添加した。この混合粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により、燃料極層11と空気極層13のグリーンシートを作製した。
 固体電解質層12の各種原材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質層12のグリーンシートを作製した。
 具体的には図1に示す形状で燃料極層11、固体電解質層12および空気極層13のグリーンシートを作製した。固体電解質層12のグリーンシートには、図1に示すように、燃料ガス供給路23と空気供給路24を形成するための細長い貫通孔を形成した。
 また、図4の(B)~(D)に示す形状の燃料極層11を形成するために、隙間11aと燃料ガス流通路23aを形成する箇所にはカーボン粉末からなる短冊状のシートと燃料極層11を構成する短冊状のグリーンシートとを互い違いに挟んで配置した。
 さらに、図4の(B)(D)に示す形状の空気極層13を形成するために、空気流通路24aを形成する箇所にはカーボン粉末からなる短冊状のシートと空気極層13を構成する短冊状のグリーンシートとを互い違いに挟んで配置した。
 なお、燃料ガス流通路23aと空気流通路24aの幅を2mm、流通路間の間隔を2mm、高さを0.15mmとし、隙間11aの幅を1mmとした。
 以上のようにして作製された、固体電解質形燃料電池支持構造体20の部分のグリーンシートを順に積層し、さらにこの上に、空気極層13、固体電解質層12および燃料極層11のグリーンシートを順に積層することにより、図2に示す固体電解質形燃料電池支持構造体20(焼成後のセル間分離部21aの厚み:100μm)/空気極層13(焼成後の厚み:300μm)/固体電解質層12(焼成後の厚み:50μm)/燃料極層11(焼成後の厚み:300μm)からなる固体電解質形燃料電池単位モジュールを5組積層し、最上部にはガス通路を形成していない固体電解質形燃料電池支持構造体20の部分20aを積層した。この積層体を1000kgf/cmの圧力、80℃の温度にて2分間、冷間静水圧成形(CIP)することにより圧着した。この圧着体を温度400~500℃の範囲内で脱脂処理を施した後、温度1300℃~1400℃の範囲内で2時間保持することにより、焼成した。この焼成により、上記のカーボン粉末は消失することによって、隙間11aと燃料ガス流通路23aと空気流通路24aを形成することができた。
 このようにして、比較形態IとII、実施形態IとIIの断面構造を含む固体電解質形燃料電池の試料を作製した。
 以上のようにして作製された固体電解質形燃料電池の各試料の上面と下面に、図2に示すように、銀からなる厚みが20μmの集電板30と40を固着した。
 得られた各試料の燃料電池の開回路電圧(open circuit voltage:OCV)を測定した。具体的には、各試料の燃料電池を800℃に昇温して、5%の水蒸気を含む水素ガスと空気とをそれぞれ、燃料ガス供給路23と空気供給路24とを通じて供給し、空気を常圧(1atm)で供給した場合の開回路電圧を測定した。そして、各試料にクラックやガス漏れがないかどうかを確認した。また、ガス流量が1.0L/minでの圧力損失を評価した。圧力損失が0.1kgf/cm以下であれば動作に問題がないと判断した。さらに、シミュレーションによってガス流速の均一性を評価した。
 測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施形態IとIIの常圧時の開回路電圧は、比較形態IとIIよりも高いので、本発明の固体電解質形燃料電池の構造を採用することにより、電池全体としてのシール性を高めることができることがわかる。このことから、実施形態IとIIの断面構造を有する固体電解質形燃料電池では、初期発電時の還元収縮挙動から生じるクラックを防止することができるので、初期発電時にセル、特に固体電解質層が破損していないことがわかる。なお、実施形態Iと比較形態Iでは、ガス流通路が形成されていないので、実施形態IIと比較形態IIに比べて圧力損失が高い。また、実施形態Iでは、隔離部21bの接触端縁または内側壁端面と燃料極層11の接触端縁または外側壁端面との間には隙間11aが存在しているので、比較形態Iに比べて、燃料ガスが流れやすく、圧力損失が小さい。一方、実施形態Iでは、ガス流通路が形成されていないにもかかわらず、隔離部21bの接触端縁または内側壁端面と燃料極層11の接触端縁または外側壁端面との間には隙間11aが存在しているので、この隙間に燃料ガスが流れてしまい、比較形態Iに比べて、ガス流速の面内均一性が低い。
 (実施例2)
 まず、図8~図10に示す直交流タイプの固体電解質形燃料電池の単位モジュールを構成する各部材の材料粉末を以下のとおり準備した。
 燃料極層11:酸化ニッケル(NiO)60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物。
 固体電解質層12:添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)。
 空気極層13:La0.8Sr0.2MnO60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物。
 図2に示す固体電解質形燃料電池支持構造体20にて部分20aについては、次の材料を作製するための各種原材料粉末を準備した。
 添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)に10重量%のジルコン(ZrSiO)を添加したもの(電気絶縁材料)。
 以上のように準備された材料を用いて、まず、図9に示すように、固体電解質形燃料電池支持構造体20を構成する部分20aについてグリーンシートを以下のように作製した。
 部分20aについては、各種原材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質形燃料電池支持構造体20の部分20aのグリーンシートを作製した。
 部分20aのグリーンシートでは、図9に示すように電気絶縁体21に複数の電気導電体22を形成するための貫通孔を形成した。
 具体的には、図13の(B)に示すように、2枚のシート25aと25bに互いの貫通孔の位置が重ならないように2種類の配置の貫通孔を形成し、これらの貫通孔に50重量%の銀と50重量%のパラジウムとからなるペーストを充填することにより、2種類の位置に配置された電気導電体22aと22bを形成するための導電性ペースト充填層を作製した。電気導電体22aと22bを形成するための導電性ペースト充填層同士が接続するように、電気導電体22bを形成するための導電性ペースト充填層が配置されたシート25bの表面上に、別のシート25aに電気導電体22aを形成するために配置された導電性ペースト充填層に接続するように、上記と同じ組成のペーストを印刷した。その後、図13の(B)に示すように、2枚のシート25aと25bを積層することにより、部分20aのグリーンシートを作製した。
 なお、図13の(A)に示すように、部分20aのグリーンシートとして、1枚のシート25に、1種類の配置の電気導電体22を形成するための導電性ペースト充填層を形成してもよい。
 また、部分20aには、メカパンチャーにより穴あけ加工を施すことによって、図9~図10に示すように燃料ガス供給路23と空気供給路24を形成するための細長い貫通孔を形成した。
 次に、部分20a以外の固体電解質形燃料電池支持構造体20を構成する部分については、各種原材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質形燃料電池支持構造体20の部分のグリーンシートを作製した。
 部分20a以外の固体電解質形燃料電池支持構造体20を構成する部分のグリーンシートでは、図9と図10に示す燃料ガス供給路23と空気供給路24を形成するための隙間を存在させて燃料極層11と空気極層13のグリーンシートを嵌め合わせすることができるように、電気絶縁体21からなるグリーンシートを作製した。また、そのグリーンシートには、メカパンチャーにより穴あけ加工を施すことによって、図9と図10に示すように電気絶縁体21に燃料ガス供給路23と空気供給路24を形成するための細長い貫通孔を形成した。
 次に、図8~図10に示す空気極層13、固体電解質層12および燃料極層11のグリーンシートを以下のようにして作製した。
 焼成後、ガス拡散に必要な気孔が十分に形成されるように、燃料極層11と空気極層13のそれぞれの材料粉末100重量部に対してカーボン粉末を20~40重量部添加した。この混合粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により、燃料極層11と空気極層13のグリーンシートを作製した。
 固体電解質層12の各種原材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質層12のグリーンシートを作製した。
 具体的には図8に示す形状で燃料極層11、固体電解質層12および空気極層13のグリーンシートを作製した。固体電解質層12のグリーンシートには、図8に示すように、燃料ガス供給路23と空気供給路24を形成するための細長い貫通孔を形成した。
 また、図10に示す形状の燃料極層11を形成するために、隙間11aと燃料ガス流通路23aを形成する箇所にはカーボン粉末からなる短冊状のシートと燃料極層11を構成する短冊状のグリーンシートとを互い違いに挟んで配置した。
 さらに、図9に示す形状の空気極層13を形成するために、空気流通路24aを形成する箇所にはカーボン粉末からなる短冊状のシートと空気極層13を構成する短冊状のグリーンシートとを互い違いに挟んで配置した。
 なお、燃料ガス流通路23aと空気流通路24aの高さを0.10mm、流通路間の間隔を2mmとし、幅を種々の変えたものを作製した。隙間11aの幅を1mmとした。
 以上のようにして作製された、固体電解質形燃料電池支持構造体20の部分のグリーンシートを順に積層し、さらにこの上に、空気極層13、固体電解質層12および燃料極層11のグリーンシートを順に積層することにより、図2に示す固体電解質形燃料電池支持構造体20(焼成後のセル間分離部21aの厚み:100μm)/空気極層13(焼成後の厚み:300μm)/固体電解質層12(焼成後の厚み:50μm)/燃料極層11(焼成後の厚み:300μm)からなる固体電解質形燃料電池単位モジュールを5組積層し、最上部にはガス通路を形成していない固体電解質形燃料電池支持構造体20の部分20aを積層した。この積層体を1000kgf/cmの圧力、80℃の温度にて2分間、冷間静水圧成形(CIP)することにより圧着した。この圧着体を温度400~500℃の範囲内で脱脂処理を施した後、温度1300℃~1400℃の範囲内で2時間保持することにより、焼成した。この焼成により、上記のカーボン粉末は消失することによって、隙間11aと燃料ガス流通路23aと空気流通路24aを形成することができた。
 このようにして、燃料ガス流通路23aと空気流通路24aの幅を種々変えた固体電解質形燃料電池の試料を作製した。
 以上のようにして作製された固体電解質形燃料電池の各試料の上面と下面に、図9に示すように、銀からなる厚みが20μmの集電板30と40を固着した。
 得られた各試料の燃料電池を900℃に昇温して、5%の水蒸気を含む水素ガスと空気とをそれぞれ、燃料ガス供給路23と空気供給路24とを通じて供給し、ガス流量が1.0L/minでの圧力損失を評価した。
 空気流通路24aの圧力損失の測定結果を表2と図14に示す。
Figure JPOXMLDOC01-appb-T000002
 図14から、燃料ガス流通路23aの第1の幅をy、空気流通路24aの第2の幅をxとすると、xとyが、x≧0.5mm、y≧0.5mmおよびx+3y≦8mmの関係を有する試料(図14にてy≦-1/3*x+8/3mmの領域)では、空気流通路24aの圧力損失が0.5kgf/cm以下であることがわかる。一方、xとyが、x≧0.5mm、y≧0.5mmおよびx+3y>8mmの関係を有する試料(図14にてy>-1/3*x+8/3mmの領域)では、空気流通路24aの圧力損失が0.7kgf/cm以上であることがわかる。これらの試料では、燃料ガス供給路23と空気供給路24とが交差する領域における燃料極層11、固体電解質層12および空気極層13の積層体が空気極層13側に大きく反っていることが観察された。なお、いずれの固体電解質形燃料電池の試料でも、燃料ガス流通路23aの圧力損失は0.1kgf/cm以下であった。
 これらの結果から、燃料ガス流通路23aの第1の幅yと、空気流通路24aの第2の幅xが、x≧0.5mm、y≧0.5mmおよびx+3y≦8mmを満たすことにより、燃料ガス供給路23と空気供給路24とが交差する領域における燃料極層11、固体電解質層12および空気極層13の積層体の反り量を大幅に低減することができ、その結果として燃料ガス流通路23aと空気流通路24aの圧力損失をともに抑制することが可能となることがわかる。
 (実施例3)
 燃料ガス流通路23aと空気流通路24aの高さを0.15mmとした以外は、実施例2と同様にして、燃料ガス流通路23aと空気流通路24aの幅を種々変えた固体電解質形燃料電池の試料を作製した。
 得られた各試料の燃料電池を900℃に昇温して、5%の水蒸気を含む水素ガスと空気とをそれぞれ、燃料ガス供給路23と空気供給路24とを通じて供給し、ガス流量が1.0L/minでの圧力損失を評価した。
 空気流通路24aの圧力損失の測定結果を図15に示す。
 図15から、燃料ガス流通路23aの第1の幅をy、空気流通路24aの第2の幅をxとすると、xとyが、x≧0.5mm、y≧0.5mmおよびx+3y≦8mmの関係を有する試料(図15にてy≦-1/3*x+8/3mmの領域)では、空気流通路24aの圧力損失が0.1kgf/cm以下であることがわかる。一方、xとyが、x≧0.5mm、y≧0.5mmおよびx+3y>8mm(y>-1/3*x+8/3mm)の関係を有する試料では、空気流通路24aの圧力損失が0.7kgf/cm以上であることがわかる。これらの試料では、燃料ガス供給路23と空気供給路24とが交差する領域における燃料極層11、固体電解質層12および空気極層13の積層体が空気極層13側に大きく反っていることが観察された。また、実施例2に比べて燃料ガス流通路23aと空気流通路24aの高さを0.05mmだけ高くしたが、xとyが、x≧0.5mm、y≧0.5mmおよびx+3y>8mmの関係を有する試料(図15にてy>-1/3*x+8/3mmの領域)では、上記の積層体の反りを抑制することができず、空気流通路24aの圧力損失を低減することができなかった。なお、いずれの固体電解質形燃料電池の試料でも、燃料ガス流通路23aの圧力損失は0.1kgf/cm以下であった。
 なお、図16は、実施例2において作製された試料のうち、xとyが、x≧0.5mm、y≧0.5mmおよびx+3y≦8mm(y≦-1/3*x+8/3mm)の関係を有する試料について、x/yの比と空気流通路24aの圧力損失との関係を示す図である。図16から、x/y≧3/2の関係を有する試料(図14にてy≦2/3*xの領域)では、空気流通路24aの圧力損失をさらに小さくすることができることがわかる。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。
 この発明の固体電解質形燃料電池は、従来の固体電解質形燃料電池において必要であった、セパレータ間とセル‐マニホールド間のシール部材が不要となるので、電池全体としてのガスに対するシール性を高めることができ、部材点数を少なくすることができるだけでなく、初期発電時の還元収縮挙動から生じるクラックを防止することができるので、初期発電時にセルが破損しがたくなるので、さらにシール性の高い固体電解質形燃料電池を得ることができる。

Claims (6)

  1.  順に積層されたアノード層、固体電解質層およびカソード層の積層体から構成されるセルと、
     前記セルに供給されるアノードガスとカソードガスを外気から隔離する隔離部とを備え、
     前記セルおよび前記隔離部が共焼結によって形成されており、
     前記積層体の断面において前記固体電解質層の表面に接触する前記アノード層の接触端縁と、前記固体電解質層の表面に接触する前記隔離部の接触端縁とが接しないように、前記アノード層と前記隔離部が形成されており、
     前記アノード層接触端縁が、前記固体電解質層の表面に接触する前記カソード層の接触端縁に整合しないように、前記アノード層と前記カソード層が形成されている、固体電解質形燃料電池。
  2.  前記隔離部は、複数の前記セルの間に配置されたセル間分離部を含み、前記セル間分離部は、前記複数のセルの各々に供給されるアノードガスとカソードガスを互いに分離する電気絶縁体と、前記電気絶縁体内に形成されかつ複数のセルを相互に電気的に接続する電気導電体とから形成される、請求項1に記載の固体電解質形燃料電池。
  3.  前記複数のセルの各々にアノードガスを供給するためのアノードガス供給路と、前記複数のセルの各々にカソードガスを供給するためのカソードガス供給路を有するガス供給路構造部をさらに備え、
     前記セル、前記セル間分離部および前記ガス供給路構造部が共焼結によって形成されている、請求項2に記載の固体電解質形燃料電池。
  4.  前記セル間分離部と前記アノード層との間で前記アノード層の表面に接触するようにアノードガス流通路が形成され、前記セル間分離部と前記カソード層との間で前記カソード層の表面に接触するようにカソードガス流通路が形成されている、請求項2または請求項3に記載の固体電解質形燃料電池。
  5.  前記アノードガス流通路は、前記アノード層の表面にアノードガスを供給するために第1の方向に延びるように配置されて、第1の幅を有し、
     前記カソードガス流通路は、前記カソード層の表面にカソードガスを供給するために前記第1の方向と交差する第2の方向に延びるように配置されて、第2の幅を有し、
     前記セルと、前記アノードガス流通路および前記カソードガス流通路の側壁部とが共焼結によって形成されており、
     前記アノードガス流通路の第1の幅をy、前記カソードガス流通路の第2の幅をxとすると、xとyは、x≧0.5mm、y≧0.5mmおよびx+3y≦8mmの関係を有する、請求項4に記載の固体電解質形燃料電池。
  6.  請求項1から請求項5までのいずれか1項に記載の固体電解質形燃料電池の製造方法であって、
     加熱によって消失する消失材料を、前記アノード層接触端縁を形成する材料と前記隔離部接触端縁を形成する材料との間に充填した後、共焼結することによって、焼結後に前記アノード層接触端縁と前記隔離部接触端縁とが接触しないように前記アノード層と前記隔離部を形成する、固体電解質形燃料電池の製造方法。
PCT/JP2009/051531 2008-04-04 2009-01-30 固体電解質形燃料電池とその製造方法 WO2009122768A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009517788A JP4420139B2 (ja) 2008-04-04 2009-01-30 固体電解質形燃料電池とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-097746 2008-04-04
JP2008097746 2008-04-04

Publications (1)

Publication Number Publication Date
WO2009122768A1 true WO2009122768A1 (ja) 2009-10-08

Family

ID=41135168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051531 WO2009122768A1 (ja) 2008-04-04 2009-01-30 固体電解質形燃料電池とその製造方法

Country Status (2)

Country Link
JP (1) JP4420139B2 (ja)
WO (1) WO2009122768A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037618A1 (ja) * 2013-09-13 2015-03-19 株式会社デンソー 燃料電池単セルおよびその製造方法
WO2015037619A1 (ja) * 2013-09-13 2015-03-19 株式会社デンソー 燃料電池単セルおよびその製造方法
JP2015509277A (ja) * 2012-02-27 2015-03-26 コリア インスティチュート オブ インダストリアル テクノロジー 中低温運転で出力性能が向上された固体酸化物燃料電池の設計及び製造技術
WO2018042475A1 (ja) * 2016-08-29 2018-03-08 FCO Power株式会社 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
WO2018042474A1 (ja) * 2016-08-29 2018-03-08 FCO Power株式会社 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
JP7492998B2 (ja) 2022-08-24 2024-05-30 本田技研工業株式会社 燃料電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326009A (ja) * 1992-05-28 1993-12-10 Murata Mfg Co Ltd 固体電解質型燃料電池
JPH09115536A (ja) * 1995-10-23 1997-05-02 Mitsui Eng & Shipbuild Co Ltd 固体電解質型燃料電池
JPH1079260A (ja) * 1996-09-03 1998-03-24 Sanyo Electric Co Ltd 燃料電池
JP2001351647A (ja) * 2000-06-09 2001-12-21 Tokyo Gas Co Ltd 固体電解質型燃料電池
JP2006004678A (ja) * 2004-06-15 2006-01-05 Ngk Spark Plug Co Ltd 固体電解質形燃料電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326009A (ja) * 1992-05-28 1993-12-10 Murata Mfg Co Ltd 固体電解質型燃料電池
JPH09115536A (ja) * 1995-10-23 1997-05-02 Mitsui Eng & Shipbuild Co Ltd 固体電解質型燃料電池
JPH1079260A (ja) * 1996-09-03 1998-03-24 Sanyo Electric Co Ltd 燃料電池
JP2001351647A (ja) * 2000-06-09 2001-12-21 Tokyo Gas Co Ltd 固体電解質型燃料電池
JP2006004678A (ja) * 2004-06-15 2006-01-05 Ngk Spark Plug Co Ltd 固体電解質形燃料電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509277A (ja) * 2012-02-27 2015-03-26 コリア インスティチュート オブ インダストリアル テクノロジー 中低温運転で出力性能が向上された固体酸化物燃料電池の設計及び製造技術
US9318766B2 (en) 2012-02-27 2016-04-19 Korea Institute Of Industrial Technology Technique for designing and manufacturing solid oxide fuel cell having improved output capability in mid to low temperature
WO2015037618A1 (ja) * 2013-09-13 2015-03-19 株式会社デンソー 燃料電池単セルおよびその製造方法
WO2015037619A1 (ja) * 2013-09-13 2015-03-19 株式会社デンソー 燃料電池単セルおよびその製造方法
JP2015056363A (ja) * 2013-09-13 2015-03-23 株式会社日本自動車部品総合研究所 燃料電池単セルおよびその製造方法
JP2015056364A (ja) * 2013-09-13 2015-03-23 株式会社日本自動車部品総合研究所 燃料電池単セルおよびその製造方法
WO2018042475A1 (ja) * 2016-08-29 2018-03-08 FCO Power株式会社 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
WO2018042474A1 (ja) * 2016-08-29 2018-03-08 FCO Power株式会社 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
JPWO2018042475A1 (ja) * 2016-08-29 2018-08-30 FCO Power株式会社 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
JP7492998B2 (ja) 2022-08-24 2024-05-30 本田技研工業株式会社 燃料電池

Also Published As

Publication number Publication date
JP4420139B2 (ja) 2010-02-24
JPWO2009122768A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
US20050227134A1 (en) Offset interconnect for a solid oxide fuel cell and method of making same
JP4420139B2 (ja) 固体電解質形燃料電池とその製造方法
JP5077238B2 (ja) 固体電解質形燃料電池支持構造体とそれを備えた固体電解質形燃料電池モジュール
WO2015029983A1 (ja) セパレータ及び燃料電池
JP5727428B2 (ja) セパレータ付燃料電池セル,および燃料電池
US20140205933A1 (en) Fuel cell and a method of manufacturing a fuel cell
JP5367941B2 (ja) コネクタ及び固体酸化物形燃料電池
US9722259B2 (en) Ceramic substrate for electrochemical element, manufacturing method therefore, fuel cell, and fuel cell stack
JP5326330B2 (ja) 固体電解質形燃料電池とその製造方法
KR102114627B1 (ko) 연료 전지 발전 단위 및 연료 전지 스택
US9742022B2 (en) Solid electrolytic fuel battery having an inner gas supply path
JP5203635B2 (ja) 固体酸化物形燃料電池スタック及びモノリス形固体酸化物形燃料電池
US9865889B2 (en) Solid electrolyte fuel battery having anode and cathode gas supply channels with different cross-section areas
EP2176915B1 (en) A fuel cell and a method of manufacturing a fuel cell
JP5954495B2 (ja) 固体電解質形燃料電池
JP6137326B2 (ja) 固体電解質形燃料電池とその製造方法
JP2008053044A (ja) 固体電解質形燃料電池及びその製造方法
JP2012064348A (ja) 固体酸化物形燃料電池
JP2016024951A (ja) 固体酸化物形燃料電池
JP2015128024A (ja) 固体電解質形燃料電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009517788

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727480

Country of ref document: EP

Kind code of ref document: A1