WO2009122529A1 - 面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法 - Google Patents

面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法 Download PDF

Info

Publication number
WO2009122529A1
WO2009122529A1 PCT/JP2008/056402 JP2008056402W WO2009122529A1 WO 2009122529 A1 WO2009122529 A1 WO 2009122529A1 JP 2008056402 W JP2008056402 W JP 2008056402W WO 2009122529 A1 WO2009122529 A1 WO 2009122529A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
manufacturing apparatus
planar body
alignment mark
manufacturing
Prior art date
Application number
PCT/JP2008/056402
Other languages
English (en)
French (fr)
Inventor
原田 徹
和久 三島
山西 宏和
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN2008801283602A priority Critical patent/CN101981512A/zh
Priority to TW097111709A priority patent/TW200941630A/zh
Priority to KR1020107016500A priority patent/KR20100107019A/ko
Priority to PCT/JP2008/056402 priority patent/WO2009122529A1/ja
Priority to JP2010505188A priority patent/JPWO2009122529A1/ja
Publication of WO2009122529A1 publication Critical patent/WO2009122529A1/ja
Priority to US12/882,812 priority patent/US8023112B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7011Pre-exposure scan; original with original holder alignment; Prealignment, i.e. workpiece with workpiece holder
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Definitions

  • the present invention relates to a transparent plate or sheet such as a liquid crystal panel, electronic paper or organic EL (Electro-Luminescence), or a planar component such as a semiconductor integrated circuit in a manufacturing process such as a circuit board or a semiconductor integrated circuit.
  • the present invention relates to an apparatus and a method for aligning a planar object such as a photomask used in a manufacturing process.
  • a manufacturing apparatus that handles planar workpieces and planar members such as photomasks, the positions of these planar workpieces and members are automatically detected for alignment.
  • a workpiece such as a plate-like body, a sheet, a substrate, a semiconductor wafer, or a member on the manufacturing apparatus such as a photomask may be simply referred to as “workpiece”.
  • Patent Documents 1 and 2 disclose that the marks provided on the printed board and the glass plate are detected and the printed board and the glass plate are aligned.
  • Patent Document 3 discloses that alignment marks are provided by providing alignment marks on a liquid crystal display panel and a flexible substrate, respectively.
  • the following cited document 4 discloses detecting the arrangement direction of a printed board using a plurality of positioning marks.
  • Patent Document 4 describes that the direction in which the printed circuit board is placed is detected by using a positioning mark provided on the printed circuit board, but a plurality of positioning marks are required to detect the orientation of the printed circuit board. It is.
  • the disclosed apparatus and method are intended to solve the above-described problems that exist when using the alignment mark of the workpiece to detect the direction in which the workpiece is placed.
  • the disclosed planar alignment apparatus and alignment method capture an image of a non-rotationally symmetric alignment mark provided on the planar body, and the alignment mark is captured from the captured image. The position is detected, the relative position between the predetermined reference position and the planar object is adjusted based on the position of the alignment mark, and the orientation of the planar object is detected based on the non-rotational symmetry of the imaged alignment mark image. To do.
  • the alignment mark By making the alignment mark a non-rotation symmetric shape, if at least one alignment mark is imaged, it is possible to detect the direction in which the planar body provided with the alignment mark is placed. For this reason, it is possible to solve the above-mentioned problem that arises because a plurality of positioning marks are necessary to detect the orientation of the workpiece.
  • FIG. 4A It is a block diagram of the Example of this alignment apparatus. It is a figure which shows the 1st example of an alignment mark. It is a flowchart of the 1st example of this alignment method. It is a figure which shows the 2nd example of an alignment mark. It is a figure explaining the position determination method by the alignment mark shown to FIG. 4A. It is a flowchart of the 2nd example of this alignment method. It is a figure which shows the example of arrangement
  • FIG. 4A It is a figure explaining the line symmetry regarding the alignment mark shown to FIG. 4A. It is a figure which shows the example of arrangement
  • FIG. 11E It is a figure which shows the state which rotated 90 degrees clockwise the planar body of the state shown to FIG. 11E. It is a figure which shows the other example of an alignment mark. It is a figure which shows the other example of an alignment mark. It is a block diagram which shows the 1st structural example of the manufacturing apparatus with which this alignment apparatus is applied. It is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG. It is a block diagram which shows the 2nd structural example of the manufacturing apparatus with which this alignment apparatus is applied. It is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG. It is a block diagram which shows the 3rd structural example of the manufacturing apparatus with which this alignment apparatus is applied. It is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG. It is a block diagram which shows the 4th structural example of the manufacturing apparatus with which this alignment apparatus is applied. It is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG.
  • FIG. 1 is a configuration diagram of an embodiment of the alignment apparatus.
  • FIG. 1 is a configuration diagram of an embodiment of the alignment apparatus.
  • the alignment apparatus 10 is an apparatus for aligning a planar body 2 which is a planar object such as a plate-like body or a sheet placed along an XY plane shown in the drawing with respect to a predetermined reference position.
  • the alignment apparatus 10 includes an imaging unit 11 that images a predetermined alignment mark M provided on the surface of the planar body 2, a position detection unit 12 that detects the position of the alignment mark M from an image obtained by the imaging unit 11, A position adjustment unit 13 that adjusts the relative position between the reference position and the planar body 2 based on the position of the alignment mark M detected by the position detection unit 12, and the planar body 2 based on the captured image of the alignment mark. A direction detecting unit 14 for detecting the direction.
  • the position adjustment unit 13 moves the planar body 2 by driving the moving stage 1 on which the planar body 2 is placed, and the other party to be aligned with the planar body 2.
  • the relative position between the position of the member or component (that is, the reference position) and the planar body 2 is adjusted.
  • the adjustment of the relative position between the reference position and the planar body 2 not only moves the planar body 2, but instead of or in addition to this, You may carry out by moving components.
  • FIG. 2 is a diagram showing a first example of an alignment mark.
  • the position detector 12 detects the position of the reference mark P portion of the alignment mark M1 by image processing and sets it as the position of the alignment mark M1.
  • the position detection unit 12 performs pattern matching between an image having the same shape as the alignment mark M1 stored in advance and the image obtained by the imaging unit 11, and determines the position P of the alignment mark M1 in the image obtained by the imaging unit 11. To detect.
  • the alignment mark M1 has a non-rotationally symmetric shape, and the surface depends on which direction the portion indicated by the reference symbol A of the image of the alignment mark M1 obtained by the imaging unit 11 faces.
  • the direction in which the body 2 is placed can be detected.
  • a plane parallel to the plane on which the planar body 2 is placed that is, the plane to which the alignment mark M1 is attached (see FIG. In the example shown in FIG.
  • any surface of the planar body 2 is picked up.
  • the term “orientation” or “direction” may be used to indicate whether the portion 11 is facing.
  • the direction detection unit 14 performs pattern matching with the image obtained by the imaging unit 11 while sequentially rotating an image having the same shape as the alignment mark M1 stored in advance at a predetermined step angle, and the image obtained by the imaging unit 11 The direction of the alignment mark M1 inside is detected. Information indicating the direction detected by the direction detection unit 14 is output to the determination unit 15. The determination unit 15 determines whether or not the planar body 2 is placed in the correct direction based on the direction detected by the direction detection unit 14.
  • FIG. 3 is a flowchart of a first example of the alignment method.
  • the imaging unit 11 captures an image of the alignment mark M arranged on the planar body 2 shown in FIG. 1, and the direction detection unit 14 detects the orientation of the image of the alignment mark M to detect the surface. The direction in which the body 2 is placed is detected.
  • the determination unit 15 determines whether or not the planar body 2 is placed in the correct direction based on the direction detected by the direction detection unit 14. If the planar body 2 is not placed in the correct direction, the determination unit 15 outputs an alarm in step S12. Then, the process returns to step S10.
  • the position detection unit 12 detects the position of the alignment mark M in the image obtained by the imaging unit 11 in step S13. Thereafter, the position detection unit 12 determines the absolute position of the alignment mark M from the known absolute position of the field of view of the imaging unit 11. In step S ⁇ b> 14, the position adjustment unit 13 determines the amount of positional deviation between the reference position and the planar body 2 based on the position of the alignment mark M detected by the position detection unit 12. In step S15, the position adjusting unit 13 moves the reference position and the planar body 2 relatively to adjust the relative position of the planar body 2 with respect to the reference position.
  • FIG. 4A is a diagram illustrating a second example of alignment marks.
  • the alignment mark M2 includes a set of figures F1 to F4, and these figures F1 to F4 are respectively arranged in four quadrants having the reference point BP as the origin.
  • the figures F2 to F4 are the same figure with different rotation angles by 90 °.
  • the entire alignment mark M2 has a non-rotationally symmetric shape.
  • the position detection unit 12 detects the position of the reference symbol P of the alignment mark M2 by image processing and sets it as the position of the alignment mark M2. Further, the direction in which the planar body 2 is placed can be detected depending on which direction the portion indicated by the reference symbol A of the image of the alignment mark M2 obtained by the imaging unit 11 is facing.
  • FIG. 5 is a flowchart of the present alignment method using the alignment mark M2 shown in FIG. 4A.
  • the imaging unit 11 captures an image of the alignment mark M ⁇ b> 2 arranged on the planar body 2.
  • the direction detection unit 14 recognizes the figures F1 to F4 of the alignment mark M2 using pattern matching.
  • step S21 the direction detection unit 14 determines whether or not the figure F1 can be recognized. If the figure F1 can be recognized, in step S22, the direction detection unit 14 determines the alignment mark M2 based on the recognition result of the figure F1. Detect direction. For example, when the figure F1 itself has a non-rotation symmetric shape, the direction of the figure F1 is detected during pattern matching, and the direction of the alignment mark M2 is detected based on this. If the figure F1 itself is not a non-rotation symmetric shape, the direction of the alignment mark M2 is detected based on the relative positional relationship between two of the other figures F2 to F4 and the figure F1.
  • step S23 the direction detection unit 14 detects the direction of the alignment mark M2 from the positional relationship between the other figures F2 to F4. Since the positional relationship between the figures F2 to F4 arranged in the three quadrants changes depending on the direction in which the planar body 2 is placed, the positional relation between the figures F2 to F4 even when the figure F1 cannot be recognized. The direction in which the planar body 2 is placed can be detected.
  • step S24 the direction detection unit 14 detects the direction in which the planar body 2 is placed based on the detection result of the alignment mark M2 detected in step S22 or step S23.
  • step S ⁇ b> 25 the determination unit 15 determines whether the planar body 2 is placed in the correct direction based on the direction detected by the direction detection unit 14. If the planar body 2 is not placed in the correct direction, the determination unit 15 outputs an alarm in step S26. Then, the process returns to step S20.
  • step S ⁇ b> 27 the position detection unit 12 detects the position of the alignment mark M ⁇ b> 2 in the image obtained by the imaging unit 11.
  • FIG. 4B is a diagram for explaining a position determination method using the alignment marks shown in FIG. 4A.
  • the distance and direction data between the position P0 indicated by the alignment mark M2 itself and the positions P1 to P4 of the figures F1 to F4 in the alignment mark M2 are determined from the setting data of the alignment mark M2, and a memory (not shown) Remember it.
  • the position detector 12 determines a temporary position P0 of the alignment mark M2 from the positions P1 to P4 of the figures F1 to F4 that have been successfully recognized in the captured image. These average values are determined as the position of the alignment mark M2.
  • the position detection unit 12 determines the absolute position of the alignment mark M2 from the known absolute position of the field of view of the imaging unit 11.
  • step S28 the position adjustment unit 13 determines the amount of positional deviation between the reference position and the planar body 2 based on the position of the alignment mark M2 detected by the position detection unit 12.
  • step S29 the position adjustment unit 13 moves the reference position and the planar body 2 relatively to adjust the relative position of the planar body 2 with respect to the reference position.
  • FIG. 6A is a diagram showing an arrangement example in which the mark M1 shown in FIG.
  • the example of the planar body 2 shown in FIG. 6A is a square and has substantially the same vertical and horizontal dimensions. For this reason, as a case where the planar body 2 is placed in the wrong direction, in addition to the state rotated by 180 °, the state rotated 90 ° clockwise and counterclockwise can be considered.
  • 6B shows a state where the planar body 2 shown in FIG. 6A is rotated 90 ° counterclockwise
  • FIG. 6C shows a state where the planar body 2 shown in FIG. 6A is rotated 180 °
  • FIG. 6D shows the state shown in FIG. A state in which the planar body 2 is rotated 90 ° clockwise is shown.
  • the orientation of the mark M1 is different in any case of FIGS. 6A to 6D, and it is possible to identify which direction the planar body 2 is directed. it can. The same applies to the mark M2 shown in FIG. 4A.
  • FIG. 7 is a diagram for explaining line symmetry regarding the alignment mark M1 shown in FIG.
  • the alignment mark M1 is non-linearly symmetric with respect to the illustrated X-axis direction and Y-axis direction, whereas the illustrated straight line L is line-symmetric. Therefore, when the alignment mark M1 is visible from the back surface of the planar body 2 because the planar body 2 is transparent, it may not be possible to identify which direction the planar body 2 is facing. .
  • FIG. 6E shows a state in which the planar body shown in FIG. 6A is turned upside down
  • FIG. 6F shows a state in which the planar body in the state shown in FIG. 6E is rotated 90 ° counterclockwise
  • FIG. 6G shows a state shown in FIG.
  • FIG. 6H shows a state in which the planar body in the state shown in FIG. 6E has been rotated 90 degrees clockwise.
  • FIG. 8A is a diagram illustrating an arrangement example in which the alignment mark M2 illustrated in FIG. 4A is disposed on the planar body 2
  • FIG. 8B is a diagram illustrating line symmetry regarding the alignment mark illustrated in FIG. 4A.
  • the alignment mark M2 is also non-linearly symmetric with respect to the illustrated X-axis direction and Y-axis direction, while being symmetrical with respect to the illustrated straight line L. Therefore, as in the case of the alignment mark M1 described with reference to FIGS. 6A to 6H and FIG. 7, even when the alignment mark M2 can be seen from the back surface of the planar body 2, the planar body 2 faces in any direction. May not be identified.
  • FIG. 9A is a diagram showing an arrangement example in which the alignment mark M1 shown in FIG. 2 is arranged on a rectangular planar body.
  • 9B shows a state where the planar body shown in FIG. 9A is rotated by 180 °
  • FIG. 9C shows a state where the planar body shown in FIG. 9A is turned over
  • FIG. 9D shows a state where the planar body shown in FIG. FIG. 3 is a view showing a state rotated. If the longitudinal and lateral dimensions of the planar body 2 are different, it is unlikely that the planar body 2 has been rotated 90 ° by mistake, so 180 ° is the case where the planar body 2 is placed in the wrong direction. Only a rotated state is possible.
  • FIG. 10A is a diagram showing a modification of the alignment mark M1 shown in FIG.
  • the alignment mark M1 ′ having a shape obtained by deforming the alignment mark M1 is non-rotationally symmetric and non-axisymmetric with respect to all direction lines.
  • FIG. 10B is a diagram showing a modification of the alignment mark M2 shown in FIG. 4A.
  • the alignment mark M2 ′ having a shape obtained by deforming the alignment mark M2 is non-rotationally symmetric and non-axisymmetric with respect to any direction line.
  • F1 ′ formed by deforming the figure F1 included in the alignment mark M2 is also non-axisymmetric with respect to all direction lines.
  • FIG. 11A shows an arrangement example in which the alignment mark M1 ′ shown in FIG. 10A is arranged on a planar body
  • FIG. 11B shows a state in which the planar body shown in FIG. 11A is rotated 90 ° counterclockwise
  • FIG. 11A shows a state where the planar body shown in FIG. 11A is rotated by 180 °
  • FIG. 11D shows a state where the planar body shown in FIG. 11A is rotated 90 ° clockwise
  • FIG. 11E turns the planar body shown in FIG. 11F shows a state in which the planar body in the state shown in FIG. 11E has been rotated 90 ° counterclockwise
  • FIG. 11G shows a state in which the planar body in the state shown in FIG. 11E has been rotated 180 °
  • FIG. 11H shows a state in which the planar body in the state shown in FIG. 11E is rotated 90 ° clockwise.
  • the orientation of the alignment mark M1 ′ is different in any case. Therefore, there is a possibility that the planar body 2 is erroneously placed in a state in which the planar body 2 is rotated by 180 °, and in a state in which the planar body 2 is rotated by 90 ° in the clockwise direction and in the counterclockwise direction, and the alignment mark M1 ′ is visible from the back surface of the planar body 2 Even in this case, it can be distinguished which direction the planar body 2 is oriented. The same applies to the alignment mark M2 ′ shown in FIG. 10B.
  • FIGS. 12A and 12B are diagrams showing other examples of alignment marks.
  • the alignment mark may be formed in a non-rotationally symmetric shape by arranging another circular figure F2 in the circular figure F1.
  • a non-rotationally symmetric alignment mark may be formed by providing a non-rotationally symmetric figure composed of a set of figures F1 to F4 in a rotationally and line-symmetric figure F0.
  • the entire alignment mark may be made non-rotationally symmetric and non-linearly symmetric by making a mark made up of a set of figures F1 to F4 non-rotationally symmetric and non-line-symmetrical.
  • FIG. 13 is a configuration diagram showing a first configuration example of a manufacturing apparatus to which the present alignment apparatus is applied.
  • the manufacturing apparatus 50 is an apparatus for manufacturing a component having a multilayer structure by bonding two transparent sheets such as liquid crystal, electronic paper, and organic EL, or a transparent plate such as glass.
  • transparent sheet and the transparent plate may be collectively referred to as “transparent sheet”.
  • the manufacturing apparatus 50 includes porous chucks 51 and 52 for holding the first and second transparent sheets 100 and 101 that are workpieces, a vacuum pump 53 that applies negative pressure to the porous chucks 51 and 52, and the porous chuck 51.
  • the XY stage 54 for moving the XY stage 54, the Z stage 55 for moving the XY stage 54 up and down, and the porous chuck 52 are rotated to move the porous chuck 52 over the porous chuck 51.
  • the ultraviolet (UV) irradiation device 57 is provided.
  • the manufacturing apparatus 50 outputs a control unit 58 that is a computer or the like that controls the manufacturing apparatus 50, cameras 61 and 62, a message from the control unit 58 to an operator, and a captured image of the cameras 61 and / or 62.
  • An output unit 59 that is a display device or a printing device.
  • the first and second transparent sheets 100 and 101 are provided with the alignment marks described with reference to FIGS. 2, 4A, 10A, 10B, 12A, and 12B, and the camera 61 and / or 62 images the alignment mark attached to the first transparent sheet 100 held by the porous chuck 51.
  • the cameras 61 and / or 62 image the alignment marks attached to the second transparent sheet 101 held by the porous chuck 52 when the porous chuck 52 is on the porous chuck 51.
  • the control unit 58 includes an alignment unit 60 and a determination unit 63 that perform the same processing as the alignment apparatus 10 and the determination unit 15 described with reference to FIG.
  • the control unit 58 may implement the alignment unit 60 and the determination unit 63 by executing a predetermined program on a computer, or may implement the alignment unit 60 and the determination unit 63 by providing dedicated hardware. Good.
  • the alignment unit 60 inputs the images of the alignment marks attached to the first and second transparent sheets 100 and 101 held by the porous chucks 51 and 52, respectively, which are imaged by the cameras 61 and / or 62, and the XY stage. 54 is moved to align the first and second transparent sheets 100 and 101, and the direction of the transparent sheets 100 and 101 held by the porous chucks 51 and 52 is detected.
  • the determination unit 63 holds the first and second transparent sheets 100 and 101 in the correct direction on the porous chucks 51 and 52 based on the directions of the first and second transparent sheets 100 and 101 detected by the alignment unit 60. If the holding direction of the first and second transparent sheets 100 and 101 is incorrect, an alarm signal is output to the output unit 59.
  • the alignment unit 60 identifies the direction of the transparent sheet, and if the transparent sheet is placed in the wrong direction, an alarm is displayed on the output unit 59. Work efficiency is improved.
  • FIG. 14 is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG.
  • step S ⁇ b> 30 the operator sets the first transparent sheet 100 on the porous chuck 51 and the second transparent sheet 101 on the porous chuck 52.
  • step S31 the camera 61 and / or 62 captures an image of the alignment mark attached to the first transparent sheet 100, and the alignment unit 60 determines the direction in which the first transparent sheet 100 is placed from the captured image, and The amount of displacement of the first transparent sheet 100 from the planned position is detected.
  • step S32 the determination unit 63 determines whether the direction in which the first transparent sheet 100 is placed is normal. If the first transparent sheet 100 is placed in the wrong direction, in step S33, the determination unit 63 outputs an alarm signal to the output unit 59 to prompt the operator to reposition the first transparent sheet 100. . Thereafter, the process returns to step S30.
  • the rotary actuator 56 is rotated to move the second transparent sheet 101 onto the first transparent sheet 100 in step S34.
  • step S35 the Z stage 55 is raised and provided on the XY stage 54 so that the alignment marks provided on the first and second transparent sheets 100 and 101 respectively enter the depth of field of the cameras 61 and 62.
  • the cameras 61 and 62 and the first transparent sheet 100 are brought close to the second transparent sheet 101.
  • subjected to the 2nd transparent sheet 101 is imaged, and the alignment part 60 is the direction where the 2nd transparent sheet 101 was placed from the imaged image, and the 2nd transparent sheet 101 from a planned position. The amount of displacement is detected.
  • the XY stage The first transparent sheet 100 is moved by 54 to search for a position where the alignment mark provided on the first transparent sheet 100 and the alignment mark provided on the second transparent sheet 101 do not overlap.
  • step S36 the determination unit 63 determines whether the direction in which the second transparent sheet 101 is placed is normal. If the second transparent sheet 101 is placed in the wrong direction, in step S33, the determination unit 63 outputs an alarm signal to the output unit 59 to prompt the operator to reposition the second transparent sheet 101. . Thereafter, the process returns to step S30.
  • step S ⁇ b> 37 the alignment unit 60 determines the misalignment amount between the first and second transparent sheets 100 and 101 from the misalignment amounts of the first and second transparent sheets 100 and 101. The alignment unit 60 moves the XY stage 54 so that the determined positional deviation amount becomes zero, and aligns the first and second transparent sheets 100 and 101.
  • step S38 the Z stage 55 is raised, pressure is applied to the first and second transparent sheets 100 and 101, and these are bonded together.
  • step S39 the UV irradiation device 57 irradiates the first and second transparent sheets 100 and 101 with ultraviolet rays, cures the coating adhesive previously applied to the sheets 100 and 101, and prevents these sheets from being displaced. .
  • step S40 after the suction by the porous chuck 101 is stopped, the Z stage 55 and the porous chuck 101 are returned to their home positions.
  • FIG. 15 is a configuration diagram showing a second configuration example of a manufacturing apparatus to which the present alignment apparatus is applied.
  • the manufacturing apparatus 70 is a manufacturing apparatus that manufactures a planar transparent component by applying laser processing to two transparent sheets such as liquid crystal, electronic paper, and organic EL, or a transparent plate such as glass, or a substrate by laser.
  • This is a manufacturing apparatus for manufacturing a circuit board by performing processing such as making a hole in the circuit board.
  • a transparent sheet, a transparent plate, or a substrate as a workpiece may be collectively referred to as “substrate”.
  • the manufacturing apparatus 70 includes an XY stage 71 on which the substrate 110 is placed and moved in a two-dimensional direction, a laser light source 72 that generates laser light for laser processing the substrate 110, a computer that controls the manufacturing apparatus 70, and the like.
  • the alignment mark described with reference to FIGS. 2, 4A, 10A, 10B, 12A, and 12B is attached to the substrate 110, and the cameras 76 and / or 77 are mounted on the XY stage 71.
  • the alignment mark attached to the placed substrate 110 is imaged.
  • the control unit 73 includes an alignment unit 75 and a determination unit 78 that perform the same processing as the alignment apparatus 10 and the determination unit 15 described with reference to FIG.
  • the control unit 73 may implement the alignment unit 75 and the determination unit 78 by executing a predetermined program on a computer, or may implement the alignment unit 75 and the determination unit 78 by providing dedicated hardware. Good.
  • the alignment unit 75 inputs an image of the alignment mark attached to the substrate 110 imaged by the camera 76 and / or 77, moves the XY stage 71, aligns the substrate 110 with the laser light source 72, and 110 direction is detected.
  • the substrate 110 may be aligned with the laser light source 72 by moving the laser light source 72 instead of or in addition to moving the substrate 110 by the XY stage 71.
  • the determination unit 78 determines whether the substrate 110 is placed on the XY stage 71 in the correct direction based on the direction of the substrate 110 detected by the alignment unit 75, and the direction in which the substrate 110 is placed is incorrect. If so, an alarm signal is output to the output unit 74.
  • FIG. 16 is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG.
  • step S ⁇ b> 50 the operator sets the substrate 110 on the XY stage 71.
  • step S51 the camera 76 and / or 77 captures an image of the alignment mark attached to the substrate 110, and the alignment unit 75 determines the direction in which the substrate 110 is placed from the captured image and the substrate 110 from the planned position. The amount of misalignment is detected.
  • step S52 the determination unit 78 determines whether or not the direction in which the substrate 110 is placed is normal. If the substrate 110 is placed in the wrong direction, in step S53, the determination unit 78 outputs an alarm signal to the output unit 74 to prompt the operator to reposition the substrate 110. Thereafter, the process returns to step S50.
  • step S54 If the direction in which the substrate 110 is placed is normal, the XY stage 71 is moved or the laser light source 72 is moved so that the positional deviation amount of the substrate 110 becomes zero in step S54. Position alignment with the laser light source 72 is performed. In step S55, the substrate 110 is subjected to laser processing by irradiating the substrate 110 with laser light from the laser light source 72.
  • FIG. 17 is a configuration diagram illustrating a third configuration example of a manufacturing apparatus to which the alignment apparatus is applied.
  • the manufacturing apparatus 80 is a manufacturing apparatus that manufactures a circuit board by mounting the electronic component 121 on the substrate 120.
  • the manufacturing apparatus 80 includes a substrate 120 as a workpiece, an XY stage 81 for moving the substrate 120 in a two-dimensional direction, a mounting head 82 for transporting the electronic component 121 and mounting it on the substrate 120, and manufacturing.
  • a control unit 83 which is a computer or the like for controlling the device 80, cameras 86 and 87, and a display device and a printing device for outputting a message from the control unit 83 to an operator and a photographed image of the camera 86 and / or 87.
  • the output unit 84 is provided.
  • the alignment mark described with reference to FIGS. 2, 4A, 10A, 10B, 12A, and 12B is attached to the substrate 120.
  • the camera 86 and / or 87 is mounted on the XY stage 81.
  • the alignment mark attached to the placed substrate 120 is imaged.
  • the control unit 83 includes an alignment unit 85 and a determination unit 88 that perform the same processing as the alignment apparatus 10 and the determination unit 15 described with reference to FIG.
  • the control unit 83 may implement the alignment unit 85 and the determination unit 88 by executing a predetermined program on a computer, or may implement the alignment unit 85 and the determination unit 88 by providing dedicated hardware. Good.
  • the alignment unit 85 inputs an image of an alignment mark attached to the substrate 120 imaged by the camera 86 and / or 87, moves the XY stage 81, aligns the substrate 120 with respect to the mounting head 82, and 120 directions are detected. Instead of or in addition to moving the substrate 120 by the XY stage 81, the mounting head 82 may be moved to align the substrate 120 with the mounting head 82.
  • the determination unit 88 determines whether the substrate 120 is placed on the XY stage 81 in the correct direction based on the direction of the substrate 120 detected by the alignment unit 85, and the direction in which the substrate 120 is placed is incorrect. If so, an alarm signal is output to the output unit 84.
  • FIG. 18 is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG.
  • step S ⁇ b> 60 the operator sets the substrate 120 on the XY stage 81.
  • step S61 the camera 86 and / or 87 captures an image of the alignment mark attached to the substrate 120, and the alignment unit 85 determines the direction in which the substrate 120 is placed from the captured image and the substrate 120 from the planned position. The amount of misalignment is detected.
  • step S62 the determination unit 88 determines whether or not the direction in which the substrate 120 is placed is normal. If the substrate 120 is placed in the wrong direction, the determination unit 88 outputs an alarm signal to the output unit 84 in step S63 to prompt the operator to reposition the substrate 120. Thereafter, the process returns to step S60.
  • step S64 Positioning with the mounting head 82 is performed.
  • step S ⁇ b> 65 the mounting head 82 is driven to mount the electronic component 121 on the substrate 120.
  • FIG. 19 is a configuration diagram showing a fourth configuration example of a manufacturing apparatus to which the present alignment apparatus is applied.
  • the manufacturing apparatus 90 irradiates the semiconductor wafer 131 with light from the light source 93 via the photomask 130, exposes the photoresist applied to the surface of the semiconductor wafer 131, and transfers the circuit pattern onto the semiconductor wafer.
  • the manufacturing apparatus 90 includes an XYZ stage 91 for placing a semiconductor wafer 131 and moving it in a three-dimensional direction, a mask stage 92 for placing a photomask 130 and moving the photomask 130 in a two-dimensional direction, a light source 93, A control unit 94 that is a computer or the like for controlling the manufacturing apparatus 90, cameras 97 and 98, a display device for outputting a message from the control unit 94 to the operator and a photographed image of the cameras 97 and / or 98, and printing.
  • An output unit 95 which is a device is provided.
  • the alignment marks described with reference to FIGS. 2, 4A, 10A, 10B, 12A, and 12B are attached to the photomask 130 and the semiconductor wafer 131. 130 and the alignment mark attached to the semiconductor wafer 131 are imaged.
  • the control unit 94 includes an alignment unit 96 and a determination unit 99 that perform the same processing as the alignment apparatus 10 and the determination unit 15 described with reference to FIG.
  • the control unit 94 may implement the alignment unit 96 and the determination unit 99 by executing a predetermined program on a computer, or may implement the alignment unit 96 and the determination unit 99 by providing dedicated hardware. Good.
  • the alignment unit 96 inputs images of alignment marks attached to the photomask 130 and the semiconductor wafer 131, respectively, taken by the cameras 97 and / or 98, and moves the XYZ stage 91 and / or the mask stage 92 to move the photomask. 130 and the semiconductor wafer 131 are aligned, and the direction in which the photomask 130 and the semiconductor wafer 131 are placed is detected.
  • the determination unit 99 determines whether the photomask 130 and the semiconductor wafer 131 are placed in the correct direction on the mask stage 92 and the XYZ stage 91, respectively. If the direction in which the photomask 130 and the semiconductor wafer 131 are placed is incorrect, an alarm signal is output to the output unit 95.
  • FIG. 20 is a flowchart of the manufacturing method by the manufacturing apparatus shown in FIG.
  • step S ⁇ b> 70 the operator sets the photomask 130 on the mask stage 92 and the semiconductor wafer 131 on the XYZ stage 91.
  • step S71 the XYZ stage 91 is raised to bring the photomask 130 and the semiconductor wafer 131 closer so that the alignment marks respectively provided on the photomask 130 and the semiconductor wafer 131 enter the depth of field of the cameras 97 and 98.
  • the camera 97 and / or 98 captures an image of the alignment mark attached to the photomask 130, and the alignment unit 96 directs the photomask 130 from the planned position and the direction in which the photomask 130 is placed. The amount of misalignment is detected.
  • step S73 the determination unit 99 determines whether or not the direction in which the photomask 130 is placed is normal. If the photomask 130 is placed in the wrong direction, the determination unit 99 outputs an alarm signal to the output unit 95 in step S74 to prompt the operator to reposition the photomask 130. Thereafter, the process returns to step S70.
  • step S75 the camera 97 and / or 98 captures an image of the alignment mark attached to the semiconductor wafer 131 in step S75, and the alignment unit 96 captures the captured image.
  • the direction in which the semiconductor wafer 131 is placed and the amount of displacement of the semiconductor wafer 131 from the planned position are detected.
  • step S76 the determination unit 99 determines whether the direction in which the semiconductor wafer 131 is placed is normal. If the semiconductor wafer 131 is placed in the wrong direction, the determination unit 99 outputs an alarm signal to the output unit 95 in step S74 to prompt the operator to place the semiconductor wafer 131 again. Thereafter, the process returns to step S70.
  • step S77 the XYZ stage 91 is lowered so that the distance between the photomask 130 and the semiconductor wafer 131 is an appropriate distance necessary for exposure, and the photomask is placed. 130 and the semiconductor wafer 131 are separated from each other.
  • step S ⁇ b> 78 the alignment unit 96 determines the positional deviation amount between the photomask 130 and the semiconductor wafer 131 from the positional deviation amounts of the photomask 130 and the semiconductor wafer 131.
  • the alignment unit 96 moves the XYZ stage 91 and / or the mask stage 92 so that the determined positional deviation amount becomes zero, and aligns the photomask 130 and the semiconductor wafer 131.
  • step S ⁇ b> 79 the semiconductor wafer 131 is irradiated with light from the light source 93 via the photomask 130 to expose the photoresist applied to the surface of the semiconductor wafer 131.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 面状体2のアライメント装置10は、面状体2に設けられた非回転対称形状のアライメントマークMの画像を撮像する撮像部11と、その画像からアライメントマークMの位置を検出する位置検出部13と、検出されたアライメントマークMの位置に基づいて所定の基準位置と面状体Mとの相対位置を調整する位置調整部14と、画像に撮像されたアライメントマークMの非回転対称性に基づいて面状体2の向きを検出する方向検出部14を備える。

Description

面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法
 本発明は、液晶パネル、電子ペーパや有機EL(Electro-Luminescence)のような透明な板やシート、又は回路基板や半導体集積回路などの製造工程において、これら面状の部品や、例えば半導体集積回路製造工程において使用されるホトマスクのような面状の物体のアライメントを行う装置及び方法に関する。
 液晶、電子ペーパ及び有機EL等の加工や貼り合わせを行う製造装置、回路基板の加工や組み立てを行う製造装置、半導体集積回路製造装置等といった、板状体やシート、基板、半導体ウエハ等の面状のワークピースや、ホトマスク等の面状の部材を取り扱う製造装置においては、これら面状のワークピースや部材の位置を自動的に検出してアライメントを行っている。簡単のため以下の説明に置いて、板状体やシート、基板、半導体ウエハ等のワークピースや、ホトマスク等の製造装置側の部材を単に「ワークピース」と記すことがある。
 下記特許文献1及び2には、それぞれプリント基板及びガラス板に設けられたマークを検出してプリント基板及びガラス板の位置合わせを行うことが開示されている。
 下記特許文献3には、液晶表示パネルとフレキシブル基板にそれぞれアライメントマークを設けてこれらの位置合わせを行うことが開示されている。
 下記引用文献4には、位置決めマークを複数用いてプリント基板の配置方向を検出することが開示されている。
特開2002-243412号公報 特開2005-317806号公報 特開2006-119321号公報 特開2006-5187号公報
 上述の製造装置に面状のワークピースをセットする際に、これらワークピースが正しい方向に向けられた状態で製造装置にセットされる必要がある。ワークピースの向きが誤ったまま作業が続行されれば、不良品が発生し製造歩留まりが低下する原因となる。
 特許文献4には、プリント基板に設けられた位置決めマークを用いてプリント基板が置かれた方向を検出することが記載されているが、プリント基板の向きを検出するために複数の位置決めマークが必要である。
 このため、ワークピースの向きを検出するために複数の位置決めマークが必要であり、離間した複数のマークを撮像するために余計にカメラを設けるか、カメラの移動機構を設ける必要があり、装置側のコストを増加させていた。また、カメラの移動機構はアライメント精度が悪化する原因となっていた。
 そこで開示の装置及び方法は、ワークピースが置かれた方向を検出ためにワークピースのアライメントマークを利用する際に存在していた、上述の諸問題を解決することを目的とする。
 上記目的を達成するために、開示される面状体のアライメント装置及びアライメント方法は、面状体に設けられた非回転対称形状のアライメントマークの画像を撮像し、撮像された画像からアライメントマークの位置を検出し、アライメントマークの位置に基づいて所定の基準位置と面状体との相対位置を調整し、撮像されたアライメントマークの画像の非回転対称性に基づいて面状体の向きを検出する。
 アライメントマークを非回転対称形状とすることにより、少なくとも1個のアライメントマークを撮像すれば、そのアライメントマークが設けられた面状体が置かれている向きを検出することが可能となる。このため、ワークピースの向きを検出するために複数の位置決めマークが必要であることから生じていた上記の問題が解決できる。
本アライメント装置の実施例の構成図である。 アライメントマークの第1例を示す図である。 本アライメント方法の第1例のフローチャートである。 アライメントマークの第2例を示す図である。 図4Aに示すアライメントマークによる位置決定方法を説明する図である。 本アライメント方法の第2例のフローチャートである。 図2に示すマークを面状体に配置する配置例を示す図である。 図6Aに示す面状体を反時計回りに90°回転した状態を示す図である。 図6Aに示す面状体を180°回転した状態を示す図である。 図6Aに示す面状体を時計回りに90°回転した状態を示す図である。 図6Aに示す面状体を裏返した状態を示す図である。 図6Eに示す状態の面状体を反時計回りに90°回転した状態を示す図である。 図6Eに示す状態の面状体を180°回転した状態を示す図である。 図6Eに示す状態の面状体を時計回りに90°回転した状態を示す図である。 図2に示すアライメントマークに関する線対称性を説明する図である。 図4Aに示すアライメントマークの配置例を示す図である。 図4Aに示すアライメントマークに関する線対称性を説明する図である。 図2に示すマークを長方形の面状体に配置する配置例を示す図である。 図9Aに示す面状体を180°回転した状態を示す図である。 図9Aに示す面状体を裏返した状態を示す図である。 図9Cに示す状態の面状体を180°回転した状態を示す図である。 図2に示すマークの変形例を示す図である。 図4Aに示すマークの変形例を示す図である。 図10Aに示すマークを面状体に配置する配置例を示す図である。 図11Aに示す面状体を反時計回りに90°回転した状態を示す図である。 図11Aに示す面状体を180°回転した状態を示す図である。 図11Aに示す面状体を時計回りに90°回転した状態を示す図である。 図11Aに示す面状体を裏返した状態を示す図である。 図11Eに示す状態の面状体を反時計回りに90°回転した状態を示す図である。 図11Eに示す状態の面状体を180°回転した状態を示す図である。 図11Eに示す状態の面状体を時計回りに90°回転した状態を示す図である。 アライメントマークの他の例を示す図である。 アライメントマークの他の例を示す図である。 本アライメント装置が適用される製造装置の第1構成例を示す構成図である。 図13に示す製造装置による製造方法のフローチャートである。 本アライメント装置が適用される製造装置の第2構成例を示す構成図である。 図15に示す製造装置による製造方法のフローチャートである。 本アライメント装置が適用される製造装置の第3構成例を示す構成図である。 図17に示す製造装置による製造方法のフローチャートである。 本アライメント装置が適用される製造装置の第4構成例を示す構成図である。 図19に示す製造装置による製造方法のフローチャートである。
符号の説明
 1  XYステージ
 2  ワークピース
 M  アライメントマーク
 11  撮像部
 以下、添付する図面を参照して本発明の実施例を説明する。図1は本アライメント装置の実施例の構成図である。図1は、本アライメント装置の実施例の構成図である。アライメント装置10は、図示のXY平面に沿って置かれた板状体やシート等の面状の物体である面状体2を所定の基準位置に対して位置合わせする装置である。
 アライメント装置10は、面状体2の表面に設けられた所定のアライメントマークMを撮像する撮像部11と、撮像部11が得た画像からアライメントマークMの位置を検出する位置検出部12と、位置検出部12が検出したアライメントマークMの位置に基づいて基準位置と面状体2との相対位置を調整する位置調整部13と、撮像されたアライメントマークの画像に基づいて面状体2の向きを検出する方向検出部14と、を備える。
 図1に示す構成例では、位置調整部13は、面状体2が置かれた移動ステージ1を駆動することによって面状体2を移動させて、面状体2と位置合わせされる相手の部材や部品の位置(すなわち基準位置)と面状体2との間の相対位置を調整する。しかし、基準位置と面状体2との相対位置の調整は、面状体2を動かすだけでなく、これに代えて又はこれに加えて、面状体2と位置合わせされる相手の部材や部品を移動させることによって行ってもよい。
 図2は、アライメントマークの第1例を示す図である。位置検出部12は、アライメントマークM1の参照符号Pの部分の位置を画像処理によって検出して、アライメントマークM1の位置とする。位置検出部12は、予め記憶されたアライメントマークM1と同じ形状の画像と、撮像部11が得た画像とのパターンマッチングを行い、撮像部11が得た画像内におけるアライメントマークM1の位置Pを検出する。
 また図示のとおり、アライメントマークM1は非回転対称の形状を有しており、撮像部11が得たアライメントマークM1の画像の参照符号Aで示した部分がいずれの方向を向いているかによって、面状体2が置かれている向きを検出することができる。
 ここで、面状体2が置かれている「向き」や「方向」というときは、面状体2が置かれている平面、すなわちアライメントマークM1が付されている面と平行な平面(図1に示す例ではXY平面)内の方位を示す。
 これに加えて、面状体2が透明であるなどの理由によりアライメントマークM1を面状体2の裏面から見ることができる場合には、面状体2の表面及び裏面の何れの面が撮像部11側に向いているかを示すために、「向き」や「方向」の用語を使用することもある。
 方向検出部14は、予め記憶されたアライメントマークM1と同じ形状の画像を所定のステップ角で順次回転させながら、撮像部11が得た画像とのパターンマッチングを行い、撮像部11が得た画像内におけるアライメントマークM1の方向を検出する。方向検出部14によって検出された方向を示す情報は、判定部15に出力される。判定部15は、方向検出部14によって検出された方向に基づいて、面状体2が正しい方向に置かれているか否かを判定する。
 図3は、本アライメント方法の第1例のフローチャートである。ステップS10において、図1に示す面状体2の上に配置されたアライメントマークMの画像を撮像部11が撮像し、方向検出部14が、アライメントマークMの画像の向きを検出することによって面状体2が置かれた向きを検出する。
 ステップS11において判定部15は、方向検出部14によって検出された方向に基づいて、面状体2が正しい方向に置かれているか否かを判定する。面状体2が正しい方向に置かれていない場合には、ステップS12にて判定部15はアラームを出力する。そしてステップS10に処理が戻る。
 面状体2が正しい方向に置かれている場合には、ステップS13において、位置検出部12は、撮像部11が得た画像内におけるアライメントマークMの位置を検出する。その後、位置検出部12は、既知である撮像部11の視野の絶対位置からアライメントマークMの絶対位置を決定する。
 ステップS14において、位置調整部13は、位置検出部12が検出したアライメントマークMの位置に基づいて基準位置と面状体2との位置ずれ量を決定する。ステップS15において、位置調整部13は、基準位置と面状体2とを相対的に移動させ、基準位置に対する面状体2の相対位置を調整する。
 図4Aは、アライメントマークの第2例を示す図である。アライメントマークM2は、図形F1~F4の集合を含み、これら図形F1~F4は、基準点BPを原点とする4つの象限にそれぞれ配置されている。図示するとおり図形F2~F4は90°ずつ回転角が異なる同一形状の図形であるが、図形F1の形状は図形F2~F4の形状と異なるため、アライメントマークM2全体は非回転対称形状である。
 図2に示すアライメントマークM1の場合と同様に、位置検出部12は、アライメントマークM2の参照符号Pの部分の位置を画像処理によって検出して、アライメントマークM2の位置とする。また、撮像部11が得たアライメントマークM2の画像の参照符号Aで示した部分がいずれの方向を向いているかによって、面状体2が置かれている向きを検出することができる。
 図5は、図4Aに示すアライメントマークM2を使用した本アライメント方法のフローチャートである。ステップS20において、面状体2の上に配置されたアライメントマークM2の画像を撮像部11が撮像する。方向検出部14は、アライメントマークM2の図形F1~F4をパターンマッチングを用いて認識する。
 ステップS21において方向検出部14は、図形F1が認識できたか否かを判定し、図形F1が認識できた場合には、ステップS22において方向検出部14は、図形F1の認識結果によってアライメントマークM2の方向を検出する。例えば、図形F1自体が非回転対称形状である場合には、パターンマッチングの際に図形F1の方向を検出して、これに基づいてアライメントマークM2の方向を検出する。図形F1自体が非回転対称形状でない場合には、他の図形F2~F4のうちの2つと図形F1との相対位置関係に基づいてアライメントマークM2の方向を検出する。
 図形F1が認識できなかった場合には、ステップS23において方向検出部14は、他の図形F2~F4同士の位置関係からアライメントマークM2の方向を検出する。3つの象限にそれぞれ配置された図形F2~F4同士の位置関係は、面状体2が置かれた向きに応じて変化するため、図形F1が認識できない場合でも、図形F2~F4同士の位置関係から面状体2が置かれた向きを検出することができる。
 ステップS24において方向検出部14は、ステップS22又はステップS23で検出したアライメントマークM2の検出結果に基づいて面状体2の置かれた方向を検出する。ステップS25において判定部15は、方向検出部14によって検出された方向に基づいて、面状体2が正しい方向に置かれているか否かを判定する。面状体2が正しい方向に置かれていない場合には、ステップS26にて判定部15はアラームを出力する。そしてステップS20に処理が戻る。
 ステップS27において、位置検出部12は、撮像部11が得た画像内におけるアライメントマークM2の位置を検出する。図4Bは、図4Aに示すアライメントマークによる位置決定方法を説明する図である。
 アライメントマークM2自体が示す位置P0と、アライメントマークM2内の各図形F1~F4の位置P1~P4との間のそれぞれの距離及び方向データを、アライメントマークM2の設定データから決定し、図示しないメモリに記憶しておく。位置検出部12は、記憶された距離及び方向データに基づいて、撮像された画像内において認識に成功した図形F1~F4の位置P1~P4から、それぞれアライメントマークM2の仮の位置P0を決定し、これらの平均値をアライメントマークM2の位置として決定する。このとき図形F1~F4の位置P1~P4から求めた仮位置のいずれかが、既定値よりも閾値以上外れた場合には、この仮位置を除いて平均値を算出してもよい。その後、位置検出部12は、既知である撮像部11の視野の絶対位置からアライメントマークM2の絶対位置を決定する。
 ステップS28において、位置調整部13は、位置検出部12が検出したアライメントマークM2の位置に基づいて基準位置と面状体2との位置ずれ量を決定する。ステップS29において、位置調整部13は、基準位置と面状体2とを相対的に移動させ、基準位置に対する面状体2の相対位置を調整する。
 図6Aは、図2に示すマークM1を面状体2に配置する配置例を示す図である。図6Aに示す面状体2の例は正方形であり縦方向及び横方向の寸法がほぼ同じである。このため面状体2が誤った方向に置かれる場合としては、180°回転した状態に加えて、時計回り及び反時計回りにそれぞれ90°回転した状態が考えられる。
 図6Bは図6Aに示す面状体2を反時計回りに90°回転した状態を示し、図6Cは図6Aに示す面状体2を180°回転した状態を示し、図6Dは図6Aに示す面状体2を時計回りに90°回転した状態を示す。
 上記の通り、マークM1は非回転対称形状を有するので、図6A~図6Dの何れの場合においてもマークM1の向きが異なり、面状体2が何れの向きに向いているかを識別することができる。図4Aに示すマークM2の場合も同様である。
 図7は、図2に示すアライメントマークM1に関する線対称性を説明する図である。アライメントマークM1は、図示のX軸方向及びY軸方向に対しては非線対称性を有する一方、図示の直線Lについては線対称である。
 したがって、面状体2が透明であるなどの理由によって、面状体2の裏面からアライメントマークM1が見える場合には、面状体2が何れの向きに向いているかを識別できなくなる場合がある。
 図6Eは図6Aに示す面状体を裏返した状態を示し、図6Fは図6Eに示す状態の面状体を反時計回りに90°回転した状態を示し、図6Gは図6Eに示す状態の面状体を180°回転した状態を示し、図6Hは図6Eに示す状態の面状体を時計回りに90°回転した状態を示す。
 図示するとおり、図6Aと図6Fの間、図6Bと図6Gの間、図6Cと図6Hの間、図6Dと図6Eの間で、それぞれアライメントマークM1の向きが同一となり、これらの状態を区別することができない。
 図8Aは、図4Aに示すアライメントマークM2を面状体2に配置する配置例を示す図であり、図8Bは、図4Aに示すアライメントマークに関する線対称性を説明する図である。アライメントマークM2も、図示のX軸方向及びY軸方向に対しては非線対称性を有する一方、図示の直線Lについては線対称である。
 したがって、図6A~6H及び図7を参照して説明したアライメントマークM1の場合と同様に、面状体2の裏面からアライメントマークM2が見える場合にも、面状体2が何れの向きに向いているかを識別できなくなる場合がある。
 図9Aは、図2に示すアライメントマークM1を長方形の面状体に配置する配置例を示す図である。図9Bは図9Aに示す面状体を180°回転した状態を示し、図9Cは図9Aに示す面状体を裏返した状態を示し、図9Dは図9Cに示す状態の面状体を180°回転した状態を示す図である。
 面状体2の縦方向及び横方向の寸法が相違する場合には、誤って90°回転しておかれることが考えにくいため、面状体2が誤った方向に置かれる場合としては180°回転した状態のみが考えられる。
 したがって、面状体2の裏面からアライメントマークM1が見える場合であっても、図9A~図9Dに示すとおり、それぞれアライメントマークM1の向きが異なり、面状体2が何れの向きに向いているかを識別できる。図4Aに示すアライメントマークM2の場合も同様である。
 図10Aは、図2に示すアライメントマークM1の変形例を示す図である。アライメントマークM1を変形した形状を有するアライメントマークM1’は、非回転対称であり、且つあらゆる方向線について非線対称である。
 図10Bは、図4Aに示すアライメントマークM2の変形例を示す図である。アライメントマークM2を変形した形状を有するアライメントマークM2’は、非回転対称であり、且つあらゆる方向線について非線対称である。アライメントマークM2に含まれる図形F1を変形して形成されたF1’もまたあらゆる方向線について非線対称である。
 図11Aは図10Aに示すアライメントマークM1’を面状体に配置する配置例を示し、図11Bは図11Aに示す面状体を反時計回りに90°回転した状態を示し、図11Cは図11Aに示す面状体を180°回転した状態を示し、図11Dは図11Aに示す面状体を時計回りに90°回転した状態を示し、図11Eは図11Aに示す面状体を裏返した状態を示し、図11Fは図11Eに示す状態の面状体を反時計回りに90°回転した状態を示し、図11Gは図11Eに示す状態の面状体を180°回転した状態を示し、図11Hは図11Eに示す状態の面状体を時計回りに90°回転した状態を示す。
 図11A~図11Hに示すとおり、何れの場合もアライメントマークM1’の向きが異なっている。
 したがって、面状体2が180°回転した状態、時計回り及び反時計回りにそれぞれ90°回転した状態で誤って置かれる可能性があり、かつ面状体2の裏面からアライメントマークM1’が見える場合であっても、面状体2が何れの向きに向いているかを区別できる。図10Bに示すアライメントマークM2’の場合も同様である。
 図12A及び図12Bは、アライメントマークの他の例を示す図である。図12Aに示すように、アライメントマークは、円形の図形F1内に他の円形の図形F2を配置することにより非回転対称形状に形成してよい。
 また図12Bに示すように、回転対称及び線対称の図形F0の中に、図形F1~F4の集合からなる非回転対称図形を設けることによって非回転対称なアライメントマークを形成してもよい。さらに図形F1~F4の集合からなるマークを非回転対称かつ非線対称図形にするなどにより、アライメントマーク全体も非回転対称かつ非線対称図形にしてもよい。
 図13は、本アライメント装置が適用される製造装置の第1構成例を示す構成図である。製造装置50は、液晶、電子ペーパ及び有機ELなどといった2枚の透明シートやガラスのような透明の板を貼り合わせて、多層構造を有する部品を製造する装置である。以下、図13及び図14を参照して行う説明において、透明シートや透明の板を総称して「透明シート」と記載することがある。
 製造装置50は、ワークピースである第1及び第2透明シート100及び101をそれぞれ保持するためのポーラスチャック51及び52と、ポーラスチャック51及び52に負圧を与える真空ポンプ53と、ポーラスチャック51を2次元方向に移動させるためのXYステージ54と、XYステージ54を昇降させるZステージ55と、ポーラスチャック52を回転させて、ポーラスチャック52をポーラスチャック51の上まで移動させ、ポーラスチャック51及び52に保持された第1及び第2透明シート100及び101を重ね合わせるロータリアクチュエータ56と、第1及び第2透明シート100及び101を貼り合わせた後にこれらに塗布された塗布接着剤を硬化させるための紫外線(UV)照射装置57を、備える。
 また、製造装置50は、製造装置50の制御を行うコンピュータ等である制御部58と、カメラ61及び62と、制御部58から作業者へのメッセージやカメラ61及び/又は62の撮影画像を出力するための表示装置や印刷装置である出力部59を備える。
 第1及び第2透明シート100及び101には、図2、図4A、図10A、図10B、図12A及び図12Bなどを参照して説明したアライメントマークが付されており、カメラ61及び/又は62は、ポーラスチャック51に保持された第1透明シート100に付されたアライメントマークを撮像する。また、カメラ61及び/又は62は、ポーラスチャック52がポーラスチャック51の上にある時に、ポーラスチャック52に保持された第2透明シート101に付されたアライメントマークを撮像する。
 制御部58は、図1を参照して説明したアライメント装置10及び判定部15と同様の処理を実行するアライメント部60及び判定部63を有する。制御部58は所定のプログラムをコンピュータで実行することにより、アライメント部60及び判定部63を実現してもよく、専用のハードウエアを備えることにより、アライメント部60及び判定部63を実現してもよい。
 アライメント部60は、カメラ61及び/又は62により撮像された、ポーラスチャック51及び52に保持された第1及び第2透明シート100及び101にそれぞれ付されたアライメントマークの画像を入力し、XYステージ54を移動させて第1及び第2透明シート100及び101の間の位置合わせを行うとともに、ポーラスチャック51及び52に保持された透明シート100及び101の方向を検出する。
 判定部63は、アライメント部60により検出された第1及び第2透明シート100及び101の方向に基づいて、第1及び第2透明シート100及び101がポーラスチャック51及び52へ正しい方向で保持されているか否かを判定し、第1及び第2透明シート100及び101の保持方向が誤っている場合には、出力部59へアラーム信号を出力する。
 透明シートを重ね合わせる場合や、CO2レーザにより透明シートにレーザ加工を行う場合には、これら透明シートが透明であり、また透明シートに描かれた電極パターンが見えにくい半透明であるため、作業者がポーラスチャック51及び52に透明シートを置くときに、透明シートの方向を認識しにくいという問題があった。
 本製造装置50では、アライメント部60にて透明シートの方向が識別され、もし透明シートが誤った方向に置かれていた場合には出力部59にアラームが表示されるので、作業者による確認作業の負担が軽減され作業効率が向上する。
 図14は、図13に示す製造装置による製造方法のフローチャートである。ステップS30において、作業者が、ポーラスチャック51に第1透明シート100を、ポーラスチャック52に第2透明シート101をセットする。
 ステップS31において、カメラ61及び/又は62によって、第1透明シート100に付されたアライメントマークの画像を撮像し、アライメント部60は撮像された画像から第1透明シート100が置かれた方向と、予定位置からの第1透明シート100の位置ずれ量を検出する。
 ステップS32において、判定部63は、第1透明シート100が置かれた方向が正常であるか否かを判定する。第1透明シート100が誤った方向で置かれている場合には、ステップS33において、判定部63はアラーム信号を出力部59へ出力し、第1透明シート100を置き直すように作業者に促す。その後、処理はステップS30へ戻る。
 第1透明シート100が置かれた方向が正常である場合には、ステップS34において、ロータリアクチュエータ56を回転させて、第2透明シート101を第1透明シート100の上に移動させる。
 ステップS35において、第1及び第2透明シート100及び101に各々設けられたアライメントマークが、カメラ61及び62の被写界深度に入るように、Zステージ55を上昇させてXYステージ54に設けられたカメラ61、62及び第1透明シート100を第2透明シート101に接近させる。そして、第2透明シート101に付されたアライメントマークの画像を撮像し、アライメント部60は撮像された画像から第2透明シート101が置かれた方向と、予定位置からの第2透明シート101の位置ずれ量を検出する。
 このとき、第1透明シート100に設けられたアライメントマークと及び第2透明シート101に設けられたアライメントマークが重なって、第2透明シート101に設けられたアライメントマークが見えないときは、XYステージ54により第1透明シート100を移動させて、第1透明シート100に設けられたアライメントマークと及び第2透明シート101に設けられたアライメントマークが重ならない位置を探す。
 ステップS36において、判定部63は、第2透明シート101が置かれた方向が正常であるか否かを判定する。第2透明シート101が誤った方向で置かれている場合には、ステップS33において、判定部63はアラーム信号を出力部59へ出力し、第2透明シート101を置き直すように作業者に促す。その後、処理はステップS30へ戻る。
 ステップS37においてアライメント部60は、第1及び第2透明シート100及び101の各位置ずれ量から、第1及び第2透明シート100及び101の間の位置ずれ量を決定する。そしてアライメント部60は、決定した位置ずれ量がゼロになるようにXYステージ54を移動させ、第1及び第2透明シート100及び101の位置合わせを行う。
 ステップS38において、Zステージ55が上昇して第1及び第2透明シート100及び101に圧力を印加し、これらを貼り合わされる。
 ステップS39において、UV照射装置57が第1及び第2透明シート100及び101へ紫外線を照射し、各シート100及び101に予め塗布されていた塗布接着剤を硬化させ、これらシートのずれを防止する。
 ステップS40において、ポーラスチャック101による吸着を停止した後に、Zステージ55及びポーラスチャック101を定位置に戻す。
 図15は、本アライメント装置が適用される製造装置の第2構成例を示す構成図である。製造装置70は、液晶、電子ペーパ及び有機ELなどといった2枚の透明シートやガラスのような透明の板にレーザ加工を施して面状透明部品を製造する製造装置であるか、又はレーザにより基板に穴をあける等の加工を施して回路基板を製造する製造装置である。以下、図15及び図16を参照して行う説明において、ワークピースである透明シートや透明の板、基板を総称して「基板」と記載することがある。
 製造装置70は、基板110が載置されて2次元方向に移動するためのXYステージ71と、基板110をレーザ加工するレーザ光を発生させるレーザ光源72と、製造装置70の制御を行うコンピュータ等である制御部73と、カメラ76及び77と、制御部73から作業者へのメッセージやカメラ76及び/又は77の撮影画像を出力するための表示装置や印刷装置である出力部74を備える。
 基板110には、図2、図4A、図10A、図10B、図12A及び図12Bなどを参照して説明したアライメントマークが付されており、カメラ76及び/又は77は、XYステージ71上に置かれた基板110に付されたアライメントマークを撮像する。
 制御部73は、図1を参照して説明したアライメント装置10及び判定部15と同様の処理を実行するアライメント部75及び判定部78を有する。制御部73は所定のプログラムをコンピュータで実行することにより、アライメント部75及び判定部78を実現してもよく、専用のハードウエアを備えることにより、アライメント部75及び判定部78を実現してもよい。
 アライメント部75は、カメラ76及び/又は77により撮像された基板110に付されたアライメントマークの画像を入力し、XYステージ71を移動させてレーザ光源72に対する基板110の位置合わせをするとともに、基板110の方向を検出する。なお、XYステージ71により基板110を移動させるのに代えて又はこれに加えてレーザ光源72を移動させて、レーザ光源72に対する基板110の位置合わせをしてもよい。
 判定部78は、アライメント部75により検出された基板110の方向に基づいて、基板110がXYステージ71に正しい方向で置かれているか否かを判定し、基板110が置かれている方向が誤っている場合には、出力部74へアラーム信号を出力する。
 図16は、図15に示す製造装置による製造方法のフローチャートである。ステップS50において、作業者が、XYステージ71上に基板110をセットする。
 ステップS51において、カメラ76及び/又は77によって、基板110に付されたアライメントマークの画像を撮像し、アライメント部75は撮像された画像から基板110が置かれた方向と、予定位置からの基板110の位置ずれ量を検出する。
 ステップS52において、判定部78は、基板110が置かれた方向が正常であるか否かを判定する。基板110が誤った方向で置かれている場合には、ステップS53において、判定部78はアラーム信号を出力部74へ出力し、基板110を置き直すように作業者に促す。その後、処理はステップS50へ戻る。
 基板110が置かれた方向が正常である場合には、ステップS54において、基板110の位置ずれ量がゼロになるようにXYステージ71を移動させ、若しくはレーザ光源72を移動させて、基板110とレーザ光源72との位置合わせを行う。
 ステップS55において、レーザ光源72から基板110へレーザ光を照射して基板110にレーザ加工を施す。
 図17は、本アライメント装置が適用される製造装置の第3構成例を示す構成図である。製造装置80は、基板120に電子部品121を装着して回路基板を製造する製造装置である。
 製造装置80は、ワークピースである基板120が置かれ、基板120を2次元方向に移動させるためのXYステージ81と、電子部品121を運搬して基板120上に装着する装着ヘッド82と、製造装置80の制御を行うコンピュータ等である制御部83と、カメラ86及び87と、制御部83から作業者へのメッセージやカメラ86及び/又は87の撮影画像を出力するための表示装置や印刷装置である出力部84を備える。
 基板120には、図2、図4A、図10A、図10B、図12A及び図12Bなどを参照して説明したアライメントマークが付されており、カメラ86及び/又は87は、XYステージ81上に置かれた基板120に付されたアライメントマークを撮像する。
 制御部83は、図1を参照して説明したアライメント装置10及び判定部15と同様の処理を実行するアライメント部85及び判定部88を有する。制御部83は所定のプログラムをコンピュータで実行することにより、アライメント部85及び判定部88を実現してもよく、専用のハードウエアを備えることにより、アライメント部85及び判定部88を実現してもよい。
 アライメント部85は、カメラ86及び/又は87により撮像された基板120に付されたアライメントマークの画像を入力し、XYステージ81を移動させて装着ヘッド82に対する基板120の位置合わせをするとともに、基板120の方向を検出する。なお、XYステージ81により基板120を移動させるのに代えて又はこれに加えて装着ヘッド82を移動させて、装着ヘッド82に対する基板120の位置合わせをしてもよい。
 判定部88は、アライメント部85により検出された基板120の方向に基づいて、基板120がXYステージ81に正しい方向で置かれているか否かを判定し、基板120が置かれている方向が誤っている場合には、出力部84へアラーム信号を出力する。
 図18は、図17に示す製造装置による製造方法のフローチャートである。ステップS60において、作業者が、XYステージ81上に基板120をセットする。
 ステップS61において、カメラ86及び/又は87によって、基板120に付されたアライメントマークの画像を撮像し、アライメント部85は撮像された画像から基板120が置かれた方向と、予定位置からの基板120の位置ずれ量を検出する。
 ステップS62において、判定部88は、基板120が置かれた方向が正常であるか否かを判定する。基板120が誤った方向で置かれている場合には、ステップS63において、判定部88はアラーム信号を出力部84へ出力し、基板120を置き直すように作業者に促す。その後、処理はステップS60へ戻る。
 基板120が置かれた方向が正常である場合には、ステップS64において、基板120の位置ずれ量がゼロになるようにXYステージ81を移動させ、若しくは装着ヘッド82を移動させて、基板120と装着ヘッド82との位置合わせを行う。
 ステップS65において、装着ヘッド82を駆動して基板120へ電子部品121を装着する。
 図19は、本アライメント装置が適用される製造装置の第4構成例を示す構成図である。製造装置90は、光源93からの光をホトマスク130を経由して半導体ウエハ131へ照射させて、半導体ウエハ131の表面に塗布されたフォトレジストの露光を行い、半導体ウエハに回路パターンの転写を行う半導体集積回路装置の製造装置である。
 製造装置90は、半導体ウエハ131が置かれこれを3次元方向に移動させるためのXYZステージ91と、ホトマスク130が置かれホトマスク130を2次元方向に移動させるためのマスクステージ92と、光源93と、製造装置90の制御を行うコンピュータ等である制御部94と、カメラ97及び98と、制御部94から作業者へのメッセージやカメラ97及び/又は98の撮影画像を出力するための表示装置や印刷装置である出力部95を備える。
 ホトマスク130及び半導体ウエハ131には、図2、図4A、図10A、図10B、図12A及び図12Bなどを参照して説明したアライメントマークが付されており、カメラ97及び/又は98は、ホトマスク130及び半導体ウエハ131に付されたアライメントマークを撮像する。
 制御部94は、図1を参照して説明したアライメント装置10及び判定部15と同様の処理を実行するアライメント部96及び判定部99を有する。制御部94は所定のプログラムをコンピュータで実行することにより、アライメント部96及び判定部99を実現してもよく、専用のハードウエアを備えることにより、アライメント部96及び判定部99を実現してもよい。
 アライメント部96は、カメラ97及び/又は98により撮像された、ホトマスク130及び半導体ウエハ131にそれぞれ付されたアライメントマークの画像を入力し、XYZステージ91及び/又はマスクステージ92を移動させて、ホトマスク130及び半導体ウエハ131の間の位置合わせを行うとともに、ホトマスク130及び半導体ウエハ131が置かれた方向を検出する。
 判定部99は、アライメント部96により検出されたホトマスク130及び半導体ウエハ131の方向に基づいて、ホトマスク130及び半導体ウエハ131がそれぞれマスクステージ92及びXYZステージ91へ正しい方向で置かれているか否かを判定し、ホトマスク130及び半導体ウエハ131が置かれた方向が誤っている場合には、出力部95へアラーム信号を出力する。
 図20は、図19に示す製造装置による製造方法のフローチャートである。ステップS70において、作業者が、マスクステージ92にホトマスク130を、XYZステージ91へ半導体ウエハ131をセットする。
 ステップS71において、ホトマスク130及び半導体ウエハ131に各々設けられたアライメントマークが、カメラ97及び98の被写界深度に入るように、XYZステージ91を上昇させてホトマスク130及び半導体ウエハ131を接近させる。
 ステップS72において、カメラ97及び/又は98によって、ホトマスク130に付されたアライメントマークの画像を撮像し、アライメント部96は撮像された画像からホトマスク130が置かれた方向と、予定位置からのホトマスク130の位置ずれ量を検出する。
 ステップS73において、判定部99は、ホトマスク130が置かれた方向が正常であるか否かを判定する。ホトマスク130が誤った方向で置かれている場合には、ステップS74において、判定部99はアラーム信号を出力部95へ出力し、ホトマスク130を置き直すように作業者に促す。その後、処理はステップS70へ戻る。
 ホトマスク130が置かれた方向が正常である場合には、ステップS75において、カメラ97及び/又は98によって、半導体ウエハ131に付されたアライメントマークの画像を撮像し、アライメント部96は撮像された画像から半導体ウエハ131が置かれた方向と、予定位置からの半導体ウエハ131の位置ずれ量を検出する。
 ステップS76において、判定部99は、半導体ウエハ131が置かれた方向が正常であるか否かを判定する。半導体ウエハ131が誤った方向で置かれている場合には、ステップS74において、判定部99はアラーム信号を出力部95へ出力し、半導体ウエハ131を置き直すように作業者に促す。その後、処理はステップS70へ戻る。
 半導体ウエハ131が置かれた方向が正常である場合には、ステップS77において、ホトマスク130と半導体ウエハ131との間隔が露光に必要な適正な間隔となるように、XYZステージ91を降下させてホトマスク130と半導体ウエハ131とを離間させる。
 ステップS78においてアライメント部96は、ホトマスク130及び半導体ウエハ131の各位置ずれ量から、ホトマスク130と半導体ウエハ131との間の位置ずれ量を決定する。そしてアライメント部96は、決定した位置ずれ量がゼロになるようにXYZステージ91及び/又はマスクステージ92を移動させ、ホトマスク130及び半導体ウエハ131の位置合わせを行う。
 ステップS79において、光源93からの光をホトマスク130を経由して半導体ウエハ131へ照射させて、半導体ウエハ131の表面に塗布されたフォトレジストの露光を行う。
 以上、本発明の好適な実施態様について詳述したが、当業者が種々の修正及び変更をなし得ること、並びに、特許請求の範囲は本発明の真の精神および趣旨の範囲内にあるこの様な全ての修正及び変更を包含することは、本発明の範囲に含まれることは当業者に理解されるべきものである。

Claims (20)

  1.  面状体に設けられた非回転対称形状のアライメントマークの画像を撮像する撮像部と、
     前記画像から前記アライメントマークの位置を検出する位置検出部と、
     前記アライメントマークの位置に基づいて、所定の基準位置と前記面状体との相対位置を調整する位置調整部と、
     前記画像に撮像されたアライメントマークの非回転対称性に基づいて前記面状体の向きを検出する方向検出部と、
     を備える前記面状体のアライメント装置。
  2.  前記アライメントマークは、それぞれ前記位置検出部によって位置が検出される各前記アライメントマーク毎に非回転対称性を有する請求項1に記載のアライメント装置。
  3.  前記面状体の縦方向及び横方向の寸法が異なり、
     前記アライメントマークの形状は、前記縦方向及び横方向のいずれか一方に沿った線について線対称でない請求項1に記載のアライメント装置。
  4.  前記アライメントマークの形状は、非線対称である請求項1に記載のアライメント装置。
  5.  前記アライメントマークは、4つの象限にそれぞれ1つずつ配置される4つの図形の集合を含み、少なくともそのうち1つを他の図形と異なる形状とすることによって、非回転対称性を備える請求項1に記載のアライメント装置。
  6.  前記アライメントマークは、回転対称性を有する図形と、その中に設けられた非回転対称の図形とを組み合わせて形成される請求項1に記載のアライメント装置。
  7.  請求項1に記載の前記アライメント装置を有し、透明である複数の前記面状体を貼り合わせて多層部品を製造する前記多層部品の製造装置であって、
     前記アライメント装置は、前記複数の面状体の貼り合わせの際にこれら面状体同士の位置合わせを行うともに、前記製造装置へセットされた前記面状体の少なくとも1つの向きを検出し、
     前記製造装置は、前記検出された向きに基づいて、前記面状体が正常な向きで前記製造装置にセットされているか否かを判定する判定部を有する製造装置。
  8.  請求項1に記載の前記アライメント装置を有し、透明である前記面状体を加工して面状透明部品を製造する製造装置であって、
     前記アライメント装置は、前記製造装置にセットされた前記面状体の位置決めを行うとともに、前記製造装置へセットされた前記面状体の向きを検出し、
     前記製造装置は、前記検出された向きに基づいて、前記面状体が正常な向きで前記製造装置にセットされているか否かを判定する判定部を有する製造装置。
  9.  請求項1に記載の前記アライメント装置を有し、前記面状体としての基板を加工し及び/又はこの基板に電子部品を装着して回路基板を製造する回路基板の製造装置であって、
     前記アライメント装置は、前記製造装置にセットされた前記基板の位置決めを行うとともに、前記製造装置へセットされた前記基板の向きを検出し、
     前記製造装置は、前記検出された向きに基づいて、前記基板が正常な向きで前記製造装置にセットされているか否かを判定する判定部を有する製造装置。
  10.  請求項1に記載の前記アライメント装置を有し、マスクを用いて半導体ウエハに回路パターンの転写を行う半導体集積回路装置の製造装置であって、
     前記アライメント装置は、前記製造装置にセットされた前記面状体としての前記マスクと前記半導体ウエハとの位置合わせを行うとともに、前記製造装置へセットされた前記マスク及び/又は前記半導体ウエハの向きを検出し、
     前記製造装置は、前記検出された向きに基づいて、前記マスク及び/又は前記半導体ウエハが正常な向きで前記製造装置にセットされているか否かを判定する判定部を有する製造装置。
  11.  面状体に設けられた非回転対称形状のアライメントマークの画像を撮像し、
     前記画像から前記アライメントマークの位置を検出し、
     前記アライメントマークの位置に基づいて、所定の基準位置と前記面状体との相対位置を調整し、
     前記画像に撮像されたアライメントマークの非回転対称性に基づいて前記面状体の向きを検出する前記面状体のアライメント方法。
  12.  前記アライメントマークは、各前記アライメントマーク毎に非回転対称性を有する請求項11に記載のアライメント方法。
  13.  前記面状体の縦方向及び横方向の寸法が異なり、
     前記アライメントマークの形状は、前記縦方向及び横方向のいずれか一方に沿った線について線対称でない請求項11に記載のアライメント方法。
  14.  前記アライメントマークの形状は、非線対称である請求項11に記載のアライメント装方法。
  15.  前記アライメントマークは、4つの象限にそれぞれ1つずつ配置される4つの図形の集合を含み、少なくともそのうち1つを他の図形と異なる形状とすることによって、非回転対称性を備える請求項11に記載のアライメント方法。
  16.  前記アライメントマークは、回転対称性を有する図形と、その中に設けられた非回転対称の図形とを組み合わせて形成される請求項11に記載のアライメント方法。
  17.  請求項11に記載の前記アライメント方法によって前記面状体の位置決めを行う、透明である複数の前記面状体を貼り合わせて多層部品を製造する前記多層部品の製造装置により前記多層部品を製造する製造方法であって、
     前記アライメント方法によって、前記複数の面状体の貼り合わせの際にこれら面状体同士の位置合わせを行うともに、前記製造装置へセットされた前記面状体の少なくとも1つの向きを検出し、
     前記検出された向きに基づいて、前記面状体が正常な向きで前記製造装置にセットされているか否かを判定する製造方法。
  18.  請求項11に記載の前記アライメント方法によって前記面状体の位置決めを行う、透明である前記面状体を加工して面状透明部品を製造する製造装置により前記面状透明部品を製造する製造方法であって、
     前記アライメント方法によって前記製造装置にセットされた前記面状体の位置決めを行うとともに、前記製造装置へセットされた前記面状体の向きを検出し、
     前記検出された向きに基づいて、前記面状体が正常な向きで前記製造装置にセットされているか否かを判定する製造方法。
  19.  請求項11に記載の前記アライメント方法によって前記面状体の位置決めを行う、前記面状体としての基板を加工し及び/又はこの基板に電子部品を装着して回路基板を製造する回路基板の製造装置により前記回路基板を製造する製造方法であって、
     前記アライメント方法によって前記製造装置にセットされた前記基板の位置決めを行うとともに、前記製造装置へセットされた前記基板の向きを検出し、
     前記検出された向きに基づいて、前記基板が正常な向きで前記製造装置にセットされているか否かを判定する製造方法。
  20.  請求項11に記載の前記アライメント方法によって前記面状体としてのマスクと半導体ウエハとの位置合わせを行う、前記マスクを用いて前記半導体ウエハに回路パターンの転写を行う半導体集積回路装置の製造装置により半導体集積回路装置を製造する製造方法であって、
     前記アライメント方法によって前記製造装置にセットされた前記マスクの位置決めを行うとともに、前記製造装置へセットされた前記マスク及び/又は前記半導体ウエハの向きを検出し、
     前記検出された向きに基づいて、前記マスク及び/又は前記半導体ウエハが正常な向きで前記製造装置にセットされているか否かを判定する製造方法。
PCT/JP2008/056402 2008-03-31 2008-03-31 面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法 WO2009122529A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2008801283602A CN101981512A (zh) 2008-03-31 2008-03-31 面状体对准装置、制造装置、面状体对准方法及制造方法
TW097111709A TW200941630A (en) 2008-03-31 2008-03-31 An apparatus for alignment of a planar body, an apparatus for manufacuturing, a method for alignment of a planar body, and a method for manufacturing
KR1020107016500A KR20100107019A (ko) 2008-03-31 2008-03-31 면형체의 얼라이먼트 장치, 제조 장치, 면형체의 얼라이먼트 방법 및 제조 방법
PCT/JP2008/056402 WO2009122529A1 (ja) 2008-03-31 2008-03-31 面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法
JP2010505188A JPWO2009122529A1 (ja) 2008-03-31 2008-03-31 面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法
US12/882,812 US8023112B2 (en) 2008-03-31 2010-09-15 Alignment apparatus and fabrication apparatus for planar member and alignment method and fabrication method for planar member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056402 WO2009122529A1 (ja) 2008-03-31 2008-03-31 面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/882,812 Continuation US8023112B2 (en) 2008-03-31 2010-09-15 Alignment apparatus and fabrication apparatus for planar member and alignment method and fabrication method for planar member

Publications (1)

Publication Number Publication Date
WO2009122529A1 true WO2009122529A1 (ja) 2009-10-08

Family

ID=41134950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056402 WO2009122529A1 (ja) 2008-03-31 2008-03-31 面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法

Country Status (6)

Country Link
US (1) US8023112B2 (ja)
JP (1) JPWO2009122529A1 (ja)
KR (1) KR20100107019A (ja)
CN (1) CN101981512A (ja)
TW (1) TW200941630A (ja)
WO (1) WO2009122529A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163012A (zh) * 2010-02-22 2011-08-24 索尔思光电股份有限公司 虚拟光罩***及虚拟光罩叠合方法
WO2012090435A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 寸法測定方法及び寸法測定装置
KR101232611B1 (ko) * 2010-08-11 2013-02-13 삼성전자주식회사 정렬계를 이용한 계측 시스템 및 위치 계측 방법
KR101438914B1 (ko) * 2012-03-26 2014-11-03 가부시키가이샤 스크린 홀딩스 전사방법 및 전사장치
JP2017083403A (ja) * 2015-10-30 2017-05-18 大日本印刷株式会社 包装物の検査装置、検査方法及び製造方法、並びに包装機
WO2022064625A1 (ja) * 2020-09-25 2022-03-31 株式会社Fuji 演算装置、および演算方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258339A1 (en) 2012-03-28 2013-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer alignment mark scheme
US9640487B2 (en) * 2012-03-28 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer alignment mark scheme
KR20150002614A (ko) * 2012-04-05 2015-01-07 소니 주식회사 마스크 조정 유닛, 마스크 장치 및 마스크의 제조 장치 및 제조 방법
KR20140017086A (ko) 2012-07-30 2014-02-11 삼성디스플레이 주식회사 집적회로 및 이를 포함하는 표시 장치
US9304338B2 (en) 2012-11-01 2016-04-05 Apple Inc. Methods for assembling display structures
DE102014201573A1 (de) 2013-03-01 2014-09-04 Ford Global Technologles, LLC Vorderachse für ein Fahrzeug
JP6278741B2 (ja) * 2014-02-27 2018-02-14 株式会社キーエンス 画像測定器
JP6290651B2 (ja) * 2014-02-27 2018-03-07 株式会社キーエンス 画像測定器
JP6423678B2 (ja) * 2014-10-07 2018-11-14 東京エレクトロン株式会社 基板検査装置及びその制御方法
CN105632971B (zh) 2014-11-26 2019-06-25 上海微电子装备(集团)股份有限公司 一种硅片处理装置及方法
CN105988305B (zh) * 2015-02-28 2018-03-02 上海微电子装备(集团)股份有限公司 硅片预对准方法
CN104808370B (zh) * 2015-05-22 2017-10-31 合肥京东方光电科技有限公司 一种对盒设备、对位方法
CN105652492A (zh) * 2015-12-25 2016-06-08 昆山国显光电有限公司 Fog工艺的对位方法和***
CN205427436U (zh) 2016-03-23 2016-08-03 北京京东方光电科技有限公司 显示器件的对位检测设备及曝光工艺***
CN106154599B (zh) * 2016-06-27 2019-05-03 昆山国显光电有限公司 成盒补强设备及其方法
JP6723648B2 (ja) * 2016-07-27 2020-07-15 住友重機械工業株式会社 位置検出装置及び位置検出方法
CN106347996A (zh) * 2016-08-31 2017-01-25 山东日发纺织机械有限公司 托盘式部件供应装置及其供应方法
JP6881188B2 (ja) * 2017-09-27 2021-06-02 オムロン株式会社 位置検出装置およびプログラム
TWI630383B (zh) * 2017-10-17 2018-07-21 亞亞科技股份有限公司 檢測開孔鋼板的定位方法
US10984524B2 (en) * 2017-12-21 2021-04-20 Advanced Ion Beam Technology, Inc. Calibration system with at least one camera and method thereof
JP2019119118A (ja) * 2017-12-28 2019-07-22 株式会社リコー 液体吐出ヘッド、液体吐出ユニット、液体を吐出する装置
CN109759712B (zh) * 2019-03-18 2020-12-08 深圳晶森激光科技股份有限公司 一种屏幕激光加工定位方法及装置
US20210320038A1 (en) * 2020-04-09 2021-10-14 Advanced Semiconductor Engineering, Inc. Semiconductor device package
CN113352335A (zh) * 2021-06-02 2021-09-07 王雨豪 一种机械与视觉关联定位实验平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142324A (ja) * 1986-12-04 1988-06-14 Alps Electric Co Ltd 液晶表示素子の多層膜形成方法
JPH0574666A (ja) * 1991-09-12 1993-03-26 Fujitsu Ltd 半導体装置
JP2001274058A (ja) * 2000-03-24 2001-10-05 Nikon Corp マーク検出方法、並びに露光方法及び露光装置
JP2001291648A (ja) * 2000-04-07 2001-10-19 Sharp Corp 誘電体分離ウェハの位置合わせ構造およびそれを用いた検査方法
JP2004306164A (ja) * 2003-04-03 2004-11-04 Sony Corp カード製造用プラスチックシート及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411387B1 (en) * 1996-12-16 2002-06-25 Nikon Corporation Stage apparatus, projection optical apparatus and exposure method
AU2001232256A1 (en) * 2000-03-02 2001-09-12 Nikon Corporation Position measuring apparatus and aligner
JP3930687B2 (ja) 2001-02-15 2007-06-13 松下電器産業株式会社 位置検出装置
JP4515814B2 (ja) 2004-04-28 2010-08-04 パナソニック株式会社 装着精度測定方法
JP2006005187A (ja) 2004-06-18 2006-01-05 Hitachi Ltd プリント基板の識別子印字方法
JP2006119321A (ja) 2004-10-21 2006-05-11 Kofu Casio Co Ltd 電気回路間の導通接続構造
US7474401B2 (en) * 2005-09-13 2009-01-06 International Business Machines Corporation Multi-layer alignment and overlay target and measurement method
KR100874922B1 (ko) * 2007-03-20 2008-12-19 삼성전자주식회사 반도체 소자의 오버레이 마크 및 그 오버레이 마크를포함한 반도체 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142324A (ja) * 1986-12-04 1988-06-14 Alps Electric Co Ltd 液晶表示素子の多層膜形成方法
JPH0574666A (ja) * 1991-09-12 1993-03-26 Fujitsu Ltd 半導体装置
JP2001274058A (ja) * 2000-03-24 2001-10-05 Nikon Corp マーク検出方法、並びに露光方法及び露光装置
JP2001291648A (ja) * 2000-04-07 2001-10-19 Sharp Corp 誘電体分離ウェハの位置合わせ構造およびそれを用いた検査方法
JP2004306164A (ja) * 2003-04-03 2004-11-04 Sony Corp カード製造用プラスチックシート及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163012A (zh) * 2010-02-22 2011-08-24 索尔思光电股份有限公司 虚拟光罩***及虚拟光罩叠合方法
KR101232611B1 (ko) * 2010-08-11 2013-02-13 삼성전자주식회사 정렬계를 이용한 계측 시스템 및 위치 계측 방법
WO2012090435A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 寸法測定方法及び寸法測定装置
KR101438914B1 (ko) * 2012-03-26 2014-11-03 가부시키가이샤 스크린 홀딩스 전사방법 및 전사장치
JP2017083403A (ja) * 2015-10-30 2017-05-18 大日本印刷株式会社 包装物の検査装置、検査方法及び製造方法、並びに包装機
WO2022064625A1 (ja) * 2020-09-25 2022-03-31 株式会社Fuji 演算装置、および演算方法

Also Published As

Publication number Publication date
US8023112B2 (en) 2011-09-20
US20110001974A1 (en) 2011-01-06
TW200941630A (en) 2009-10-01
JPWO2009122529A1 (ja) 2011-07-28
CN101981512A (zh) 2011-02-23
KR20100107019A (ko) 2010-10-04

Similar Documents

Publication Publication Date Title
WO2009122529A1 (ja) 面状体のアライメント装置、製造装置、面状体のアライメント方法及び製造方法
JP5381029B2 (ja) 露光装置
TWI328991B (en) Manufacturing method of wiring substrate
JP2007201349A (ja) 穴開け方法及び穴開け装置
TWI323145B (ja)
JP2015160235A (ja) マーキング装置およびパターン生成装置
JP2010162559A (ja) レーザ加工方法および加工装置並びに被加工物
JP2010262271A (ja) 基板貼り合わせ装置及び基板貼り合わせ方法
JPWO2008117350A1 (ja) ワークハンドリング装置
JP2007005494A (ja) 部品実装装置及び部品実装方法、並びに、位置調整装置及び位置調整方法
TW201218246A (en) characterized by detecting the positions of a mask and a work-piece alignment marks for several times to thereby check the difference between a first alignment measure and a second alignment measure
JP4348474B2 (ja) 基板方向検出方法および描画システム
JP6723648B2 (ja) 位置検出装置及び位置検出方法
JP4631497B2 (ja) 近接露光装置
JP4126503B2 (ja) 位置決め装置
JP4886719B2 (ja) 加工装置
TW201637762A (zh) 標記裝置及方法、圖案產生裝置、以及被加工物
JP2009105196A (ja) 接合対象物のアライメント方法、これを用いた部品接合方法および部品接合装置
JP3939617B2 (ja) 位置合わせ装置および撮像手段の位置合わせ方法
JP6601173B2 (ja) 露光装置、基板製造システム、露光方法、および基板製造方法
JP6313148B2 (ja) マーキング装置
JP2006253384A (ja) ボンディング装置および半導体装置の製造方法
JP4868119B2 (ja) 露光装置
JP4620638B2 (ja) プリント配線板のレイアップ装置及びレイアップ方法
JPH06285749A (ja) プリント基板の加工方法およびその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128360.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505188

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107016500

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739515

Country of ref document: EP

Kind code of ref document: A1