WO2009102009A1 - Filmy self-supporting thin metal film for hydrogen separation and process for producing the same - Google Patents

Filmy self-supporting thin metal film for hydrogen separation and process for producing the same Download PDF

Info

Publication number
WO2009102009A1
WO2009102009A1 PCT/JP2009/052395 JP2009052395W WO2009102009A1 WO 2009102009 A1 WO2009102009 A1 WO 2009102009A1 JP 2009052395 W JP2009052395 W JP 2009052395W WO 2009102009 A1 WO2009102009 A1 WO 2009102009A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
self
thin film
hydrogen separation
Prior art date
Application number
PCT/JP2009/052395
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Suda
Shigeki Hara
Kenji Haraya
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2009553457A priority Critical patent/JP5464422B2/en
Publication of WO2009102009A1 publication Critical patent/WO2009102009A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0058Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0062Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0069Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness

Definitions

  • the present invention relates to a method for producing a film-like free-standing metal thin film having a film thickness of 1 to 20 ⁇ m having a hydrogen separation function, and a film-like free-standing metal having a film thickness of 1 to 20 ⁇ m having a hydrogen separation function obtained by the production method. It relates to a thin film. More specifically, a method for producing a film-like self-supporting metal thin film having a film thickness of 1 to 20 ⁇ m that has self-supporting properties and extremely high hydrogen separation properties, and a hydrogen film having a film thickness of 1 to 20 ⁇ m obtained by the manufacturing method.
  • the present invention relates to a film-like free-standing metal thin film for separation.
  • Hydrogen is regarded as a major future energy because it is lightweight, abundant and environmentally friendly.
  • resources containing hydrogen such as water, natural gas, coal, and biomass contains impurities, it must be separated and purified before use.
  • a number of techniques have been proposed for the separation and purification, such as a cryogenic separation method, an adsorption method, and a hydrogen separation method using a separation membrane.
  • the hydrogen separation method using a separation membrane has more advantages than other hydrogen separation methods in that it is more energy-saving, easier to operate, and can be downsized. The possibility of industrial use is great.
  • a palladium-based composite metal membrane has a high hydrogen permeability and an excellent hydrogen separation property, and is clearly superior to other methods.
  • Palladium-based membranes that have been developed so far have many technologies relating to the development of composite techniques for laminating a thin film of palladium or an alloy thereof on a porous substrate (Patent Document 1, Patent Document 2, etc.).
  • Patent Document 1 Patent Document 2, etc.
  • a self-supporting membrane configuration without using a porous substrate is more advantageous.
  • This membrane form is required to be a membrane that is free from anxiety such as the membrane itself being damaged when used as a separation membrane.
  • a thick palladium film, which is a self-supporting palladium film uses a large amount of palladium, increases the raw material cost, and does not have a sufficient hydrogen permeation rate. Therefore, it is required to produce a thinner palladium film.
  • it is not easy to manufacture a self-supporting thin film having a film thickness of 20 ⁇ m or less and it cannot be said that there are many documents reporting the technology.
  • Patent Document 3 reports a technique for producing a palladium-based separation membrane having a film thickness of about 1 to 2 ⁇ m by sputtering, but this technique requires an operation of mechanically peeling the palladium membrane from the substrate.
  • this technique when the film is mechanically peeled off, there are disadvantages that the surface of the film is highly likely to be damaged and that the film thickness is difficult to be constant.
  • this method is inferior in productivity, difficult to continuously produce and increase the area of the palladium membrane, and to produce a separation membrane having a uniform film thickness. Therefore, development of an improved method for producing a palladium film is awaited.
  • an object of the present invention is to produce a film-like self-supporting metal thin film having high hydrogen separation ability, and to produce the film-like self-supporting metal thin film having high hydrogen separation ability without using a technique for mechanically peeling. That is. Furthermore, it is manufacturing the said film-form self-supporting metal thin film with sufficient productivity. Moreover, it is also the production of a film-like self-supporting metal thin film having excellent uniformity.
  • the present inventors have solved the above-mentioned problems of the prior art, and based on the idea of solving the above problems, the hydrogen separation ability is excellent, the productivity is excellent, and the large area is not difficult,
  • metal separation membranes such as palladium with a uniform film thickness
  • a layer in which a salt such as a palladium salt coexists on the surface of the film substrate Obtained the knowledge that a metal thin film can be obtained unexpectedly when the treated layer is subjected to heat reduction treatment and a metal layer is formed on the surface of the treated layer by electroless plating, and then the treated layer is eluted or burned out. .
  • the obtained metal film is a wide and extremely thin film, it has been found that it has self-supporting properties and excellent hydrogen separation ability. Based on these findings, further research on metal thin film manufacturing methods that do not require mechanical treatment has resulted in the production of metal thin films with high hydrogen permeability and high hydrogen separation and excellent membrane uniformity. The knowledge that it can manufacture with good property was obtained. Based on the above findings, the present inventors have made further studies and finally completed the present invention.
  • the invention of claim 1 is a step A of forming a sacrificial layer containing a metal nucleus having a catalytic function on the surface of a film substrate, a metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer, or the metal A film-form free-standing metal thin film for hydrogen separation (hereinafter referred to as a film) having a film thickness of 1 to 20 ⁇ m, comprising at least a step B of forming a layer made of an alloy containing hydrogen and a step C of burning out or eluting the sacrificial layer A thin self-supporting metal thin film).
  • the invention of claim 1 is the step A of forming a sacrificial layer including a metal nucleus having a catalytic function on the surface of the film-like substrate, the metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer, or the metal A film having a film thickness of 1 to 20 ⁇ m, comprising at least a step B for forming a layer made of an alloy containing, and a step C for burning or elution of the sacrificial layer, wherein the film-like metal thin film is isolated It is also a manufacturing method of a thin self-supporting metal thin film.
  • Isolating the film-like metal thin film means that the film-like metal thin film is isolated without using a mechanical peeling method.
  • Isolating a film-like metal thin film means isolating the film-like metal thin film without using a mechanical peeling method.
  • the film-like self-supporting metal thin film means a wide metal thin film, and for example, an area of about 10 cm 2 or more can be exemplified, but the area is not limited at all.
  • the self-supporting metal thin film means a metal thin film that does not require the assistance of another non-dividable base material or the like and can hold the structure of the metal thin film alone.
  • the metal nucleus having a catalytic function means a metal nucleus having a function as a catalyst for generating an electroless plating film.
  • the process A of the invention of claim 1 is performed by the process of the metal having the catalytic function on the film-like substrate surface. It is also a step A for forming a sacrificial layer containing metal ions. The same applies to the inventions of other claims.
  • the invention of claim 2 includes the step A of forming a sacrificial layer containing a metal nucleus having a catalytic function on the surface of the film-like substrate, the metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer, or the metal.
  • Isolating the film-like metal thin film comprising at least a step B of forming a layer made of an alloy, and a step C of burning out or eluting the sacrificial layer and at least the surface of the film-like substrate in contact with the sacrificial layer. It is also a method for producing a film-like free-standing metal thin film for hydrogen separation having a characteristic film thickness of 1 to 20 ⁇ m.
  • burning or eluting at least the surface of the film-like substrate in contact with the sacrificial layer is to burn or elute the surface of the film-like substrate in contact with the sacrificial layer or the vicinity thereof, This means that all or most of the film-like substrate in contact with the sacrificial layer is burned out or eluted, and means that the film-like metal thin film is burned out or eluted so that it can be isolated.
  • Isolating the film-like metal thin film means isolating the film-like metal thin film without using a mechanical peeling method.
  • the invention of claim 2 is the step A1 of forming a sacrificial layer containing a metal nucleus having a catalytic function on the surface of a soluble film-like substrate, and the metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer.
  • the film-shaped metal thin film is isolated from at least the step B of forming a layer made of an alloy containing the metal and the step C1 of eluting the sacrificial layer and at least the surface of the film-shaped substrate in contact with the sacrificial layer.
  • Step A2 Step B of forming a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal on the surface of the sacrifice layer, and the sacrifice A film-like self-supporting metal thin film having a thickness of 1 to 20 ⁇ m, comprising at least the step C2 of burning out the layer and at least the surface of the film-like substrate in contact with the sacrificial layer, and isolating the film-like metal thin film It is also a manufacturing method.
  • the invention according to claim 3 is characterized in that the film-like self-supporting metal thin film has a film thickness uniformity of within ⁇ 20% over the entire film, wherein the film thickness is 1 to 20 ⁇ m.
  • This is a method for producing a film-like self-supporting metal thin film for hydrogen separation.
  • the invention of claim 4 has a sacrificial layer formed by applying and impregnating the surface of the film-like substrate with a solution or dispersion containing a metal compound that generates a metal nucleus having a catalytic function.
  • the hydrogen having a film thickness of 1 to 20 ⁇ m according to claim 1, wherein a film-like substrate coated and impregnated with a sacrificial layer in which a metal nucleus having a catalytic function is present in the vicinity of the surface of the layer is used. It is a manufacturing method of the film-form self-supporting metal thin film for isolation
  • the invention of claim 4 is obtained by applying a solution or dispersion containing a metal compound that generates a metal nucleus having a catalytic function to the surface of a film-like substrate and then subjecting the film-like substrate to a heat treatment.
  • a film-like substrate, wherein a sacrificial layer-coated / impregnated film-like substrate in which metal nuclei having a catalytic function are unevenly distributed near the surface of the sacrificial layer is used. It is also a method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m.
  • step A is a step of reducing metal ions derived from a metal compound that forms a metal nucleus having a catalytic function in a sacrificial layer formed on the surface of the film substrate, and a step 5.
  • the film-like self-supporting metal for hydrogen separation having a film thickness of 1 to 20 ⁇ m according to claim 1, wherein B comprises a step of electroless plating the surface of the reduced film-like substrate. It is a manufacturing method of a thin film.
  • the solution or dispersion for coating / impregnating the surface of the film substrate is (1) a metal compound that forms a metal nucleus having a catalytic function, (2) (a) a soluble leaching inorganic ceramic A precursor for preparing a soluble organic polymer or a soluble organic polymer, and / or (b) a raw material for preparing a soluble organic ceramic, a soluble inorganic polymer or a soluble organic polymer, And (3) the method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m, characterized in that it is a solution or dispersion at least comprising a soluble inorganic or organic solvent. It is.
  • the solution or dispersion for coating and impregnating the surface of the film-like substrate is (1) a metal compound that generates a metal nucleus having a catalytic function, (2) (a) an inflammable inorganic ceramic A precursor for preparing a burnable inorganic polymer or a burnable organic polymer, and / or (b) a raw material for preparing a burnable inorganic ceramic, a burnable inorganic polymer or a burnable organic polymer, And (3) the method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m, characterized in that it is a solution or dispersion liquid composed of at least a combustible inorganic or organic solvent.
  • the invention according to claim 8 is characterized in that a layer made of a metal or alloy having a hydrogen separation function is further formed on at least one surface of the film-like self-supporting metal thin film according to claim 1 or 2.
  • the invention of claim 10 has at least a sacrificial layer containing a metal nucleus having a catalytic function, a film-like substrate, and a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal. It is a laminate for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m. According to the invention of claim 11, a layer made of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal is formed by electroless plating treatment on the surface of the reduced film-like substrate according to claim 5. 11.
  • the laminate is a layer.
  • at least a layer composed of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal is formed, and the sacrificial layer of the laminate according to the tenth or eleventh aspect is eluted or burnt out.
  • a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m which is obtained by Further, it is obtained by eluting or burning out a sacrificial layer of the laminate according to claim 10 or 11, and at least composed of a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal. It is also a film-like free-standing metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m.
  • the invention of claim 13 comprises at least a layer made of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal, and the sacrificial layer of the laminate according to claim 10 or 11 and at least the film-like substrate It is also a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m, which is obtained by elution or burning treatment of the surface in contact with the sacrificial layer.
  • the invention of claim 14 is characterized in that the film-like self-supporting metal thin film has a film thickness uniformity of within ⁇ 20% over the entire film, wherein the film thickness is 1 to 20 ⁇ m. It is a film-like self-supporting metal thin film for hydrogen separation.
  • the film-like substrate used in the present invention can be any film-like substrate as long as it can be applied and impregnated with the solution or dispersion described in claim 5 or 6. . Further, it may be a film-like substrate that is eluted or burned out when necessary. Although the thickness and area of this film-like substrate are not particularly limited, for example, 10 cm 2 can be exemplified. Further, it is preferable that the surface of the substrate is smooth.
  • Preferred materials for the film-like substrate to be eluted include poly (vinyl alcohol), poly (vinyl butyral), poly (vinyl pyrrolidone), poly (ethylene glycol), poly (2,6-dimethyl-4-phenylene oxide), Selected from the group consisting of phenolic resin, polyester, polyamide, polyimide, polyamideimide, polyvinyl chloride, polyvinylidene chloride, poly (ether sulfone), polyolefin, polystyrene, silica, multicomponent glass, polycarbosilane, polymethylsilane Although it is preferable to use 1 type, or 2 or more types, it is not limited to these. Moreover, ceramics etc. are also mentioned.
  • the preferred material of the film-like substrate to be burned out substantially overlaps the preferred material of the film-like substrate to be eluted.
  • These substrates may be used for the production of a hydrogen separation composite without pretreatment, but it is advantageous to perform pretreatment such as washing treatment and drying treatment. Specifically, a pretreatment in which the substrate is washed with one or more selected from acids, bases, various alcohols, water and the like, and then dried is preferable.
  • a sacrificial layer containing a metal nucleus having a catalytic function is formed on the surface of the film substrate, and a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal is provided on the surface of the sacrificial layer.
  • the metal nucleus having the catalytic function is preferably a palladium nucleus
  • the metal constituting the metal nucleus having the catalytic function or the alloy containing the metal is preferably palladium or an alloy containing palladium.
  • a metal compound that generates a metal nucleus having a catalytic function is formed on the film substrate.
  • a coating or impregnation treatment with a contained solution or dispersion, a sacrificial layer containing a metal nucleus having a catalytic function by heat reduction treatment, and then a metal constituting the metal nucleus having a catalytic function by electroless plating treatment or the above-mentioned A method of providing an alloy containing a metal is preferred.
  • the coating and impregnation treatment with a solution or dispersion containing a metal compound that generates a metal nucleus having a catalytic function on the film-like substrate will be described.
  • the metal compound that generates the metal nucleus having the catalytic function examples include metals having high surface plasmon absorption, such as gold, silver, copper, palladium, nickel, and platinum. Can be mentioned. Of these, palladium is preferable.
  • the metal compound that generates a metal nucleus having a catalytic function include metal compounds having high surface plasmon absorption, such as gold compounds, silver compounds, copper compounds, palladium compounds, nickel compounds, platinum compounds, and the like.
  • palladium compounds are preferred.
  • Palladium salts are suitable as the palladium compound that forms the metal nucleus having the catalytic function.
  • Preferred compounds include, for example, palladium acetate, palladium acetylacetonate, palladium ammonium chloride, palladium bromide, palladium chloride, palladium diamine nitrate, palladium nitrate, palladium hydroxide, palladium ethylenediamine nitrate, palladium nitrate hydrate, palladium oxalate.
  • Palladium sulfate hydrate, and palladium tetraamine dinitrate may be one or more selected from the group consisting of, but not limited to, these compounds.
  • a gold salt is suitable.
  • Preferred compounds include, for example, potassium gold cyanide, potassium dicyanogold (I), potassium tetrachlorogold (3), gold sodium chloride (3) dihydrate, gold (3) sodium chloride, and gold chloride (3 It is preferable to use one or more selected from the group consisting of acid tetrahydrates, but is not limited to these compounds.
  • a copper salt is suitable as the copper compound that forms the metal nucleus having the catalytic function.
  • Preferred compounds include, for example, copper acetate, copper acetate hydrate, copper acetylacetonate, copper bromide, copper carbonate, copper chloride, copper chloride hydrate, copper citrate, copper butyrate, diammonium copper hydrate , Copper phosphate hydrate, copper fluoride, copper gluconate, copper iodide, copper naphthenate, copper nitrate hydrate, copper oleate, copper phthalate, copper sulfate, copper terephthalate hydrate, and thiocyanate Although it is preferable to use 1 type, or 2 or more types selected from the group consisting of acid copper, it is not limited to these compounds.
  • a nickel salt is suitable.
  • Preferred compounds include, for example, nickel acetate, nickel acetylacetonate, nickel ammonium chloride, nickel bromide, nickel carbonate, nickel chloride, nickel nitrate diamine, nickel nitrate, nickel ethylenediamine nitrate, nickel nitrate hydrate, nickel oxalate, although it is preferable to use 1 type, or 2 or more types selected from the group consisting of nickel hydroxide, nickel sulfate hydrate, and nickel tetraamine dinitrate, it is not limited to these compounds.
  • the platinum compound that forms the metal nucleus having the catalytic function is preferably either one or both of platinum acetylacetonate and platinum chloride, but is not limited to these compounds.
  • the solution or dispersion for applying / impregnating the film-like substrate may contain a soluble inorganic ceramic, a soluble inorganic polymer, or a soluble organic polymer.
  • the soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers referred to in the present invention are dissolved or burned out by the fact that a film can be formed on the surface of the film-like substrate, and the subsequent elution treatment or burn-out treatment.
  • Any inorganic ceramic, inorganic polymer, or organic polymer that can coexist with a metal compound that forms a metal nucleus that is a substance and has a catalytic function is not particularly limited.
  • the solubilized inorganic ceramics are preferably those that can be eluted with an acid or alkali from among sol-gel solutions and the like that have become so-called inorganic oxides (ceramics) such as silica and titania by high-temperature treatment.
  • the soluble organic polymer is extracted by elution treatment with an elution solvent after being heat-treated at a temperature below the above temperature at the maximum among polymers that are thermally decomposed or carbonized by heat treatment at high temperature. Those are preferred.
  • the constituent material of the polymer the starting material of the polymer, the production method of the polymer, the size of the polymer, and the like.
  • soluble inorganic ceramic, soluble inorganic polymer or soluble organic polymer include silica, multicomponent glass, polycarbosilane, polymethylsilane, poly (vinyl alcohol), poly (vinyl alcohol), Vinyl butyral), poly (vinyl pyrrolidone), poly (ethylene glycol), poly (2,6-dimethyl-4-phenylene oxide), phenol resin, polyester, polyamide, polyamic acid, polyimide, polyamideimide, polyvinyl chloride, poly It is preferable to use one or more selected from the group consisting of vinylidene chloride, poly (ether sulfone), polyolefin, and polystyrene, but is not limited to these polymers.
  • the solution or dispersion for applying / impregnating the film-like substrate may contain a burnable organic polymer.
  • a burnable organic polymer At that time, a soluble inorganic ceramic, a soluble inorganic polymer or a soluble organic polymer may or may not be contained.
  • the flammable organic polymer is capable of forming a film on the surface of the film-like substrate, coexisting with a metal compound that generates a metal nucleus having a catalytic function as well as a material that is burned off by a subsequent burnout treatment.
  • the organic polymer is not particularly limited as long as it is an organic polymer capable of forming a polymer.
  • the burnable organic polymer examples include poly (vinyl alcohol), poly (vinyl butyral), poly (vinyl pyrrolidone), poly (ethylene glycol), and poly (2,6-dimethyl-4- Phenylene oxide), phenol resin, polyester, polyamide, polyamic acid, polyimide, polyamideimide, polyvinyl chloride, polyvinylidene chloride, poly (ether sulfone), polyolefin, and one or more selected from the group consisting of polystyrene Although it is preferable to use, it is not limited to these polymers.
  • soluble inorganic ceramics soluble organic polymers or soluble organic polymers
  • a precursor for preparing soluble organic ceramics, soluble inorganic polymers or soluble organic polymers, or acceptable A starting material for preparing an eluting inorganic ceramic, a soluble organic polymer or a soluble organic polymer may be used.
  • the chemical substance to be coexisted is a known substance, and a necessary chemical substance may be allowed to coexist depending on the precursor or starting material to be used.
  • the soluble inorganic ceramic, soluble inorganic polymer or soluble organic polymer is eluted by a subsequent elution treatment and can disperse the metal compound constituting the coexisting hydrogen separation layer. If it is, it will not be restrict
  • Specific examples of the precursor or starting material include silane compounds such as tetraethoxysilane, trimethylsilane, triethylsilane, isopropoxysilane, and tributoxysilane, zinc ethoxide, titanium isopropoxide, titanium tributoxide, and tetraethoxyzirconium.
  • the composition of the solution or dispersion is a metal compound that generates a metal nucleus having a catalytic function and a soluble organic ceramic, a soluble inorganic polymer, a soluble organic polymer, or a burnable organic polymer, Or, since it varies depending on the kind of the precursor or starting material, it cannot be generally defined, but a preferable solution composition is a metal compound that forms a metal nucleus having a catalytic function of 0.001 to 5% by weight, 0.5-20 % By weight of soluble inorganic ceramic, soluble inorganic polymer, soluble organic polymer or burnable organic polymer or the precursor or starting material, 75-99.499% by weight of inorganic or organic solvent
  • the present invention is not limited to this composition range.
  • silica sol obtained by hydrolysis and polymerization of tetraethoxysilane containing palladium is used as a coating agent on the surface of the porous substrate.
  • a silica sol solution having a viscosity of 1 to 20 centipoise because a coating layer having a smooth surface and a uniform thickness can be obtained without peeling.
  • a 2 to 10 centipoise solution it is preferable to use a 2 to 10 centipoise solution.
  • inorganic or organic solvents examples include hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride, propanol, butanol, chloroform, although it is preferable to use 1 type, or 2 or more types selected from the group consisting of ethanol, acetone, benzene, acetic acid, and toluene, it is not limited to these solvents.
  • the soluble inorganic ceramics, the soluble inorganic polymers, the soluble organic polymers After dissolving or dispersing the metal compound that generates the metal nucleus having the catalytic function in the inorganic or organic solvent, the soluble inorganic ceramics, the soluble inorganic polymers, the soluble organic polymers, By adding their precursors or starting materials or flammable organic polymer, stirring and mixing, dissolving or dispersing, uniform metal compound-containing soluble inorganic ceramics, soluble inorganic polymers, soluble soluble polymers A solution or dispersion for activating the volatile organic polymer or the burnable organic polymer is prepared.
  • the soluble inorganic ceramics instead of the soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers, the soluble inorganic ceramics, soluble inorganic polymers, or soluble organic polymers are used.
  • Precursors or starting materials may be used, but in this case, so as to generate soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers from those precursors or starting materials, The operation should be devised.
  • the soluble organic ceramic, soluble inorganic polymer, soluble organic polymer A homogeneous metal compound-containing soluble leachable ceramic by adding a precursor or starting material of the above, or a combustible organic polymer, stirring and mixing, and applying heat treatment as necessary, and dissolving or dispersing; A solution or dispersion for activating the soluble organic polymer, soluble organic polymer or burnable organic polymer is prepared.
  • the method for applying the coating impregnation solution or dispersion thus prepared to the film-like substrate is not particularly limited.
  • the above solution is applied to a film-like substrate by osmotic brushing, spin coating, vacuum dip coating, vacuum impregnation, vacuum brushing, vacuum spin coating, ultrasonic dip coating, ultrasonic-vacuum dip coating, ultrasonic impregnation, ultrasonic-vacuum It can apply
  • coating and impregnation may be sufficient.
  • the application / impregnation method described above is a known method, and is not particularly limited when these methods are actually applied. Specifically, for example, it is desirable that the film-like substrate is dipped in the above solution for 1 to 600 seconds and then rapidly pulled up.
  • a metal constituting the metal nucleus having a catalytic function or an alloy layer containing the metal is formed by various known methods such as electroless plating.
  • a metal source that generates a metal nucleus having a catalytic function that is uniformly dispersed in the sacrificial layer moves toward the surface along with the movement of the solvent accompanying the heat treatment, etc., and generates a metal nucleus having a catalytic function
  • the concentration of metal nuclei that produce catalytic metal nuclei in the sacrificial layer can be determined, for example, by observing the structure of the cross section of the film with an electron diffractometer (EDX) attached to a scanning electron microscope (SEM), component analysis, and photoelectron spectroscopy It can be known by component analysis in the film depth direction by (XPS).
  • EDX electron diffractometer
  • SEM scanning electron microscope
  • component analysis e.g., photoelectron spectroscopy
  • XPS photoelectron spectroscopy
  • specific conditions for heat treatment there is a condition in which the film-like substrate is heated at 100-600 ° C. in an atmosphere of argon, helium, air, water vapor, still air, etc. for 0.1-10 hours. .
  • the reduction treatment may be performed without performing the heat treatment.
  • the means and conditions for the reduction treatment are not limited as long as they are conditions for reducing metal ions derived from a metal compound.
  • heat treatment in a hydrogen stream or reduction treatment with a chemical reducing agent is preferable.
  • the chemical reducing agent a known chemical reducing agent may be used.
  • the reduction treatment conditions are not particularly limited.
  • the method of laminating the metal constituting the metal nucleus having a catalytic function or the alloy layer containing the metal on the film-like substrate on which the sacrificial layer is formed is not particularly limited as long as it can achieve the intended purpose. Yes, a known method may be applied. As a specific method, an electroless plating method is preferable.
  • the sacrificial layer is preferably a layer having a uniform thickness.
  • the metal which comprises the metal nucleus which has a catalyst function, or the alloy layer containing the said metal is also a layer of uniform thickness.
  • the metal constituting the metal nucleus having a catalytic function other than palladium or the alloy containing the metal is the same as the electroless plating method of the layer made of palladium or the alloy containing palladium.
  • the electroless plating method employed for forming the palladium or palladium alloy layer on the surface of the sacrificial layer formed on the surface of the film substrate is not particularly limited, and the method used in this field is appropriately utilized. can do. What is necessary is just to select suitably according to the kind, shape, desired performance, etc. of a film-form board
  • the electroless plating method may be applied in combination with other methods such as an electroplating method.
  • the specific plating conditions are not particularly limited, and plating may be performed according to known conditions using a known plating bath capable of forming a target palladium or palladium alloy thin film.
  • the thickness of the layer made of palladium or an alloy containing palladium formed by electroless plating is preferably about 0.5 to 20 ⁇ m, more preferably about 1 to 20 ⁇ m, and more preferably about 1 to 10 ⁇ m. More preferably. If the thickness of the thin film is too thin, the hydrogen selective separation performance becomes insufficient. On the other hand, if the thickness is too thick, hydrogen permeability and economy are lost.
  • the palladium alloy in the film-like self-supporting metal thin film is preferably an alloy of palladium and one or more metals selected from the group consisting of silver, gold, copper, platinum, nickel and cobalt.
  • the proportion of palladium in such a palladium alloy is preferably about 45% by weight or more.
  • the thus obtained laminate having a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal is eluted.
  • a method of eluting and mechanically exfoliating the soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers (hereinafter sometimes referred to as elution components) from the laminate is eluted.
  • the film-like self-supporting metal thin film can be manufactured.
  • the elution treatment is not particularly limited as long as the eluted components are eluted. Specifically, it is preferable to immerse the laminate in an elution solvent.
  • an elution solvent an appropriate solvent is used depending on the difference in components constituting the elution component, but it is not particularly limited as long as the elution component can be eluted.
  • Specific examples of the elution solvent include alkalis such as NaOH aqueous solution, KOH aqueous solution and aqueous ammonia, acids such as sulfuric acid, hydrochloric acid and HF, and organic solvents such as ethanol and chloroform.
  • the elution conditions vary depending on the metal compound of the metal that constitutes the metal core having the catalytic function used, the soluble inorganic ceramics to be eluted, the soluble inorganic polymer or the soluble organic polymer, etc.
  • specific elution treatment conditions include immersing the laminate in an elution solvent for about 1 to 120 hours.
  • the immersion temperature at that time is preferably 25-100 ° C.
  • the elution pressure is usually atmospheric pressure, but the treatment can be performed under a pressurized condition of 1 atm or higher.
  • the laminated body having a layer made of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal is burned.
  • the burnable organic polymer is burned off from the laminate and removed without using a mechanical peeling method, and a film-like self-supporting metal thin film can be produced.
  • the above-mentioned burn-out treatment varies depending on the metal compound of the metal constituting the metal nucleus having a catalytic function to be used, or an alloy containing the metal, a burnable polymer, etc.
  • the laminate was heated to 300-1100 ° C. at a temperature rising rate of 0.2-20 ° C./min in an air stream or in still air, in the presence of a pure oxygen / oxygen / nitrogen mixture, and 0 ° C. at that temperature.
  • the heat treatment can be performed by holding for 1-20 hours, and then the temperature lowering condition can be exemplified at room temperature at a temperature lowering rate of 0.2-20 ° C. per minute.
  • a layer made of a metal or alloy having a hydrogen separation function may be further formed on the produced film-like self-supporting metal thin film.
  • the metal having a hydrogen separation function is a kind selected from the group consisting of palladium, nickel, platinum, copper, silver, gold, cobalt, rhodium, iridium, iron, ruthenium, vanadium, niobium, tantalum, hafnium, titanium, and zirconium. Or 2 or more types are mentioned.
  • a layer made of a metal or alloy having a hydrogen separation function a layer made of palladium or an alloy containing palladium is particularly preferable.
  • This layer may be formed over the entire surface of the film-like self-supporting metal thin film, or may be formed partially.
  • a method for forming a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal a known method can be used as described above, and among these, an electroless plating method is preferable.
  • the same method as described above can be applied to the conditions for performing the electroless plating treatment.
  • a layer containing a metal that can be alloyed with the metal constituting the film-like self-supporting metal film is formed on at least one surface of the film-like self-supporting metal thin film, and alloyed to produce a film-like self-supporting metal thin film.
  • the metal constituting the film-like self-supporting metal film is palladium
  • the metal that can be palladium alloyed is one or more selected from the group consisting of silver, gold, copper, platinum, nickel, and cobalt exemplified above.
  • metals, such as a metal can be mentioned, it is not limited to them.
  • a metal that can be alloyed is appropriately selected according to the metal constituting the film-like self-supporting metal film, and a film-like self-supporting metal film can be obtained by alloying treatment.
  • the method for forming a layer containing a metal that can be alloyed is not particularly limited. In the alloying treatment, the metal constituting the film-like self-supporting metal film and the metal alloyed with the metal are alloyed. It is only necessary to process under conditions, and it is not possible to define it in general. For example, for example, heat treatment in an inert atmosphere at 600 ° C. or higher for 5 hours, or heat treatment in air at 600 ° C. or higher for 5 hours, and hydrogen reduction at 200 ° C. or higher for 1 hour. Can be mentioned.
  • the film-like self-supporting metal thin film thus produced has no structural defects such as the presence of pinholes, can maintain its structure without the assistance of other non-dividable substrates, etc., and has excellent hydrogen It has extremely excellent characteristics such as having a separation function.
  • the film-like self-supporting metal thin film of the present invention is characterized by being uniform. According to the present invention, a film-like self-supporting metal thin film having a film thickness uniformity of within ⁇ 20% is manufactured.
  • the present invention has a film thickness characterized by having at least a film-like substrate, a sacrificial layer containing a metal nucleus having a catalytic function, and a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal.
  • a laminate for producing a film-like self-supporting metal thin film for hydrogen separation of 1 to 20 ⁇ m could be provided.
  • a metal nucleus having a catalytic function is unevenly distributed in the vicinity of the surface of the sacrificial layer, a preferable laminate for producing a film-like self-supporting metal thin film can be produced.
  • the present invention includes at least a sacrificial layer of a laminate and at least the sacrificial layer of the film-like substrate according to claim 10 or 11, comprising at least a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal. It was possible to provide a film-like free-standing metal thin film for hydrogen separation having a film thickness of 1 to 20 ⁇ m, which was obtained by eluting or burning out the surface in contact with the surface.
  • the film-like self-supporting metal thin film of the present invention exhibits excellent hydrogen separation ability.
  • the hydrogen separation coefficient is 1000 or more.
  • the hydrogen separation coefficient is a value obtained based on the following equation.
  • Hydrogen separation factor T H2 / T Ar
  • T H2 indicates the permeation rate of hydrogen
  • T Ar indicates the permeation rate of argon.
  • the hydrogen-hydrogen permeation rate is determined by supplying hydrogen at a predetermined pressure from one side of the separation membrane and measuring the permeation rate of hydrogen permeating from the other side. Subsequently, after the inside of the measurement system is cleaned with argon gas, argon is supplied under the same conditions, and the permeation rate of argon transmitted from the other surface is measured.
  • the film-like self-supporting metal thin film of the present invention can be applied over a wide range, and is suitable for hydrogen separation from hydrogen mixed gas, hydrogen production reaction, fuel cell application, and the like. More specifically, the present invention can be applied to a high-purity fuel hydrogen supply device for a fuel cell power generation system, an ultrahigh-purity fuel hydrogen supply device for a semiconductor process, a hydrogen gas release device for an absorption refrigeration machine, and the like.
  • a film-like self-supporting metal thin film having no excellent defects such as pinholes and having an excellent hydrogen separation function can be obtained. It is also a uniform film-like free-standing metal thin film. Furthermore, continuous production is possible, and a film-like self-supporting metal thin film can be produced with good productivity and low cost.
  • membrane modules can also be manufactured efficiently and can be incorporated into products (eg modules) without the aid of a substrate that cannot be divided in particular. Furthermore, an all-metallic module having excellent thermal response and easy modularization is possible. Further, by using a mesh-like substrate, it is possible to cope with a case where there is a considerable pressure difference.
  • Example 1a Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • a polyimide film substrate manufactured by Toray DuPont
  • the substrate was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer.
  • the temperature was increased to 100 ° C. at a rate of temperature increase of 5 ° C. per minute, and held at that temperature for 3 hours to perform palladium nucleation treatment. did.
  • Example 1b Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the sample was immersed in the sample and kept for 24 hours as it was for elution treatment.
  • a palladium-based film-like self-supporting metal thin film for hydrogen separation was obtained through drying and washing treatment.
  • FIG. 1 is a photograph of the appearance of the metal thin film that has been plated for about 2 hours.
  • FIG. 2 is a cross-sectional SEM photograph of the metal thin film plated for about 0.5 hour.
  • FIG. 1 clearly shows that a palladium-based film-like self-supporting metal thin film having a large area of 10 cm 2 or more has been prepared.
  • Test Example 1 Measurement of the film thickness of a palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the film thickness of the palladium-based film-like self-supporting metal thin film was measured as follows. Using a film thickness meter (Peacock: Type PDS-2), place the self-supporting thin film on the glass substrate at the bottom of the film thickness meter and gently sandwich it with the measurement terminal to measure the thickness. I read the thickness. The film thickness was measured at 7 to 10 portions of a self-supporting thin film having a length of about 2 cm and a width of about 6 cm, and the average film thickness and the uniformity of the film thickness over the entire film were calculated.
  • the average film thickness of the palladium-based film-like self-supporting metal thin film shown in FIG. 1 was 14.7 ⁇ 1.8 ⁇ m, and the film thickness uniformity over the entire film was within ⁇ 12%.
  • the average film thickness of the palladium-based film-like self-supporting metal thin film shown in FIG. 2 was 3.0 ⁇ 0.5 ⁇ m, and the uniformity of the film thickness over the entire film was within ⁇ 17%.
  • Example 2 Hydrogen selective permeation characteristics of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the hydrogen-selective permeation characteristics of the palladium-based film-like self-supporting metal thin film obtained in Example 1 were measured at a temperature of 300-500 ° C and a hydrogen pressure difference of 0 Evaluation was performed at ⁇ 100 kPa.
  • the result is shown in FIG. From FIG. 3, for example, at a measurement temperature of 400 ° C. and a hydrogen pressure difference of 100 kPa, the hydrogen permeation flux is 0.06 mol / (m 2 s), and a gas other than hydrogen, for example, helium is below the measurement limit. It was found to have high hydrogen permselectivity.
  • Example 2a Preparation of a laminate for production of a palladium-based film-like self-supporting metal thin film for hydrogen separation
  • a polyimide film substrate manufactured by Ube Industries, Ltd.
  • the material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer.
  • the film-formed substrate was dried in still air for 2 hours, and then heated to 100 ° C. at a rate of temperature increase of 5 ° C./min, and held at that temperature for 1 hour to perform palladium nucleation treatment. did.
  • Example 2b Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the palladium laminate obtained by electroless plating obtained in Example 2a was immersed in chloroform and eluted as it was for 24 hours. Treated. Next, a palladium-based film-like self-supporting metal thin film for hydrogen separation was obtained through drying and washing treatment.
  • Example 3a Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • a dense alumina substrate manufactured by TGK having a length of 5 cm and a width of 2 cm was washed with distilled water and dried.
  • the material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer.
  • the temperature is increased to 300 ° C. at a temperature increase rate of 5 ° C./min, and kept at that temperature for 0.5 hour, thereby stabilizing the heat.
  • TGK dense alumina substrate having a length of 5 cm and a width of 2 cm was washed with distilled water and dried.
  • the material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer.
  • the temperature is increased to 300 ° C. at a temperature increase rate of 5 ° C./min, and kept at that temperature for
  • Electroless plating is performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under conditions of a plating temperature of 60 ° C. and a plating time of 0.5 hours. A laminate for producing a self-supporting film-like metal thin film was obtained.
  • Example 3b Preparation of a palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the laminate for producing a palladium-based film-like self-supporting metal thin film for hydrogen separation obtained in Example 3a was treated with static air. Inside, the temperature was increased to 600 ° C. at a rate of temperature increase of 5 ° C. per minute, and the heat burn-off treatment was performed by holding at that temperature for 0.5 hour. Next, the temperature was lowered to room temperature at a rate of 5 ° C. per minute to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.
  • Example 3 When the form of the palladium-based film-like self-supporting metal thin film of Example 3 was observed, it was found that a palladium-based film-like self-supporting metal thin film having a large area of 10 cm 2 or more and a relatively uniform thickness was prepared.
  • Example 4a Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • a Vycor glass porous substrate (made by Corning) having a diameter of 5 cm and a film thickness of 1.5 mm was washed with acetone. After drying, the substrate was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer. After the film-formed substrate was dried in still air for 0.5 hours, the temperature rising rate was 5 ° C./min. 240 ° C. for 0.5 hours, the temperature was raised at 5 ° C. and 300 ° C., 0.5 ° C. The heat stabilization process was performed by hold
  • Electroless plating is performed using a commercial palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5 hours.
  • the laminated body as a manufacturing raw material of a film-form self-supporting metal thin film was obtained.
  • Example 4b Preparation of a palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the palladium laminate obtained by the electroless plating process obtained in Example 4a was 580 at a heating rate of 5 ° C./min in still air. After heating up to 0 ° C. and holding for 10 minutes, the temperature was increased to 700 ° C. at a heating rate of 5 ° C. per minute and held for 10 minutes to carry out thermal burning treatment. Next, the temperature was lowered to room temperature at a rate of 5 ° C. per minute to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.
  • Example 5a Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation After washing and drying a glass petri dish having a diameter of 10 cm with acetone, 20 mL of the activation solution of Reference Example 1 was poured therein. Thereafter, it was dried in still air for 2 hours to form a thin film sacrificial layer. The thin film sacrificial layer peeled off from the petri dish was heated to 100 ° C. at a temperature rising rate of 5 ° C. per minute, and held at that temperature for 1 hour to perform palladium nucleus formation treatment. Thereafter, reduction treatment was performed with 0.5% by weight of hydrazine under the conditions of a reduction temperature of 60 ° C.
  • Electroless plating is performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under conditions of plating temperature 60 ° C and plating time 0.5-2 hours for hydrogen separation.
  • the laminated body as a manufacturing raw material of a palladium-type film-like self-supporting metal thin film was obtained.
  • Example 5b Preparation of a palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the palladium laminate subjected to the electroless plating treatment obtained in Example 5a was immersed in chloroform and kept as it was for 24 hours. The entire palladium laminate was eluted. Next, a palladium-based film-like self-supporting metal thin film for hydrogen separation was obtained through drying and washing treatment.
  • Example 6a Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • a polyimide film substrate manufactured by Ube Industries, Ltd.
  • the material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer.
  • the temperature rising rate was 5 ° C./min. 240 ° C. for 0.5 hours, the temperature was raised at 5 ° C. and 300 ° C., 0.5 ° C.
  • the heat stabilization process was performed by hold
  • the laminated body as a manufacturing raw material of a film-form self-supporting metal thin film was obtained.
  • Example 6b Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the palladium laminate obtained in Example 6a subjected to the electroless plating treatment was 700 in a still air at a heating rate of 5 ° C per minute.
  • the whole palladium laminate was subjected to a heat-burning treatment by raising the temperature to 0 ° C. and holding it for 10 minutes. Next, the temperature was lowered to room temperature at a rate of 5 ° C. per minute to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.
  • Example 7a Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • a dense alumina substrate manufactured by TGK ) having a length of 5 cm and a width of 2 cm was washed with distilled water and dried. The material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a precursor thin film sacrificial layer. Next, the dense alumina substrate was dried in still air for 2 hours, then heated to 300 ° C. at a heating rate of 5 ° C./min, held at that temperature for 30 minutes, and then heated at a heating rate of 5 / min. After raising the temperature to 600 ° C.
  • the temperature was maintained for 30 minutes to obtain a uniform palladium nucleus-containing silica thin film layer.
  • the temperature was raised to 200 ° C. at a rate of temperature increase of 5 ° C. per minute, held at that temperature for 30 minutes, subjected to a reduction treatment, and a layer substantially consisting of a soluble organic polymer was formed. .
  • the surface of this reduced layer was subjected to a pre-electroless plating process, and a layer made of palladium metal was laminated to obtain a laminate for producing a palladium-based film-like self-supporting metal thin film for hydrogen separation.
  • This pre-electroless plating treatment was performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) having a pH of about 7 under conditions of a plating temperature of 60 ° C. and a plating time of 30 minutes.
  • a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) having a pH of about 7 under conditions of a plating temperature of 60 ° C. and a plating time of 30 minutes.
  • Example 7b Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation
  • the laminate for producing a palladium-based film-like self-supporting metal thin film for hydrogen separation obtained in Example 7a was prepared as follows. An elution treatment was performed by immersing in a 1N sodium hydroxide solution and allowing to stand at room temperature for 90 hours. Then, it took out from the sodium hydroxide solution, washed and dried to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.
  • Example 8a Preparation of laminate for production of palladium / silver film-like self-supporting alloy thin film for hydrogen separation
  • a polyimide film substrate manufactured by Ube Industries, Ltd.
  • the substrate was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer.
  • the film-formed substrate was dried in still air for 2 hours, and then heated to 100 ° C. at a rate of temperature increase of 5 ° C./min, and held at that temperature for 1 hour to perform palladium nucleation treatment. did.
  • reduction treatment was performed with 0.5% by weight of hydrazine under the conditions of a reduction temperature of 60 ° C. and a reduction time of 5 hours.
  • the electroless palladium plating treatment was performed using a commercial palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) having a pH of about 7 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5-2 hours.
  • an electroless silver plating treatment was performed using the silver plating bath of Reference Example 3 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5 to 1 hour.
  • a laminate as a manufacturing raw material was obtained.
  • Example 8b Preparation of a palladium / silver film-like self-supporting alloy thin film for hydrogen separation
  • the palladium / silver laminate subjected to the electroless plating treatment obtained in Example 8a is immersed in chloroform and held as it is for 24 hours.
  • the elution process was performed by the above, and a palladium / silver film-like self-supporting metal laminated thin film for hydrogen separation was obtained through drying and washing processes.
  • the alloy is treated by holding the temperature for 3 hours and lowering the temperature to 5 ° C./min to room temperature.
  • a palladium / silver film self-supporting alloy thin film for separation was obtained.

Abstract

A filmy self-supporting thin metal film for hydrogen separation having a film thickness of 1-20 µm is produced through steps which comprise a step (A) in which a sacrifice layer containing metal nuclei having a catalytic function is formed on a surface of a filmy substrate, a step (B) in which a layer comprising either the metal constituting metal nuclei having a catalytic function or an alloy containing the metal is formed on the surface of the sacrifice layer, and a step (C) in which the sacrifice layer is burnt down or dissolved away. The filmy self-supporting thin metal film obtained by this process has the excellent ability to separate hydrogen and is highly homogeneous. By using this process, a filmy self-supporting thin metal film having excellent homogeneity can be produced with satisfactory productivity.

Description

水素分離用フィルム状自立金属薄膜およびその製造方法Film-like free-standing metal thin film for hydrogen separation and method for producing the same
 本発明は、水素分離機能を有する、膜厚が1~20μmのフィルム状自立金属薄膜の製造方法、およびその製造方法により得られる水素分離機能を有する、膜厚が1~20μmのフィルム状自立金属薄膜に関する。より詳しくは、自立性を有し、しかも極めて高い水素分離性を有する、膜厚が1~20μmのフィルム状自立金属薄膜の製造方法、およびその製造方法により得られる膜厚が1~20μmの水素分離用フィルム状自立金属薄膜に関する。 The present invention relates to a method for producing a film-like free-standing metal thin film having a film thickness of 1 to 20 μm having a hydrogen separation function, and a film-like free-standing metal having a film thickness of 1 to 20 μm having a hydrogen separation function obtained by the production method. It relates to a thin film. More specifically, a method for producing a film-like self-supporting metal thin film having a film thickness of 1 to 20 μm that has self-supporting properties and extremely high hydrogen separation properties, and a hydrogen film having a film thickness of 1 to 20 μm obtained by the manufacturing method. The present invention relates to a film-like free-standing metal thin film for separation.
 水素は軽量で豊富、環境に優しいことから、将来の主要なエネルギーと目されている。しかしながら、水や天然ガス、石炭、バイオマスなどの水素を含む資源から得られる水素には不純物が含まれるため、使用の前段階で分離・精製する必要がある。その分離・精製する方法として、深冷分離法や吸着法や分離膜による水素分離法など、幾多の技術が提案されている。
 これらのなかで、分離膜による水素分離法は他の水素分離方法と比べて、より省エネルギーで、操作が簡便であり、しかも用いる機器の小型化が可能などの有利な点を有しているため、工業的に使用される可能性が大きい。とくに、パラジウムベースの複合金属膜は、高い水素透過率と優れた水素分離性を有するため、他の方法と比較すると、明らかに優位である。さらに、燃料電池や他の水素を消費するプロセスのために有用な純粋な水素を製造できることや、対象製品の収量を向上させるために水素化や脱水素化反応プロセスに使用できることなど、実に工業的価値が高い。
 しかしながら、パラジウムは高価であるので、たとえばバナジウムやタンタルなど、より資源的に豊富な金属であり、しかもパラジウムと同様の水素分離能を有する技術も盛んに研究されている。
Hydrogen is regarded as a major future energy because it is lightweight, abundant and environmentally friendly. However, since hydrogen obtained from resources containing hydrogen such as water, natural gas, coal, and biomass contains impurities, it must be separated and purified before use. A number of techniques have been proposed for the separation and purification, such as a cryogenic separation method, an adsorption method, and a hydrogen separation method using a separation membrane.
Among these, the hydrogen separation method using a separation membrane has more advantages than other hydrogen separation methods in that it is more energy-saving, easier to operate, and can be downsized. The possibility of industrial use is great. In particular, a palladium-based composite metal membrane has a high hydrogen permeability and an excellent hydrogen separation property, and is clearly superior to other methods. In addition, it is possible to produce pure hydrogen useful for fuel cells and other hydrogen consuming processes, and to be used in hydrogenation and dehydrogenation reaction processes to improve the yield of target products. High value.
However, since palladium is expensive, for example, a more resource-rich metal such as vanadium or tantalum, and a technology having the same hydrogen separation ability as palladium has been actively studied.
 これまで開発されてきたパラジウム系膜は、パラジウムあるいはその合金の薄膜を多孔性基材上に積層する複合化手法の開発に関する技術が多い(特許文献1、特許文献2など)。
 一方、膜モジュールの組み立てや取り扱い容易性、小型化、熱応答性、モジュールコスト低減などの観点からは、多孔性基材を用いない自立型の膜形態の方が有利である。この膜形態は、例えば分離膜として使用するときに膜自体が破損するなどの不安がないような膜であることが求められる。自立型のパラジウム膜であって、厚いパラジウム膜は、パラジウムの使用量が多く、原料コストが高くなるうえ、水素透過速度が十分とはいえない。そこで、より薄いパラジウム膜を製造することが求められる。ところが、例えば膜厚が20μm以下の自立型薄膜を製造することは容易なことではなく、当該技術を報告する文献も多いとはいえない。
Palladium-based membranes that have been developed so far have many technologies relating to the development of composite techniques for laminating a thin film of palladium or an alloy thereof on a porous substrate (Patent Document 1, Patent Document 2, etc.).
On the other hand, from the viewpoints of assembling and handling of the membrane module, miniaturization, thermal responsiveness, and module cost reduction, a self-supporting membrane configuration without using a porous substrate is more advantageous. This membrane form is required to be a membrane that is free from anxiety such as the membrane itself being damaged when used as a separation membrane. A thick palladium film, which is a self-supporting palladium film, uses a large amount of palladium, increases the raw material cost, and does not have a sufficient hydrogen permeation rate. Therefore, it is required to produce a thinner palladium film. However, for example, it is not easy to manufacture a self-supporting thin film having a film thickness of 20 μm or less, and it cannot be said that there are many documents reporting the technology.
 例えば、特許文献3はスパッタリング法により膜厚が1~2μm程度のパラジウム系分離膜を製造する技術が報告されているが、この技術ではパラジウム膜を基材から機械的に剥離する操作が必須であり、この機械的に膜を引き剥がすときに、膜の表面等が損傷される可能性が高いという不都合さや、膜厚が一定となりにくいという不都合さがある。そのうえ、この方法では、生産性に劣り、連続生産やパラジウム膜の大面積化が困難であり、しかも均一な膜厚を有する分離膜を製造するという点の困難さがある。そこで、更に改善されたパラジウム膜の製法の開発が待たれている。 For example, Patent Document 3 reports a technique for producing a palladium-based separation membrane having a film thickness of about 1 to 2 μm by sputtering, but this technique requires an operation of mechanically peeling the palladium membrane from the substrate. In addition, when the film is mechanically peeled off, there are disadvantages that the surface of the film is highly likely to be damaged and that the film thickness is difficult to be constant. In addition, this method is inferior in productivity, difficult to continuously produce and increase the area of the palladium membrane, and to produce a separation membrane having a uniform film thickness. Therefore, development of an improved method for producing a palladium film is awaited.
特開平4-349926号公報JP-A-4-349926 特開平5-285357号公報JP-A-5-285357 米国特許第6,086,729号明細書US Pat. No. 6,086,729
 本発明は上記従来技術の問題点を解決することを課題とする。従って、本発明の課題は、高い水素分離能を有するフィルム状自立金属薄膜を製造することであり、高い水素分離能を有するフィルム状自立金属薄膜を機械的に剥離する手法を用いずに製造することである。さらに、前記フィルム状自立金属薄膜を生産性良く製造することである。そのうえ、均一性に優れているフィルム状自立金属薄膜を製造することでもある。 This invention makes it a subject to solve the problem of the said prior art. Accordingly, an object of the present invention is to produce a film-like self-supporting metal thin film having high hydrogen separation ability, and to produce the film-like self-supporting metal thin film having high hydrogen separation ability without using a technique for mechanically peeling. That is. Furthermore, it is manufacturing the said film-form self-supporting metal thin film with sufficient productivity. Moreover, it is also the production of a film-like self-supporting metal thin film having excellent uniformity.
 本発明者らは、上記従来技術の問題点を解決し、上記課題を解決しようとの考えのもとに、水素分離能に優れ、かつ、生産性に優れ、大面積化が困難ではなく、しかも均一な膜厚を有するパラジウムなどの金属分離膜を製造する開発に力を注ぐ最中、幅広なフィルム状基板に着目し、そのフィルム状基板表面にパラジウム塩等の塩を共存させた層を設け、加熱還元処理し、その処理層の表面に無電解メッキ法で金属層を形成させた後,その処理層を溶出あるいは焼失させると、意外にも、金属薄膜が得られるという知見を得た。しかもその得られた金属膜は幅広で極めて薄い膜であるのにもかかわらず、自立性を有し、しかも水素分離能も優れているという知見を得た。それらの知見に基づき、機械的な処理を必要としない金属薄膜の製法について更に研究を重ねた結果、高水素透過性および高水素分離性を有し、膜の均一性に優れる金属薄膜が、生産性良く製造することができるという知見を得た。本発明者らは上記知見に基づきさらに鋭意研究を重ね、ついに本発明を完成させた。 The present inventors have solved the above-mentioned problems of the prior art, and based on the idea of solving the above problems, the hydrogen separation ability is excellent, the productivity is excellent, and the large area is not difficult, In addition, while focusing on the development of metal separation membranes such as palladium with a uniform film thickness, focusing on a wide film substrate, a layer in which a salt such as a palladium salt coexists on the surface of the film substrate. Obtained the knowledge that a metal thin film can be obtained unexpectedly when the treated layer is subjected to heat reduction treatment and a metal layer is formed on the surface of the treated layer by electroless plating, and then the treated layer is eluted or burned out. . Moreover, although the obtained metal film is a wide and extremely thin film, it has been found that it has self-supporting properties and excellent hydrogen separation ability. Based on these findings, further research on metal thin film manufacturing methods that do not require mechanical treatment has resulted in the production of metal thin films with high hydrogen permeability and high hydrogen separation and excellent membrane uniformity. The knowledge that it can manufacture with good property was obtained. Based on the above findings, the present inventors have made further studies and finally completed the present invention.
 すなわち、請求項1の発明は、フィルム状基板表面に触媒機能を有する金属核を含む犠牲層を形成する工程A、前記犠牲層の表面上に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する工程B、および前記犠牲層を焼失または溶出させる工程Cから少なくともなることを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜(以下、フィルム状自立金属薄膜ということがある)の製造方法である。また、請求項1の発明は、フィルム状基板表面に触媒機能を有する金属核を含む犠牲層を形成する工程A、前記犠牲層の表面上に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する工程B、および前記犠牲層を焼失または溶出させる工程Cから少なくとも構成され、フィルム状金属薄膜を、単離することを特徴とする膜厚が1~20μmのフィルム状自立金属薄膜の製造方法でもある。前記フィルム状金属薄膜を単離するとは、フィルム状金属薄膜を、機械的に剥離する手法を用いずに単離することになるのであり、以下、特に説明する場合を除いて、本発明では、フィルム状金属薄膜を単離するとは、フィルム状金属薄膜を、機械的に剥離する手法を用いずに単離することになる。
 ここで、フィルム状自立金属薄膜とは幅広の金属薄膜を意味し、例えば10cm程度以上の面積を例示することができるが、その面積に何ら限定されない。また、自立金属薄膜とは、他の分割不可能な基材等の助けが不要であり、金属薄膜単体でその構造を保持できる金属薄膜を意味する。更に具体的には、金属薄膜単体で水素分離機能を測定できる程度にその構造を保持できる金属薄膜を意味する。さらに、触媒機能を有する金属核とは、無電解メッキ皮膜を生成する触媒としての機能を有する金属核を意味する。
 また、前記触媒機能を有する金属核は金属の化合物に由来する金属のイオンが金属核に変化すると考えられるから、請求項1の発明の工程Aは、フィルム状基板表面に触媒機能を有する金属の金属イオンを含む犠牲層を形成する工程Aでもある。他の請求項記載の発明でも同様である。
That is, the invention of claim 1 is a step A of forming a sacrificial layer containing a metal nucleus having a catalytic function on the surface of a film substrate, a metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer, or the metal A film-form free-standing metal thin film for hydrogen separation (hereinafter referred to as a film) having a film thickness of 1 to 20 μm, comprising at least a step B of forming a layer made of an alloy containing hydrogen and a step C of burning out or eluting the sacrificial layer A thin self-supporting metal thin film). The invention of claim 1 is the step A of forming a sacrificial layer including a metal nucleus having a catalytic function on the surface of the film-like substrate, the metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer, or the metal A film having a film thickness of 1 to 20 μm, comprising at least a step B for forming a layer made of an alloy containing, and a step C for burning or elution of the sacrificial layer, wherein the film-like metal thin film is isolated It is also a manufacturing method of a thin self-supporting metal thin film. Isolating the film-like metal thin film means that the film-like metal thin film is isolated without using a mechanical peeling method.In the present invention, unless otherwise described below, Isolating a film-like metal thin film means isolating the film-like metal thin film without using a mechanical peeling method.
Here, the film-like self-supporting metal thin film means a wide metal thin film, and for example, an area of about 10 cm 2 or more can be exemplified, but the area is not limited at all. In addition, the self-supporting metal thin film means a metal thin film that does not require the assistance of another non-dividable base material or the like and can hold the structure of the metal thin film alone. More specifically, it means a metal thin film that can maintain its structure to such an extent that the hydrogen separation function can be measured with a single metal thin film. Furthermore, the metal nucleus having a catalytic function means a metal nucleus having a function as a catalyst for generating an electroless plating film.
Further, since the metal nucleus having the catalytic function is considered to change the metal ion derived from the metal compound to the metal nucleus, the process A of the invention of claim 1 is performed by the process of the metal having the catalytic function on the film-like substrate surface. It is also a step A for forming a sacrificial layer containing metal ions. The same applies to the inventions of other claims.
 請求項2の発明は、フィルム状基板表面に触媒機能を有する金属核を含む犠牲層を形成する工程A、前記犠牲層の表面上に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する工程B、および前記犠牲層および少なくとも前記フィルム状基板の前記犠牲層と接触する表面を焼失または溶出させる工程Cから少なくとも構成され、フィルム状金属薄膜を単離することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法でもある。ここで、少なくとも前記フィルム状基板の前記犠牲層と接触する表面を焼失または溶出させるとは、前記フィルム状基板の前記犠牲層と接触する表面あるいはその表面近傍を焼失または溶出させること、さらには、前記犠牲層と接触するフィルム状基板の全てあるいは殆どを焼失または溶出させることを意味し、フィルム状金属薄膜を単離できるように焼失または溶出させることを意味する。前記フィルム状金属薄膜を単離するとは、フィルム状金属薄膜を、機械的に剥離する手法を用いずに単離することを意味する。
 また、請求項2の発明は、可溶出性フィルム状基板表面に触媒機能を有する金属核を含む犠牲層を形成する工程A1、前記犠牲層の表面上に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する工程B、および前記犠牲層および少なくとも前記フィルム状基板の前記犠牲層と接触する表面を溶出させる工程C1から少なくとも構成され、フィルム状金属薄膜を単離することを特徴とする膜厚が1~20μmのフィルム状自立金属薄膜の製造方法でもあり、また、可焼失性フィルム状基板表面にパラジウム核あるいは触媒機能を有する金属核を含む犠牲層を形成する工程A2、前記犠牲層の表面上に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する工程B、および前記犠牲層および少なくとも前記フィルム状基板の前記犠牲層と接触する表面を焼失させる工程C2から少なくとも構成され、フィルム状金属薄膜を単離することを特徴とする膜厚が1~20μmのフィルム状自立金属薄膜の製造方法でもある。
 請求項3の発明は、フィルム状自立金属薄膜が、膜全体に渡って膜厚の均一性が±20%以内であることを特徴とする請求項1または2に記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法である。
The invention of claim 2 includes the step A of forming a sacrificial layer containing a metal nucleus having a catalytic function on the surface of the film-like substrate, the metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer, or the metal. Isolating the film-like metal thin film, comprising at least a step B of forming a layer made of an alloy, and a step C of burning out or eluting the sacrificial layer and at least the surface of the film-like substrate in contact with the sacrificial layer. It is also a method for producing a film-like free-standing metal thin film for hydrogen separation having a characteristic film thickness of 1 to 20 μm. Here, burning or eluting at least the surface of the film-like substrate in contact with the sacrificial layer is to burn or elute the surface of the film-like substrate in contact with the sacrificial layer or the vicinity thereof, This means that all or most of the film-like substrate in contact with the sacrificial layer is burned out or eluted, and means that the film-like metal thin film is burned out or eluted so that it can be isolated. Isolating the film-like metal thin film means isolating the film-like metal thin film without using a mechanical peeling method.
Further, the invention of claim 2 is the step A1 of forming a sacrificial layer containing a metal nucleus having a catalytic function on the surface of a soluble film-like substrate, and the metal constituting the metal nucleus having a catalytic function on the surface of the sacrificial layer. Alternatively, the film-shaped metal thin film is isolated from at least the step B of forming a layer made of an alloy containing the metal and the step C1 of eluting the sacrificial layer and at least the surface of the film-shaped substrate in contact with the sacrificial layer. And a sacrificial layer including a palladium nucleus or a metal nucleus having a catalytic function is formed on the surface of a burnable film substrate. Step A2, Step B of forming a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal on the surface of the sacrifice layer, and the sacrifice A film-like self-supporting metal thin film having a thickness of 1 to 20 μm, comprising at least the step C2 of burning out the layer and at least the surface of the film-like substrate in contact with the sacrificial layer, and isolating the film-like metal thin film It is also a manufacturing method.
The invention according to claim 3 is characterized in that the film-like self-supporting metal thin film has a film thickness uniformity of within ± 20% over the entire film, wherein the film thickness is 1 to 20 μm. This is a method for producing a film-like self-supporting metal thin film for hydrogen separation.
 請求項4の発明は、触媒機能を有する金属核を生成する金属化合物を含有する溶液または分散液で前記フィルム状基板の表面に塗布・含浸処理して形成された犠牲層を有し、その犠牲層の表面近傍に触媒機能を有する金属核が存在する犠牲層塗布・含浸済みフィルム状基板を使用することを特徴とする請求項1~3のいずれかに記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法である。
 請求項4の発明は、触媒機能を有する金属核を生成する金属化合物を含有する溶液または分散液をフィルム状基板の表面に塗布・含浸処理した後、当該フィルム状基板を加熱処理して得られたフィルム状基板であって、その犠牲層の表面近傍に触媒機能を有する金属核が偏在する犠牲層塗布・含浸済みフィルム状基板を使用することを特徴とする請求項1~3のいずれかに記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法でもある。ここで、犠牲層の表面近傍に触媒機能を有する金属核が偏在するとは、犠牲層の表面近傍が触媒機能を有する金属核の濃度が最も高く、犠牲層の表面から犠牲層中心に向かって触媒機能を有する金属核の濃度が低くなっている状態をいう。
 請求項5の発明は、工程Aが、フィルム状基板表面上に形成された犠牲層内の、触媒機能を有する金属核を生成する金属化合物に由来する金属のイオンを還元処理する工程、および工程Bが、前記還元処理したフィルム状基板表面を無電解メッキ処理する工程を含むことを特徴とする請求項1~4のいずれかに記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法である。
The invention of claim 4 has a sacrificial layer formed by applying and impregnating the surface of the film-like substrate with a solution or dispersion containing a metal compound that generates a metal nucleus having a catalytic function. 4. The hydrogen having a film thickness of 1 to 20 μm according to claim 1, wherein a film-like substrate coated and impregnated with a sacrificial layer in which a metal nucleus having a catalytic function is present in the vicinity of the surface of the layer is used. It is a manufacturing method of the film-form self-supporting metal thin film for isolation | separation.
The invention of claim 4 is obtained by applying a solution or dispersion containing a metal compound that generates a metal nucleus having a catalytic function to the surface of a film-like substrate and then subjecting the film-like substrate to a heat treatment. 4. A film-like substrate, wherein a sacrificial layer-coated / impregnated film-like substrate in which metal nuclei having a catalytic function are unevenly distributed near the surface of the sacrificial layer is used. It is also a method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm. Here, the presence of metal nuclei having a catalytic function near the surface of the sacrificial layer means that the concentration of metal nuclei having a catalytic function is the highest in the vicinity of the surface of the sacrificial layer, and the catalyst is directed from the surface of the sacrificial layer toward the center of the sacrificial layer. A state in which the concentration of the functional metal nucleus is low.
In the invention of claim 5, step A is a step of reducing metal ions derived from a metal compound that forms a metal nucleus having a catalytic function in a sacrificial layer formed on the surface of the film substrate, and a step 5. The film-like self-supporting metal for hydrogen separation having a film thickness of 1 to 20 μm according to claim 1, wherein B comprises a step of electroless plating the surface of the reduced film-like substrate. It is a manufacturing method of a thin film.
 請求項6の発明は、フィルム状基板の表面を塗布・含浸処理する溶液または分散液が、(1)触媒機能を有する金属核を生成する金属化合物、(2)(a)可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を調製する前駆体、および/または(b)可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を調製する原料、および(3)可溶出性無機あるいは有機溶媒から少なくとも構成される溶液または分散液であることを特徴とする請求項4記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法である。
 請求項7の発明は、フィルム状基板の表面を塗布・含浸処理する溶液または分散液が、(1)触媒機能を有する金属核を生成する金属化合物、(2)(a)可焼失性無機セラミックス、可焼失性無機高分子あるいは可焼失性有機高分子を調製する前駆体、および/または(b)可焼失性無機セラミックス、可焼失性無機高分子あるいは可焼失性有機高分子を調製する原料、および(3)可焼失性無機あるいは有機溶媒から少なくとも構成される溶液または分散液であることを特徴とする請求項4記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法である。
 請求項8の発明は、請求項1又は2のフィルム状自立金属薄膜の少なくとも一つの面に、水素分離機能を有する金属あるいは合金からなる層をさらに形成することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法であり、請求項9の発明は、請求項1又は2のフィルム状自立金属薄膜の少なくとも一つの面に、パラジウム合金化しうる金属を含む層を形成させ、合金化処理することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法である。
In the invention of claim 6, the solution or dispersion for coating / impregnating the surface of the film substrate is (1) a metal compound that forms a metal nucleus having a catalytic function, (2) (a) a soluble leaching inorganic ceramic A precursor for preparing a soluble organic polymer or a soluble organic polymer, and / or (b) a raw material for preparing a soluble organic ceramic, a soluble inorganic polymer or a soluble organic polymer, And (3) the method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, characterized in that it is a solution or dispersion at least comprising a soluble inorganic or organic solvent. It is.
The invention according to claim 7 is that the solution or dispersion for coating and impregnating the surface of the film-like substrate is (1) a metal compound that generates a metal nucleus having a catalytic function, (2) (a) an inflammable inorganic ceramic A precursor for preparing a burnable inorganic polymer or a burnable organic polymer, and / or (b) a raw material for preparing a burnable inorganic ceramic, a burnable inorganic polymer or a burnable organic polymer, And (3) the method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, characterized in that it is a solution or dispersion liquid composed of at least a combustible inorganic or organic solvent. It is.
The invention according to claim 8 is characterized in that a layer made of a metal or alloy having a hydrogen separation function is further formed on at least one surface of the film-like self-supporting metal thin film according to claim 1 or 2. A method for producing a film-like self-supporting metal thin film for hydrogen separation having a thickness of 20 μm, wherein the invention of claim 9 includes a layer containing a metal capable of forming a palladium alloy on at least one surface of the film-form self-supporting metal thin film of claim 1 or 2. A method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, characterized by forming and alloying.
 請求項10の発明は、触媒機能を有する金属核を含む犠牲層、フィルム状基板、および触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を少なくとも有することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜製造用積層体である。
 請求項11の発明は、触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層が、請求項5記載の還元処理したフィルム状基板表面に無電解メッキ処理して形成された層であることを特徴とする請求項10記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜製造用積層体である。
 請求項12の発明は、触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層から少なくとも構成され、しかも請求項10または11記載の積層体の犠牲層を溶出または焼失処理して得たことを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜である。また、請求項10または11記載の積層体の犠牲層を溶出または焼失処理して得たことを特徴とする触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層から少なくとも構成される膜厚が1~20μmの水素分離用フィルム状自立金属薄膜でもある。
 請求項13の発明は、触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層から少なくとも構成され、しかも請求項10または11記載の積層体の犠牲層および少なくとも前記フィルム状基板の前記犠牲層と接触する表面を溶出または焼失処理して得たことを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜でもある。
 請求項14の発明は、フィルム状自立金属薄膜が、膜全体に渡って膜厚の均一性が±20%以内であることを特徴とする請求項12または13記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜である。
The invention of claim 10 has at least a sacrificial layer containing a metal nucleus having a catalytic function, a film-like substrate, and a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal. It is a laminate for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm.
According to the invention of claim 11, a layer made of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal is formed by electroless plating treatment on the surface of the reduced film-like substrate according to claim 5. 11. The laminate for producing a hydrogen-separating film-like self-supporting metal thin film having a thickness of 1 to 20 μm according to claim 10, wherein the laminate is a layer.
According to a twelfth aspect of the present invention, at least a layer composed of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal is formed, and the sacrificial layer of the laminate according to the tenth or eleventh aspect is eluted or burnt out. A film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, which is obtained by Further, it is obtained by eluting or burning out a sacrificial layer of the laminate according to claim 10 or 11, and at least composed of a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal. It is also a film-like free-standing metal thin film for hydrogen separation having a film thickness of 1 to 20 μm.
The invention of claim 13 comprises at least a layer made of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal, and the sacrificial layer of the laminate according to claim 10 or 11 and at least the film-like substrate It is also a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, which is obtained by elution or burning treatment of the surface in contact with the sacrificial layer.
The invention of claim 14 is characterized in that the film-like self-supporting metal thin film has a film thickness uniformity of within ± 20% over the entire film, wherein the film thickness is 1 to 20 μm. It is a film-like self-supporting metal thin film for hydrogen separation.
 以下、本発明を詳細に説明する。
 本発明が用いるフィルム状基板は、上記請求項5または6で記載する溶液または分散液で塗布・含浸処理されることができるフィルム状基板であれば、どのようなフィルム状基板でも用いることができる。また、必要なときに溶出されるか焼失されるフィルム状基板であってもよい。
 このフィルム状基板の厚みや面積も特に制限されないが、例えば、10cmを例示することができる。また、前記基板の表面はスムースな方が好ましい。
 溶出されるフィルム状基板の好ましい素材としては、ポリ(ビニールアルコール)、ポリ(ビニールブチラール)、ポリ(ビニールピロリドン)、ポリ(エチレングリコール)、ポリ(2,6-ジメチル-4-フェニレンオキサイド)、フェノール樹脂、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ(エーテルスルホン)、ポリオレフィン、ポリスチレン、シリカ、多成分ガラス、ポリカルボシラン、ポリメチルシランからなる群から選ばれた一種または二種以上を使用することが好ましいが、これらに限定されない。また、セラミックス等も挙げられる。
 焼失されるフィルム状基板の好ましい素材は、上記溶出されるフィルム状基板の好ましい素材とほぼ重なる。
Hereinafter, the present invention will be described in detail.
The film-like substrate used in the present invention can be any film-like substrate as long as it can be applied and impregnated with the solution or dispersion described in claim 5 or 6. . Further, it may be a film-like substrate that is eluted or burned out when necessary.
Although the thickness and area of this film-like substrate are not particularly limited, for example, 10 cm 2 can be exemplified. Further, it is preferable that the surface of the substrate is smooth.
Preferred materials for the film-like substrate to be eluted include poly (vinyl alcohol), poly (vinyl butyral), poly (vinyl pyrrolidone), poly (ethylene glycol), poly (2,6-dimethyl-4-phenylene oxide), Selected from the group consisting of phenolic resin, polyester, polyamide, polyimide, polyamideimide, polyvinyl chloride, polyvinylidene chloride, poly (ether sulfone), polyolefin, polystyrene, silica, multicomponent glass, polycarbosilane, polymethylsilane Although it is preferable to use 1 type, or 2 or more types, it is not limited to these. Moreover, ceramics etc. are also mentioned.
The preferred material of the film-like substrate to be burned out substantially overlaps the preferred material of the film-like substrate to be eluted.
 これら基材を前処理せずに水素分離複合体の製造に用いてもよいが、洗浄処理、乾燥処理など前処理を施しておくことが有利である。具体的には、酸、塩基、各種アルコール、水などから選ばれる一種あるいは複数で基材を洗浄処理し、次いで乾燥処理する前処理が好ましい。 These substrates may be used for the production of a hydrogen separation composite without pretreatment, but it is advantageous to perform pretreatment such as washing treatment and drying treatment. Specifically, a pretreatment in which the substrate is washed with one or more selected from acids, bases, various alcohols, water and the like, and then dried is preferable.
 上記フィルム状基板表面に触媒機能を有する金属核を含む犠牲層を形成し、その犠牲層の表面に、触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を設けることが、本発明の数ある特徴の中の一つである。前記触媒機能を有する金属核としてはパラジウム核が好ましく、前記触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金としては、パラジウムあるいはパラジウムを含む合金が好ましい。
 前記触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を設ける方法はいろいろあるが、本発明では、とくに上記フィルム状基板に触媒機能を有する金属核を生成する金属化合物を含有する溶液または分散液で塗布・含浸処理し、加熱還元処理して触媒機能を有する金属核を含む犠牲層を設け、次いで無電解メッキ処理して触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金を設ける方法が好ましい。
A sacrificial layer containing a metal nucleus having a catalytic function is formed on the surface of the film substrate, and a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal is provided on the surface of the sacrificial layer. This is one of the many features of the present invention. The metal nucleus having the catalytic function is preferably a palladium nucleus, and the metal constituting the metal nucleus having the catalytic function or the alloy containing the metal is preferably palladium or an alloy containing palladium.
There are various methods for providing a layer comprising a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal. In the present invention, in particular, a metal compound that generates a metal nucleus having a catalytic function is formed on the film substrate. A coating or impregnation treatment with a contained solution or dispersion, a sacrificial layer containing a metal nucleus having a catalytic function by heat reduction treatment, and then a metal constituting the metal nucleus having a catalytic function by electroless plating treatment or the above-mentioned A method of providing an alloy containing a metal is preferred.
 まず、上記フィルム状基板に触媒機能を有する金属核を生成する金属化合物を含有する溶液または分散液で塗布・含浸処理することについて説明する。
 上記触媒機能を有する金属核を生成する金属化合物において、触媒機能を有する金属核を生成する金属としては、表面プラズモン吸収の高い金属が挙げられ、例えば金、銀、銅、パラジウム、ニッケル、白金等を挙げることができる。その中でもパラジウムが好ましい。
 上記触媒機能を有する金属核を生成する金属化合物は、表面プラズモン吸収の高い金属の金属化合物が挙げられ、例えば金化合物、銀化合物、銅化合物、パラジウム化合物、ニッケル化合物、白金化合物等を挙げることができる。その中でもパラジウム化合物が好ましい。
 前記触媒機能を有する金属核を生成するパラジウム化合物としては、パラジウムの塩が好適である。好ましい化合物としては、例えば、酢酸パラジウム、パラジウムアセチルアセトナート、パラジウム塩化アンモニウム、臭化パラジウム、塩化パラジウム、パラジウム硝酸ジアミン、硝酸パラジウム、水酸化パラジウム、パラジウムエチレンジアミン硝酸塩、硝酸パラジウム水和物、パラジウムオキサレート、硫酸パラジウム水和物、およびパラジウムテトラアミン二硝酸塩からなる群から選ばれた一種または二種以上を挙げることができるが、これら化合物に限定されない。
 前記触媒機能を有する金属核を生成する金化合物としては、金の塩が好適である。好ましい化合物としては、例えば、シアン化カリウム金、ジシアノ金(I)酸カリウム、テトラクロロ金(3)酸カリウム、塩化ナトリウム金(3)二水和物、塩化金(3)ナトリウム、および塩化金(3)酸四水和物からなる群から選ばれた一種または二種以上を使用することが好ましいが、これら化合物に限定されない。
 前記触媒機能を有する金属核を生成する銅化合物としては、銅の塩が好適である。好ましい化合物としては、例えば、酢酸銅、酢酸銅水和物、銅アセチルアセトナート、臭化銅、炭酸銅、塩化銅、塩化銅水和物、クエン酸銅、酪酸銅、塩化2アンモニウム銅水和物、燐酸銅水和物、フッ化銅、グルコン酸銅、ヨウ化銅、ナフテン酸銅、硝酸銅水和物、オレイン酸銅、フタル酸銅、硫酸銅、テレフタル酸銅水和物、およびチオシアン酸銅からなる群から選ばれた一種または二種以上を使用することが好ましいが、これら化合物に限定されない。
 前記触媒機能を有する金属核を生成するニッケル化合物としては、ニッケルの塩が好適である。好ましい化合物としては、例えば、酢酸ニッケル、ニッケルアセチルアセトナート、ニッケル塩化アンモニウム、臭化ニッケル、炭酸ニッケル、塩化ニッケル、ニッケル硝酸ジアミン、硝酸ニッケル、ニッケルエチレンジアミン硝酸塩、硝酸ニッケル水和物、シュウ酸ニッケル、水酸化ニッケル、硫酸ニッケル水和物、およびニッケルテトラアミン二硝酸塩からなる群から選ばれた一種または二種以上を使用することが好ましいが、これら化合物に限定されない。
 前記触媒機能を有する金属核を生成する白金の化合物としては、白金アセチルアセトナートまたは塩化白金のいずれか一つ、あるいは両方が好ましいが、これら化合物に限定されない。
First, the coating and impregnation treatment with a solution or dispersion containing a metal compound that generates a metal nucleus having a catalytic function on the film-like substrate will be described.
In the metal compound that generates the metal nucleus having the catalytic function, examples of the metal that generates the metal nucleus having the catalytic function include metals having high surface plasmon absorption, such as gold, silver, copper, palladium, nickel, and platinum. Can be mentioned. Of these, palladium is preferable.
Examples of the metal compound that generates a metal nucleus having a catalytic function include metal compounds having high surface plasmon absorption, such as gold compounds, silver compounds, copper compounds, palladium compounds, nickel compounds, platinum compounds, and the like. it can. Of these, palladium compounds are preferred.
Palladium salts are suitable as the palladium compound that forms the metal nucleus having the catalytic function. Preferred compounds include, for example, palladium acetate, palladium acetylacetonate, palladium ammonium chloride, palladium bromide, palladium chloride, palladium diamine nitrate, palladium nitrate, palladium hydroxide, palladium ethylenediamine nitrate, palladium nitrate hydrate, palladium oxalate. , Palladium sulfate hydrate, and palladium tetraamine dinitrate may be one or more selected from the group consisting of, but not limited to, these compounds.
As the gold compound that generates a metal nucleus having a catalytic function, a gold salt is suitable. Preferred compounds include, for example, potassium gold cyanide, potassium dicyanogold (I), potassium tetrachlorogold (3), gold sodium chloride (3) dihydrate, gold (3) sodium chloride, and gold chloride (3 It is preferable to use one or more selected from the group consisting of acid tetrahydrates, but is not limited to these compounds.
A copper salt is suitable as the copper compound that forms the metal nucleus having the catalytic function. Preferred compounds include, for example, copper acetate, copper acetate hydrate, copper acetylacetonate, copper bromide, copper carbonate, copper chloride, copper chloride hydrate, copper citrate, copper butyrate, diammonium copper hydrate , Copper phosphate hydrate, copper fluoride, copper gluconate, copper iodide, copper naphthenate, copper nitrate hydrate, copper oleate, copper phthalate, copper sulfate, copper terephthalate hydrate, and thiocyanate Although it is preferable to use 1 type, or 2 or more types selected from the group consisting of acid copper, it is not limited to these compounds.
As the nickel compound that generates a metal nucleus having a catalytic function, a nickel salt is suitable. Preferred compounds include, for example, nickel acetate, nickel acetylacetonate, nickel ammonium chloride, nickel bromide, nickel carbonate, nickel chloride, nickel nitrate diamine, nickel nitrate, nickel ethylenediamine nitrate, nickel nitrate hydrate, nickel oxalate, Although it is preferable to use 1 type, or 2 or more types selected from the group consisting of nickel hydroxide, nickel sulfate hydrate, and nickel tetraamine dinitrate, it is not limited to these compounds.
The platinum compound that forms the metal nucleus having the catalytic function is preferably either one or both of platinum acetylacetonate and platinum chloride, but is not limited to these compounds.
 上記フィルム状基板に塗布・含浸処理する溶液または分散液には、可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を含ませてもよい。
 本発明でいう可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子は、フィルム状基板表面に皮膜が生成されうること、後の溶出処理又は焼失処理により溶出又は焼失される物質であると共に触媒機能を有する金属核を生成する金属化合物と共存することができる無機セラミックス、無機高分子あるいは有機高分子であれば、とくに制限されない。前記可溶出性無機セラミックスは、ゾルゲル溶液等から出発し、高温処理によってシリカやチタニアなどの、いわゆる無機酸化物(セラミックス)になったもののうち、酸やアルカリによって溶出可能なものが好ましい。前記可溶出性有機高分子は、高温での熱処理によって熱分解焼失あるいは炭化してしまうような高分子のうち、最高でも前記温度以下の温度で熱処理した後に、溶出溶媒による溶出処理によって抽出されるものが好ましい。高分子の構成物質、高分子の出発材料、高分子の生成法、高分子の大きさなどに特に制限されない。
The solution or dispersion for applying / impregnating the film-like substrate may contain a soluble inorganic ceramic, a soluble inorganic polymer, or a soluble organic polymer.
The soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers referred to in the present invention are dissolved or burned out by the fact that a film can be formed on the surface of the film-like substrate, and the subsequent elution treatment or burn-out treatment. Any inorganic ceramic, inorganic polymer, or organic polymer that can coexist with a metal compound that forms a metal nucleus that is a substance and has a catalytic function is not particularly limited. The solubilized inorganic ceramics are preferably those that can be eluted with an acid or alkali from among sol-gel solutions and the like that have become so-called inorganic oxides (ceramics) such as silica and titania by high-temperature treatment. The soluble organic polymer is extracted by elution treatment with an elution solvent after being heat-treated at a temperature below the above temperature at the maximum among polymers that are thermally decomposed or carbonized by heat treatment at high temperature. Those are preferred. There are no particular restrictions on the constituent material of the polymer, the starting material of the polymer, the production method of the polymer, the size of the polymer, and the like.
 その可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子としては、具体的には、シリカ、多成分ガラス、ポリカルボシラン、ポリメチルシラン、ポリ(ビニールアルコール)、ポリ(ビニールブチラール)、ポリ(ビニールピロリドン)、ポリ(エチレングリコール)、ポリ(2,6-ジメチル-4-フェニレンオキサイド)、フェノール樹脂、ポリエステル、ポリアミド、ポリアミック酸、ポリイミド、ポリアミドイミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ(エーテルスルホン)、ポリオレフィン、およびポリスチレンからなる群から選ばれた一種または二種以上を使用することが好ましいが、これら高分子に限定されない。 Specific examples of the soluble inorganic ceramic, soluble inorganic polymer or soluble organic polymer include silica, multicomponent glass, polycarbosilane, polymethylsilane, poly (vinyl alcohol), poly (vinyl alcohol), Vinyl butyral), poly (vinyl pyrrolidone), poly (ethylene glycol), poly (2,6-dimethyl-4-phenylene oxide), phenol resin, polyester, polyamide, polyamic acid, polyimide, polyamideimide, polyvinyl chloride, poly It is preferable to use one or more selected from the group consisting of vinylidene chloride, poly (ether sulfone), polyolefin, and polystyrene, but is not limited to these polymers.
 上記フィルム状基板に塗布・含浸処理する溶液または分散液は、可焼失性有機性高分子を含ませてもよい。その際、可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子が含まれていてもよいし、それらが含まれなくともよい。
 上記可焼失性有機性高分子は、フィルム状基板表面に皮膜が形成されうること、後の焼失処理により焼失される物質であると共に上記触媒機能を有する金属核を生成する金属化合物と共存することができる有機性高分子であれば、とくに制限されない。前記可焼失性有機性高分子としては、具体的には、ポリ(ビニールアルコール)、ポリ(ビニールブチラール)、ポリ(ビニールピロリドン)、ポリ(エチレングリコール)、ポリ(2,6-ジメチル-4-フェニレンオキサイド)、フェノール樹脂、ポリエステル、ポリアミド、ポリアミック酸、ポリイミド、ポリアミドイミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ(エーテルスルホン)、ポリオレフィン、およびポリスチレンからなる群から選ばれた一種または二種以上を使用することが好ましいが、これら高分子に限定されない。
The solution or dispersion for applying / impregnating the film-like substrate may contain a burnable organic polymer. At that time, a soluble inorganic ceramic, a soluble inorganic polymer or a soluble organic polymer may or may not be contained.
The flammable organic polymer is capable of forming a film on the surface of the film-like substrate, coexisting with a metal compound that generates a metal nucleus having a catalytic function as well as a material that is burned off by a subsequent burnout treatment. The organic polymer is not particularly limited as long as it is an organic polymer capable of forming a polymer. Specific examples of the burnable organic polymer include poly (vinyl alcohol), poly (vinyl butyral), poly (vinyl pyrrolidone), poly (ethylene glycol), and poly (2,6-dimethyl-4- Phenylene oxide), phenol resin, polyester, polyamide, polyamic acid, polyimide, polyamideimide, polyvinyl chloride, polyvinylidene chloride, poly (ether sulfone), polyolefin, and one or more selected from the group consisting of polystyrene Although it is preferable to use, it is not limited to these polymers.
 上記可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子の代わりに、可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を調製する前駆体または可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を調製する出発原料を用いてもよい。この場合は、前記前駆体あるいは出発原料から可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を調製するために必要な化学物質を共存させるとより有利である。共存させる化学物質は、公知の物質であり、用いる前駆体あるいは出発原料に応じて必要な化学物質を共存させればよい。 In place of the above-mentioned soluble inorganic ceramics, soluble organic polymers or soluble organic polymers, a precursor for preparing soluble organic ceramics, soluble inorganic polymers or soluble organic polymers, or acceptable A starting material for preparing an eluting inorganic ceramic, a soluble organic polymer or a soluble organic polymer may be used. In this case, it is more advantageous to coexist with chemical substances necessary for preparing the soluble inorganic ceramic, soluble inorganic polymer or soluble organic polymer from the precursor or starting material. The chemical substance to be coexisted is a known substance, and a necessary chemical substance may be allowed to coexist depending on the precursor or starting material to be used.
 前記可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子は、後の溶出処理により溶出され、しかも共存する上記水素分離層を構成する金属の化合物を分散させることができる程度であれば、特に制限されない。
 上記前駆体あるいは出発原料の具体例としては、テトラエトキシシラン、トリメチルシラン、トリエチルシラン、イソプロポキシシラン、トリブトキシシラン、などのシラン化合物、亜鉛エトキシド、チタンイソプロポキシド、チタントリブトキシド、テトラエトキシジルコニウム、などの金属アルコキシド、亜鉛アセチルアセトナート、チタンアセチルアセトナートなどの金属アセチルアセトナート、酢酸亜鉛、酢酸チタンなどの金属有機酸塩、硝酸ニッケルなどの硝酸塩、オキシ塩化ジルコニウム、オキシ塩化アルミニウムなどのオキシ塩化物、四塩化チタンなどの塩化物などが挙げられる。
The soluble inorganic ceramic, soluble inorganic polymer or soluble organic polymer is eluted by a subsequent elution treatment and can disperse the metal compound constituting the coexisting hydrogen separation layer. If it is, it will not be restrict | limited in particular.
Specific examples of the precursor or starting material include silane compounds such as tetraethoxysilane, trimethylsilane, triethylsilane, isopropoxysilane, and tributoxysilane, zinc ethoxide, titanium isopropoxide, titanium tributoxide, and tetraethoxyzirconium. Metal alkoxides, zinc acetylacetonate, metal acetylacetonates such as titanium acetylacetonate, metal organic acid salts such as zinc acetate and titanium acetate, nitrates such as nickel nitrate, oxy such as zirconium oxychloride and aluminum oxychloride Examples include chlorides and chlorides such as titanium tetrachloride.
 上記溶液あるいは分散液の組成は、用いる触媒機能を有する金属核を生成する金属化合物および可溶出性無機セラミックス、可溶出性無機高分子、可溶出性有機高分子あるいは可焼失性有機性高分子、または前記前駆体あるいは出発原料の種類により変動するので一概に規定できないが、好ましい溶液組成としては、0.001-5重量%の触媒機能を有する金属核を生成する金属化合物、0.5-20重量%の可溶出性無機セラミックス、可溶出性無機高分子、可溶出性有機高分子あるいは可焼失性有機性高分子または前記前駆体あるいは出発原料、75-99.499重量%の無機あるいは有機溶媒から構成されるのであるが、本発明ではこの組成範囲に限定されない。例えば、パラジウムを含有するテトラエトキシシランの加水分解・重合によって得られるシリカゾル等が多孔質基材表面への塗布剤として用いられる。このとき、粘度が1~20センチポアズのシリカゾル溶液を用いると、表面が滑らかで均一厚さの塗布層を剥離することなく得ることができるので好ましい。さらに2~10センチポアズの溶液を用いることが好ましい。 The composition of the solution or dispersion is a metal compound that generates a metal nucleus having a catalytic function and a soluble organic ceramic, a soluble inorganic polymer, a soluble organic polymer, or a burnable organic polymer, Or, since it varies depending on the kind of the precursor or starting material, it cannot be generally defined, but a preferable solution composition is a metal compound that forms a metal nucleus having a catalytic function of 0.001 to 5% by weight, 0.5-20 % By weight of soluble inorganic ceramic, soluble inorganic polymer, soluble organic polymer or burnable organic polymer or the precursor or starting material, 75-99.499% by weight of inorganic or organic solvent However, the present invention is not limited to this composition range. For example, silica sol obtained by hydrolysis and polymerization of tetraethoxysilane containing palladium is used as a coating agent on the surface of the porous substrate. At this time, it is preferable to use a silica sol solution having a viscosity of 1 to 20 centipoise because a coating layer having a smooth surface and a uniform thickness can be obtained without peeling. Further, it is preferable to use a 2 to 10 centipoise solution.
 無機あるいは有機溶媒としては、塩酸、硫酸、硝酸、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア、メタノール、N-メチル-2-ピロリドン(NMP)、四塩化炭素、プロパノール、ブタノール、クロロホルム、エタノール、アセトン、ベンゼン、酢酸、およびトルエンからなる群から選ばれた一種または二種以上を使用することが好ましいが、これら溶媒に限定されない。 Examples of inorganic or organic solvents include hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride, propanol, butanol, chloroform, Although it is preferable to use 1 type, or 2 or more types selected from the group consisting of ethanol, acetone, benzene, acetic acid, and toluene, it is not limited to these solvents.
 上記触媒機能を有する金属核を生成する金属化合物を上記無機あるいは有機溶媒中に溶解し、あるいは分散させた後、上記可溶出性無機セラミックス、可溶出性無機高分子、可溶出性有機高分子、それらの前駆体または出発原料、あるいは可焼失性有機性高分子を加え、攪拌混合し、溶解あるいは分散することによって、均一な金属化合物含有可溶出性無機セラミックス、可溶出性無機高分子、可溶出性有機高分子あるいは可焼失性有機性高分子の活性化用溶液あるいは分散液が調製される。 After dissolving or dispersing the metal compound that generates the metal nucleus having the catalytic function in the inorganic or organic solvent, the soluble inorganic ceramics, the soluble inorganic polymers, the soluble organic polymers, By adding their precursors or starting materials or flammable organic polymer, stirring and mixing, dissolving or dispersing, uniform metal compound-containing soluble inorganic ceramics, soluble inorganic polymers, soluble soluble polymers A solution or dispersion for activating the volatile organic polymer or the burnable organic polymer is prepared.
 本発明では、上記可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子の代わりに、上記可溶出性無機セラミックス、可溶出性無機高分子、あるいは可溶出性有機高分子の前駆体あるいは出発原料を用いてもよいが、この場合それらの前駆体あるいは出発原料から可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子が生成されるように、以降の操作を工夫すればよい。 In the present invention, instead of the soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers, the soluble inorganic ceramics, soluble inorganic polymers, or soluble organic polymers are used. Precursors or starting materials may be used, but in this case, so as to generate soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers from those precursors or starting materials, The operation should be devised.
 例えば、上記触媒機能を有する金属核を生成する金属化合物を無機あるいは有機溶媒中に溶解し、あるいは分散させた後、上記可溶出性無機セラミックス、可溶出性無機高分子、可溶出性有機高分子の前駆体または出発原料、あるいは可焼失性有機性高分子を加え、攪拌混合し、必要に応じて加熱処理などを施し、溶解あるいは分散することによって、均一な金属化合物含有可溶出性無機セラミックス、可溶出性無機高分子、可溶出性有機高分子あるいは可焼失性有機性高分子の活性化用溶液あるいは分散液が調製される。 For example, after dissolving or dispersing a metal compound that generates a metal nucleus having a catalytic function in an inorganic or organic solvent, the soluble organic ceramic, soluble inorganic polymer, soluble organic polymer A homogeneous metal compound-containing soluble leachable ceramic by adding a precursor or starting material of the above, or a combustible organic polymer, stirring and mixing, and applying heat treatment as necessary, and dissolving or dispersing; A solution or dispersion for activating the soluble organic polymer, soluble organic polymer or burnable organic polymer is prepared.
 かくして調製された塗布含浸用の溶液あるいは分散液を上記フィルム状基板に塗布する方法はとくに制限されない。例えば、フィルム状基板に上記溶液を、浸透ブラッシング、スピンコーティング、減圧ディップコーティング、減圧含浸、減圧ブラッシング、減圧スピンコーティング、超音波ディップコーティング、超音波-減圧ディップコーティング、超音波含浸、超音波-減圧含浸のうちから選ばれる方法によって塗布することができる。とくに、洗浄済みフィルム状基板に上記方法で上記溶液を1-10回程度、好ましくは1-数回程度、塗布することが好ましい。なお、1回の塗布・含浸でもよい。
 上記記載の塗布・含浸法は公知の方法であり、それらの方法を実際に適用するときには、とくに制限されない。具体的には、たとえば、フィルム状基板を上記溶液に1~600秒間ディップした後、急速に引き上げることが望ましい。
The method for applying the coating impregnation solution or dispersion thus prepared to the film-like substrate is not particularly limited. For example, the above solution is applied to a film-like substrate by osmotic brushing, spin coating, vacuum dip coating, vacuum impregnation, vacuum brushing, vacuum spin coating, ultrasonic dip coating, ultrasonic-vacuum dip coating, ultrasonic impregnation, ultrasonic-vacuum It can apply | coat by the method chosen from impregnation. In particular, it is preferable to apply the above solution to a cleaned film-like substrate by the above method about 1 to 10 times, preferably about 1 to several times. In addition, one application | coating and impregnation may be sufficient.
The application / impregnation method described above is a known method, and is not particularly limited when these methods are actually applied. Specifically, for example, it is desirable that the film-like substrate is dipped in the above solution for 1 to 600 seconds and then rapidly pulled up.
 フィルム状基板表面に、触媒機能を有する金属核を含む犠牲層の形成後、無電解メッキ法など各種の公知の方法により触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金層を形成してもよいが、その前に、前記フィルム状基板を熱処理することが有利である。この熱処理により、触媒機能を有する金属核を生成する金属化合物に由来する触媒機能を有する金属核を生成する金属イオンが、その後の結晶成長を促進する触媒機能を有する金属核に変化すると推測される。すなわち、犠牲層内に均一に分散していた触媒機能を有する金属核を生成する金属源が熱処理に伴う溶媒の移動などとともに、表面に向かって移動し、触媒機能を有する金属核を生成する金属の核が析出することによって、表面近傍が最も触媒機能を有する金属核を生成する金属核の濃度が高く、犠牲層の表面から犠牲層中心に向かって触媒機能を有する金属核を生成する金属核の濃度が低くなると推測される。この犠牲層内の触媒機能を有する金属核を生成する金属核の濃度は、例えば走査型電子顕微鏡(SEM)に付随する電子回折計(EDX)による膜断面の構造観察と成分分析や光電子分光法(XPS)による膜深さ方向の成分分析等によって知ることができる。
 熱処理の具体的条件の一例を挙げると、そのフィルム状基板を、0.1-10時間アルゴン、ヘリウム、空気、水蒸気、静止空気などの雰囲気下において、100-600℃にて加熱する条件がある。
After forming a sacrificial layer containing a metal nucleus having a catalytic function on the surface of the film substrate, a metal constituting the metal nucleus having a catalytic function or an alloy layer containing the metal is formed by various known methods such as electroless plating. However, it is advantageous to heat-treat the film substrate before that. By this heat treatment, it is presumed that the metal ion that generates the metal nucleus having the catalytic function derived from the metal compound that generates the metal nucleus having the catalytic function changes to the metal nucleus having the catalytic function that promotes subsequent crystal growth. . That is, a metal source that generates a metal nucleus having a catalytic function that is uniformly dispersed in the sacrificial layer moves toward the surface along with the movement of the solvent accompanying the heat treatment, etc., and generates a metal nucleus having a catalytic function The metal nuclei having a high concentration of metal nuclei that generate metal nuclei having the most catalytic function in the vicinity of the surface due to the precipitation of the nuclei of the metal from the surface of the sacrificial layer toward the center of the sacrificial layer. It is estimated that the concentration of The concentration of metal nuclei that produce catalytic metal nuclei in the sacrificial layer can be determined, for example, by observing the structure of the cross section of the film with an electron diffractometer (EDX) attached to a scanning electron microscope (SEM), component analysis, and photoelectron spectroscopy It can be known by component analysis in the film depth direction by (XPS).
As an example of specific conditions for heat treatment, there is a condition in which the film-like substrate is heated at 100-600 ° C. in an atmosphere of argon, helium, air, water vapor, still air, etc. for 0.1-10 hours. .
 本発明では、熱処理した後にさらに還元処理を施すことが好ましい。しかし、前記熱処理を施さずに前記還元処理を施してもよい。前記還元処理は金属の化合物に由来する金属のイオンを還元する条件であれば、その手段や条件は制限されない。具体的には、水素気流中での熱処理あるいは化学還元剤による還元処理が好ましい。前記化学還元剤はすでに知られている化学還元剤を用いればよい。また、還元処理条件も特に制限されない。 In the present invention, it is preferable to perform a reduction treatment after the heat treatment. However, the reduction treatment may be performed without performing the heat treatment. The means and conditions for the reduction treatment are not limited as long as they are conditions for reducing metal ions derived from a metal compound. Specifically, heat treatment in a hydrogen stream or reduction treatment with a chemical reducing agent is preferable. As the chemical reducing agent, a known chemical reducing agent may be used. Moreover, the reduction treatment conditions are not particularly limited.
 以下、フィルム状基板の表面に形成された犠牲層の表面に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金層を積層する点について説明する。 Hereinafter, the point of laminating the metal constituting the metal nucleus having a catalytic function or the alloy layer containing the metal on the surface of the sacrificial layer formed on the surface of the film-like substrate will be described.
 前記犠牲層が形成されたフィルム状基板に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金層を積層する方法は、所期の目的を達成できる範囲内である限りとくに制限されないのであり、公知の方法を適用すればよい。具体的な方法としては、無電解メッキ法が好ましい。
 前記犠牲層は、均一な厚さの層であることが好ましい。また、触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金層も均一な厚さの層であることが好ましい。
The method of laminating the metal constituting the metal nucleus having a catalytic function or the alloy layer containing the metal on the film-like substrate on which the sacrificial layer is formed is not particularly limited as long as it can achieve the intended purpose. Yes, a known method may be applied. As a specific method, an electroless plating method is preferable.
The sacrificial layer is preferably a layer having a uniform thickness. Moreover, it is preferable that the metal which comprises the metal nucleus which has a catalyst function, or the alloy layer containing the said metal is also a layer of uniform thickness.
 以下、好ましい無電解メッキ法について、説明の煩雑さを避ける意味から、パラジウムあるいはパラジウムを含む合金からなる層について説明する。パラジウム以外の触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金についても、このパラジウムあるいはパラジウムを含む合金からなる層の無電解メッキ法と同様である。
 上記フィルム状基板表面に形成された犠牲層表面上にパラジウムまたはパラジウム合金の層を形成するために採用する無電解メッキ方法については、特に制限されないのであり、この分野で使用される方法を適宜利用することができる。使用するフィルム状基板の種類、形状、希望する性能等に応じて適宜選択すればよい。また、無電解メッキ法に他の方法、たとえば電気メッキ法と組み合わせて適用してもよい。
 具体的なメッキ条件についても、特に制限されないのであり、目的とするパラジウムまたはパラジウム合金の薄膜を形成可能な公知のメッキ浴を使用して、公知の条件に従ってメッキを行えばよい。
In the following, a preferred electroless plating method will be described with reference to a layer made of palladium or an alloy containing palladium in order to avoid complicated explanation. The metal constituting the metal nucleus having a catalytic function other than palladium or the alloy containing the metal is the same as the electroless plating method of the layer made of palladium or the alloy containing palladium.
The electroless plating method employed for forming the palladium or palladium alloy layer on the surface of the sacrificial layer formed on the surface of the film substrate is not particularly limited, and the method used in this field is appropriately utilized. can do. What is necessary is just to select suitably according to the kind, shape, desired performance, etc. of a film-form board | substrate to be used. Further, the electroless plating method may be applied in combination with other methods such as an electroplating method.
The specific plating conditions are not particularly limited, and plating may be performed according to known conditions using a known plating bath capable of forming a target palladium or palladium alloy thin film.
 具体的には、メッキ温度20-80℃、メッキ時間0.1-10時間の条件下において、pHが3-12の市販パラジウムメッキ浴(パラトップ、(株)奥野工業製)にディップし、次いで、得られたパラジウム複合膜を50-300℃で0.5-20時間、静止空気中で乾燥する条件を例示できる。 Specifically, under conditions of a plating temperature of 20-80 ° C. and a plating time of 0.1-10 hours, dipping into a commercially available palladium plating bath having a pH of 3-12 (Paratop, manufactured by Okuno Kogyo Co., Ltd.) Next, conditions for drying the obtained palladium composite membrane at 50-300 ° C. for 0.5-20 hours in still air can be exemplified.
 無電解メッキ法によって形成されるパラジウムあるいはパラジウムを含む合金からなる層の厚さについては、0.5~20μm程度であることが好ましく、1~20μm程度であることがより好ましく、1~10μm程度であることがさらに好ましい。該薄膜の膜厚が薄すぎると水素の選択分離性能が不十分となり、一方、膜厚が厚すぎると水素透過性ならびに経済性が失われるので好ましくない。 The thickness of the layer made of palladium or an alloy containing palladium formed by electroless plating is preferably about 0.5 to 20 μm, more preferably about 1 to 20 μm, and more preferably about 1 to 10 μm. More preferably. If the thickness of the thin film is too thin, the hydrogen selective separation performance becomes insufficient. On the other hand, if the thickness is too thick, hydrogen permeability and economy are lost.
 フィルム状自立金属薄膜でのパラジウム合金としては、パラジウムと、銀、金、銅、白金、ニッケルおよびコバルトからなる群から選ばれる一種または二種以上の金属との合金が好ましい。この様なパラジウム合金中におけるパラジウムの割合は、約45重量%以上であることが好ましい。 The palladium alloy in the film-like self-supporting metal thin film is preferably an alloy of palladium and one or more metals selected from the group consisting of silver, gold, copper, platinum, nickel and cobalt. The proportion of palladium in such a palladium alloy is preferably about 45% by weight or more.
 かくして得られた触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を有する積層体を、溶出処理することも、本発明特徴のひとつである。この溶出処理により、前記積層体から可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子(以下、溶出成分ということがある)は溶出し、機械的に剥離する手法を用いずに除去され、フィルム状自立金属薄膜が製造できる。 It is also one of the features of the present invention that the thus obtained laminate having a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal is eluted. By this elution treatment, a method of eluting and mechanically exfoliating the soluble inorganic ceramics, soluble inorganic polymers or soluble organic polymers (hereinafter sometimes referred to as elution components) from the laminate. The film-like self-supporting metal thin film can be manufactured.
 上記溶出処理は、溶出成分が溶出されるかぎり、特に制限されない。具体的には、積層体を溶出溶媒に浸漬することが好ましい。前記溶出溶媒は、溶出成分を構成する成分の違いにより適切な溶媒を使用することになるが、溶出成分が溶出されることができる限り、特に制限されない。溶出溶媒としては、具体的には、NaOH水溶液、KOH水溶液、アンモニア水、などのアルカリ、硫酸、塩酸、HF等の酸、エタノールやクロロホルム等の有機溶媒などが挙げられる。
 上記溶出処理条件は、用いる触媒機能を有する金属核を構成する金属の金属化合物、溶出させる可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子などにより変動するので一概に規定できないが、具体的な溶出処理条件として、上記積層体を、溶出溶媒中に1~120時間程度浸漬することが挙げられる。そのときの浸漬温度は25-100℃が好適である。また、溶出圧力は通常は常圧であるが、1気圧以上の加圧条件下で処理することも出来る。
The elution treatment is not particularly limited as long as the eluted components are eluted. Specifically, it is preferable to immerse the laminate in an elution solvent. As the elution solvent, an appropriate solvent is used depending on the difference in components constituting the elution component, but it is not particularly limited as long as the elution component can be eluted. Specific examples of the elution solvent include alkalis such as NaOH aqueous solution, KOH aqueous solution and aqueous ammonia, acids such as sulfuric acid, hydrochloric acid and HF, and organic solvents such as ethanol and chloroform.
The elution conditions vary depending on the metal compound of the metal that constitutes the metal core having the catalytic function used, the soluble inorganic ceramics to be eluted, the soluble inorganic polymer or the soluble organic polymer, etc. However, specific elution treatment conditions include immersing the laminate in an elution solvent for about 1 to 120 hours. The immersion temperature at that time is preferably 25-100 ° C. The elution pressure is usually atmospheric pressure, but the treatment can be performed under a pressurized condition of 1 atm or higher.
 また、触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を有する積層体を、焼失処理することも、本発明特徴のひとつである。この焼失処理により、前記積層体から可焼失性有機性高分子は焼失し、機械的に剥離する手法を用いずに除去され、フィルム状自立金属薄膜が製造できる。 It is also one of the features of the present invention that the laminated body having a layer made of a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal is burned. By this burn-out treatment, the burnable organic polymer is burned off from the laminate and removed without using a mechanical peeling method, and a film-like self-supporting metal thin film can be produced.
 上記焼失処理は、用いる触媒機能を有する金属核を構成する金属の金属化合物、あるいは前記金属を含む合金、可焼失性高分子などにより変動するので一概に規定できないが、具体的な加熱処理条件として、上記積層体を、空気気流中あるいは、静止空気中、純酸素、酸素窒素混合物存在下において、昇温速度毎分0.2-20℃で300-1100℃まで昇温し、その温度で0.1-20時間保持することによって熱処理を施し、次いで、降温速度毎分0.2-20℃で室温まで降温条件を例示できる。 The above-mentioned burn-out treatment varies depending on the metal compound of the metal constituting the metal nucleus having a catalytic function to be used, or an alloy containing the metal, a burnable polymer, etc. The laminate was heated to 300-1100 ° C. at a temperature rising rate of 0.2-20 ° C./min in an air stream or in still air, in the presence of a pure oxygen / oxygen / nitrogen mixture, and 0 ° C. at that temperature. The heat treatment can be performed by holding for 1-20 hours, and then the temperature lowering condition can be exemplified at room temperature at a temperature lowering rate of 0.2-20 ° C. per minute.
 本発明においては、製造されたフィルム状自立金属薄膜に水素分離機能を有する金属あるいは合金からなる層をさらに形成させてもよい。水素分離機能を有する金属としては、パラジウム、ニッケル、白金、銅、銀、金、コバルト、ロジウム、イリジウム、鉄、ルテニウム、バナジウム、ニオビウム、タンタル、ハフニウム、チタン、およびジルコニウムからなる群から選ばれる一種または二種以上が挙げられる。水素分離機能を有する金属あるいは合金からなる層として、パラジウムあるいはパラジウムを含む合金からなる層が特に好ましい。この層はフィルム状自立金属薄膜の全面に渡って形成しても良いし、部分的に形成してもよい。
 触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する方法は、上記のとおり公知の方法を利用できるのであるが、その中でも無電解メッキ法が好ましい。無電解メッキ処理を施す条件は前記と同様の方法を適用できる。水素分離機能を有する金属あるいは合金からなる層も同様である。
 この操作を施すことにより、より膜厚の均一性が向上したフィルム状自立金属薄膜を製造することができる。
In the present invention, a layer made of a metal or alloy having a hydrogen separation function may be further formed on the produced film-like self-supporting metal thin film. The metal having a hydrogen separation function is a kind selected from the group consisting of palladium, nickel, platinum, copper, silver, gold, cobalt, rhodium, iridium, iron, ruthenium, vanadium, niobium, tantalum, hafnium, titanium, and zirconium. Or 2 or more types are mentioned. As the layer made of a metal or alloy having a hydrogen separation function, a layer made of palladium or an alloy containing palladium is particularly preferable. This layer may be formed over the entire surface of the film-like self-supporting metal thin film, or may be formed partially.
As a method for forming a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal, a known method can be used as described above, and among these, an electroless plating method is preferable. The same method as described above can be applied to the conditions for performing the electroless plating treatment. The same applies to a layer made of a metal or alloy having a hydrogen separation function.
By performing this operation, a film-like self-supporting metal thin film with improved film thickness uniformity can be produced.
 また、上記フィルム状自立金属薄膜の少なくとも一つの面に、フィルム状自立金属膜を構成する金属と合金化しうる金属を含む層を形成させ、合金化処理して、フィルム状自立金属薄膜を製造することもできる。例えばフィルム状自立金属膜を構成する金属がパラジウムの場合、パラジウム合金化しうる金属としては上記に例示された銀、金、銅、白金、ニッケルおよびコバルトからなる群から選ばれる一種または二種以上の金属などの金属を挙げることができるが、それらに限定されない。フィルム状自立金属膜を構成する金属がパラジウム以外のときには、フィルム状自立金属膜を構成する金属に応じて合金化しうる金属を適宜選択し、合金化処理すれば、フィルム状自立金属膜を得ることができる。
 上記合金化しうる金属を含む層を形成させる方法は特に制限されないのであり、上記合金化処理は、フィルム状自立金属膜を構成する金属と、当該金属と合金化される金属とが合金化される条件で処理すればよいのであり、一概に規定することができない。なお、強いて例示するなら、例えば、不活性雰囲気中600℃以上で5時間熱処理すること、あるいは、空気中600℃以上で5時間熱処理後、200℃以上で1時間、水素還元をおこなうことなどが挙げられる。
In addition, a layer containing a metal that can be alloyed with the metal constituting the film-like self-supporting metal film is formed on at least one surface of the film-like self-supporting metal thin film, and alloyed to produce a film-like self-supporting metal thin film. You can also For example, when the metal constituting the film-like self-supporting metal film is palladium, the metal that can be palladium alloyed is one or more selected from the group consisting of silver, gold, copper, platinum, nickel, and cobalt exemplified above. Although metals, such as a metal, can be mentioned, it is not limited to them. When the metal constituting the film-like self-supporting metal film is other than palladium, a metal that can be alloyed is appropriately selected according to the metal constituting the film-like self-supporting metal film, and a film-like self-supporting metal film can be obtained by alloying treatment. Can do.
The method for forming a layer containing a metal that can be alloyed is not particularly limited. In the alloying treatment, the metal constituting the film-like self-supporting metal film and the metal alloyed with the metal are alloyed. It is only necessary to process under conditions, and it is not possible to define it in general. For example, for example, heat treatment in an inert atmosphere at 600 ° C. or higher for 5 hours, or heat treatment in air at 600 ° C. or higher for 5 hours, and hydrogen reduction at 200 ° C. or higher for 1 hour. Can be mentioned.
 かくして製造されたフィルム状自立金属薄膜は、ピンホールが存在するという構造的な欠陥がなく、他の分割不可能な基材等の助けによらなくともその構造を保持でき、しかも、優れた水素分離機能を有するなど、極めて優れた特性を有する。
 本発明のフィルム状自立金属薄膜は均一性であるという特徴がある。本発明により、膜厚の均一性が±20%以内であるフィルム状自立金属薄膜が製造される。
The film-like self-supporting metal thin film thus produced has no structural defects such as the presence of pinholes, can maintain its structure without the assistance of other non-dividable substrates, etc., and has excellent hydrogen It has extremely excellent characteristics such as having a separation function.
The film-like self-supporting metal thin film of the present invention is characterized by being uniform. According to the present invention, a film-like self-supporting metal thin film having a film thickness uniformity of within ± 20% is manufactured.
 本発明は、フィルム状基板、触媒機能を有する金属核を含む犠牲層、および触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を少なくとも有することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜製造用積層体を提供できた。とくに、前記犠牲層の表面近傍に触媒機能を有する金属核が偏在していると好ましいフィルム状自立金属薄膜製造用積層体を製造することができ有利である。本発明は触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層から少なくとも構成され、しかも請求項10または11記載の積層体の犠牲層および少なくとも前記フィルム状基板の前記犠牲層と接触する表面を溶出または焼失処理して得たことを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜を提供できた。 The present invention has a film thickness characterized by having at least a film-like substrate, a sacrificial layer containing a metal nucleus having a catalytic function, and a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal. A laminate for producing a film-like self-supporting metal thin film for hydrogen separation of 1 to 20 μm could be provided. In particular, when a metal nucleus having a catalytic function is unevenly distributed in the vicinity of the surface of the sacrificial layer, a preferable laminate for producing a film-like self-supporting metal thin film can be produced. The present invention includes at least a sacrificial layer of a laminate and at least the sacrificial layer of the film-like substrate according to claim 10 or 11, comprising at least a layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal. It was possible to provide a film-like free-standing metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, which was obtained by eluting or burning out the surface in contact with the surface.
 本発明のフィルム状自立金属薄膜は、優れた水素分離能を示す。例えば、水素分離係数が1000以上を示す。ここで、水素分離係数は次式に基づいて得た値である。
水素分離係数=TH2/TAr
 式中、TH2は水素の透過速度を示し、TArはアルゴンの透過速度を示す。前記水素水素の透過速度は分離膜の一方の面から、所定圧力の水素を供給し、他方の面から透過してくる水素の透過速度を測定する。続いて、測定系内をアルゴンガスで洗浄した後、同条件下で、アルゴンを供給し、他方の面から透過してくるアルゴンの透過速度を測定する。
The film-like self-supporting metal thin film of the present invention exhibits excellent hydrogen separation ability. For example, the hydrogen separation coefficient is 1000 or more. Here, the hydrogen separation coefficient is a value obtained based on the following equation.
Hydrogen separation factor = T H2 / T Ar
In the formula, T H2 indicates the permeation rate of hydrogen, and T Ar indicates the permeation rate of argon. The hydrogen-hydrogen permeation rate is determined by supplying hydrogen at a predetermined pressure from one side of the separation membrane and measuring the permeation rate of hydrogen permeating from the other side. Subsequently, after the inside of the measurement system is cleaned with argon gas, argon is supplied under the same conditions, and the permeation rate of argon transmitted from the other surface is measured.
 本発明のフィルム状自立金属薄膜は広い範囲にわたって応用が可能であり、水素混合ガスからの水素分離、水素製造反応、燃料電池への応用などに適している。より具体的には、燃料電池発電システムへの高純度燃料水素供給装置、半導体プロセスへの超高純度燃料水素供給装置、吸収式冷凍機の水素ガス放出装置などに応用できる。 The film-like self-supporting metal thin film of the present invention can be applied over a wide range, and is suitable for hydrogen separation from hydrogen mixed gas, hydrogen production reaction, fuel cell application, and the like. More specifically, the present invention can be applied to a high-purity fuel hydrogen supply device for a fuel cell power generation system, an ultrahigh-purity fuel hydrogen supply device for a semiconductor process, a hydrogen gas release device for an absorption refrigeration machine, and the like.
 本発明により、ピンホールなどの欠陥が無く、優れた水素分離機能を有するフィルム状自立金属薄膜が得られる。また、均一なフィルム状自立金属薄膜でもある。さらに、連続生産も可能であり、生産性良く、低コストでフィルム状自立金属薄膜を製造することができる。そのうえ、膜モジュールも効率的に製造することができ、特に分割することができない基材の助けに拠らなくとも、製品(例えばモジュール)に組み込むことができる。さらに、熱応答性に優れモジュール化が容易なオールメタリック製モジュールが可能になる。また、メッシュ状の基材を利用することにより、圧力差が相当あるときなどにも対応できる。 According to the present invention, a film-like self-supporting metal thin film having no excellent defects such as pinholes and having an excellent hydrogen separation function can be obtained. It is also a uniform film-like free-standing metal thin film. Furthermore, continuous production is possible, and a film-like self-supporting metal thin film can be produced with good productivity and low cost. Moreover, membrane modules can also be manufactured efficiently and can be incorporated into products (eg modules) without the aid of a substrate that cannot be divided in particular. Furthermore, an all-metallic module having excellent thermal response and easy modularization is possible. Further, by using a mesh-like substrate, it is possible to cope with a case where there is a considerable pressure difference.
本発明のフィルム状自立金属薄膜の外観写真を示す図である。It is a figure which shows the external appearance photograph of the film-form self-supporting metal thin film of this invention. 本発明のフィルム状自立金属薄膜の断面SEM写真である。It is a cross-sectional SEM photograph of the film-form self-supporting metal thin film of this invention. 本発明のフィルム状自立金属薄膜の水素透過能を示すグラフである。It is a graph which shows the hydrogen permeability of the film-form self-supporting metal thin film of this invention.
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は以下の実施例によって何ら限定されるものではない。
(参考例1)パラジウム含有高分子の活性化用溶液の調製
 1wt%の酢酸パラジウム(和光純薬株式会社製)、6wt%のポリ(2,6-ジメチル-4-フェニレンオキサイド)(アルドリッチ社製)、93wt%のクロロホルム(和光純薬株式会社製)からパラジウム含有高分子を含む活性化用溶液を調製した。
Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
(Reference Example 1) Preparation of palladium-containing polymer activation solution 1 wt% palladium acetate (Wako Pure Chemical Industries, Ltd.), 6 wt% poly (2,6-dimethyl-4-phenylene oxide) (Aldrich) ), An activation solution containing a palladium-containing polymer was prepared from 93 wt% chloroform (manufactured by Wako Pure Chemical Industries, Ltd.).
(実施例1a)水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体の調製
 縦3cm横7cm、膜厚100μmのポリイミドフィルム基板(東レ・デュポン社製)を蒸留水で洗浄・乾燥後、この基材を参考例1の活性化用溶液に5秒間ディップした後、引き上げて薄膜犠牲層を形成した。その製膜済み基板を、2時間、静止空気中で乾燥させた後、昇温速度毎分5℃で100℃まで昇温し、その温度で3時間保持することによって、パラジウム核形成処理を施した。その後、0.5重量%のヒドラジンにより還元温度60℃、還元時間1時間の条件下において還元処理を行った。無電解メッキ処理は、メッキ温度60℃、メッキ時間0.5-2時間の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行い、水素分離用パラジウム(Pd)系フィルム状自立金属薄膜の製造用積層体を得た。
(Example 1a) Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation A polyimide film substrate (manufactured by Toray DuPont) having a length of 3 cm and a width of 7 cm was washed with distilled water and dried. The substrate was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer. After the film-formed substrate was dried in still air for 2 hours, the temperature was increased to 100 ° C. at a rate of temperature increase of 5 ° C. per minute, and held at that temperature for 3 hours to perform palladium nucleation treatment. did. Thereafter, reduction treatment was performed with 0.5% by weight of hydrazine under the conditions of a reduction temperature of 60 ° C. and a reduction time of 1 hour. Electroless plating is performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5-2 hours. A laminate for producing a palladium (Pd) -based film-like self-supporting metal thin film was obtained.
(実施例1b)水素分離用パラジウム系フィルム状自立金属薄膜の調製
 実施例1aで得た無電解メッキ処理を施された水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体を、クロロホルム中に浸漬し、そのまま24時間保持することによって溶出処理を施した。次いで、乾燥・洗浄処理を経て水素分離用パラジウム系フィルム状自立金属薄膜を得た。
(Example 1b) Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation The laminate for producing a palladium-based film-like self-supporting metal thin film for hydrogen separation obtained in Example 1a in chloroform The sample was immersed in the sample and kept for 24 hours as it was for elution treatment. Next, a palladium-based film-like self-supporting metal thin film for hydrogen separation was obtained through drying and washing treatment.
 パラジウム系フィルム状自立金属薄膜の形態の一例を図1および図2に示す。図1は2時間程度メッキ処理を施した前記金属薄膜の外観写真である。図2は0.5時間程度メッキ処理を施した前記金属薄膜の断面SEM写真である。図1から、明らかに、10cm2以上もの大面積のパラジウム系フィルム状自立金属薄膜が調製されたことがわかる。 An example of the form of a palladium-based film-like self-supporting metal thin film is shown in FIGS. FIG. 1 is a photograph of the appearance of the metal thin film that has been plated for about 2 hours. FIG. 2 is a cross-sectional SEM photograph of the metal thin film plated for about 0.5 hour. FIG. 1 clearly shows that a palladium-based film-like self-supporting metal thin film having a large area of 10 cm 2 or more has been prepared.
(試験例1)水素分離用パラジウム系フィルム状自立金属薄膜の膜厚の測定
 パラジウム系フィルム状自立金属薄膜の膜厚は以下のように測定した。膜厚計(Peacock社製:Type PDS-2)を用いて、自立薄膜を膜厚計の測定下部のガラス基板上に静置し、測定端子で静かに挟んで厚みを測定し、デジタル表示計で厚みを読み取った。自立薄膜の縦2cm横6cm程度の部分の7~10箇所について膜厚を測定し、その平均膜厚とともに、膜全体に渡る膜厚の均一性を算出した。
 その結果、図1に示すパラジウム系フィルム状自立金属薄膜の平均膜厚は14.7±1.8μmであり、膜全体に渡る膜厚の均一性は±12%以内であった。また、図2に示すパラジウム系フィルム状自立金属薄膜の平均膜厚は3.0±0.5μmであり、膜全体に渡る膜厚の均一性は±17%以内であった。
(Test Example 1) Measurement of the film thickness of a palladium-based film-like self-supporting metal thin film for hydrogen separation The film thickness of the palladium-based film-like self-supporting metal thin film was measured as follows. Using a film thickness meter (Peacock: Type PDS-2), place the self-supporting thin film on the glass substrate at the bottom of the film thickness meter and gently sandwich it with the measurement terminal to measure the thickness. I read the thickness. The film thickness was measured at 7 to 10 portions of a self-supporting thin film having a length of about 2 cm and a width of about 6 cm, and the average film thickness and the uniformity of the film thickness over the entire film were calculated.
As a result, the average film thickness of the palladium-based film-like self-supporting metal thin film shown in FIG. 1 was 14.7 ± 1.8 μm, and the film thickness uniformity over the entire film was within ± 12%. Further, the average film thickness of the palladium-based film-like self-supporting metal thin film shown in FIG. 2 was 3.0 ± 0.5 μm, and the uniformity of the film thickness over the entire film was within ± 17%.
(試験例2)水素分離用パラジウム系フィルム状自立金属薄膜の水素選択透過特性
 実施例1で得たパラジウム系フィルム状自立金属薄膜の水素選択透過特性を測定温度300-500℃、水素圧力差0-100kPaで評価した。
 その結果を図3に示す。図3から、例えば、測定温度400℃、水素圧力差100kPaにおいて、水素透過流束は0.06mol/(m2 s)で、水素以外のガス、例えば、ヘリウムは測定限界以下であり、非常に高い水素選択透過性を有していることがわかった。
(Test Example 2) Hydrogen selective permeation characteristics of palladium-based film-like self-supporting metal thin film for hydrogen separation The hydrogen-selective permeation characteristics of the palladium-based film-like self-supporting metal thin film obtained in Example 1 were measured at a temperature of 300-500 ° C and a hydrogen pressure difference of 0 Evaluation was performed at −100 kPa.
The result is shown in FIG. From FIG. 3, for example, at a measurement temperature of 400 ° C. and a hydrogen pressure difference of 100 kPa, the hydrogen permeation flux is 0.06 mol / (m 2 s), and a gas other than hydrogen, for example, helium is below the measurement limit. It was found to have high hydrogen permselectivity.
(実施例2a)水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体の調製
 縦3cm横7cm、膜厚25μmのポリイミドフィルム基板(宇部興産社製)をアセトンで洗浄・乾燥後、この基材を参考例1の活性化用溶液に5秒間ディップした後、引き上げて薄膜犠牲層を形成した。その製膜済み基板を、2時間、静止空気中で乾燥させた後、昇温速度毎分5℃で100℃まで昇温し、その温度で1時間保持することによって、パラジウム核形成処理を施した。その後、0.5重量%のヒドラジンにより還元温度60℃、還元時間5時間の条件下において還元処理を行った。無電解メッキ処理はメッキ温度60℃、メッキ時間0.5-2時間の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行い、水素分離用パラジウム系フィルム状自立金属薄膜の製造原料としての積層体を得た。
(Example 2a) Preparation of a laminate for production of a palladium-based film-like self-supporting metal thin film for hydrogen separation A polyimide film substrate (manufactured by Ube Industries, Ltd.) having a length of 3 cm and a width of 7 cm and a film thickness of 25 μm was washed with acetone and dried. The material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer. The film-formed substrate was dried in still air for 2 hours, and then heated to 100 ° C. at a rate of temperature increase of 5 ° C./min, and held at that temperature for 1 hour to perform palladium nucleation treatment. did. Thereafter, reduction treatment was performed with 0.5% by weight of hydrazine under the conditions of a reduction temperature of 60 ° C. and a reduction time of 5 hours. Electroless plating is performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under conditions of a plating temperature of 60 ° C and a plating time of 0.5-2 hours. The laminated body as a manufacturing raw material of a palladium-type film-like self-supporting metal thin film was obtained.
(実施例2b)水素分離用パラジウム系フィルム状自立金属薄膜の調製
 実施例2aで得た無電解メッキ処理を施されたパラジウム積層体を、クロロホルム中に浸漬し、そのまま24時間保持することによって溶出処理を施した。次いで、乾燥・洗浄処理を経て水素分離用パラジウム系フィルム状自立金属薄膜を得た。
(Example 2b) Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation The palladium laminate obtained by electroless plating obtained in Example 2a was immersed in chloroform and eluted as it was for 24 hours. Treated. Next, a palladium-based film-like self-supporting metal thin film for hydrogen separation was obtained through drying and washing treatment.
(実施例3a)水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体の調製
 縦5cm横5cm、膜厚2mmの緻密アルミナ基板(TGK社製)を蒸留水で洗浄・乾燥後、この基材を参考例1の活性化用溶液に5秒間ディップした後、引き上げて薄膜犠牲層を形成した。その製膜済み基板を、2時間、静止空気中で乾燥させた後、昇温速度毎分5℃で300℃まで昇温し、その温度で0.5時間保持することによって、熱安定化処理を施した。無電解メッキ処理は、メッキ温度60℃、メッキ時間0.5時間の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行い、水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体を得た。
(Example 3a) Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation A dense alumina substrate (manufactured by TGK) having a length of 5 cm and a width of 2 cm was washed with distilled water and dried. The material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer. After the film-formed substrate is dried in still air for 2 hours, the temperature is increased to 300 ° C. at a temperature increase rate of 5 ° C./min, and kept at that temperature for 0.5 hour, thereby stabilizing the heat. Was given. Electroless plating is performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under conditions of a plating temperature of 60 ° C. and a plating time of 0.5 hours. A laminate for producing a self-supporting film-like metal thin film was obtained.
(実施例3b)水素分離用パラジウム系フィルム状自立金属薄膜の調製
 実施例3aで得た無電解メッキ処理を施された水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体を、静止空気中において、昇温速度毎分5℃で600℃まで昇温し、その温度で0.5時間保持することによって熱焼失処理を施した。次いで、降温速度毎分5℃で室温まで降温し、水素分離用パラジウム系フィルム状自立金属薄膜を得た。
 実施例3のパラジウム系フィルム状自立金属薄膜の形態を観察したところ、10cm2以上の大面積で、比較的均質厚みのパラジウム系フィルム状自立金属薄膜が調製されたことがわかった。
(Example 3b) Preparation of a palladium-based film-like self-supporting metal thin film for hydrogen separation The laminate for producing a palladium-based film-like self-supporting metal thin film for hydrogen separation obtained in Example 3a was treated with static air. Inside, the temperature was increased to 600 ° C. at a rate of temperature increase of 5 ° C. per minute, and the heat burn-off treatment was performed by holding at that temperature for 0.5 hour. Next, the temperature was lowered to room temperature at a rate of 5 ° C. per minute to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.
When the form of the palladium-based film-like self-supporting metal thin film of Example 3 was observed, it was found that a palladium-based film-like self-supporting metal thin film having a large area of 10 cm 2 or more and a relatively uniform thickness was prepared.
(実施例4a)水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体の調製
 直径5cm、膜厚1.5mmで微細孔を有するバイコールガラス多孔質基板(コーニング社製)をアセトンで洗浄・乾燥後、この基材を参考例1の活性化用溶液に5秒間ディップした後、引き上げて薄膜犠牲層を形成した。その製膜済み基板を、0.5時間、静止空気中で乾燥させた後、昇温速度毎分5℃で240℃、0.5時間保持、5℃で昇温し300℃、0.5時間保持することによって、熱安定化処理を施した。無電解メッキ処理はメッキ温度60℃、メッキ時間0.5時間の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行い、水素分離用パラジウム系フィルム状自立金属薄膜の製造原料としての積層体を得た。
(Example 4a) Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation A Vycor glass porous substrate (made by Corning) having a diameter of 5 cm and a film thickness of 1.5 mm was washed with acetone. After drying, the substrate was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer. After the film-formed substrate was dried in still air for 0.5 hours, the temperature rising rate was 5 ° C./min. 240 ° C. for 0.5 hours, the temperature was raised at 5 ° C. and 300 ° C., 0.5 ° C. The heat stabilization process was performed by hold | maintaining for time. Electroless plating is performed using a commercial palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5 hours. The laminated body as a manufacturing raw material of a film-form self-supporting metal thin film was obtained.
(実施例4b)水素分離用パラジウム系フィルム状自立金属薄膜の調製
 実施例4aで得た無電解メッキ処理を施されたパラジウム積層体を、静止空気中において、昇温速度毎分5℃で580℃まで昇温し10分保持後、昇温速度毎分5℃で700℃まで昇温し10分保持することによって熱焼失処理を施した。次いで、降温速度毎分5℃で室温まで降温し、水素分離用パラジウム系フィルム状自立金属薄膜を得た。
(Example 4b) Preparation of a palladium-based film-like self-supporting metal thin film for hydrogen separation The palladium laminate obtained by the electroless plating process obtained in Example 4a was 580 at a heating rate of 5 ° C./min in still air. After heating up to 0 ° C. and holding for 10 minutes, the temperature was increased to 700 ° C. at a heating rate of 5 ° C. per minute and held for 10 minutes to carry out thermal burning treatment. Next, the temperature was lowered to room temperature at a rate of 5 ° C. per minute to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.
(実施例5a)水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体の調製
 直径10cmのガラス製シャーレをアセトンで洗浄・乾燥後、この中に参考例1の活性化用溶液を20mL注いだ後、2時間、静止空気中で乾燥させて薄膜犠牲層を形成した。シャーレから剥離されたこの薄膜犠牲層を昇温速度毎分5℃で100℃まで昇温し、その温度で1時間保持することによって、パラジウム核形成処理を施した。その後、0.5重量%のヒドラジンにより還元温度60℃、還元時間1時間の条件下において還元処理を行った。無電解メッキ処理はメッキ温度60℃、メッキ時間0.5-2時間の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行い、水素分離用パラジウム系フィルム状自立金属薄膜の製造原料としての積層体を得た。
(Example 5a) Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation After washing and drying a glass petri dish having a diameter of 10 cm with acetone, 20 mL of the activation solution of Reference Example 1 was poured therein. Thereafter, it was dried in still air for 2 hours to form a thin film sacrificial layer. The thin film sacrificial layer peeled off from the petri dish was heated to 100 ° C. at a temperature rising rate of 5 ° C. per minute, and held at that temperature for 1 hour to perform palladium nucleus formation treatment. Thereafter, reduction treatment was performed with 0.5% by weight of hydrazine under the conditions of a reduction temperature of 60 ° C. and a reduction time of 1 hour. Electroless plating is performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under conditions of plating temperature 60 ° C and plating time 0.5-2 hours for hydrogen separation. The laminated body as a manufacturing raw material of a palladium-type film-like self-supporting metal thin film was obtained.
(実施例5b)水素分離用パラジウム系フィルム状自立金属薄膜の調製
 実施例5aで得た無電解メッキ処理を施されたパラジウム積層体を、クロロホルム中に浸漬し、そのまま24時間保持することによって、パラジウム積層体全体を溶出処理した。次いで、乾燥・洗浄処理を経て水素分離用パラジウム系フィルム状自立金属薄膜を得た。
(Example 5b) Preparation of a palladium-based film-like self-supporting metal thin film for hydrogen separation The palladium laminate subjected to the electroless plating treatment obtained in Example 5a was immersed in chloroform and kept as it was for 24 hours. The entire palladium laminate was eluted. Next, a palladium-based film-like self-supporting metal thin film for hydrogen separation was obtained through drying and washing treatment.
(実施例6a)水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体の調製
 縦3cm横7cm、膜厚25μmのポリイミドフィルム基板(宇部興産社製)をエタノールで洗浄・乾燥後、この基材を参考例1の活性化用溶液に5秒間ディップした後、引き上げて薄膜犠牲層を形成した。その製膜済み基板を、0.5時間、静止空気中で乾燥させた後、昇温速度毎分5℃で240℃、0.5時間保持、5℃で昇温し300℃、0.5時間保持することによって、熱安定化処理を施した。無電解メッキ処理はメッキ温度60℃、メッキ時間0.5時間の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行い、水素分離用パラジウム系フィルム状自立金属薄膜の製造原料としての積層体を得た。
(Example 6a) Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation A polyimide film substrate (manufactured by Ube Industries, Ltd.) having a length of 3 cm and a width of 7 cm and a film thickness of 25 μm was washed with ethanol and dried, and then the base The material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer. After the film-formed substrate was dried in still air for 0.5 hours, the temperature rising rate was 5 ° C./min. 240 ° C. for 0.5 hours, the temperature was raised at 5 ° C. and 300 ° C., 0.5 ° C. The heat stabilization process was performed by hold | maintaining for time. Electroless plating is performed using a commercial palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) with a pH of about 7 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5 hours. The laminated body as a manufacturing raw material of a film-form self-supporting metal thin film was obtained.
(実施例6b)水素分離用パラジウム系フィルム状自立金属薄膜の調製
 実施例6aで得た無電解メッキ処理を施されたパラジウム積層体を、静止空気中において、昇温速度毎分5℃で700℃まで昇温し10分保持することによって、パラジウム積層体全体を熱焼失処理した。次いで、降温速度毎分5℃で室温まで降温し、水素分離用パラジウム系フィルム状自立金属薄膜を得た。
 
(参考例2)パラジウム含有可溶出性無機高分子を含む活性化用溶液の調製
 塩化パラジウム(和光純薬株式会社製)、テトラエトキシシラン(アルドリッチ社製)、35%塩酸(和光純薬株式会社製)、及び95%エタノールのそれぞれを所定量秤量し、蒸留水中に加え、攪拌・混合し、次いで蒸留水を加え、0.3wt%の塩化パラジウム、9.5wt%のテトラエトキシシラン、0.2wt%の35%塩酸、20wt%の95%エタノール、70wt%の蒸留水から構成されるパラジウム含有無機高分子を含む活性化用溶液を調製した。
(Example 6b) Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation The palladium laminate obtained in Example 6a subjected to the electroless plating treatment was 700 in a still air at a heating rate of 5 ° C per minute. The whole palladium laminate was subjected to a heat-burning treatment by raising the temperature to 0 ° C. and holding it for 10 minutes. Next, the temperature was lowered to room temperature at a rate of 5 ° C. per minute to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.

Reference Example 2 Preparation of Activation Solution Containing Palladium-Containing Soluble Insoluble Polymers Palladium chloride (Wako Pure Chemical Industries, Ltd.), tetraethoxysilane (Aldrich Co., Ltd.), 35% hydrochloric acid (Wako Pure Chemical Industries, Ltd.) And 95% ethanol were weighed in predetermined amounts, added to distilled water, stirred and mixed, then distilled water was added, 0.3 wt% palladium chloride, 9.5 wt% tetraethoxysilane,. An activation solution containing a palladium-containing inorganic polymer composed of 2 wt% 35% hydrochloric acid, 20 wt% 95% ethanol, and 70 wt% distilled water was prepared.
(実施例7a)水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体の調製
 縦5cm横5cm、膜厚2mmの緻密アルミナ基板(TGK社製)を蒸留水で洗浄・乾燥後、この基材を参考例2の活性化用溶液に5秒間ディップした後、引き上げて前駆体薄膜犠牲層を形成した。次いで、その緻密アルミナ基板を、2時間、静止空気中で乾燥した後、昇温速度毎分5℃で300℃まで昇温し、その温度で30分間保持し、続いて昇温速度毎分5℃で600℃まで昇温後、その温度で30分間保持することによって、均一なパラジウム核含有シリカ薄膜層を得た。次いで、水素気流中、昇温速度毎分5℃で200℃まで昇温し、その温度で30分保持して、還元処理を施し、可溶出性無機高分子から実質的になる層を形成した。
 次いで、この還元処理した層の表面を前無電解メッキ処理し、パラジウム金属からなる層を積層することによって、水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体を得た。この前無電解メッキ処理は、メッキ温度60℃、メッキ時間30分の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行った。
(Example 7a) Preparation of laminate for production of palladium-based film-like self-supporting metal thin film for hydrogen separation A dense alumina substrate (manufactured by TGK ) having a length of 5 cm and a width of 2 cm was washed with distilled water and dried. The material was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a precursor thin film sacrificial layer. Next, the dense alumina substrate was dried in still air for 2 hours, then heated to 300 ° C. at a heating rate of 5 ° C./min, held at that temperature for 30 minutes, and then heated at a heating rate of 5 / min. After raising the temperature to 600 ° C. at 30 ° C., the temperature was maintained for 30 minutes to obtain a uniform palladium nucleus-containing silica thin film layer. Next, in a hydrogen stream, the temperature was raised to 200 ° C. at a rate of temperature increase of 5 ° C. per minute, held at that temperature for 30 minutes, subjected to a reduction treatment, and a layer substantially consisting of a soluble organic polymer was formed. .
Subsequently, the surface of this reduced layer was subjected to a pre-electroless plating process, and a layer made of palladium metal was laminated to obtain a laminate for producing a palladium-based film-like self-supporting metal thin film for hydrogen separation. This pre-electroless plating treatment was performed using a commercially available palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) having a pH of about 7 under conditions of a plating temperature of 60 ° C. and a plating time of 30 minutes.
(実施例7b)水素分離用パラジウム系フィルム状自立金属薄膜の調製
 実施例7aで得た無電解メッキ処理を施された水素分離用パラジウム系フィルム状自立金属薄膜の製造用積層体を、0.1Nの水酸化ナトリウム溶液中に浸漬し、室温にて90時間放置することによって溶出処理を施した。その後、水酸化ナトリウム溶液から取り出し、洗浄・乾燥することによって、水素分離用パラジウム系フィルム状自立金属薄膜を得た。
 
(参考例3)銀メッキ浴の調製
 硝酸銀53.5mg、Na2EDTA・2H2O4.0g、NH4OH20ml、ホルムアルデヒド2mlに蒸留水を混合・攪拌し、100mLの銀メッキ用溶液を調製した。
(Example 7b) Preparation of palladium-based film-like self-supporting metal thin film for hydrogen separation The laminate for producing a palladium-based film-like self-supporting metal thin film for hydrogen separation obtained in Example 7a was prepared as follows. An elution treatment was performed by immersing in a 1N sodium hydroxide solution and allowing to stand at room temperature for 90 hours. Then, it took out from the sodium hydroxide solution, washed and dried to obtain a palladium-based film-like self-supporting metal thin film for hydrogen separation.

(Reference Example 3) Preparation of silver plating bath Distilled water was mixed and stirred in 53.5 mg of silver nitrate, 4.0 g of Na 2 EDTA · 2H 2 O, 20 ml of NH 4 OH, and 2 ml of formaldehyde to prepare 100 mL of a solution for silver plating.
(実施例8a)水素分離用パラジウム・銀フィルム状自立合金薄膜の製造用積層体の調製
 縦3cm横7cm、膜厚25μmのポリイミドフィルム基板(宇部興産社製)をアセトンで洗浄・乾燥後、この基材を参考例1の活性化用溶液に5秒間ディップした後、引き上げて薄膜犠牲層を形成した。その製膜済み基板を、2時間、静止空気中で乾燥させた後、昇温速度毎分5℃で100℃まで昇温し、その温度で1時間保持することによって、パラジウム核形成処理を施した。その後、0.5重量%のヒドラジンにより還元温度60℃、還元時間5時間の条件下において還元処理を行った。無電解パラジウムメッキ処理はメッキ温度60℃、メッキ時間0.5-2時間の条件下において、pHが約7の市販パラジウムメッキ浴(パラトップ、(株)奥野工業)を用いて行った。引き続き、メッキ温度60℃、メッキ時間0.5-1時間の条件下において、参考例3の銀メッキ浴を用いて無電解銀メッキ処理を施し、水素分離用パラジウム・銀フィルム状自立合金薄膜の製造原料としての積層体を得た。
(Example 8a) Preparation of laminate for production of palladium / silver film-like self-supporting alloy thin film for hydrogen separation A polyimide film substrate (manufactured by Ube Industries, Ltd.) having a length of 3 cm and a width of 7 cm and a film thickness of 25 μm was washed with acetone and dried. The substrate was dipped in the activation solution of Reference Example 5 for 5 seconds and then pulled up to form a thin film sacrificial layer. The film-formed substrate was dried in still air for 2 hours, and then heated to 100 ° C. at a rate of temperature increase of 5 ° C./min, and held at that temperature for 1 hour to perform palladium nucleation treatment. did. Thereafter, reduction treatment was performed with 0.5% by weight of hydrazine under the conditions of a reduction temperature of 60 ° C. and a reduction time of 5 hours. The electroless palladium plating treatment was performed using a commercial palladium plating bath (Paratop, Okuno Kogyo Co., Ltd.) having a pH of about 7 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5-2 hours. Subsequently, an electroless silver plating treatment was performed using the silver plating bath of Reference Example 3 under the conditions of a plating temperature of 60 ° C. and a plating time of 0.5 to 1 hour. A laminate as a manufacturing raw material was obtained.
(実施例8b)水素分離用パラジウム・銀フィルム状自立合金薄膜の調製
 実施例8aで得た無電解メッキ処理を施されたパラジウム・銀積層体をクロロホルム中に浸漬し、そのまま24時間保持することによって溶出処理を施し、乾燥・洗浄処理を経ることによって、水素分離用パラジウム・銀フィルム状自立金属積層薄膜を得た。次いで、静止空気中において、昇温速度毎分2℃で500℃まで昇温後、その温度で3時間保持し、降温速度毎分5℃で室温まで降温する合金化処理を施すことによって、水素分離用パラジウム・銀フィルム状自立合金薄膜を得た。
(Example 8b) Preparation of a palladium / silver film-like self-supporting alloy thin film for hydrogen separation The palladium / silver laminate subjected to the electroless plating treatment obtained in Example 8a is immersed in chloroform and held as it is for 24 hours. The elution process was performed by the above, and a palladium / silver film-like self-supporting metal laminated thin film for hydrogen separation was obtained through drying and washing processes. Next, in still air, after raising the temperature to 500 ° C. at a rate of temperature rise of 2 ° C./min, the alloy is treated by holding the temperature for 3 hours and lowering the temperature to 5 ° C./min to room temperature. A palladium / silver film self-supporting alloy thin film for separation was obtained.

Claims (14)

  1.  フィルム状基板表面に触媒機能を有する金属核を含む犠牲層を形成する工程A、前記犠牲層の表面上に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する工程B、および前記犠牲層を焼失または溶出させる工程Cから少なくともなることを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 Forming a sacrificial layer including a metal nucleus having a catalytic function on the surface of the film-like substrate; and forming a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal on the surface of the sacrificial layer. A method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, comprising at least Step B and Step C for burning out or eluting the sacrificial layer.
  2.  フィルム状基板表面に触媒機能を有する金属核を含む犠牲層を形成する工程A、前記犠牲層の表面上に触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を形成する工程B、および前記犠牲層および少なくとも前記フィルム状基板の前記犠牲層と接触する表面を焼失または溶出させる工程Cから少なくともなることを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 Forming a sacrificial layer including a metal nucleus having a catalytic function on the surface of the film-like substrate; and forming a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal on the surface of the sacrificial layer. A film-like self-supporting metal for hydrogen separation having a film thickness of 1 to 20 μm, comprising at least a step B and a step C in which the sacrificial layer and at least the surface of the film-like substrate in contact with the sacrificial layer are burned or eluted Thin film manufacturing method.
  3.  フィルム状自立金属薄膜の膜厚の均一性が±20%以内のフィルム状自立金属薄膜であることを特徴とする請求項1または2に記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 3. The film-like self-supporting film for hydrogen separation having a thickness of 1 to 20 μm according to claim 1, wherein the film-like self-supporting metal thin film has a film thickness uniformity within ± 20%. A method for producing a metal thin film.
  4.  触媒機能を有する金属核を生成する金属化合物を含有する溶液または分散液で前記フィルム状基板の表面に塗布・含浸処理して形成された犠牲層を有し、その犠牲層の表面近傍に触媒機能を有する金属核が存在する犠牲層塗布・含浸済みフィルム状基板を使用することを特徴とする請求項1~3のいずれかに記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 A sacrificial layer formed by applying and impregnating the surface of the film-like substrate with a solution or dispersion containing a metal compound that generates a metal nucleus having a catalytic function, and having a catalytic function near the surface of the sacrificial layer The film-like self-supporting metal thin film for hydrogen separation having a thickness of 1 to 20 µm according to any one of claims 1 to 3, characterized in that a sacrificial layer-coated and impregnated film-like substrate having a metal nucleus containing Manufacturing method.
  5.  工程Aが、フィルム状基板表面上に形成された犠牲層内の、触媒機能を有する金属核を生成する金属化合物に由来する金属のイオンを還元処理する工程、および工程Bが、前記還元処理したフィルム状基板表面を無電解メッキ処理する工程を含むことを特徴とする請求項1~4のいずれかに記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 Step A is a step of reducing metal ions derived from a metal compound that generates a metal nucleus having a catalytic function in a sacrificial layer formed on the surface of the film-like substrate, and Step B is subjected to the reduction treatment. The method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 µm according to any one of claims 1 to 4, further comprising a step of electroless plating the surface of the film-like substrate.
  6.  フィルム状基板の表面を塗布・含浸処理する溶液または分散液が、(1)触媒機能を有する金属核を生成する金属化合物、(2)(a)可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を調製する前駆体、および/または(b)可溶出性無機セラミックス、可溶出性無機高分子あるいは可溶出性有機高分子を調製する原料、および(3)可溶出性無機あるいは有機溶媒から少なくとも構成される溶液または分散液であることを特徴とする請求項4記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 The solution or dispersion for coating / impregnating the surface of the film substrate is (1) a metal compound that generates a metal nucleus having a catalytic function, (2) (a) a soluble inorganic ceramic, and a soluble inorganic polymer. Or a precursor for preparing a soluble organic polymer, and / or (b) a soluble inorganic ceramic, a raw material for preparing a soluble organic polymer or a soluble organic polymer, and (3) a soluble material. 5. The method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm according to claim 4, wherein the film or solution is a solution or dispersion comprising at least an inorganic or organic solvent.
  7.  フィルム状基板の表面を塗布・含浸処理する溶液または分散液が、(1)触媒機能を有する金属核を生成する金属化合物、(2)(a)可焼失性無機セラミックス、可焼失性無機高分子あるいは可焼失性有機高分子を調製する前駆体、および/または(b)可焼失性無機セラミックス、可焼失性無機高分子あるいは可焼失性有機高分子を調製する原料、および(3)可焼失性無機あるいは有機溶媒から少なくとも構成される溶液または分散液であることを特徴とする請求項4記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 The solution or dispersion for coating and impregnating the surface of the film substrate is (1) a metal compound that generates a metal nucleus having a catalytic function, (2) (a) a burnable inorganic ceramic, a burnable inorganic polymer Alternatively, a precursor for preparing a burnable organic polymer, and / or (b) a raw material for preparing a burnable inorganic ceramic, a burnable inorganic polymer or a burnable organic polymer, and (3) burnable. 5. The method for producing a film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm according to claim 4, wherein the film or solution is a solution or dispersion comprising at least an inorganic or organic solvent.
  8.  請求項1又は2のフィルム状自立金属薄膜の少なくとも一つの面に、水素分離機能を有する金属あるいは合金からなる層をさらに形成することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 3. A film for hydrogen separation having a film thickness of 1 to 20 μm, further comprising a layer made of a metal or alloy having a hydrogen separation function formed on at least one surface of the film-like self-supporting metal thin film according to claim 1 A method for producing a self-supporting metal thin film.
  9.  請求項1又は2のフィルム状自立金属薄膜の少なくとも一つの面に、パラジウム合金化しうる金属を含む層を形成させ、合金化処理することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜の製造方法。 3. A hydrogen separation film having a thickness of 1 to 20 μm, wherein a layer containing a metal capable of being alloyed with palladium is formed on at least one surface of the film-like self-supporting metal thin film according to claim 1 or 2, and alloyed. Of manufacturing a thin self-supporting metal thin film.
  10.  フィルム状基板、触媒機能を有する金属核を含む犠牲層、および触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層を少なくとも有することを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜製造用積層体。 A film thickness of 1 to 20 μm, comprising at least a film substrate, a sacrificial layer containing a metal nucleus having a catalytic function, and a layer made of a metal constituting the metal nucleus having a catalytic function or an alloy containing the metal A laminate for producing a film-like self-supporting metal thin film for hydrogen separation.
  11.  触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層が、請求項5記載の還元処理したフィルム状基板表面に無電解メッキ処理して形成された層であることを特徴とする請求項10記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜製造用積層体。 The layer comprising a metal constituting a metal nucleus having a catalytic function or an alloy containing the metal is a layer formed by electroless plating on the reduced film-like substrate surface according to claim 5. The laminate for producing a film for self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 µm according to claim 10.
  12.  触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層から少なくとも構成され、しかも請求項10または11記載の積層体の犠牲層を溶出または焼失処理して得たことを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜。 It is comprised at least from the layer which consists of the metal which comprises the metal nucleus which has a catalyst function, or the alloy containing the said metal, and was obtained by eluting or burning-out the sacrificial layer of the laminated body of Claim 10 or 11 characterized by the above-mentioned. A film-like free-standing metal thin film for hydrogen separation having a film thickness of 1 to 20 μm.
  13.  触媒機能を有する金属核を構成する金属あるいは前記金属を含む合金からなる層から少なくとも構成され、しかも請求項10または11記載の積層体の犠牲層および少なくとも前記フィルム状基板の前記犠牲層と接触する表面を溶出または焼失処理して得たことを特徴とする膜厚が1~20μmの水素分離用フィルム状自立金属薄膜。 It is comprised at least from the layer which consists of the metal which comprises the metal nucleus which has a catalyst function, or the alloy containing the said metal, and also contacts the sacrificial layer of the laminated body of at least 10 or 11, and the said sacrificial layer of the said film-form board | substrate. A film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm, characterized by being obtained by elution or burning of the surface.
  14.  フィルム状自立金属薄膜の膜厚の均一性が±20%以内であることを特徴とする請求項12または13記載の膜厚が1~20μmの水素分離用フィルム状自立金属薄膜。 14. The film-like self-supporting metal thin film for hydrogen separation having a film thickness of 1 to 20 μm according to claim 12, wherein the film thickness uniformity of the film-like self-supporting metal thin film is within ± 20%.
PCT/JP2009/052395 2008-02-15 2009-02-13 Filmy self-supporting thin metal film for hydrogen separation and process for producing the same WO2009102009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553457A JP5464422B2 (en) 2008-02-15 2009-02-13 Film-like free-standing metal thin film for hydrogen separation and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-034718 2008-02-15
JP2008034718 2008-02-15

Publications (1)

Publication Number Publication Date
WO2009102009A1 true WO2009102009A1 (en) 2009-08-20

Family

ID=40957040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052395 WO2009102009A1 (en) 2008-02-15 2009-02-13 Filmy self-supporting thin metal film for hydrogen separation and process for producing the same

Country Status (3)

Country Link
JP (1) JP5464422B2 (en)
KR (1) KR101261994B1 (en)
WO (1) WO2009102009A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140018127A (en) * 2012-08-01 2014-02-12 제일모직주식회사 Composition for coating separator, separator formed by using the coating agent composition, and battery using the separator
JP2014076433A (en) * 2012-10-11 2014-05-01 National Institute Of Advanced Industrial & Technology Method for manufacturing catalytic reaction tube and catalytic reaction tube
CN104555902A (en) * 2015-01-05 2015-04-29 中国科学院物理研究所 Self-supporting dielectric film and preparation method thereof
WO2020010522A1 (en) * 2018-07-10 2020-01-16 深圳通感微电子有限公司 Preparation method for independent metal film and metal film
US11814483B2 (en) 2012-08-01 2023-11-14 Samsung Sdi Co., Ltd. Separation membrane comprising coating layer, method of preparing same, and battery using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882278B2 (en) 2016-08-15 2021-01-05 Ali Akbar Babalou Palladium composite membrane
KR102047618B1 (en) * 2019-02-20 2019-12-02 이동섭 Aligner panel structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349926A (en) * 1991-05-29 1992-12-04 Mitsubishi Heavy Ind Ltd Hydrogen gas separation membrane
JP2001145825A (en) * 1999-11-24 2001-05-29 Mitsubishi Kakoki Kaisha Ltd Method for manufacturing hydrogen separating membrane
JP2003225544A (en) * 2002-02-04 2003-08-12 Toyota Motor Corp Hydrogen permeation membrane and production method therefor
JP2006000722A (en) * 2004-06-16 2006-01-05 Sumitomo Metal Mining Co Ltd Hydrogen-permeable alloy membrane and its manufacturing method
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2008279329A (en) * 2007-05-09 2008-11-20 Sumitomo Metal Mining Co Ltd Method for manufacturing palladium-based hydrogen permeable film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893992B2 (en) * 2005-08-12 2012-03-07 独立行政法人産業技術総合研究所 Hydrogen separation complex and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349926A (en) * 1991-05-29 1992-12-04 Mitsubishi Heavy Ind Ltd Hydrogen gas separation membrane
JP2001145825A (en) * 1999-11-24 2001-05-29 Mitsubishi Kakoki Kaisha Ltd Method for manufacturing hydrogen separating membrane
JP2003225544A (en) * 2002-02-04 2003-08-12 Toyota Motor Corp Hydrogen permeation membrane and production method therefor
JP2006000722A (en) * 2004-06-16 2006-01-05 Sumitomo Metal Mining Co Ltd Hydrogen-permeable alloy membrane and its manufacturing method
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2008279329A (en) * 2007-05-09 2008-11-20 Sumitomo Metal Mining Co Ltd Method for manufacturing palladium-based hydrogen permeable film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140018127A (en) * 2012-08-01 2014-02-12 제일모직주식회사 Composition for coating separator, separator formed by using the coating agent composition, and battery using the separator
KR101709694B1 (en) 2012-08-01 2017-02-23 제일모직주식회사 Composition for coating separator, separator formed by using the coating agent composition, and battery using the separator
US10050247B2 (en) 2012-08-01 2018-08-14 Samsung Sdi Co., Ltd. Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
US11814483B2 (en) 2012-08-01 2023-11-14 Samsung Sdi Co., Ltd. Separation membrane comprising coating layer, method of preparing same, and battery using same
JP2014076433A (en) * 2012-10-11 2014-05-01 National Institute Of Advanced Industrial & Technology Method for manufacturing catalytic reaction tube and catalytic reaction tube
CN104555902A (en) * 2015-01-05 2015-04-29 中国科学院物理研究所 Self-supporting dielectric film and preparation method thereof
WO2020010522A1 (en) * 2018-07-10 2020-01-16 深圳通感微电子有限公司 Preparation method for independent metal film and metal film

Also Published As

Publication number Publication date
KR101261994B1 (en) 2013-05-08
KR20100098572A (en) 2010-09-07
JP5464422B2 (en) 2014-04-09
JPWO2009102009A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5464422B2 (en) Film-like free-standing metal thin film for hydrogen separation and method for producing the same
TWI424871B (en) A gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use
EP1323846B1 (en) Process for preparing metal coatings from liquid solutions utilizing cold plasma
JP4559009B2 (en) Method for forming thermally mechanically stable metal / porous substrate composite film
MXPA06007876A (en) A metal palladium composite membrane or alloy palladium composite membrane and their preparation methods.
WO2010096988A1 (en) Process for preparing supported palladium or palladium alloy membrane
CN105774171A (en) Palladium or palladium alloy composite film on porous support surface and preparation method thereof
CN107376661B (en) Preparation method of palladium-based composite membrane
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
Changrong et al. Preparation of asymmetric Ni/ceramic composite membrane by electroless plating
US9149762B2 (en) Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
JP2007229616A (en) Hydrogen separation complex and its manufacturing method
CN102441330B (en) Palladium-based dual functional film and its preparation method
JP4759664B2 (en) Hydrogen separation membrane and hydrogen separation method
JP3117276B2 (en) Hydrogen separation membrane
JP2005254191A (en) Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP5273496B2 (en) Metal separation tube for hydrogen separation and method for producing the same
US20140170328A1 (en) Electroless plating of ruthenium and ruthenium-plated products
JP5311536B2 (en) Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag
CN111690916B (en) Method for chemically plating palladium on surface of porous composite support body
Xu et al. Novel electroless plating of ruthenium for fabrication of palladium-ruthenium composite membrane on PSS substrate and its characterization
JP2006272159A (en) Catalyst formed on surface of metal, and its forming method
JP2006310190A (en) Proton conducting type fuel cell and its manufacturing method
Twidwell Recipes for electroless plating of palladium and palladium alloy membranes
Chou et al. Preparation of thin Palladium composite membrane by an ultrasound-assisted electroless deposition technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016697

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009553457

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710991

Country of ref document: EP

Kind code of ref document: A1