JP2006272159A - Catalyst formed on surface of metal, and its forming method - Google Patents

Catalyst formed on surface of metal, and its forming method Download PDF

Info

Publication number
JP2006272159A
JP2006272159A JP2005094910A JP2005094910A JP2006272159A JP 2006272159 A JP2006272159 A JP 2006272159A JP 2005094910 A JP2005094910 A JP 2005094910A JP 2005094910 A JP2005094910 A JP 2005094910A JP 2006272159 A JP2006272159 A JP 2006272159A
Authority
JP
Japan
Prior art keywords
catalyst
metal
metal surface
sprayed coating
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094910A
Other languages
Japanese (ja)
Inventor
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005094910A priority Critical patent/JP2006272159A/en
Publication of JP2006272159A publication Critical patent/JP2006272159A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst formed on the surface of a metal which has a catalyst layer having a catalyst metal supported on a catalyst carrier with a large specific surface area having a number of micro pores. <P>SOLUTION: The catalyst formed on the surface of the metal having the catalyst layer having micro pores is prepared by burning a substance comprised of an organic material in the sprayed film formed by spraying an oxide containing the catalyst metal coated with the organic material to form pores and reducing the sprayed film becoming a porous oxidation layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属表面に形成させた触媒及びその形成方法に関するものであり、例えば、水素透過膜である金属の表面を触媒化することにより当該金属表面において水素の解離または結合を効率よく行うのに好適な金属表面に形成させた触媒及びその形成方法に係るものである。   The present invention relates to a catalyst formed on a metal surface and a method for forming the same. For example, by catalyzing a metal surface that is a hydrogen permeable membrane, hydrogen can be efficiently dissociated or bonded on the metal surface. The present invention relates to a catalyst formed on a suitable metal surface and a method for forming the catalyst.

水素透過膜は、水素ガスとその他のガスとの混合ガスの中から水素ガスのみを効率的に取り出せるものであり、特に、燃料電池での使用を主な用途として開発が進められている。例えば、固体高分子型燃料電池(PEFC)へ水素を供給するシステムにおいて、システムのコンパクト化を図るために、水蒸気改質器に水素透過膜によるCO除去器を組み合わせた水素供給装置の開発が行われている。   The hydrogen permeable membrane is capable of efficiently extracting only hydrogen gas from a mixed gas of hydrogen gas and other gas, and is being developed mainly for use in a fuel cell. For example, in a system for supplying hydrogen to a polymer electrolyte fuel cell (PEFC), in order to make the system more compact, a hydrogen supply device that combines a steam reformer with a CO remover using a hydrogen permeable membrane has been developed. It has been broken.

水素透過膜としては、従来から、水素透過能や水素脆性の点で優れるPdやPd合金が使用されてきた。しかしながら、貴金属であるPdは希少な金属であり、非常に高価な材料である。また、近年、電子部品等へPdが多用されていることから価格の上昇も予想され、Pd系水素透過膜に代わる安価な材料でなる水素透過膜が要請されている。そこで、例えば、下記特許文献1に開示されるようなTa、Nb又はそれらの合金など水素透過能のある材料で構成された水素透過膜の開発が進んでいる。   Conventionally, Pd and Pd alloys that are excellent in terms of hydrogen permeability and hydrogen embrittlement have been used as the hydrogen permeable membrane. However, Pd which is a noble metal is a rare metal and a very expensive material. In recent years, since Pd is frequently used in electronic parts and the like, the price is expected to rise, and a hydrogen permeable membrane made of an inexpensive material instead of the Pd-based hydrogen permeable membrane is demanded. Therefore, for example, development of a hydrogen permeable film made of a material having hydrogen permeability such as Ta, Nb, or an alloy thereof as disclosed in Patent Document 1 below is in progress.

しかしながら、非Pd系水素透過膜においても、水素の解離又は結合のために、当該水素透過膜の表面にはPd又はPd合金からなる触媒層を設ける必要がある。また、その触媒層は、水素解離(結合)を促進するために充分な触媒を担持可能な多孔質で比表面積の大きな触媒担体に触媒が担持されてなるものであることが望ましい。また、同様な要望が、燃料改質器等において燃焼用触媒となるステンレス等の金属表面に形成される触媒にも求められている。ここで、金属表面に多孔質な触媒担体を形成する方法としては、溶射法の他に、無電解メッキ法、陽極酸化法、溶着法、ディップコーティング法、ウォッシュコート法などが知られている。従来の溶射法は、緻密な溶射層を形成してしまうため、微細な空孔の形成が不十分で触媒担体の比表面積が小さく触媒としての活性が小さい。   However, even in a non-Pd-based hydrogen permeable membrane, it is necessary to provide a catalyst layer made of Pd or a Pd alloy on the surface of the hydrogen permeable membrane in order to dissociate or bond hydrogen. Further, the catalyst layer is preferably formed by supporting a catalyst on a porous catalyst carrier having a large specific surface area capable of supporting a catalyst sufficient to promote hydrogen dissociation (bonding). Similar demands are also being sought for catalysts formed on metal surfaces such as stainless steel, which serve as combustion catalysts in fuel reformers and the like. Here, as a method for forming a porous catalyst carrier on the metal surface, in addition to the spraying method, an electroless plating method, an anodic oxidation method, a welding method, a dip coating method, a wash coating method, and the like are known. Since the conventional thermal spraying method forms a dense thermal spray layer, formation of fine pores is insufficient, the specific surface area of the catalyst carrier is small, and the activity as a catalyst is small.

また、無電解めっき法で、下地の金属を直接触媒化する場合には下地の金属がニッケルやパラジウムに限定され、また、比較的触媒金属の粒子が大きくなり高い活性が期待できない。   Further, when the underlying metal is directly catalyzed by electroless plating, the underlying metal is limited to nickel or palladium, and the catalytic metal particles are relatively large, and high activity cannot be expected.

また、陽極酸化法では、数十μmの多数の空孔を有し比表面積の大きな多孔質のアルミナ層を得ることができるが、下地の金属がアルミニウムに限定され、さらに、陽極酸化法、無電解メッキ法では、いずれもアルミニウムを使用するため、400℃以上では使用しにくく、アルミニウムの融点である約650℃以上の高温では使用できない。   In addition, in the anodic oxidation method, a porous alumina layer having a large number of pores of several tens of μm and a large specific surface area can be obtained. However, the base metal is limited to aluminum. In any of the electrolytic plating methods, since aluminum is used, it is difficult to use at 400 ° C. or higher, and it cannot be used at a high temperature of about 650 ° C. or higher, which is the melting point of aluminum.

また、ディップコート法やウォッシュコート法により、金属上に厚い触媒層を直接形成した場合には、触媒層に高温が作用したときに触媒層が剥離する問題がある。また、ゾルゲル法では触媒として十分な量を金属上に被覆できない。これらの方法では、触媒層が緻密に形成されるため、比表面積が小さく触媒活性が乏しかった。さらに、アルミニウム合金などを溶射して後処理する場合は、被膜が緻密なため、表面のみしか活性化できなかった。
特開2002−336655号公報
Further, when a thick catalyst layer is directly formed on a metal by a dip coating method or a wash coating method, there is a problem that the catalyst layer peels off when a high temperature acts on the catalyst layer. Further, the sol-gel method cannot coat a metal with a sufficient amount as a catalyst. In these methods, since the catalyst layer is densely formed, the specific surface area is small and the catalytic activity is poor. Furthermore, when the thermal treatment was performed by spraying an aluminum alloy or the like, only the surface could be activated because the coating film was dense.
JP 2002-336655 A

本発明は、上記の問題点に鑑みなされたものであり、多数の微細な細孔を有する比表面積の大きな触媒担体に触媒金属が担持されてなる触媒層を有する金属表面に形成された触媒を提供することを目的としている。   The present invention has been made in view of the above problems, and a catalyst formed on a metal surface having a catalyst layer in which a catalyst metal is supported on a catalyst carrier having a large number of fine pores and a large specific surface area. It is intended to provide.

かかる課題を解決する、本発明の第1発明は、有機物をコーティングした触媒金属を含む酸化物を金属表面に溶射して形成させた溶射被膜中の有機物からなる物質を燃焼させて空孔を形成させ、多孔質な酸化層となった溶射被膜を還元して微細な細孔を有する触媒層を形成させてなる金属表面に形成させた触媒である。ここで、有機物としてはポリビニルアルコール、ポリビニルブチラールなどで良く、触媒金属及び触媒担体である酸化物を分散させる溶媒に溶解するものであれば良い。また、触媒担体となる酸化物としてはジルコニア、アルミナ又は酸化ニオブ等種々の酸化物を利用することができる。   To solve this problem, the first invention of the present invention forms pores by burning an organic substance in a sprayed coating formed by spraying an oxide containing a catalytic metal coated with an organic substance on the metal surface. The catalyst is formed on the metal surface by reducing the sprayed coating formed into a porous oxide layer to form a catalyst layer having fine pores. Here, the organic substance may be polyvinyl alcohol, polyvinyl butyral, etc., as long as it dissolves in a solvent in which the catalyst metal and the oxide that is the catalyst carrier are dispersed. Various oxides such as zirconia, alumina or niobium oxide can be used as the oxide serving as the catalyst carrier.

かかる第1発明によれば、上記した触媒金属と酸化物とを、例えば有機物が溶解した溶媒中に均一に分散させてスラリー状にした後、溶媒分が揮発する温度で熱処理することにより、触媒金属を含む酸化物に有機物が被覆された溶射用粉末が得られる。この溶射用粉末を、金属表面に溶射することにより、金属表面には有機物からなる物質を含む溶射皮膜が形成される。   According to the first invention, the catalyst metal and the oxide described above are uniformly dispersed in, for example, a solvent in which an organic substance is dissolved to form a slurry, and then heat-treated at a temperature at which the solvent component volatilizes. A thermal spraying powder in which an organic substance is coated on an oxide containing a metal is obtained. By spraying this thermal spraying powder on the metal surface, a thermal spray coating containing a substance made of an organic substance is formed on the metal surface.

ここで、上記溶射皮膜に含まれる有機物からなる物質の一部とは、溶射時に溶射熱によって有機物が分解してなる炭素又は炭素、酸素及び水素からなる中間体である。それら有機物からなる物質を燃焼させることで、有機物からなる物質である炭素や中間体は分解し、微細な細孔を有し比表面積の大きな触媒担体である酸化層となった溶射皮膜が形成される。ここで、酸化物には触媒金属が含まれているので、多数の微細な細孔を有し比表面積の大きな触媒担体である溶射皮膜の該空孔に触媒金属が担持されてなる触媒層を有する金属表面に形成された触媒が提供される。   Here, a part of the substance made of an organic substance contained in the thermal spray coating is an intermediate made of carbon or carbon, oxygen, and hydrogen obtained by decomposing the organic substance by thermal spraying heat at the time of thermal spraying. By burning these organic substances, carbon and intermediates, which are organic substances, are decomposed to form a thermal spray coating that is an oxide layer that is a catalyst carrier with fine pores and a large specific surface area. The Here, since the oxide contains a catalyst metal, a catalyst layer in which the catalyst metal is supported in the pores of the thermal spray coating, which is a catalyst carrier having a large number of fine pores and a large specific surface area, is provided. A catalyst formed on a metal surface is provided.

本発明の第2発明は、有機物を被覆した触媒担体となる酸化物を金属表面に溶射して形成させた溶射被膜中の有機物からなる物質を燃焼させて空孔を形成させ、多孔質な酸化層となった溶射被膜に触媒金属を担持してなることを特徴とする金属表面に形成させた触媒である。かかる第2発明によれば、金属表面に形成された、微細な空孔と大きな比表面積を有する触媒担体である酸化層となった溶射皮膜に、触媒金属を担持させることにより、多数の微細な細孔を有し比表面積の大きな触媒担体である溶射皮膜の該細孔に触媒金属が担持されてなる触媒層を有する金属表面に形成された触媒が提供される。   According to the second aspect of the present invention, a porous oxide is formed by burning a substance made of organic matter in a sprayed coating formed by spraying an oxide serving as a catalyst carrier coated with an organic matter on a metal surface. A catalyst formed on a metal surface, characterized in that a catalytic metal is supported on a layered sprayed coating. According to the second invention, the catalyst metal is supported on the thermal spray coating formed on the metal surface and formed as an oxide layer which is a catalyst carrier having fine pores and a large specific surface area, whereby a large number of fine metals are supported. There is provided a catalyst formed on a metal surface having a catalyst layer in which a catalyst metal is supported on the pores of a thermal spray coating that is a catalyst carrier having pores and a large specific surface area.

本発明の第3発明は、有機物を被覆した触媒金属を含む酸化物を、金属表面に溶射して溶射被膜を形成させた後、熱処理により溶射被膜中の炭素を燃焼させて空孔を形成させ、ついで、多孔質な酸化層となった溶射被膜を還元して、微細な細孔を有する触媒金属の活性層を形成させる金属表面に触媒を形成させる方法である。本発明によれば、上記第1発明の触媒を好適に形成することができる。   According to a third aspect of the present invention, an oxide containing a catalytic metal coated with an organic substance is sprayed on a metal surface to form a sprayed coating, and then carbon in the sprayed coating is burned by heat treatment to form pores. Then, the thermal spray coating formed into a porous oxide layer is reduced to form a catalyst on the metal surface for forming a catalytic metal active layer having fine pores. According to the present invention, the catalyst of the first invention can be suitably formed.

本発明の第4発明は、有機物を被覆した触媒担体となる酸化物を、金属表面に溶射して溶射被膜を形成させた後、熱処理により溶射被膜中の有機物からなる物質を燃焼させて空孔を形成させ、ついで、多孔質な酸化層となった溶射被膜に触媒金属を担持することを特徴とする金属表面に触媒を形成させる方法である。本発明によれば、上記第2発明の触媒を好適に形成できる。   According to a fourth aspect of the present invention, an oxide serving as a catalyst support coated with an organic substance is sprayed on a metal surface to form a sprayed coating, and then a substance made of organic matter in the sprayed coating is burned by heat treatment to form pores. Then, the catalyst is formed on the metal surface, characterized in that the catalyst metal is supported on the sprayed coating formed into a porous oxide layer. According to the present invention, the catalyst of the second invention can be suitably formed.

ここで、上記の第4発明において得られた多孔質な触媒担体である溶射皮膜に触媒金属を担持させる方法としては、浸漬法、刷毛塗り法又はスプレー塗布法などを使用することができるが、特に含浸法又は析出沈殿法使用することが好ましい。また、上記発明において、熱処理により溶射被膜中の有機物からなる物質を燃焼させ、空孔径が1nm〜500μmの範囲、望ましくは1nm〜100μmの範囲、さらに望ましくは1nm〜10μmの範囲の細孔を形成させることが好ましい。 また、上記発明において、有機物の被覆量を調整して、溶射被膜中の空隙率及び/又は空孔径を制御することが好ましい。   Here, as a method of supporting the catalyst metal on the thermal spray coating that is the porous catalyst support obtained in the fourth invention, a dipping method, a brush coating method, a spray coating method, or the like can be used. It is particularly preferable to use an impregnation method or a precipitation method. Further, in the above invention, a substance composed of an organic substance in the thermal spray coating is burned by heat treatment to form pores having a pore diameter in the range of 1 nm to 500 μm, preferably in the range of 1 nm to 100 μm, more preferably in the range of 1 nm to 10 μm. It is preferable to make it. Moreover, in the said invention, it is preferable to adjust the coating amount of organic substance and to control the porosity and / or hole diameter in a sprayed coating.

本発明は上記のように構成されているので、多数の微細な細孔を有する比表面積の大きな触媒担体に触媒金属が担持されてなる触媒層を有する金属表面に形成された触媒およびその形成方法を提供することが可能となる。   Since the present invention is configured as described above, a catalyst formed on a metal surface having a catalyst layer in which a catalyst metal is supported on a catalyst carrier having a large number of fine pores and a large specific surface area, and a method for forming the catalyst Can be provided.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。アルミニウム、ステンレス、銅、ニッケル、ニオブ、チタン、ジルコニウム又はタンタル等を含む金属などの板、チューブ、波板など様々な形状の金属の表面に、触媒金属を含む触媒担体となる酸化物に有機物が被覆された溶射用粉末を溶射して溶射皮膜を形成した後、熱処理により溶射被膜中の有機物からなる物質を燃焼させて、直径が1nm〜500μm、望ましくは1nm〜100μm、さらに望ましくは1nm〜10μmの空孔を形成させ、多孔質な酸化層である溶射皮膜を形成させる。このように、有機物を被覆した触媒金属を含む酸化物を金属板上に溶射した後、溶射被膜中の有機物からなる物質を分解して除去することにより、多孔質な触媒層あるいは触媒担体層を形成させることができ、耐熱性の高い金属上にも任意の厚さの多孔質な触媒層を形成させることが可能となる。また、多孔質層の厚さは溶射条件により任意に制御することができ、かつ、使用する有機物の種類や量を選ぶことで空隙率や細孔径も任意に制御することができる。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. An organic substance is present on the surface of a metal of various shapes such as a plate containing aluminum, stainless steel, copper, nickel, niobium, titanium, zirconium or tantalum, etc. After spraying the coated thermal spraying powder to form a thermal spray coating, a substance made of organic matter in the thermal spray coating is burned by heat treatment to have a diameter of 1 nm to 500 μm, preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm. The thermal spray coating which is a porous oxide layer is formed. As described above, after the oxide containing the catalyst metal coated with the organic material is sprayed on the metal plate, the porous material layer or the catalyst carrier layer is formed by decomposing and removing the organic material in the sprayed coating. It is possible to form a porous catalyst layer of any thickness on a metal with high heat resistance. Further, the thickness of the porous layer can be arbitrarily controlled according to the spraying conditions, and the porosity and pore diameter can also be arbitrarily controlled by selecting the kind and amount of the organic substance to be used.

これを触媒として使用する際には、水素などにより触媒金属の酸化物を還元して微細な細孔を持つ活性層を形成させる。溶射被膜中の有機物からなる物質を分解させて空孔を形成させるための熱処理は、約200〜約800℃で1〜10時間程度、望ましくは約400〜約600℃で2〜4時間程度行うことが好ましい。雰囲気は、完全に分解させる場合は酸化性雰囲気中が好ましいが、炭素が残存しても支障がない場合は非酸化性雰囲気中でも微細な細孔を形成させることができる。   When this is used as a catalyst, the catalytic metal oxide is reduced with hydrogen or the like to form an active layer having fine pores. The heat treatment for decomposing the organic substance in the thermal spray coating to form pores is performed at about 200 to about 800 ° C. for about 1 to 10 hours, preferably about 400 to about 600 ° C. for about 2 to 4 hours. It is preferable. The atmosphere is preferably an oxidizing atmosphere in the case of complete decomposition, but fine pores can be formed even in a non-oxidizing atmosphere if there is no problem even if carbon remains.

また、アルミニウム、ステンレス、銅、ニッケル、ニオブ、チタン、ジルコニウム又はタンタル等を含む金属などの板、チューブ、波板など様々な形状の金属の表面に、有機物が被覆された触媒担体となる酸化物を溶射し溶射皮膜を形成した、上記と同様の熱処理により溶射被膜中の有機物からなる物質を燃焼して分解し、直径が1nm〜500μm、望ましくは1nm〜100μm、さらに望ましくは1nm〜10μmの細孔を形成させ、多孔質な酸化層を形成させる。この酸化層に、浸漬、刷毛塗り、スプレー塗布、析出沈殿法などにより触媒金属又は担体物質をコーティングすることにより、微細な細孔と大きな比表面積を形成させた触媒又は触媒担体を得る。したがって、多孔質で比表面積の大きい触媒担体層を形成させ、後から既知の方法で触媒金属を担持することができるため、触媒金属の種類が限定されない。また、溶射膜の厚さは溶射条件により任意に制御することができ、かつ、有機物の種類やコーティングする有機物の量を選ぶことで空隙率や細孔径も任意に制御することができる。さらに、高温でも剥離することがない。   In addition, oxides serving as catalyst supports in which organic materials are coated on the surface of various shapes of metal such as aluminum, stainless steel, copper, nickel, niobium, titanium, zirconium or tantalum, etc. The material composed of organic matter in the sprayed coating is burned and decomposed by heat treatment similar to the above to form a sprayed coating, and the diameter is 1 nm to 500 μm, preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm. Pores are formed, and a porous oxide layer is formed. By coating this oxide layer with a catalyst metal or a support material by dipping, brushing, spraying, precipitation or the like, a catalyst or catalyst support in which fine pores and a large specific surface area are formed is obtained. Therefore, since the catalyst carrier layer having a large specific surface area can be formed and supported on the catalyst metal by a known method later, the type of the catalyst metal is not limited. Further, the thickness of the sprayed film can be arbitrarily controlled according to the spraying conditions, and the porosity and pore diameter can be arbitrarily controlled by selecting the kind of organic substance and the amount of organic substance to be coated. Furthermore, it does not peel off even at high temperatures.

上記のいずれかの方法により、金属表面上に、水素、炭化水素、アルコール等と酸素を触媒上で反応させ酸化させる触媒燃焼用の燃焼触媒や、水素を解離または結合するための水素解離(結合)触媒を形成することができる。具体的には、燃焼触媒としては、Pt/Al23などであり、Ptの代わりに、Fe、Ni、Co、Ru、Pd、Rh、Cu、Nb、Zr又はTa等及びこれらの酸化物を用いることもできる。また、水素解離(結合)触媒としては、Pd/Al23などであり、Pdの代わりに、Pt又はNi及びこれらの酸化物を用いることもできる。 Using any of the above methods, a combustion catalyst for catalytic combustion that oxidizes hydrogen, hydrocarbons, alcohol, etc. with oxygen on the catalyst surface, or hydrogen dissociation (bonding) for dissociating or bonding hydrogen ) A catalyst can be formed. Specifically, the combustion catalyst is Pt / Al 2 O 3 or the like, and instead of Pt, Fe, Ni, Co, Ru, Pd, Rh, Cu, Nb, Zr, Ta or the like and oxides thereof Can also be used. The hydrogen dissociation (bonding) catalyst is Pd / Al 2 O 3 or the like, and Pt or Ni and oxides thereof can be used instead of Pd.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

[実施例1]
ジルコニア粉末(粒子径0.1〜2μm)とポリビニルアルコールを重量比90:10で水を溶媒としボールミル混合した後、100℃にて乾燥し、次いで造粒し、ポリビニルアルコールで被覆されたジルコニア粉末である溶射用粉末を作製した。次に、基板であるアルミニウム板の表面をサンドブラスト処理により粗面化した。溶射用粉末を大気中でプラズマ溶射し、基板上に70μmの厚みの溶射皮膜を形成した。図1に施工した被膜断面状況の模式図を示す。図1において、符号10は基板、符号12はポリビニルアルコールからなる物質、符号14はジルコニア粒子、符号15は触媒金属である。この後、大気中で500℃にて4時間の熱処理を行い、ポリビニルアルコールからなる物質12を燃焼して分解することにより多孔質な触媒担体である溶射被膜を得た。この溶射皮膜の細孔を測定したところ、直径10nm〜1μmの細孔が生成していた。これを基板Aとする。
[Example 1]
Zirconia powder (particle diameter 0.1 to 2 μm) and polyvinyl alcohol are mixed in a weight ratio of 90:10 using water as a solvent in a ball mill, dried at 100 ° C., then granulated, and coated with polyvinyl alcohol. A thermal spraying powder was produced. Next, the surface of the aluminum plate as a substrate was roughened by sandblasting. The powder for thermal spraying was plasma sprayed in the atmosphere to form a sprayed coating having a thickness of 70 μm on the substrate. FIG. 1 shows a schematic diagram of the cross-sectional state of the applied film. In FIG. 1, reference numeral 10 is a substrate, reference numeral 12 is a substance made of polyvinyl alcohol, reference numeral 14 is zirconia particles, and reference numeral 15 is a catalyst metal. Thereafter, heat treatment was performed in the atmosphere at 500 ° C. for 4 hours to burn and decompose the substance 12 made of polyvinyl alcohol, thereby obtaining a sprayed coating as a porous catalyst carrier. When the pores of this thermal spray coating were measured, pores having a diameter of 10 nm to 1 μm were generated. This is called substrate A.

ポリビニルアルコールとアルミナ粉末(粒子径0.1〜2μm)を重量比で20:80にした水系スラリーとした後、乾燥し、次いで造粒して溶射用粉末を作成した。上記と同様に表面が調整された基板10に、アルミナ粉末を含む溶射用粉末を上記と同様に溶射して溶射皮膜を形成した。その後、その溶射皮膜中の有機物からなる物質を熱処理で燃焼させて、多孔質な触媒担体である溶射皮膜を形成した。この溶射皮膜の細孔径は、直径100nm〜10μmであった。これを基板Bとする。   A water-based slurry in which polyvinyl alcohol and alumina powder (particle diameter of 0.1 to 2 μm) were made to have a weight ratio of 20:80 was dried, and then granulated to prepare a thermal spraying powder. The thermal spraying powder containing alumina powder was sprayed in the same manner as above on the substrate 10 whose surface was adjusted in the same manner as described above to form a thermal spray coating. Thereafter, the organic material in the thermal spray coating was burned by heat treatment to form a thermal spray coating as a porous catalyst carrier. The pore diameter of this sprayed coating was 100 nm to 10 μm in diameter. This is called a substrate B.

ポリビニルブチラールと酸化ニオブ粉末(粒子径0.1〜2μm)を重量比で10:90にしたエタール系スラリーとした後、乾燥し、次いで造粒して溶射用粉末を作成した。その溶射用粉末を上記と同様に基板10に溶射して溶射皮膜を形成し、当該溶射皮膜から有機物からなる物質を燃焼して分解してなる多孔質の触媒担体である溶射皮膜を形成した。その溶射皮膜の細孔径は、直径10nm〜100nmであった。これを基板Cとする。   A polyvinyl butyral and niobium oxide powder (particle diameter 0.1 to 2 μm) was made into an etal slurry having a weight ratio of 10:90, dried, and then granulated to prepare a thermal spraying powder. The thermal spraying powder was sprayed onto the substrate 10 in the same manner as described above to form a thermal sprayed coating, and a thermal sprayed coating as a porous catalyst carrier formed by burning and decomposing a substance made of organic matter from the thermal sprayed coating was formed. The spray coating had a pore diameter of 10 nm to 100 nm. This is a substrate C.

基板Aの溶射皮膜に、触媒金属15であるPdを含むコロイド溶液を含浸法で塗布し、乾燥、400℃にて熱処理し、触媒担体であるジルコニアの多孔層にPd触媒が担持された触媒層が基板10の上に形成された構造を持つ触媒を得た。この触媒を500℃まで昇温し、ついで室温まで放冷しても、触媒層は剥離することなく、繰り返し使用することができた。   A catalyst layer in which a Pd catalyst is supported on a porous layer of zirconia as a catalyst carrier by applying a colloidal solution containing Pd as the catalyst metal 15 to the thermal spray coating of the substrate A by an impregnation method, drying and heat-treating at 400 ° C. A catalyst having a structure formed on the substrate 10 was obtained. Even when this catalyst was heated to 500 ° C. and then allowed to cool to room temperature, the catalyst layer could be used repeatedly without peeling.

基板Bを、触媒金属である塩化ルテニウムを5重量%含む水溶液に室温にて、10時間浸漬後、400℃にて3時間焼成し、触媒担体であるアルミナの多孔層にRu触媒が担持された触媒層が基板10の上に形成された構造を持つ触媒を得た。触媒として使用する際は、水素などでルテニウムを還元して使用した。この触媒を500℃まで昇温し、ついで室温まで放冷しても、触媒層は剥離することなく、繰り返し使用することができた。   Substrate B was immersed in an aqueous solution containing 5% by weight of ruthenium chloride as a catalyst metal at room temperature for 10 hours, and then calcined at 400 ° C. for 3 hours. The Ru catalyst was supported on a porous layer of alumina as a catalyst carrier. A catalyst having a structure in which a catalyst layer was formed on the substrate 10 was obtained. When used as a catalyst, ruthenium was reduced with hydrogen or the like. Even when this catalyst was heated to 500 ° C. and then allowed to cool to room temperature, the catalyst layer could be used repeatedly without peeling.

[実施例2]
触媒金属であるPd、ジルコニア粉末(粒子径0.1〜2μm)及びポリビニルアルコールを重量比5:85:10で水を溶媒としボールミル混合した後、100℃にて乾燥し、次いで造粒して溶射用粉末を作製した。次に、水素透過膜であるTaを主体とした基板10((株)ニラコ製、3Nグレード、板厚1mm)の表面に、溶射用粉末を真空中でプラズマ溶射し、基板上に70μmの厚みの溶射皮膜を形成した。この後、大気中で500℃にて4時間の熱処理を行い、ポリビニルアルコールからなる物質を燃焼して分解することによりPdが担持された多孔質な溶射皮膜である触媒層が基板10の上に形成された構造を持つ触媒を得た。この触媒層の空孔を測定したところ、直径10nm〜1μmの細孔が生成していた。この触媒を500℃まで昇温し、ついで室温まで放冷しても、触媒層は剥離することなく、繰り返し使用することができた。
[Example 2]
Pd, which is a catalytic metal, zirconia powder (particle size: 0.1 to 2 μm) and polyvinyl alcohol are mixed at a weight ratio of 5:85:10 using water as a solvent in a ball mill, dried at 100 ° C., and then granulated. A powder for thermal spraying was prepared. Next, the powder for thermal spraying was plasma sprayed in vacuum on the surface of a substrate 10 (manufactured by Nilaco Co., Ltd., 3N grade, plate thickness 1 mm) mainly composed of Ta, which is a hydrogen permeable film, and a thickness of 70 μm was formed on the substrate. A sprayed coating was formed. Thereafter, a heat treatment is performed in the atmosphere at 500 ° C. for 4 hours, and a catalyst layer, which is a porous sprayed coating carrying Pd, is formed on the substrate 10 by burning and decomposing a substance made of polyvinyl alcohol. A catalyst with the structure formed was obtained. When pores of the catalyst layer were measured, pores having a diameter of 10 nm to 1 μm were generated. Even when this catalyst was heated to 500 ° C. and then allowed to cool to room temperature, the catalyst layer could be used repeatedly without peeling.

[実施例3]
触媒金属であるPd、酸化ニオブ粉末(粒子径0.1〜2μm)及びポリビニルアルコールを重量比5:85:10で水を溶媒としボールミル混合した後、100℃にて乾燥し、次いで造粒して溶射用粉末を作製した。次に、水素透過膜であるNi30Ti31Nb39合金からなる基板10(板厚1mm)の表面に、溶射用粉末を真空中でプラズマ溶射し、基板上に70μmの厚みの溶射皮膜を形成した。この後、大気中で500℃にて4時間の熱処理を行い、ポリビニルアルコールからなる物質を燃焼して分解することによりPdが担持された多孔質な溶射皮膜である触媒層が基板10の上に形成された構造を持つ触媒を得た。この触媒層の空孔を測定したところ、直径10nm〜1μmの細孔が生成していた。この触媒を500℃まで昇温し、ついで室温まで放冷しても、触媒層は剥離することなく、繰り返し使用することができた。
[Example 3]
Pd, which is a catalytic metal, niobium oxide powder (particle size 0.1 to 2 μm) and polyvinyl alcohol are mixed at a weight ratio of 5:85:10 using water as a solvent in a ball mill, dried at 100 ° C., and then granulated. The powder for thermal spraying was produced. Next, the thermal spraying powder is plasma sprayed in vacuum on the surface of the substrate 10 (plate thickness 1 mm) made of a Ni 30 Ti 31 Nb 39 alloy, which is a hydrogen permeable film, to form a sprayed coating having a thickness of 70 μm on the substrate. did. Thereafter, a heat treatment is performed in the atmosphere at 500 ° C. for 4 hours, and a catalyst layer, which is a porous sprayed coating carrying Pd, is formed on the substrate 10 by burning and decomposing a substance made of polyvinyl alcohol. A catalyst with the structure formed was obtained. When pores of the catalyst layer were measured, pores having a diameter of 10 nm to 1 μm were generated. Even when this catalyst was heated to 500 ° C. and then allowed to cool to room temperature, the catalyst layer could be used repeatedly without peeling.

本発明の実施例における断面図である。It is sectional drawing in the Example of this invention.

符号の説明Explanation of symbols

10 基板
12 有機物からなる物質
14 酸化物
15 触媒金属
10 Substrate 12 Organic substance 14 Oxide 15 Catalytic metal

Claims (7)

有機物を被覆した触媒金属を含む酸化物を金属表面に溶射して形成させた溶射被膜中の有機物からなる物質を燃焼させて空孔を形成させ、多孔質な酸化層となった溶射被膜を還元して微細な細孔を有する触媒層を形成させてなる金属表面に形成させた触媒。 An organic substance-coated oxide containing a catalytic metal is sprayed onto the metal surface to burn the organic material in the sprayed coating to form pores, reducing the sprayed coating that has become a porous oxide layer. The catalyst formed on the metal surface formed by forming a catalyst layer having fine pores. 有機物を被覆した触媒担体となる酸化物を金属表面に溶射して形成させた溶射被膜中の有機物からなる物質を燃焼させて空孔を形成させ、多孔質な酸化層となった溶射被膜に触媒金属を担持してなることを特徴とする金属表面に形成させた触媒。 An organic material-coated oxide carrier is sprayed onto the metal surface to form a pore by burning the organic material in the sprayed coating to form a porous oxide layer. A catalyst formed on a metal surface, characterized by supporting a metal. 有機物を被覆した触媒金属を含む酸化物を、金属表面に溶射して溶射被膜を形成させた後、熱処理により溶射被膜中の炭素を燃焼させて空孔を形成させ、ついで、多孔質な酸化層となった溶射被膜を還元して、微細な細孔を有する触媒金属の活性層を形成させる金属表面に触媒を形成させる方法。 An oxide containing a catalytic metal coated with an organic substance is sprayed onto the metal surface to form a sprayed coating, and then the carbon in the sprayed coating is burned by heat treatment to form vacancies, and then a porous oxide layer A method of forming a catalyst on a metal surface by reducing the sprayed coating thus formed to form an active layer of catalytic metal having fine pores. 有機物を被覆した 触媒担体となる酸化物を、金属表面に溶射して溶射被膜を形成させた後、熱処理により溶射被膜中の有機物からなる物質を燃焼させて空孔を形成させ、ついで、多孔質な酸化層となった溶射被膜に触媒金属を担持することを特徴とする金属表面に触媒を形成させる方法。 The catalyst carrier coated with organic matter is thermally sprayed onto the metal surface to form a sprayed coating, and then the organic material in the sprayed coating is burned by heat treatment to form pores, and then porous. A method for forming a catalyst on a metal surface, wherein a catalytic metal is supported on a sprayed coating that has become an oxide layer. 担体層に、含浸法又は析出沈殿法のいずれかの方法により触媒金属を担持する請求項4のいずれかに記載の金属表面に触媒を形成させる方法。 The method for forming a catalyst on a metal surface according to any one of claims 4 to 5, wherein a catalyst metal is supported on the support layer by any one of an impregnation method and a precipitation method. 熱処理により溶射被膜中の有機物からなる物質を燃焼させて細孔径が1nm〜500μmの範囲の空孔を形成させる請求項3乃至5のいずれかに記載の金属表面に触媒を形成させる方法。 The method for forming a catalyst on a metal surface according to any one of claims 3 to 5, wherein a substance composed of an organic substance in the thermal spray coating is burned by heat treatment to form pores having a pore diameter in the range of 1 nm to 500 µm. 有機物の被覆量を調整して、溶射被膜中の空隙率及び/又は細孔径を制御する請求項3乃至6のいずれかに記載の金属表面に触媒およびまたは触媒担体を形成させる方法。 The method for forming a catalyst and / or catalyst support on the metal surface according to any one of claims 3 to 6, wherein the porosity and / or pore diameter in the sprayed coating is controlled by adjusting the coating amount of the organic matter.
JP2005094910A 2005-03-29 2005-03-29 Catalyst formed on surface of metal, and its forming method Pending JP2006272159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094910A JP2006272159A (en) 2005-03-29 2005-03-29 Catalyst formed on surface of metal, and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094910A JP2006272159A (en) 2005-03-29 2005-03-29 Catalyst formed on surface of metal, and its forming method

Publications (1)

Publication Number Publication Date
JP2006272159A true JP2006272159A (en) 2006-10-12

Family

ID=37207415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094910A Pending JP2006272159A (en) 2005-03-29 2005-03-29 Catalyst formed on surface of metal, and its forming method

Country Status (1)

Country Link
JP (1) JP2006272159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074689A1 (en) * 2005-12-28 2007-07-05 Hitachi, Ltd. Catalyst having function of dehydrogenation or hydrogenation, fuel cell employing the catalyst, and apparatus for storing/supplying hydrogen
JP2008098069A (en) * 2006-10-16 2008-04-24 Inst Nuclear Energy Research Rocaec Anode structure of nanochannel composite thin film, and manufacturing method of atmospheric plasma spraying system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074689A1 (en) * 2005-12-28 2007-07-05 Hitachi, Ltd. Catalyst having function of dehydrogenation or hydrogenation, fuel cell employing the catalyst, and apparatus for storing/supplying hydrogen
JP2008098069A (en) * 2006-10-16 2008-04-24 Inst Nuclear Energy Research Rocaec Anode structure of nanochannel composite thin film, and manufacturing method of atmospheric plasma spraying system

Similar Documents

Publication Publication Date Title
US6649559B2 (en) Supported metal membrane, a process for its preparation and use
TW200817533A (en) Cathode for electrolytic processes
EP1663512B1 (en) Method for providing thin hydrogen separation membranes
JP5464422B2 (en) Film-like free-standing metal thin film for hydrogen separation and method for producing the same
JP4998881B2 (en) High durability hydrogen separation membrane and method for producing the same
KR101528334B1 (en) a micro channel reactor and a fabricating method thereof
JP2007283184A (en) Hydrogen separation thin membrane and manufacturing method
JP4759664B2 (en) Hydrogen separation membrane and hydrogen separation method
JP2006272159A (en) Catalyst formed on surface of metal, and its forming method
JP2010214366A (en) Carrier for toxic gas decomposition catalyst and method of producing the same
JP5825465B2 (en) Hydrogen separation membrane, production method thereof, and hydrogen separation method
JP2004249264A (en) Membrane reactor
JP2008126151A (en) Catalytic body using anodic aluminum oxide film
JP2005254191A (en) Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof
US11548067B2 (en) Method for producing an open-pored metal body having an oxide layer and metal body produced by said method
JP2011116603A (en) Protective film for hydrogen separation membrane in cylindrical hydrogen separation type reformer and method for forming the same
JP3568889B2 (en) Catalyst formed on metal surface and method for forming catalyst on metal surface
FR3009973A1 (en) MATERIAL FOR PRE-COATING A METAL SUBSTRATE OF A CATALYTIC MATERIAL BASED ON CERAMIC
JP5640494B2 (en) Manufacturing method of fuel cell
JP5512374B2 (en) Method for producing catalyst carrier by plasma spraying and catalyst carrier
WO2018150823A1 (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
US20240141500A1 (en) Production method for a catalyst-coated three-dimensionally structured electrode
JP2005169333A (en) Metal nano-colloid liquid, carrier material, manufacturing method for metal carrier and metal carrier
JP5125435B2 (en) Porous titanium with low contact resistance