WO2009101841A1 - 空気圧低下検出方法におけるパラメータの設定方法 - Google Patents

空気圧低下検出方法におけるパラメータの設定方法 Download PDF

Info

Publication number
WO2009101841A1
WO2009101841A1 PCT/JP2009/050683 JP2009050683W WO2009101841A1 WO 2009101841 A1 WO2009101841 A1 WO 2009101841A1 JP 2009050683 W JP2009050683 W JP 2009050683W WO 2009101841 A1 WO2009101841 A1 WO 2009101841A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
vehicle
parameter
simulation
model
Prior art date
Application number
PCT/JP2009/050683
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Miyamoto
Original Assignee
Sumitomo Rubber Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008032712A external-priority patent/JP4444340B2/ja
Priority claimed from JP2008073544A external-priority patent/JP4444342B2/ja
Application filed by Sumitomo Rubber Industries, Ltd. filed Critical Sumitomo Rubber Industries, Ltd.
Priority to AT09711452T priority Critical patent/ATE534538T1/de
Priority to EP09711452A priority patent/EP2243640B1/en
Publication of WO2009101841A1 publication Critical patent/WO2009101841A1/ja
Priority to US12/731,689 priority patent/US8032344B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed

Definitions

  • the present invention relates to a parameter setting method in a method for detecting a decrease in air pressure. More particularly, the present invention relates to a parameter setting method in the air pressure drop detection method in which the parameter is set by a motion analysis simulation of a traveling vehicle.
  • the present invention has been made in view of such circumstances, and a parameter setting method in an air pressure decrease detection method capable of eliminating or reducing a test by an actual vehicle when selecting a parameter used in the air pressure decrease detection method.
  • the purpose is to provide.
  • the parameter setting method (hereinafter also simply referred to as “setting method”) in the tire pressure drop detection method of the present invention is a tire that detects a drop in tire air pressure based on the wheel rotation speed obtained from a tire mounted on a four-wheel vehicle.
  • a parameter setting method in the air pressure drop detection method A vehicle model creation step for creating a vehicle model including a suspension member; A tire model creation step for creating a tire model; Inputting a coefficient of friction between the tire and the road surface; A simulation step of performing a running simulation of the vehicle model on which the tire model is mounted, and based on the wheel rotation speed of each tire of the four wheels obtained in the simulation step, the air pressure of the tire decreases. It is characterized in that a determination parameter for determining whether or not there is is set.
  • the accuracy of at least one of the correction parameter, the tire mixed determination parameter, and the uneven load state determination parameter is preferable to check the accuracy of at least one of the correction parameter, the tire mixed determination parameter, and the uneven load state determination parameter by executing the traveling simulation while changing the traveling condition of the vehicle.
  • the accuracy of the correction parameter, the tire mixed determination parameter, and the uneven load state determination parameter for preventing erroneous determination can be improved by executing the traveling simulation under various traveling conditions. It is possible to improve the false alarm resistance of the lowering method (not to give false alarm when the air pressure to be alarmed does not decrease).
  • the method further includes inputting data including a front projected area of the vehicle, a reference point on which aerodynamics acts, an air drag coefficient, and an air lift coefficient that express the air resistance generated in the vehicle during driving.
  • the step of creating the tire model is a step of creating a tire model that can represent the characteristics of the longitudinal force of the tire at least during normal internal pressure and reduced pressure, and A parameter for determining whether or not the air pressure of the drive wheel tire is lowered can be configured based on the wheel rotation speed of the tire of each of the four wheels obtained in the simulation step.
  • the vehicle model includes vehicle center position, vehicle moment of inertia, wheel base length, vehicle front and rear wheel widths, vehicle weight, suspension spring spring characteristics, damper damping characteristics, and roll center height. Can be created.
  • a tire pressure drop detection device that indirectly detects tire pressure reduction from the rotational angular velocity of a wheel executes a program stored in advance in a storage unit included in a control unit such as a control unit mounted on the vehicle. By doing so, it is determined whether or not the tire is depressurized.
  • a control unit such as a control unit mounted on the vehicle.
  • an operation for determining various parameters used in the program depending on the type of vehicle, tire size, and the like is necessary.
  • parameters to be determined in such conforming work were obtained by analyzing data obtained by actual vehicle tests.
  • data is obtained by simulation, and the parameters are obtained by analyzing this data. Yes.
  • an alarm threshold value for issuing an alarm when decompression occurs in one of the drive wheels of a two-wheel drive vehicle or when decompression occurs in one wheel of a four-wheel drive vehicle
  • the influence of the air resistance on the traveling vehicle can be taken into account, thereby increasing the speed. It is possible to calculate the slip amount of the drive wheel generated depending on the accuracy. Then, by considering the coefficient of friction with the road surface and the slip amount that depends on the longitudinal force of the tire, a warning threshold value for determining that the driving wheel tire has been depressurized can be obtained from the simulation.
  • DWS There are two major performances required for DWS.
  • One is the alarm performance that reliably alerts the decrease in air pressure that should be alarmed, and the other is when there is no decrease in air pressure that should be alarmed, that is, as described below, such as unbalanced load on the vehicle and sudden turn of the vehicle.
  • This is a false alarm performance that does not give false alarms when the rotational speed of a wheel becomes faster than normal internal pressure for a reason.
  • a virtual actual vehicle test is carried out by simulation, and the adaptation work including the parameter setting and performance confirmation is performed.
  • FIG. 1 is a flowchart showing a setting method according to an embodiment (first embodiment) of the present invention.
  • step S1 a program for an air pressure drop detection device for a developed vehicle is designed.
  • the tire pressure drop detection (warning) device is based on the principle that when the tire is depressurized, the outer diameter (dynamic load radius of the tire) is smaller than the tire with normal internal pressure, so the rotational angular velocity increases compared to other normal tires. Used.
  • Various judgment values or judgment formulas used to judge whether or not a tire is depressurized have been proposed.
  • DEL ⁇ (F1 + F4) / 2 ⁇ (F2 + F3) / 2 ⁇ / ⁇ (F1 + F2 + F3 + F4) / 4 ⁇ ⁇ 100 as a determination value (DEL) when detecting a reduced pressure from a relative difference in tire rotational angular velocity. %) ... (1)
  • F1 to F4 are rotational angular velocities of the front left tire, front right tire, rear left tire and rear right tire, respectively.
  • the obtained judgment value is compared with a predetermined threshold (for example, DEL when a certain tire is depressurized by 30%), and when the judgment value exceeds this threshold, the tire Estimate that the pressure is reduced, and issue an alarm.
  • such a determination value, a program for obtaining the determination value, and a threshold value for pressure reduction determination are not particularly limited, and the pressure reduction of the tire is determined using the rotation angular velocity of the tire of each of the four wheels. As long as conventional logic or programs can be used as long as possible.
  • the vehicle body shape and material properties can be model the vehicle body shape and material properties and input these to perform a simulation.
  • the shape of the suspension can be subdivided directly as a model by the finite element method, or a mechanism model that is exactly the same as the actual product can be expressed. That is, a model is created based on the shape information.
  • an elastic modulus, Poisson's ratio, density, and the like can be raised.
  • values for expressing the suspension dynamic characteristics in the vehicle motion analysis simulation include, for example, vehicle unsprung weight, tires and wheels.
  • Axle moment of inertia various changes related to the elastic properties of the bushing (changes in the longitudinal direction when the axle is moved in the vertical direction [mm / mm], up and down applied to the tire when the brake is applied)
  • Direction force [N / N] toe angle variation [Deg / N] when lateral force is applied to the tire
  • steering angle variation [Deg / N] when lateral force is applied to the tire tire
  • This tire model has a tire longitudinal force (longitudinal force [N] against longitudinal slip [%]), lateral force (cornering force, lateral force [N] against slip angle [Deg]), aligning moment (SAT, slip angle).
  • a tire longitudinal force longitudinal force [N] against longitudinal slip [%]
  • lateral force cornering force, lateral force [N] against slip angle [Deg]
  • aligning moment SAT, slip angle
  • these characteristic values for example, indoor test result data can be used.
  • the tire itself can be modeled in the shape with the internal structure (for example, modeling by the finite element method or modeling of the spring and mass) depending on the software used. Is possible.
  • the radius of the tire changes depending on the magnitude of the vertical load applied to the tire
  • data or an expression that can express the change of the radius with respect to the load load is input as an expression of this characteristic.
  • a friction coefficient between the tire and the road surface is input in order to obtain a tire mixed determination parameter for determining that tires having different characteristics are mounted.
  • step S3 a simulation of running the vehicle model equipped with the tire model created in step S2 is executed.
  • a parameter (determination parameter) for determining whether or not the tire is depressurized can be calculated using, for example, the above-described equation (1). If there are characteristics that can be input with a simulation tool, such as engine torque characteristics or torque converter characteristics, it is preferable to input such characteristics in order to improve the accuracy of the simulation.
  • a correction parameter for correcting a pressure reduction judgment value (DEL) when the vehicle is turning a state where tires having different characteristics are mixed in one vehicle ( For example, only one of four wheels is new, and the rest is a state in which wear has progressed to a certain extent).
  • DEL pressure reduction judgment value
  • This turning correction coefficient is a coefficient for correcting the deviation of the decompression determination value (DEL) that occurs when the vehicle is turning.
  • G (2) Can be obtained.
  • FIG. 6 illustrates DEL displacement due to turning and its correction. The horizontal axis indicates the horizontal G, and the vertical axis indicates DEL.
  • a turn running simulation is performed, and the decompression judgment value (DEL) when several lateral Gs occur is calculated from the wheel rotation speed of each of the four wheels, and the turn is determined from the relationship between the lateral G and the decompression judgment value (DEL).
  • a correction coefficient can be calculated. Without correction, when the degree of turning increases, DEL exceeds the alarm threshold even though the tire is not depressurized, but by increasing the correction amount of DEL in proportion to the lateral G, false alarms can be prevented. Can do.
  • the tire mixed determination parameter can be calculated as follows, for example. If only one of the four wheels is a new tire and the rest are worn tires, input data representing tire characteristics when only one wheel is new, and data representing tire characteristics when the remaining three wheels are worn To do. Then, a travel simulation is performed based on the tire data, and a parameter for discriminating the tire mixed time can be calculated from the wheel rotation speeds of the obtained four wheels. Specifically, it can be calculated by utilizing a difference in frictional force with the road surface against torque depending on the degree of wear of the tire. If the rotation ratio of the left and right wheels of the drive wheels changes with respect to the torque or speed applied to the axle, it can be determined that the tires are mixed.
  • the tire is mixed by comparing three of DEL obtained by the above-described equation (1), DEL based on the rotational speed ratio of the front wheel and the rear wheel, and DEL based on the rotational speed ratio of the left wheel and the right wheel. It can also be determined whether or not.
  • the unbalanced load state determination parameter for example, when the load state of the vehicle is biased to the right, loads the vehicle data so as to match the assumed load state, performs a running simulation, and obtains each of the four wheels obtained.
  • the parameter can be calculated from the wheel rotation speed. Specifically, by comparing the DEL obtained by the above-described equation (1), the DEL based on the rotational speed ratio between the front wheels and the rear wheels, and the DEL based on the rotational speed ratio between the left wheel and the right wheel, the bias is compared. Whether it is a load or not can be determined.
  • simulation software examples include “Adams” (product name), “veDYNA” (product name), “CarSim” (product name), “LS-DYNA” (product name), and the like.
  • the present invention is not particularly limited as long as simulation software frequently used in the automobile industry can be used as appropriate and vehicle motion analysis is possible.
  • step S4 a simulation for confirming the false alarm performance is executed.
  • various parameters correction parameters, tire mixed determination parameters, and uneven load state determination parameters
  • step S3 various parameters (correction parameters, tire mixed determination parameters, and uneven load state determination parameters) for preventing false alarms are calculated.
  • the correction parameter it is possible to confirm whether or not a false alarm can be avoided by setting the correction parameter by running a course with many turns.
  • misinformation is likely to occur when tires are mixed when the driving force of the vehicle is transmitted to the ground, and one example is when the trailer is towing. If tires are used at this time, false alarms are likely to occur. The same is true when traveling on mountain roads, and it is necessary to transmit a large amount of driving force to the ground in order to climb a hill. Therefore, when tires are mixed, the frictional force with the road surface differs depending on the tires, which may cause false alarms. . Therefore, the accuracy of the tire mixed use determination parameter can be confirmed by simulating the uphill course traveling and the trailer towing traveling.
  • step S5 a determination is made as to whether or not a predetermined accuracy (for example, no false alarm occurs under a predetermined driving condition that the vehicle will experience) has been obtained with respect to the false alarm performance by a simulation in which the driving condition is changed. If the predetermined accuracy is obtained, the process proceeds to step S6 to determine the program and various parameters of the developed air pressure drop detection device. On the other hand, if the predetermined accuracy cannot be obtained, the process proceeds to step S7. Then, the logic for determining the pressure reduction and / or the parameter is changed, and the process returns to step S3.
  • a predetermined accuracy for example, no false alarm occurs under a predetermined driving condition that the vehicle will experience
  • the threshold value of the decompression alarm can be set higher so that the alarm is issued only when the decompression amount is large.
  • FIG. 2 is a flowchart showing a setting method according to another embodiment (second embodiment) of the present invention.
  • step S101 a program for an air pressure drop detection device for a developed vehicle is designed.
  • the details of step S101 are the same as step S1 in the first embodiment.
  • the slip amount of the drive wheel generated depending on the speed is calculated by considering the air resistance, and this is calculated based on the coefficient of friction with the road surface and the longitudinal force of the tire.
  • step S102 a development vehicle model and a tire model for simulation are created. Details of the development vehicle model and the tire model creation in step S102 are substantially the same as those in step S2 in the first embodiment. However, in the tire model in step S102, the tire longitudinal force at the normal internal pressure and during the decompression, etc. This is created by numerically inputting the tire characteristic value.
  • the coefficient of friction between the tire and the road surface is input.
  • the front projected area of the vehicle that expresses the air resistance generated in the vehicle during traveling, the reference point on which the aerodynamic force acts in the spring mass point system model, the aerodynamic force is originally acting on the entire body body
  • Data that includes an aerodynamic drag coefficient and an air lift coefficient is input when the aerodynamic force acts on one representative point). From these data or specifications, the air resistance generated in the vehicle during traveling can be calculated. By taking this air resistance into consideration, the slip amount of the drive wheel generated depending on the speed can be accurately calculated.
  • step S103 a simulation of running the vehicle model equipped with the tire model created in step S102 is executed.
  • this running simulation it is possible to obtain the wheel rotation speed of each of the four wheels in consideration of tire slip.
  • a parameter (determination value) for determining whether or not the tire is depressurized can be calculated using, for example, the above-described equation (1). If there are characteristics that can be input with a simulation tool, such as engine torque characteristics or torque converter characteristics, it is preferable to input such characteristics in order to improve the accuracy of the simulation.
  • step S104 a simulation is executed with another tire model to be mounted.
  • a simulation is executed with another tire model to be mounted.
  • the criterion is that when the tire is actually depressurized, it is possible to reliably warn this and prevent false alarms.
  • the fixed volume state (maximum loading state)
  • 10% decompression in the light load state (equivalent to two-seater)
  • step S105 it is determined whether or not a satisfactory result regarding the alarm performance is obtained. If a satisfactory result is obtained (Yes), the process proceeds to step S106, and the air pressure drop detection device for the developed vehicle is detected. If the program and various parameters are determined and no satisfactory result is obtained (No), the decompression determination logic and / or parameters are changed in step S107, and the process returns to step S103. Examples of the present invention will be described below, but the present invention is not limited to such examples.
  • Example 1 As the vehicle motion analysis simulation software, CarSim (registered trademark, vehicle motion simulation software of Virtual Mechanics Co., Ltd.) was used. The vehicle data shown in Tables 1 to 3 was input as necessary vehicle data regarding the implementation vehicle A (refer to FIGS. 3 to 5 for data items). In addition, tire data shown in Tables 4 to 6 was input as tire data. Next, a running simulation was performed, and a simulation was performed to calculate a correction parameter (turning correction coefficient) that avoids misinformation during turning. The simulation results are shown in FIG.
  • CarSim registered trademark, vehicle motion simulation software of Virtual Mechanics Co., Ltd.
  • Aerodynamic drag coefficient 0.34 Aerodynamic lift coefficient: 0.16 Reference point where aerodynamics acts: 1.44m behind the front wheel axle center, center of vehicle width and 0m above ground level
  • the parameters necessary for the air pressure drop detection device have been acquired by carrying out an actual vehicle test in the present situation, but the OE (Origin Equipment) tire that is installed when the vehicle is purchased is There are often multiple.
  • the parameters required for the air pressure drop detection device may vary depending on the tire to be mounted. For example, an alarm threshold value, a turn correction coefficient for correcting a pressure reduction determination value when the vehicle is turning, and the like. Therefore, at present, a value that can satisfy the performance approved by the automobile manufacturer is determined as the parameter value in all of the plurality of OE tires.
  • the simulation is executed by a computer mounted on the vehicle.
  • vehicle information such as the position of the center of gravity of the vehicle and the moment of inertia of the vehicle is input to a computer mounted on the vehicle.
  • tire characteristic data (tire longitudinal force, aligning moment, etc.) is acquired from the outside of the vehicle through information communication means such as the Internet or as information built in the IC tag ( Step S10).
  • step S11 the acquired tire characteristic data is input to the in-vehicle computer.
  • Step S12 a simulation is performed by an in-vehicle computer in which vehicle information unique to the vehicle is pre-installed, and parameters necessary for the DWS system (for example, an alarm threshold value and a turning correction for correcting an alarm judgment value at the time of turning) Coefficient, a parameter for determining an unbalanced load state, a threshold value for setting a data rejection condition, etc.).
  • step S13 when the optimum parameter value obtained in step S12 is input to the in-vehicle DWS system, the DWS system can be operated with the optimum parameter value for the mounted tire (step S14).
  • the simulation is executed at a site or server outside the vehicle.
  • parameters necessary for the DWS system are analyzed and calculated by means such as ASP (Application Service Provider) on the Internet, and a site or server that can output the result is accessed (step S20). ).
  • ASP Application Service Provider
  • information necessary for the simulation is input from the input means equipped on the in-vehicle computer (step S21).
  • step S22 vehicle data and tire characteristic data are managed, and analysis and calculation of optimum parameter values is performed using these data, and the obtained parameter values are transmitted via information communication means such as the Internet.
  • step S23 the input person inputs the transmitted optimal parameter value to the DWS system mounted on the vehicle (step S23).
  • step S24 the input person can operate the DWS system with the optimal parameter value for the mounted tire.
  • step S30 software for analyzing and calculating optimum parameter values for a vehicle equipped with a DWS system and tires attached to the vehicle is installed in a personal computer of a vendor or an individual. .
  • step S21 information (vehicle name, installed tire brand, tire size) necessary for the simulation is input from the input means equipped on the in-vehicle computer (step S21).
  • step S32 an analysis calculation of the optimum parameter value is executed on a personal computer owned by the trader or individual (step S32). .
  • step S33 when the optimum parameter value obtained as an output is input to the DWS system (step S33), the DWS system can be operated with the optimum parameter value for the mounted tire (step S34).
  • the vehicle information may include factors related to the vehicle's motion performance, and since it is considered very unlikely that the vehicle information will be disclosed to the general public by the vehicle company, a third party cannot browse the vehicle-mounted computer in advance. So that only managers (site or server operators (Aspect B), software manufacturers or administrators (Aspect C)) who have specific confidentiality obligations can obtain such information. Can be considered.
  • tire characteristics required as tire information are not publicly disclosed, but these characteristic values are not obtained from the tire manufacturer's specific internal structure or material composition information, but are obtained by obtaining the tire and measuring the tire alone. It is information that can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Vehicle Body Suspensions (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 空気圧低下検出方法に用いられるパラメータを選定するに際し、実車によるテストを解消または削減することができる、空気圧低下検出方法におけるパラメータの設定方法を提供する。4輪車両に装着したタイヤから得られる車輪回転速度に基づいてタイヤ空気圧の低下を検出するタイヤ空気圧低下検出方法におけるパラメータの設定方法。サスペンション部材を含む車両モデルを作成する車両モデル作成ステップと、タイヤモデルを作成するタイヤモデル作成ステップと、タイヤと路面との間の摩擦係数を入力するステップと、前記タイヤモデルが装着された車両モデルの走行シミュレーションを行うシミュレーションステップとを含んでいる。前記シミュレーションステップにおいて得られる4輪各輪のタイヤの車輪回転速度に基づいて、当該タイヤの空気圧が低下しているか否かを判定するための判定パラメータを設定する。

Description

空気圧低下検出方法におけるパラメータの設定方法
 本発明は空気圧低下検出方法におけるパラメータの設定方法に関する。さらに詳しくは、走行する車両の運動解析シミュレーションにより前記パラメータの設定を行う、空気圧低下検出方法におけるパラメータの設定方法に関する。
 車両に装着された車輪の回転速度を用いて、タイヤの空気圧が低下しているか否かを間接的に検出する方法がある(例えば、特開2005-1419号および特開2006-1298号参照)。従来、このような検出方法を実用化するに際しては、実車テストを実施することにより、かかる検出方法に用いられているロジックの検証および変数(パラメータ)の最適化を含む適合作業と呼ばれる作業を行っていた。すなわち、空気圧低下検出装置を搭載する予定の開発車両を入手し、テストコースなどを走行させる実車テストを実施することで、4輪各輪の車輪回転速度、横G、ヨーレート、ステアリングアングル、ホイールトルクなどの各種センサ情報などの情報(空気圧低下検出に必要な情報)を得ていた。そして、得られたテストデータを解析することで車両ごとの適合作業を行っていた。特に、ドライバーに対して減圧警報を発するか否かを決める警報閾値の設定は、複数の速度水準で一定速度での直線走行を実施し、得られるテストデータより求めている。
 しかしながら、実車テストは、開発車両自体が必要であるため、当該開発車両の完成を待つ必要があり、また、テスト車両の数やテストの実施期間が制限されるなどの制約がある。また、実際にテストドライバーによってテストを実施するため、人件費、車両管理費、燃料費などの多大な費用が掛かるとともに、計測準備、データ解析などの多岐にわたる膨大な工数と長期に及ぶ開発期間を要するという問題もある。さらに、すでに適合作業を終えた開発車両がマイナーチェンジを行った場合、このマイナーチェンジをした開発車両による新たな実車テストを実施する必要があり、1種類の開発車両について適合作業が完了するまでには、多くのコストと時間を要していた。
 本発明は、このような事情に鑑みてなされたものであり、空気圧低下検出方法に用いられるパラメータを選定するに際し、実車によるテストを解消または削減することができる空気圧低下検出方法におけるパラメータの設定方法を提供することを目的としている。
 本発明のタイヤ空気圧低下検出方法におけるパラメータの設定方法(以下、単に「設定方法」ともいう)は、4輪車両に装着したタイヤから得られる車輪回転速度に基づいてタイヤ空気圧の低下を検出するタイヤ空気圧低下検出方法におけるパラメータの設定方法であって、
 サスペンション部材を含む車両モデルを作成する車両モデル作成ステップと、
 タイヤモデルを作成するタイヤモデル作成ステップと、
 タイヤと路面との間の摩擦係数を入力するステップと、
 前記タイヤモデルが装着された車両モデルの走行シミュレーションを行うシミュレーションステップと
 を含んでおり、前記シミュレーションステップにおいて得られる4輪各輪のタイヤの車輪回転速度に基づいて、当該タイヤの空気圧が低下しているか否かを判定するための判定パラメータを設定することを特徴としている。
 本発明の設定方法では、作成したタイヤモデルを装着した車両モデルの走行シミュレーションを行うことで4輪各輪のタイヤの車輪回転速度を得ている。そして、この車輪回転速度に基づいて、当該タイヤの空気圧が低下しているか否かを判定するための判定パラメータを設定するので、実車テストを行うことなくタイヤの減圧判定に必要なパラメータを得ることができる。したがって、実車テストに要していたコストや時間を大幅に削減することができる。
 前記車輪回転速度を、少なくともタイヤと路面間のスリップと、荷重負荷によるタイヤ半径の変化とを考慮して得られるものとし、且つ
 前記シミュレーションステップにおいて、さらに、車両が旋回しているときの判定パラメータを補正する補正パラメータ、異なる特性のタイヤが装着されていることを判定するタイヤ混用判定パラメータ、および車両の荷重状態が偏っていることを判定する偏荷重状態判定パラメータのうち少なくとも1つを、前記車輪回転速度に基づいて算出するように構成することができる。この場合、タイヤが実際に減圧していないにもかかわらずタイヤ減圧であると判定する誤判定を防止するのに用いられる補正パラメータ、タイヤ混用判定パラメータおよび偏荷重状態判定パラメータを実車テストを行うことなく得ることができる。
 前記タイヤモデルを、タイヤの前後力、横力、アライニングモーメント、およびキャンバースラストを含むタイヤの特性値により作成することができる。
 車両の走行条件を変えて前記走行シミュレーションを実行することにより、前記補正パラメータ、タイヤ混用判定パラメータおよび偏荷重状態判定パラメータのうち少なくとも1つのパラメータの精度確認を行うのが好ましい。この構成によれば、種々の走行条件下において走行シミュレーションを実行することで、誤判定を防止するための補正パラメータ、タイヤ混用判定パラメータおよび偏荷重状態判定パラメータの精度を高めることができ、タイヤ空気圧低下方法の耐誤報性(警報すべき空気圧の低下が起こっていない場合に誤報を出さないこと)を向上させることができる。
 走行中に車両に発生する空気抵抗を表現する、車両の前面投影面積、空力が作用する参照点、空気抗力係数および空気揚力係数を含むデータを入力するステップを更に含んでおり、
 前記タイヤモデルを作成するステップが、少なくとも正規内圧時および減圧時におけるタイヤの前後力の特性を表すことができるタイヤモデルを作成するステップであり、且つ、
 前記シミュレーションステップにおいて得られる4輪各輪のタイヤの車輪回転速度に基づいて、駆動輪タイヤの空気圧が低下しているか否かを判定するためのパラメータを設定するように構成することができる。
 前記車両モデルを、車両重心位置、車両慣性モーメント、ホイールベース長さ、車両前後輪の各トラック幅、車両重量、サスペンションのスプリングバネ特性、ダンパー減衰特性、およびロールセンター高さを含む車両の特性値により作成することができる。
本発明の設定方法の一実施の形態を示すフローチャートである。 本発明の設定方法の他の実施の形態を示すフローチャートである。 車両モデルを作成するための入力項目を説明する図である。 車両モデルを作成するための入力項目を説明する図である。 車両モデルを作成するための入力項目を説明する図である。 減圧判定のパラメータと横Gとの関係を示す図である。 シミュレーションによる、減圧判定のパラメータと横Gとの関係を示す図である。 実車テストによる、減圧判定のパラメータと横Gとの関係を示す図である。 シミュレーションおよび実車テストによる、減圧判定値DELと車両速度との関係を示す図である。 タイヤ空気圧低下検出方法におけるパラメータの設定方法の一例を示すフローチャートである。 タイヤ空気圧低下検出方法におけるパラメータの設定方法の他の例を示すフローチャートである。 タイヤ空気圧低下検出方法におけるパラメータの設定方法のさらに他の例を示すフローチャートである。
 以下、添付図面を参照しつつ、本発明の設定方法の実施の形態を詳細に説明する。
 車輪の回転角速度から間接的にタイヤの減圧を検出するタイヤ空気圧低下検出装置(DWS)は、車両に搭載されている制御ユニットなどの制御手段に含まれる記憶部に予め記憶されているプログラムを実行することにより、タイヤが減圧しているか否かを判定するものである。この検出装置においては、車両の種類やタイヤサイズなどによって当該プログラムに使用される各種パラメータを決定する作業(適合作業)が必要である。かかる適合作業で決定すべきパラメータを従来は実車テストにより得られるデータを解析することで得ていたが、本発明では、シミュレーションによってデータを得、このデータを解析することで前記パラメータを獲得している。
 例えば、2輪駆動車の駆動輪の1輪で減圧が生じた場合、または4輪駆動車の1輪で減圧が生じた場合に警報を発するための警報閾値(パラメータ)を設定する方法が、これまでもいくつか提案されているが、いずれも複数の速度水準での実車テストを繰り返すことでデータを取得し、このデータから警報閾値を算出していた。
 本発明の一実施の形態では、車両が走行することで発生する空気抵抗を計算することができる諸元を用いることで、走行車両に対する空気抵抗の影響を考慮することができ、これにより速度に依存して発生する駆動輪のスリップ量を精度良く算出することが可能となる。そして、これに路面との間の摩擦係数およびタイヤの前後力により左右されるスリップ量を考慮することにより、駆動輪タイヤが減圧したことを判定するための警報閾値をシミュレーションから得ることができる。
 DWSに要される性能は大きく2つある。一つは、警報すべき空気圧低下を確実に警報する警報性能と、もう一つは、警報すべき空気圧の低下が起こっていない場合、すなわち、後述する車両の偏荷重や車両の急旋回などの理由により車輪の回転速度が正常内圧時よりも速くなったりした場合に誤報を出さない耐誤報性能である。
 本発明では、シミュレーションにより仮想の実車テストを実施することで、前記パラメータの設定および性能確認からなる適合作業を行っている。
[第1の実施の形態]
 図1は、本発明の一実施の形態(第1の実施の形態)に係る設定方法を示すフローチャートである。まず、ステップS1において、開発車両用の空気圧低下検出装置のプログラムを設計する。タイヤの空気圧低下検出(警報)装置は、タイヤが減圧すると正常内圧のタイヤより外径(タイヤの動荷重半径)が減少するため、他の正常なタイヤに比べると回転角速度が増加するという原理を用いている。そして、タイヤが減圧しているか否かを判断するのに用いる判定値ないしは判定式として、従来、種々のものが提案されている。例えば、タイヤの回転角速度の相対的な差から減圧を検出する場合の判定値(DEL)として
DEL={(F1+F4)/2-(F2+F3)/2}/{(F1+F2+F3+F4)/4}×100(%)・・・・・・(1)
を用いることができる。ここで、F1~F4は、それぞれ前左タイヤ、前右タイヤ、後左タイヤおよび後右タイヤの回転角速度である。空気圧低下検出装置では、得られた判定値を所定の閾値(例えば、或るタイヤが30%減圧しているときのDEL)と比較して、判定値がこの閾値を超えているときにタイヤが減圧していると推定し、警報を発する。本発明では、このような判定値およびそれを求めるプログラム、並びに減圧判定の閾値について特に限定されるものではなく、4輪各輪のタイヤの回転角速度を用いてタイヤの減圧を判定するものであるかぎり、従来のロジックないしはプログラムなどを適宜用いることができる。
 ついで、ステップS2において、シミュレーション用の開発車両モデルおよびタイヤモデルの作成を行う。後述する走行シミュレーションを実行するに際し、開発車の車両モデルを作成する必要があるが、4輪車両に装着したタイヤの回転速度に基づいてタイヤの減圧を判定する間接式タイヤ空気圧低下検出装置では、通常、図3~5に示されるような車両重心位置、車両慣性モーメント、ホイールベース長さ、車両前後輪の各トラック幅、車両重量(車両バネ上重量、車両バネ下重量)、サスペンションのスプリングバネ特性、ダンパー減衰特性、およびロールセンター高さを含む車両の特性値を入力することで車両モデルを作成することができる。ただし、使用するソフトによっては、車両のボディー形状と材料物性をモデル化し、これらを入力することでシミュレーションを実施することも可能である。例えば、サスペンションの場合、有限要素法により当該サスペンションの形状をそのままモデルとして再分割したり、実物と全く同一の機構モデルを表現したりすることも可能であり、これらの方法では、部品個々の形、すなわち形状情報をベースにしてモデルが作成される。また、形状情報とともに用いられる部品材料値として、有限要素法を用いて金属材料を対象とする場合、弾性率、ポアソン比および密度などをあげることができる。
 なお、サスペンションの動特性を車両運動解析シミュレーションで表現するための値としては、前記サスペンションのスプリングバネ特性、ダンパー減衰特性、およびロールセンター高さ以外に、例えば車両バネ下重量、タイヤ・ホイールを含めた車軸慣性モーメント、ブッシュ部の弾性特性に関連する各種の変化量(車軸が上下方向に移動したときの前後方向の変化量[mm/mm]、ブレーキがかかったときにタイヤに負荷される上下方向の力[N/N]、タイヤに横力が負荷されたときのトウ角変化量[Deg/N]、タイヤに横力が負荷されたときの操舵角変化量[Deg/N]、タイヤにアライニングトルクが負荷されたときの操舵角変化量[Deg/N・m]、タイヤに縦力が負荷されたときのホイール中心の縦方向変化量[mm/N]、タイヤに縦力が負荷されたときのキャンバー角変化量[Deg/N]、タイヤにアライニングトルクが負荷されたときの傾斜角変化量[Deg/N・m]、タイヤに横力が負荷されたときのホイール中心横変化量[mm/N]、トウ角と上下変位の関係[Deg/mm]、キャンバー角と上下変位の関係[Deg/mm])をあげることができる。使用するソフトに応じて、これらの値を適宜用いることができる。
 ついでタイヤモデルを作成する。このタイヤモデルは、タイヤの前後力(前後スリップ[%]に対する前後力[N])、横力(コーナリングフォース、スリップ角[Deg]に対する横力[N])、アライニングモーメント(SAT、スリップ角に対するモーメント)、キャンバースラストからなるタイヤ特性値を数値入力することで作成することができる。これら特性値としては、例えば室内における試験結果のデータを用いることができる。また、車両モデルの場合と同様に、タイヤ自体を、内部構造を伴った形状のままにモデル化(例えば、有限要素法によるモデル化やバネと質量からなるモデル化)することも使用するソフトによっては可能である。
 また、タイヤの半径は当該タイヤに負荷される鉛直方向の荷重の大きさにより変化することから、この特性を表現するものとして負荷荷重に対する半径の変化を表現できるデータまたは式が入力される。さらに、本実施の形態では、異なる特性のタイヤが装着されていることを判定するタイヤ混用判定パラメータを得るために、タイヤと路面との間の摩擦係数が入力される。
 ついで、ステップS3において、ステップS2において作成されたタイヤモデルを装着した車両モデルを走行させるシミュレーションが実行される。この走行シミュレーションによって、タイヤのスリップと、荷重負荷によるタイヤ半径の変化を考慮した4輪各輪の車輪回転速度を得ることができる。そして、この車輪回転速度に基づいて、タイヤが減圧しているか否かを判定するためのパラメータ(判定パラメータ)を、例えば前述した式(1)を用いて算出することができる。なお、エンジンのトルク特性やトルクコンバーターの特性など、シミュレーションツールで入力することができる特性がある場合は、シミュレーションの精度を向上させるために、かかる特性を入力するのが好ましい。
 また、前述した耐誤報性能に関連したパラメータとして、車両が旋回しているときの減圧判定値(DEL)の補正を行う補正パラメータ、異なる特性のタイヤが一台の車両に混用されている状態(例えば、4輪のうち1輪だけが新品であり、残りは或る程度磨耗が進んだものである状態)を判定するタイヤ混用判定パラメータ、車両の荷重状態が偏っていること(例えば、車両の荷重状態が右、または左に偏っていること)を判定する偏荷重状態判定パラメータなどがあるが、これらのパラメータがシミュレーションにより得られるデータに基づいて算出される。
 車両旋回時に得られる減圧判定値(DEL)の補正に関連するパラメータとして、旋回補正係数がある。この旋回補正係数は、車両旋回時に生じる減圧判定値(DEL)のズレを補正するための係数であり、補正後の減圧判定値(DEL)である補正DELは
補正DEL=DEL+旋回補正係数×横G・・・・・・(2)
で求めることができる。図6は、旋回によるDELのズレおよびその補正を説明しており、横軸は横Gを示しており、縦軸はDELを示している。旋回走行シミュレーションを実施し、いくつかの横Gが発生したときの減圧判定値(DEL)を4輪各輪の車輪回転速度から算出し、横Gと減圧判定値(DEL)との関係から旋回補正係数を算出することができる。補正をしない場合、旋回の程度が大きくなると、タイヤが減圧していないにもかかわらずDELは警報閾値を超えるが、横Gに比例してDELの補正量を大きくすることにより、誤報を防ぐことができる。
 また、タイヤ混用判定パラメータは、例えば次のようにして算出することができる。4輪のうち1輪だけが新品タイヤで残りが磨耗タイヤである場合、1輪のみ新品時のタイヤ特性を表すデータを入力し、残りの3輪は磨耗した状態のタイヤ特性を表すデータを入力する。そして、このタイヤデータに基づいて走行シミュレーションを行い、得られる4輪各輪の車輪回転速度からタイヤ混用時を判別するパラメータを算出することができる。具体的には、タイヤの磨耗の程度により、トルクに対する路面との摩擦力に差が生じることを利用して算出することができる。駆動輪の左右輪の回転比が、車軸にかかるトルクまたは速度に対して変化するならばタイヤ混用であると判断することができる。また、前述した式(1)により得られるDEL、前輪と後輪の回転速度比に基づくDEL、および左側車輪と右側車輪の回転速度比に基づくDELの3つを比較することによりタイヤ混用であるか否かの判断をすることもできる。
 さらに、偏荷重状態判定パラメータは、例えば、車両の荷重状態が右に偏った場合、想定する荷重状態に合うように車両データに荷重を負荷して走行シミュレーションを行い、得られる4輪各輪の車輪回転速度からパラメータを算出することができる。具体的には、前述した式(1)により得られるDEL、前輪と後輪の回転速度比に基づくDEL、および左側車輪と右側車輪の回転速度比に基づくDELの3つを比較することにより偏荷重かどうかを判断することができる。
 なお、車両運動解析をすることができるシミュレーションソフトとしては、例えば“Adams”(商品名)、“veDYNA”(商品名)、“CarSim”(商品名)、“LS-DYNA”(商品名)など、自動車業界において多用されているシミュレーションソフトを適宜用いることができ、車両運動解析が可能であるかぎり、本発明において特に限定されるものではない。
 ついで、ステップS4において、耐誤報性能を確認するためのシミュレーションが実行される。ステップS3において、誤報を防ぐための各種パラメータ(補正パラメータ、タイヤ混用判定パラメータおよび偏荷重状態判定パラメータ)を算出しているが、車両の走行条件を種々変更させて走行シミュレーションを実行することにより、前記パラメータの精度確認が行われる。
 補正パラメータについては、旋回が多いコースを走行させることにより、設定した補正パラメータにより誤報が回避できるか否かの確認を行うことができる。
 また、タイヤ混用時に誤報が生じやすいのは、地面に車両の駆動力が大きく伝わるときであり、その一例がトレーラーの牽引時である。このときにタイヤが混用されていると誤報が生じ易くなる。山岳路を走行するときも同様であり、登坂するためには地面に駆動力を大きく伝える必要があることから、タイヤ混用時では路面との摩擦力がタイヤにより異なるために誤報が生じることがある。したがって、登坂コース走行およびトレーラー牽引走行をシミュレーションすることにより、タイヤ混用判定パラメータの精度確認を行うことができる。
 そして、ステップS5において、走行条件を変えたシミュレーションにより耐誤報性能に関して所定の精度(例えば、車両が経験するであろう所定の走行条件下において、誤報が生じない)が得られたか否かの判断を行い、所定の精度が得られた場合は、ステップS6に進み、開発車両用の空気圧低下検出装置のプログラムおよび各種パラメータを決定し、一方、所定の精度が得られない場合は、ステップS7において、減圧判定のロジックおよび/またはパラメータの変更を行い、ステップS3に戻る。
 なお、本発明に係るタイヤ空気圧低下検出装置では、タイヤ混用や偏荷重であると判定された場合に、誤報を避けるために減圧警報を出さないようにすることもできるし、また、タイヤ混用および偏荷重による車輪の回転速度の変化分を見込んで、減圧警報の閾値を高めに設定して、減圧量が大きいときだけ警報を発するようにすることもできる。
[第2の実施の形態]
 図2は、本発明の他の実施の形態(第2の実施の形態)に係る設定方法を示すフローチャートである。
 まず、ステップS101において、開発車両用の空気圧低下検出装置のプログラムを設計するが、このステップS101の詳細は第1の実施の形態におけるステップS1と同様である。
 本実施の形態では、2輪駆動車の駆動輪の1輪、または4輪駆動車の1輪が減圧しているか否かを検出するものであり、判定値(DEL)としては、例えば前記式(1)を用いることができる。
 本実施の形態では、前述したように、空気抵抗を考慮することで、速度に依存して発生する駆動輪のスリップ量を算出し、これに路面との間の摩擦係数およびタイヤの前後力により左右されるスリップ量を考慮することで、減圧に起因するタイヤの回転速度の変化を精度良く算出することができる。
 ついで、ステップS102において、シミュレーション用の開発車両モデルおよびタイヤモデルの作成を行う。このステップS102における開発車両モデルおよびタイヤモデルの作成の詳細は、第1の実施の形態におけるステップS2とほぼ同様であるが、ステップS102におけるタイヤモデルでは、正規内圧時および減圧時におけるタイヤ前後力などのタイヤ特性値が数値入力されることで作成される。
 また、このステップS102において、タイヤと路面との間の摩擦係数が入力される。また、走行中に車両に発生する空気抵抗を表現する、車両の前面投影面積、空力が作用する参照点(バネー質点系のモデルにおいて、本来は車体ボディー全体で空力が作用しているのを、代表する1点に空力が作用すると置き換えることができる当該点のこと)、空気抗力係数および空気揚力係数を含むデータが入力される。これらのデータないしは諸元により、走行中に車両に発生する空気抵抗を算出することができる。この空気抵抗を考慮することで、速度に依存して発生する駆動輪のスリップ量を精度よく算出することができる。
 ついで、ステップS103において、ステップS102において作成されたタイヤモデルを装着した車両モデルを走行させるシミュレーションが実行される。この走行シミュレーションによって、タイヤのスリップを考慮した4輪各輪の車輪回転速度を得ることができる。そして、この車輪回転速度に基づいて、タイヤが減圧しているか否かを判定するためのパラメータ(判定値)を、例えば前述した式(1)を用いて算出することができる。なお、エンジンのトルク特性やトルクコンバーターの特性など、シミュレーションツールで入力することができる特性がある場合は、シミュレーションの精度を向上させるために、かかる特性を入力するのが好ましい。
 ついで、ステップS104において、他の装着予定のタイヤモデルにてシミュレーションを実行する。通常、1種類の車両(開発車両)に装着することが予定されるタイヤは複数種類あり、そのうち1種類のタイヤでの解析を行ってその種類に合うパラメータを設定しても、他の装着タイヤでも適したパラメータであるかどうかは不明である。このため、他の種類のタイヤ(他の装着タイヤ)でのシミュレーションを実行し、既に得たパラメータが適当であるか否か、パラメータの変更が必要であるか否かを判断するのが好ましい。判断基準としては、タイヤが実際に減圧している場合にこれを確実に警報するとともに、誤警報を防止できることであり、後出する図9または表14に関していえば、定積状態(最大積載状態)で30~140kphの速度域での駆動輪の25%減圧を警報できるか否か、および軽積状態(2人乗車相当状態)で10%減圧などの、警報しなくてもよい低い減圧量で警報しないか否かをあげることができる。
 そして、ステップS105において、警報性能に関して満足する結果が得られたか否かの判断を行い、満足する結果が得られた場合(Yes)は、ステップS106に進み、開発車両用の空気圧低下検出装置のプログラムおよび各種パラメータを決定し、一方、満足する結果が得られない場合(No)は、ステップS107において、減圧判定のロジックおよび/またはパラメータの変更を行い、ステップS103に戻る。
 以下、本発明の実施例を説明するが、本発明はもとよりかかる実施例にのみ限定されるものではない。
 〔実施例1〕
 車両運動解析シミュレーションソフトとして、CarSim(登録商標。株式会社バーテャルメカニクスの車両運動シミュレーションソフトウェア)を用いた。実施車両Aに関して必要な車両データとして、表1~3に示される車両データを入力した(データ項目については、図3~5参照)。また、タイヤデータとして、表4~6に示されるタイヤデータを入力した。ついで、走行シミュレーションを実施し、旋回時の誤報を回避する補正パラメータ(旋回補正係数)を算出するシミュレーションを実施した。シミュレーションの結果を図7に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 〔比較例1〕
 実施車両Aを用いていくつかのレベルの横Gを車両に与える実車テストを行い、旋回補正係数を求めた。実車テストの結果を図8に示す。
 実車テストでは、旋回補正係数=0.24という結果が得られた。一方、シミュレーションでは、旋回補正係数=0.22という結果が得られた。シミュレーションによる旋回補正係数の、実車テストによる旋回補正係数に対する比は91.7(%)であり、シミュレーションによって、10%以内の範囲の精度で旋回補正係数を設定できることが分かる。
 〔実施例2〕
 車両運動解析シミュレーションソフトとして、CarSim(登録商標。株式会社バーテャルメカニクスの車両運動シミュレーションソフトウェア)を用いた。実施車両B(前輪駆動or後輪駆動or4輪駆動)に関して必要な車両データとして、表7~9に示される車両データを入力した(データ項目については、図3~5参照)。また、タイヤCとして225/50R17(DUNLOP社製)を用い、タイヤデータとして、表10~13に示されるタイヤデータを入力した。また、空気抵抗に関する諸元として、以下のデータを入力した。
空気抵抗を算出するためのデータ
 前面投影面積:1.8m2
 空力抗力係数:0.34
 空力揚力係数:0.16
 空力が作用する参照点:前輪軸中心から1.44m後方且つ車幅の中
            心且つ地面に対し0mの高さ
 ついで、走行シミュレーションを実施し、警報性能に関するパラメータである警報閾値を算出するシミュレーションを実施した。シミュレーションの結果を表14および図9に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 〔比較例2〕
 実施車両Bを用いて実車テストを行い、駆動輪の1輪減圧時の減圧判定値(DEL)を求めた。実車テストの結果を図9に示す。
 実車テストで求められた減圧判定値に対し、シミュレーションにより得られた減圧判定値は、10%以内の範囲の精度で算出されており、空気圧低下検出方法におけるパラメータの1つである警報閾値を精度良く設定できることが分かる。車両運動解析シミュレーションを行うことで、前記警報閾値を実車テストの実施なしに算出することができ、それにかかる工数およびコストを削減することができた。
 なお、前述したように、現状にあっては実車テストを実施することで空気圧低下検出装置に必要なパラメータを獲得しているが、車両を購入した時点で装着されるOE(Original Equipment)タイヤは複数あることが多い。空気圧低下検出装置で必要なパラメータは、装着されるタイヤによって変わる場合がある。例えば、警報閾値や、車両が旋回しているときの減圧判定値を補正するための旋回補正係数などである。そこで、現時点では、複数あるOEタイヤのすべてで、自動車メーカーが承認する性能を満たすことができる値をパラメータ値として決定している。
 このため、OEタイヤが複数ある場合は、現実に装着されるタイヤにとって最適なパラメータ値が選定されていない場合がある。さらに、リプレースタイヤが装着された場合における警報性能などは未知の状態である。
 これに対し、複数あるOEタイヤ個々に最適なパラメータ値を用いる方法として、当該OEタイヤは数が限定されていることから、予め個々のOEタイヤについて最適な値を実車テストで取得しておき、それで得た最適値を車両に搭載する空気圧低下検出装置システム(DWSシステム)に入力することが考えられる。しかしながら、リプレースタイヤは、無数にあることから、それらの最適値を得るために予め実車テストを行うことは、非現実的である。
 そこで、前述した警報閾値の設定を含むシミュレーションによる適合作業を開発段階ではなく、車両販売後のタイヤ装着時に行うことが考えられる。すなわち、前述した設定方法では、開発現場における計算機(コンピュータ)を用いてシミュレーションを実施しているが、このシミュレーションによる適合作業を、車載コンピュータ;インターネットなどの情報通信インフラなどでアクセス可能な、最適値を計算するサイトまたはサーバー;または業者や個人が所有するパソコン(パーソナルコンピュータ)の中で行い、アウトプットとして得られるタイヤ個々の最適値を車両に搭載するDWSシステムにパラメータ値として入力することで、リプレースタイヤでも精度良くタイヤ空気圧低下を検出することができる。
 かかるシミュレーションによる適合作業を実現する態様として、以下の3つの態様が考えられる。
[態様A]
 この態様では、車両に搭載されたコンピュータにてシミュレーションが実行される。
 まず、車両に搭載されたコンピュータに、前記車両重心位置、車両慣性モーメントなどの車両情報を入力しておく。図10に示されるように、インターネットなどの情報通信手段を介して、またはICタグに内蔵された情報として、タイヤの特性データ(タイヤの前後力、アライニングモーメントなど)を車両外部から獲得する(ステップS10)。
 ついで、ステップS11において、獲得したタイヤの特性データを車載コンピュータに入力する。つぎに、ステップS12において、車両固有の車両情報が予め組み込まれている車載コンピュータにてシミュレーションを実施し、DWSシステムに必要なパラメータ(例えば、警報閾値、旋回時の警報判定値を補正する旋回補正係数、偏荷重状態を判定するパラメータ、データリジェクト条件を設定する閾値など)を獲得する。
 ついで、ステップS13において、ステップS12で得られた最適なパラメータ値を車載のDWSシステムに入力すると、装着されたタイヤにとって最適なパラメータ値でDWSシステムを作動させることができる(ステップS14)。
[態様B]
 この態様では、車両外部のサイトまたはサーバーにてシミュレーションが実行される。図11に示されるように、インターネットでのASP(Application Service Provider)などの手段により、DWSシステムに必要なパラメータを解析計算し、その結果を出力することができるサイトまたはサーバーにアクセスする(ステップS20)。ついで、車載コンピュータに装備されている入力手段からシミュレーションに必要な情報(車両名、装着タイヤブランド、タイヤサイズ)を入力する(ステップS21)。
 前記サイトまたはサーバーにおいては、車両データとタイヤ特性データとが管理されており、これらのデータを用いて最適なパラメータ値の解析計算が実施され、得られるパラメータ値をインターネットなどの情報通信手段を介して入力者に送信する(ステップS22)。
 入力者は、送信された最適なパラメータ値を車両に搭載されたDWSシステムに入力すると(ステップS23)、装着されたタイヤにとって最適なパラメータ値でDWSシステムを作動させることができる(ステップS24)。
[態様C]
 この態様では、業者または個人が所有するパソコンにインストールされたソフトウェアにてシミュレーションが実行される。
 まず、図12に示されるように、ステップS30において、DWSシステムが搭載された車両とこの車両に装着されたタイヤにとって最適なパラメータ値の解析計算を行うソフトウェアを、業者または個人のパソコンにインストールする。
 ついで、車載コンピュータに装備されている入力手段からシミュレーションに必要な情報(車両名、装着タイヤブランド、タイヤサイズ)を入力する(ステップS21)。つぎに、解析ソフト内に管理されている車両データとタイヤメーカーから入手されるタイヤ特性データを用いて、業者または個人が所有するパソコンにて最適なパラメータ値の解析計算を実行する(ステップS32)。
 ついで、アウトプットとして得られた最適なパラメータ値をDWSシステムに入力する(ステップS33)と、装着されたタイヤにとって最適なパラメータ値でDWSシステムを作動させることができる(ステップS34)。
 なお、車両情報は、車両の運動性能に関連する因子を含むこともあり、車両会社から一般に公開される可能性は非常に小さいと考えられることから、車載のコンピュータに予め第三者が閲覧できないようにインプットしておく(態様A)か、または特定の守秘義務を有する管理者(サイトまたはサーバーの運営者(態様B)、ソフトウェアの製造者または管理者(態様C))のみが取得できるようにすることが考えられる。
 また、タイヤ情報として必要なタイヤ特性も一般には公開されていないが、これらの特性値は、タイヤメーカー固有の内部構造や材料配合情報などではなく、タイヤを入手し、タイヤ単体の測定により得ることができる情報である。

Claims (6)

  1.  4輪車両に装着したタイヤから得られる車輪回転速度に基づいてタイヤ空気圧の低下を検出するタイヤ空気圧低下検出方法におけるパラメータの設定方法であって、
     サスペンション部材を含む車両モデルを作成する車両モデル作成ステップと、
     タイヤモデルを作成するタイヤモデル作成ステップと、
     タイヤと路面との間の摩擦係数を入力するステップと、
     前記タイヤモデルが装着された車両モデルの走行シミュレーションを行うシミュレーションステップと
     を含んでおり、前記シミュレーションステップにおいて得られる4輪各輪のタイヤの車輪回転速度に基づいて、当該タイヤの空気圧が低下しているか否かを判定するための判定パラメータを設定することを特徴とするタイヤ空気圧低下検出方法におけるパラメータの設定方法。
  2.  前記車輪回転速度は、少なくともタイヤと路面間のスリップと、荷重負荷によるタイヤ半径の変化とを考慮して得られるものであり、且つ
     前記シミュレーションステップにおいて、さらに、車両が旋回しているときの判定パラメータを補正する補正パラメータ、異なる特性のタイヤが装着されていることを判定するタイヤ混用判定パラメータ、および車両の荷重状態が偏っていることを判定する偏荷重状態判定パラメータのうち少なくとも1つを、前記車輪回転速度に基づいて算出する請求項1に記載のタイヤ空気圧低下検出方法におけるパラメータの設定方法。
  3.  前記タイヤモデルが、タイヤの前後力、横力、アライニングモーメント、およびキャンバースラストを含むタイヤの特性値により作成される請求項1または2に記載のタイヤ空気圧低下検出方法におけるパラメータの設定方法。
  4.  車両の走行条件を変えて前記走行シミュレーションを実行することにより、前記補正パラメータ、タイヤ混用判定パラメータおよび偏荷重状態判定パラメータのうち少なくとも1つのパラメータの精度確認を行う請求項2に記載のタイヤ空気圧低下検出方法におけるパラメータの設定方法。
  5.  走行中に車両に発生する空気抵抗を表現する、車両の前面投影面積、空力が作用する参照点、空気抗力係数および空気揚力係数を含むデータを入力するステップを更に含んでおり、
     前記タイヤモデルを作成するステップが、少なくとも正規内圧時および減圧時におけるタイヤの前後力の特性を表すことができるタイヤモデルを作成するステップであり、且つ、
     前記シミュレーションステップにおいて得られる4輪各輪のタイヤの車輪回転速度に基づいて、駆動輪タイヤの空気圧が低下しているか否かを判定するためのパラメータを設定する請求項1に記載のタイヤ空気圧低下検出方法におけるパラメータの設定方法。
  6.  前記車両モデルが、車両重心位置、車両慣性モーメント、ホイールベース長さ、車両前後輪の各トラック幅、車両重量、サスペンションのスプリングバネ特性、ダンパー減衰特性、およびロールセンター高さを含む車両の特性値により作成される請求項1または5に記載のタイヤ空気圧低下検出方法におけるパラメータの設定方法。
PCT/JP2009/050683 2008-02-14 2009-01-19 空気圧低下検出方法におけるパラメータの設定方法 WO2009101841A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT09711452T ATE534538T1 (de) 2008-02-14 2009-01-19 Verfahren zur parameterbestimmung, das beim luftdruckabnahme-erkennungsverfahren verwendet wird
EP09711452A EP2243640B1 (en) 2008-02-14 2009-01-19 Method of determining parameter used in air pressure reduction detecting method
US12/731,689 US8032344B2 (en) 2008-02-14 2010-03-25 Method of setting parameter in method of detecting decreased pneumatic pressure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-032712 2008-02-14
JP2008032712A JP4444340B2 (ja) 2008-02-14 2008-02-14 空気圧低下検出方法におけるパラメータの設定方法
JP2008-073544 2008-03-21
JP2008073544A JP4444342B2 (ja) 2008-03-21 2008-03-21 タイヤ空気圧低下検出方法における警報閾値の設定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/731,689 Continuation US8032344B2 (en) 2008-02-14 2010-03-25 Method of setting parameter in method of detecting decreased pneumatic pressure

Publications (1)

Publication Number Publication Date
WO2009101841A1 true WO2009101841A1 (ja) 2009-08-20

Family

ID=40956871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050683 WO2009101841A1 (ja) 2008-02-14 2009-01-19 空気圧低下検出方法におけるパラメータの設定方法

Country Status (4)

Country Link
US (1) US8032344B2 (ja)
EP (1) EP2243640B1 (ja)
AT (1) ATE534538T1 (ja)
WO (1) WO2009101841A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777573A (zh) * 2016-11-30 2017-05-31 江西洪都航空工业集团有限责任公司 一种飞机空中投放空副油箱落地范围的仿真方法
CN110781579A (zh) * 2019-09-23 2020-02-11 同济大学 一种空投物体下落过程仿真方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2956615B1 (fr) * 2010-02-22 2012-03-02 Continental Automotive France Procede et dispositif de detection de dysfonctionnement d'un capteur de pression d'un gaz dans un pneumatique de vehicule
US8793109B2 (en) * 2011-10-25 2014-07-29 Snap-On Equipment Srl A Unico Socio Determination of non-uniformities of loaded wheels by load simulation
US8983749B1 (en) * 2013-10-24 2015-03-17 The Goodyear Tire & Rubber Company Road friction estimation system and method
US10377194B2 (en) 2014-08-06 2019-08-13 Bridgestone Americas Tire Operations, Llc Method of modeling tire performance
CN105468839B (zh) * 2015-11-23 2019-03-08 北京长城华冠汽车科技股份有限公司 一种汽车风阻系数的确定方法及装置
JP6145589B1 (ja) * 2017-03-06 2017-06-14 株式会社ショーワ 車高調整装置
JP7005979B2 (ja) * 2017-07-19 2022-01-24 住友ゴム工業株式会社 タイヤの回転速度補正装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232107A (ja) * 1990-07-12 1992-08-20 Regie Natl Usines Renault タイヤの空気抜け検出方法
JPH11170828A (ja) * 1997-10-06 1999-06-29 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置および方法
JP2002120528A (ja) * 2000-10-13 2002-04-23 Toyota Central Res & Dev Lab Inc タイヤ特性判定装置
JP2002160511A (ja) * 2000-11-27 2002-06-04 Aisin Seiki Co Ltd タイヤ空気圧推定装置
JP2003330997A (ja) * 2002-05-08 2003-11-21 Sumitomo Rubber Ind Ltd 車両のシミュレーション方法
JP2005001419A (ja) 2003-06-09 2005-01-06 Sumitomo Rubber Ind Ltd タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
JP2005225428A (ja) * 2004-02-16 2005-08-25 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報方法および装置、ならびにタイヤ減圧判定のプログラム
JP2006001298A (ja) 2004-06-15 2006-01-05 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置における減圧判定値の速度感度補正方法の改善

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014504A1 (fr) * 1998-09-07 2000-03-16 Bridgestone Corporation Prediction de la performance d'un pneu
EP1297975B1 (en) * 2000-06-14 2010-04-07 Sumitomo Rubber Industries, Ltd. Vehicle/tire performances simulating method
JP3650342B2 (ja) * 2001-05-28 2005-05-18 住友ゴム工業株式会社 タイヤ・ホイール性能のシミュレーション方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232107A (ja) * 1990-07-12 1992-08-20 Regie Natl Usines Renault タイヤの空気抜け検出方法
JPH11170828A (ja) * 1997-10-06 1999-06-29 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置および方法
JP2002120528A (ja) * 2000-10-13 2002-04-23 Toyota Central Res & Dev Lab Inc タイヤ特性判定装置
JP2002160511A (ja) * 2000-11-27 2002-06-04 Aisin Seiki Co Ltd タイヤ空気圧推定装置
JP2003330997A (ja) * 2002-05-08 2003-11-21 Sumitomo Rubber Ind Ltd 車両のシミュレーション方法
JP2005001419A (ja) 2003-06-09 2005-01-06 Sumitomo Rubber Ind Ltd タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
JP2005225428A (ja) * 2004-02-16 2005-08-25 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報方法および装置、ならびにタイヤ減圧判定のプログラム
JP2006001298A (ja) 2004-06-15 2006-01-05 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置における減圧判定値の速度感度補正方法の改善

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777573A (zh) * 2016-11-30 2017-05-31 江西洪都航空工业集团有限责任公司 一种飞机空中投放空副油箱落地范围的仿真方法
CN110781579A (zh) * 2019-09-23 2020-02-11 同济大学 一种空投物体下落过程仿真方法

Also Published As

Publication number Publication date
EP2243640A4 (en) 2011-01-12
US20100179796A1 (en) 2010-07-15
US8032344B2 (en) 2011-10-04
EP2243640A1 (en) 2010-10-27
EP2243640B1 (en) 2011-11-23
ATE534538T1 (de) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2009101841A1 (ja) 空気圧低下検出方法におけるパラメータの設定方法
JP6349436B2 (ja) 屋内タイヤテストのための拡張可能な車両モデル
KR101797939B1 (ko) 타이어 분류
US9428018B2 (en) Scalable vehicle models for indoor tire testing
Leister Passenger car tires and wheels: Development-Manufacturing-Application
CN112533775B (zh) 胎面磨损监测***和方法
US20130151075A1 (en) System and method for vehicle rollover prediction
KR102255677B1 (ko) 타이어의 가속도 극 값을 이용한 타이어 마모 측정 장치 및 이를 이용한 타이어 마모 측정 방법
JP2008535712A (ja) 静的タイヤ・データを利用した車両安定性制御
JP2020020796A (ja) 屋内タイヤ試験に対するスケール変更可能な車両モデル
JP2018501466A5 (ja)
JP4444342B2 (ja) タイヤ空気圧低下検出方法における警報閾値の設定方法
CN113665302A (zh) 生成虚拟轮胎模型和模拟轮胎状况的方法以及虚拟轮胎模型
JP4444340B2 (ja) 空気圧低下検出方法におけるパラメータの設定方法
CN102096761B (zh) 为人供给用来对装备有安有轮胎的车轮的机动车辆进行静态调整的信息的设备和方法
CN102057267A (zh) 通过比较分析估计一对轮胎的横向抓地力的方法
Knuth et al. Advances in indoor tire tread wear simulation
Haerian et al. Special and misuse events for motorcycles
Anthonysamy et al. Identification and Resolution of Vehicle Pull and Steering Wobble Using Virtual Simulation and Testing
Leister et al. Tires
KR20240096755A (ko) 차량의 가상 프로토타입을 생성하기 위한 방법
Carriere et al. Vehicle Handling Parameter Trends: 1980-2010
Hazare et al. A Design Methodology to Assure Safe On-Road Handling Dynamics for Vehicles with Aftermarket Chassis Modifications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009711452

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE