WO2009098872A1 - 流体機械 - Google Patents

流体機械 Download PDF

Info

Publication number
WO2009098872A1
WO2009098872A1 PCT/JP2009/000431 JP2009000431W WO2009098872A1 WO 2009098872 A1 WO2009098872 A1 WO 2009098872A1 JP 2009000431 W JP2009000431 W JP 2009000431W WO 2009098872 A1 WO2009098872 A1 WO 2009098872A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
chamber
eccentric
rotation mechanism
eccentric rotation
Prior art date
Application number
PCT/JP2009/000431
Other languages
English (en)
French (fr)
Inventor
Takazou Sotojima
Yoshitaka Shibamoto
Takashi Shimizu
Kazuhiro Furusho
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP09707985.9A priority Critical patent/EP2246570B1/en
Priority to US12/866,008 priority patent/US8353693B2/en
Priority to CN2009801041434A priority patent/CN101939546B/zh
Publication of WO2009098872A1 publication Critical patent/WO2009098872A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • F04C18/045Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type having a C-shaped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1027CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1072Oxygen (O2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)

Definitions

  • Patent Document 1 A description of this type of fluid machine is disclosed in Patent Document 1, for example.
  • the fluid machine (20) includes an inflow passage (32) for introducing an external fluid into the fluid chambers (61, 62) of the first eccentric rotation mechanism (24), and the first eccentric rotation.
  • a communication passage (33) for introducing fluid discharged from each fluid chamber (61, 62) of the mechanism (24) into each fluid chamber (63, 64) of the second eccentric rotation mechanism (25);
  • an outflow passage (31) for allowing the fluid discharged from the fluid chambers (63, 64) of the second eccentric rotation mechanism (25) to flow out.
  • the first eccentric portion (23b) and the second eccentric portion (23c) have a shaft center and the main shaft portion (23a). ) Are different from each other.
  • the first eccentric portion (23b) is eccentric with respect to the main shaft portion (23a) in the drive shaft (23).
  • the eccentric direction and the second eccentric direction in which the second eccentric portion (23c) is eccentric with respect to the main shaft portion (23a) are shifted from each other by a predetermined angle of 60 ° to 310 °.
  • the twelfth aspect of the present invention is based on any one of the first to eleventh aspects, and is connected to a refrigerant circuit (10) that performs a refrigeration cycle by being charged with carbon dioxide as a refrigerant.
  • the fluid machine (20) when the fluid machine (20) is used as a compressor, the fluid introduced into the fluid chambers (61, 62) of the first eccentric rotation mechanism (24) through the inflow passage (32) The fluid is compressed in each fluid chamber (61, 62). The fluid discharged from the fluid chambers (61, 62) of the first eccentric rotation mechanism (24) passes through the communication passage (33), and the fluid chambers (63, 64) of the second eccentric rotation mechanism (25). And further compressed in each fluid chamber (63, 64). The fluid discharged from each fluid chamber (63, 64) of the second eccentric rotation mechanism (25) flows out through the outflow passage (31).
  • the suction volume ratio which is the ratio of the suction volume of the low-stage fluid chamber to the suction volume of the high-stage fluid chamber, is the height of the cylinder chamber (54) of the first eccentric rotation mechanism (24) and the second eccentric rotation. Ratio of the mechanism (25) to the height of the cylinder chamber (58) and the amount of eccentricity of the first eccentric part (23b) (distance between the axis of the main shaft part (23a) and the axis of the first eccentric part (23b) ) And the amount of eccentricity of the second eccentric portion (23c) (the distance between the axis of the main shaft portion (23a) and the axis of the second eccentric portion (23c)).
  • the fluid chambers (61, 62) of the first eccentric rotation mechanism (24) are low-stage fluid chambers
  • the fluid chambers (63, 64) of the second eccentric rotation mechanism (25) are Two-stage compression is performed to become a high-stage fluid chamber.
  • each eccentric rotation mechanism (24, 25) the fluid introduced into the outer fluid chamber (61, 63) and the inner fluid chamber (62, 64) of each eccentric rotation mechanism (24, 25) flows through the same passage.
  • the flow rate fluctuation of the fluid sucked by the outer fluid chamber (61, 63) and the flow rate fluctuation of the fluid sucked by the outer fluid chamber (61, 63) are opposite in phase. It has become. For this reason, the fluid flow rate fluctuation in the inflow passage (32) and the fluid flow rate fluctuation in the communication passage (33) are alleviated.
  • the fluid in the outer fluid chamber (61) and the fluid in the inner fluid chamber (62) are discharged into the first discharge space (46).
  • the fluid in the outer fluid chamber (63) and the fluid in the inner fluid chamber (64) are discharged into the second discharge space (47).
  • the fluid in the outer fluid chamber (61, 63) and the fluid in the inner fluid chamber (62, 64) are discharged into the same discharge space (46, 47).
  • the swing moment is a force acting on an object that swings like a pendulum with respect to a fulcrum, and is represented by the product of the moment of inertia around the fulcrum of the object and the swing angular acceleration.
  • a reaction force of the swinging moment acts on the fulcrum.
  • the swinging moment increases as the distance between the center of gravity of the swinging member and the swinging fulcrum increases.
  • the fulcrum of oscillation moves together with the piston (53, 57), so in each eccentric rotation mechanism (24, 25), the center of gravity of the oscillating piston (53, 57) and the oscillation fulcrum The distance is constant.
  • the eccentric amount of the first eccentric rotating mechanism (24) and the eccentric amount of the second eccentric rotating mechanism (25) are different from each other.
  • the suction volume ratio is adjusted by the ratio of the amount of eccentricity.
  • the partition means (101, 102) allows the back surface of the movable end plate portion (51a, 52a) of the first eccentric rotation mechanism (24) and the movable end plate portion (55a) of the second eccentric rotation mechanism (25).
  • 56a) is formed with a high-pressure back pressure chamber (96, 97) communicating with a gap around the drive shaft (23) that becomes the pressure of the fluid discharged from the second eccentric rotation mechanism (25).
  • each fluid chamber (63, 64) of the second eccentric rotation mechanism (25) is a high-stage fluid chamber in which an intermediate pressure fluid is compressed to a high pressure. For this reason, the clearance around the drive shaft (23) becomes a high-pressure space.
  • the partitioning means (101, 102) causes the rear surface of the movable end plate portion (51a, 52a) of the first eccentric rotation mechanism (24) and the movable end plate portion of the second eccentric rotation mechanism (25) (
  • a high-pressure back pressure chamber (96, 97) serving as a high-pressure space is formed on the back surface of 55a, 56a).
  • the first seal ring (101) is provided between the one surface of the middle plate (41) and the back surface of the movable end plate portion (51a, 52a) of the first eccentric rotation mechanism (24).
  • a high pressure back pressure chamber (96) of the eccentric rotation mechanism (24) is formed.
  • the second seal ring (102) is disposed between the other surface of the middle plate (41) and the back surface of the movable end plate portion (55a, 56a) of the second eccentric rotation mechanism (25). ) High pressure back pressure chamber (97).
  • the first eccentric direction and the second eccentric direction are shifted from each other by a predetermined angle of 60 ° or more and 310 ° or less. That is, the phase difference between the first eccentric portion (23b) and the second eccentric portion (23c) is a predetermined angle of 60 ° to 310 °.
  • the torque fluctuation when the phase difference is 180 °.
  • the torque fluctuation ratio based on the width is approximately 1.0 or less.
  • the deviation angle between the first eccentric direction and the second eccentric direction is set so that the torque fluctuation ratio is approximately 1.0 or less.
  • the first eccentric direction and the second eccentric direction are shifted by 180 °.
  • the centrifugal force load acting on the first eccentric portion (23b) and the centrifugal force load acting on the second eccentric portion (23c) act in opposite directions. Therefore, the centrifugal force load acting on the first eccentric portion (23b) and the centrifugal force load acting on the second eccentric portion (23c) largely cancel each other.
  • the fluid machine (20) is connected to the refrigerant circuit (10) filled with carbon dioxide.
  • the carbon dioxide refrigerant has a higher density and a higher sound speed in the refrigerant than the chlorofluorocarbon refrigerant.
  • the pressure pulsation caused by the fluid flow rate fluctuation is proportional to the density of the fluid and the speed of sound in the fluid.
  • the refrigerant circuit (10) filled with carbon dioxide has a larger pressure pulsation caused by fluctuations in the flow rate of the refrigerant than the refrigerant circuit (10) filled with CFC refrigerant.
  • the fluid machine (20) is connected to the refrigerant circuit (10) in which the pressure pulsation caused by the refrigerant flow rate fluctuation increases.
  • each eccentric rotation mechanism (24, 25) two fluid chambers (61 to 64) are formed in each eccentric rotation mechanism (24, 25).
  • the phase of volume change of the outer fluid chamber (61, 63) and the phase of volume change of the inner fluid chamber (62, 64) are shifted by 180 ° (FIG. 3). reference). That is, in each eccentric rotation mechanism (24, 25), the phase of the pressure fluctuation in the outer fluid chamber (61, 63) is shifted from the phase of the pressure fluctuation in the inner fluid chamber (62, 64). Therefore, the torque fluctuation width (difference between the maximum torque and the minimum torque) when driving each eccentric rotation mechanism (24, 25) is, as shown in FIG. 7, for example, a fluid chamber like a rotary type eccentric rotation mechanism. Is smaller than the one with only one. Therefore, the vibration of the fluid machine (20) can be reduced.
  • each of (32) and the communication passage (33) fluctuations in the flow rate of the fluid are alleviated.
  • pressure pulsation occurs with fluid flow rate fluctuation, and vibration is generated by the pressure pulsation.
  • the pressure pulsation increases as the fluid flow rate fluctuation increases.
  • fluid flow rate fluctuations are alleviated in each of the inflow passage (32) and the communication passage (33). Therefore, in the inflow passage (32) and the communication passage (33), it is possible to suppress the pressure pulsation caused by the fluid flow rate fluctuation and the vibration caused by the pressure pulsation.
  • the fluid in the outer fluid chamber (61, 63) and the fluid in the inner fluid chamber (62, 64) are the same in the discharge space (46 , 47), the discharge space (46, 47) becomes wider according to the flow rate of the discharged fluid from the two fluid chambers, and the passage extending from the discharge space (46, 47) also becomes wider. Therefore, the pressure loss of the discharged fluid can be reduced.
  • each eccentric rotation mechanism (24, 25) can be adjusted to the pressure of the discharged fluid in the fluid chamber of the eccentric rotation mechanism (24, 25). Conceivable. That is, it is conceivable to adjust the back pressure chamber of the first eccentric rotation mechanism (24) to an intermediate pressure and adjust the back pressure chamber of the second eccentric rotation mechanism (25) to a high pressure. However, when the gap around the drive shaft (23) becomes a high-pressure space, it is necessary to block communication between the back pressure chamber of the first eccentric rotation mechanism (24) and the gap around the drive shaft (23). Yes, it is necessary to partition both the outside and the inside of the back pressure chamber of the first eccentric rotation mechanism (24).
  • the high pressure back pressure chambers (96, 97) of the eccentric rotation mechanisms (24, 25) are adjusted to a high pressure, so that the outside of the high pressure back pressure chambers (96, 97). You only need to partition Therefore, the configuration of the partition means (101, 102) can be simplified.
  • the high pressure back pressure chamber (96) of the first eccentric rotation mechanism (24) and the high pressure back pressure chamber (97) of the second eccentric rotation mechanism (25) are separate seal rings (101, 102). ).
  • each fluid chamber (61, 62) of the first eccentric rotation mechanism (24) becomes a low-stage side fluid chamber
  • each fluid chamber (63, 64) of the second eccentric rotation mechanism (25) becomes a high-stage side.
  • each fluid chamber (63, 64) has a higher stage than the first eccentric rotation mechanism (24), in which each fluid chamber (61, 62) is a lower stage fluid chamber.
  • the deviation angle between the first eccentric direction and the second eccentric direction is set so that the torque fluctuation ratio is 1.0 or less. For this reason, a low-vibration fluid machine (20) can be configured.
  • the centrifugal load acting on the first eccentric portion (23b) and the second eccentric portion (23c) are affected.
  • the centrifugal force load that cancels out greatly. For this reason, the vibration by centrifugal force load can be reduced significantly.
  • the fluid machine (20) is connected to the refrigerant circuit (10) in which the pressure pulsation caused by the refrigerant flow rate fluctuation increases. Therefore, in order to suppress the pressure pulsation caused by the flow rate variation of the refrigerant, it is introduced into the outer fluid chamber (61) and the inner fluid chamber (62) of the first eccentric rotation mechanism (24) as in the third invention. Pressure pulsation when the fluid introduced into the outer fluid chamber (63) and the inner fluid chamber (64) of the second eccentric rotation mechanism (25) flows through the same passage. The effect of reducing is increased.
  • the refrigerating apparatus is an air conditioner (1) that includes a fluid machine (20) that is a reference of the present invention and performs switching between indoor heating and cooling.
  • the air conditioner (1) includes a refrigerant circuit (10) that performs a refrigeration cycle by circulating refrigerant, and constitutes a so-called heat pump type air conditioner.
  • the refrigerant circuit (10) is filled with carbon dioxide as a refrigerant.
  • the refrigerant circuit (10) is also provided with a four-way switching valve (14), a bridge circuit (19), an internal heat exchanger (15), a pressure reducing valve (16), and a liquid receiver (17).
  • the first connection line (19a) is provided with a first check valve (CV1) that prohibits the flow of refrigerant from one end of the internal heat exchanger (15) toward the outdoor heat exchanger (13).
  • the second connection line (19b) is provided with a second check valve (CV2) that prohibits the flow of refrigerant from one end of the internal heat exchanger (15) toward the indoor heat exchanger (11).
  • the third connection line (19c) is provided with a third check valve (CV3) that prohibits the flow of refrigerant from the outdoor heat exchanger (13) toward the other end of the internal heat exchanger (15).
  • the fourth connection line (19d) is provided with a fourth check valve (CV4) that prohibits the flow of refrigerant from the indoor heat exchanger (11) toward the other end of the internal heat exchanger (15). .
  • the intermediate injection pipe (18) forms an intermediate injection passage and is connected to an intermediate pressure communication pipe (33) described later.
  • the intermediate injection pipe (18) is provided with a pressure reducing valve (16) constituting an opening / closing mechanism on the upstream side of the internal heat exchanger (15).
  • the high-pressure liquid refrigerant flowing through the first heat exchange channel (15a) and the intermediate pressure refrigerant flowing through the second heat exchange channel (15b) can exchange heat. ing.
  • the compressor (20) is configured as a compressor for carbon dioxide refrigerant.
  • the compressor (20) includes a compression mechanism (30) including a first mechanism part (24) and a second mechanism part (25).
  • a low-stage compression chamber (61, 62) and a high-stage compression chamber (63, 64) are formed in each mechanism section (24, 25), respectively. Details of the interior of the compressor (20) will be described later.
  • the first intermediate branch pipe (43a) branched from the intermediate pressure communication pipe (33) is connected to the suction side of the high-stage compression chamber (63) of the first mechanism section (24).
  • a second intermediate branch pipe (43b) branched from the intermediate pressure communication pipe (33) is connected to the suction side of the higher stage compression chamber (64) of the second mechanism section (25).
  • a connection pipe (69) connected to an intermediate connection passage (79) described later is branched.
  • the electric motor (22) includes a stator (26) and a rotor (27).
  • the stator (26) is fixed to the body of the casing (21).
  • the rotor (27) is disposed inside the stator (26) and is connected to the main shaft portion (23a) of the drive shaft (23).
  • the rotational speed of the electric motor (22) is variable by inverter control. That is, the electric motor (22) is composed of an inverter type compressor whose capacity is variable.
  • the drive shaft (23) is formed with a first eccentric part (23b) located near its lower part and a second eccentric part (23c) located near its central part.
  • the first eccentric part (23b) and the second eccentric part (23c) are each eccentric from the axis of the main shaft part (23a) of the drive shaft (23).
  • the first eccentric portion (23b) and the second eccentric portion (23c) are 180 ° out of phase with each other about the axis of the drive shaft (23).
  • the compression mechanism (30) is arranged below the electric motor (22).
  • the compression mechanism (30) includes a first mechanism part (24) closer to the bottom of the casing (21) and a second mechanism part (25) closer to the electric motor (22).
  • the first housing (51) includes a disk-shaped fixed side end plate portion (51a) and an annular first piston (53) protruding upward from the upper surface of the fixed side end plate portion (51a).
  • the first cylinder (52) is movable with a disc-shaped movable side end plate part (52a), an annular inner cylinder part (52b) protruding downward from the inner peripheral end of the movable side end plate part (52a), and And an annular outer cylinder portion (52c) protruding downward from the outer peripheral end portion of the side end plate portion (52a).
  • the first eccentric part (23b) is fitted to the inner cylinder part (52b) of the first cylinder (52).
  • the first cylinder (52) is configured to rotate eccentrically about the axis of the main shaft (23a) as the drive shaft (23) rotates.
  • the second mechanism part (25) is composed of the same mechanical elements as the first mechanism part (24).
  • the second mechanism part (25) is provided upside down with respect to the first mechanism part (24) with the middle plate (41) interposed therebetween.
  • the second housing (55) includes a disk-shaped fixed side end plate portion (55a) and an annular second piston (57) protruding downward from the lower surface of the fixed side end plate portion (55a).
  • the second cylinder (56) includes a disc-shaped end plate portion (56a), an annular inner cylinder portion (56b) protruding upward from the inner peripheral end of the end plate portion (56a), and an end plate portion (56a). And an annular outer cylinder portion (56c) projecting upward from the outer peripheral end portion of the.
  • the second eccentric portion (23c) is fitted to the inner cylinder portion (56b) of the second cylinder (56).
  • the second cylinder (56) is configured to rotate eccentrically about the axis of the main shaft (23a) as the drive shaft (23) rotates.
  • an outer discharge port (65) and an inner discharge port (66) are formed in the first housing (51).
  • the outer discharge port (65) communicates the discharge side of the first low-stage compression chamber (61) with the communication passage (49).
  • the outer discharge port (65) is provided with a first discharge valve (67).
  • the first discharge valve (67) opens the outer discharge port (65) when the refrigerant pressure on the discharge side of the first low-stage compression chamber (61) becomes equal to or higher than the refrigerant pressure on the communication passage (49) side. It is configured.
  • the inner discharge port (66) communicates the discharge side of the first higher-stage compression chamber (63) with the inner space (37).
  • the inner discharge port (66) is provided with a second discharge valve (68).
  • the second discharge valve (68) opens the inner discharge port (66) when the refrigerant pressure on the discharge side of the first higher stage compression chamber (63) becomes equal to or higher than the refrigerant pressure in the internal space (37) of the casing (21). It is comprised so that it may open.
  • an outer discharge port (75) and an inner discharge port (76) are formed in the second housing (55).
  • the outer discharge port (75) communicates the discharge side of the second low-stage compression chamber (62) and the intermediate pressure communication pipe (33).
  • the outer discharge port (75) is provided with a third discharge valve (77).
  • the third discharge valve (77) opens the outer discharge port (75) when the refrigerant pressure on the discharge side of the second low-stage compression chamber (62) becomes equal to or higher than the refrigerant pressure on the intermediate pressure communication pipe (33) side. It is configured as follows.
  • an oil sump for storing refrigeration oil is formed at the bottom of the casing (21).
  • An oil pump (28) that is immersed in an oil reservoir is provided at the lower end of the drive shaft (23).
  • An oil supply passage (not shown) through which the refrigeration oil sucked up by the oil pump (28) flows is formed inside the drive shaft (23). In this compressor (20), as the drive shaft (23) rotates, the refrigerating machine oil sucked up by the oil pump (28) passes through the oil supply passage through the sliding portions and the drive shafts (23 ).
  • the middle plate (41) is provided with a pressing mechanism (80, 90).
  • the pressing mechanism (80, 90) includes a first pressing portion (80) provided for the first mechanism portion (24) and a second pressing portion (90 for the second mechanism portion (25)). ).
  • the first pressing portion (80) is configured to press the first cylinder (52) against the first housing (51).
  • the first pressing portion (80) is provided inside the middle plate (41) and the first inner seal ring (81a) and the first outer seal ring (81b) that form the first intermediate pressure back pressure chamber (85). And an intermediate connection passage (79) formed.
  • the first inner seal ring (81a) and the first outer seal ring (81b) constitute a partition member.
  • the second inner seal ring (91a) is fitted in a second inner annular groove (93) formed on the upper surface of the middle plate (41) so as to surround the insertion hole of the middle plate (41).
  • the second outer seal ring (91b) is fitted into a second outer annular groove (94) formed on the upper surface of the middle plate (41) so as to surround the second inner annular groove (93).
  • the second inner annular groove (93) and the second outer annular groove (94) are arranged concentrically.
  • the second intermediate pressure back pressure chamber (95) includes an outer periphery of the second inner annular groove (93) and a second outer annular groove (between the upper surface of the middle plate (41) and the lower surface of the second cylinder (56). 94) and the inner circumference.
  • the second intermediate pressure back pressure chamber (95) communicates with the connecting pipe (69) through the second branch passage (79c) and the main passage (79a). For this reason, the intermediate pressure refrigerant toward the second higher-stage compression chamber (64) is introduced into the second intermediate pressure back pressure chamber (95). Further, high-pressure refrigerating machine oil from the drive shaft (23) side is introduced inside the second inner seal ring (91a). The outside of the second outer seal ring (91b) communicates with the suction space (39).
  • the second pressing portion (90) includes a high-pressure refrigerating machine oil inside the second inner seal ring (91a), an intermediate pressure refrigerant in the second intermediate pressure back pressure chamber (95), and a second outer seal ring (91b).
  • the second cylinder (56) is pressed against the second housing (55) by the low-pressure refrigerant outside.
  • the four-way switching valve (14) is set to the first state, and the opening degree of the expansion valve (12) is appropriately adjusted.
  • the compressor (20) is operated in this state, the refrigerant circuit (10) has a refrigeration cycle in which the indoor heat exchanger (11) serves as a radiator and the outdoor heat exchanger (13) serves as an evaporator. Done.
  • a supercritical refrigeration cycle is performed in which the high pressure of the refrigeration cycle is higher than the critical pressure of the carbon dioxide refrigerant. This also applies to the following cooling operation.
  • the pressure reducing valve (16) when the required heating capacity is relatively large, the pressure reducing valve (16) is set to an open state.
  • the refrigeration cycle of the refrigeration cycle is placed in the high-stage compression chamber (63, 64) of each mechanism (24, 25) of the compressor (20) through the intermediate injection pipe (18).
  • An intermediate injection operation for injecting the intermediate pressure refrigerant is performed.
  • the opening of the pressure reducing valve (16) is adjusted as appropriate.
  • the pressure reducing valve (16) is set to the closed state, and the intermediate injection operation is stopped.
  • the refrigerant cooled by the indoor heat exchanger (11) flows through the first heat exchange flow path (15a) of the internal heat exchanger (15) and is decompressed to a low pressure by the expansion valve (12). Flow through exchanger (13). In the outdoor heat exchanger (13), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (13) is sent to the suction side of the compressor (20) via the liquid receiver (17).
  • the refrigerant that has flowed to the suction side of the compressor (20) is divided into the first suction branch pipe (42a) and the second suction branch pipe (42b).
  • the refrigerant flowing into the first suction branch pipe (42a) is compressed in the first lower stage compression chamber (61) of the first mechanism section (24).
  • the refrigerant flowing into the second suction branch pipe (42b) is compressed in the second lower stage compression chamber (62) of the second mechanism section (25).
  • the refrigerant compressed in each of the low-stage compression chambers (61, 62) flows through the intermediate pressure communication pipe (33) after merging to the first intermediate branch pipe (43a) and the second intermediate branch pipe (43b). Divide.
  • the heat of the refrigerant on the first heat exchange channel (15a) side is applied to the refrigerant on the second heat exchange channel (15b) side, and this second heat exchange flow
  • the refrigerant on the path (15b) side evaporates.
  • the refrigerant evaporated in the second heat exchange channel (15b) merges with the refrigerant compressed in each lower stage compression chamber (61, 62) and is compressed in each higher stage compression chamber (63, 64).
  • the separating force acting on the cylinders (52, 56) is smaller when the intermediate injection operation is stopped than when the intermediate injection operation is performed.
  • the separation force acting on the movable member (52, 56) is provided by providing the seal ring (81, 91) on the back side of the movable end plate (52a, 56a) of each mechanism (24, 25). The pressing force of the pressing mechanism (80, 90) is made small while the intermediate injection operation is stopped.
  • the four-way switching valve (14) is set to the second state, and the opening degree of the expansion valve (12) is appropriately adjusted.
  • the compressor (20) is operated in this state, the refrigerant circuit (10) has a refrigeration cycle in which the outdoor heat exchanger (13) serves as a radiator and the indoor heat exchanger (11) serves as an evaporator. Done.
  • the injection operation can be executed as in the heating operation, but only the operation during the stop of the injection operation will be described below.
  • the first mechanism part (24) and the second mechanism part (25) respectively compress the refrigerant in two stages.
  • the refrigerant compressed by each mechanism (24, 25) is discharged again from the discharge pipe (31).
  • the cylinder ((91, 91)) is provided by forming the intermediate pressure back pressure chamber (85, 95) on the back side of the movable side end plate (52a, 56a). 52, 56) The pressing force of the pressing mechanism (80, 90) is reduced during the stop of the intermediate injection operation in which the separation force acting on 52, 56) is reduced.
  • the compressor (20) of the refrigerating apparatus (1) that performs the intermediate injection operation the compressor (20) in which the pressing force of the pressing mechanism (80, 90) is reduced during the stop of the intermediate injection operation. Has been applied. For this reason, since the energy loss of the compressor (20) during the stop of the intermediate injection operation is reduced, the operating efficiency of the refrigeration apparatus (1) can be improved.
  • the first low-stage compression chamber (61) and the second low-stage compression chamber (62) are formed in the first mechanism portion (24).
  • the first higher stage compression chamber (63) and the second higher stage compression chamber (64) are formed in the second mechanism section (25).
  • the 1st mechanism part (24) comprises the 1st eccentric rotation mechanism (24), and the 2nd mechanism part (25) comprises the 2nd eccentric rotation mechanism (25).
  • the first lower stage compression chamber (61) constitutes the outer fluid chamber (61)
  • the second lower stage compression chamber (62) constitutes the inner fluid chamber (62). It is composed.
  • the first higher stage compression chamber (63) constitutes the outer fluid chamber (63)
  • the second higher stage compression chamber (64) constitutes the inner fluid chamber (64). ing.
  • the suction pipe (32) constituting the inflow passage (32) is connected to the suction side of the first mechanism section (24).
  • the discharge side of the first mechanism part (24) is connected to the suction side of the second mechanism part (25) via an intermediate pressure communication pipe (33) constituting the communication passage (33).
  • the first low-stage compression chamber (between the outer peripheral surface of the first piston (53) and the outer wall of the first cylinder chamber (54). 61) is formed, and a second low-stage compression chamber (62) is formed between the inner peripheral surface of the first piston (53) and the inner wall of the first cylinder chamber (54).
  • a first outer communication passage (59a) is formed in the outer cylinder portion (52c), and a first inner communication passage (59b) is formed in the inner cylinder portion (52b).
  • the first outer communication passage (59a) communicates the suction space (38) outside the first cylinder (52) with the suction side of the first low-stage compression chamber (61).
  • the first inner communication path (59b) communicates the suction side of the first low-stage compression chamber (61) and the suction side of the second low-stage compression chamber (62).
  • the suction side of the first low-stage compression chamber (61) is connected to the suction pipe (32) via the first outer communication path (59a).
  • the suction side of the second low-stage compression chamber (62) is connected to the suction pipe (32) via the first outer communication path (59a) and the first inner communication path (59b).
  • the refrigerant from the outside of the compressor (20) is introduced into the first low-stage compression chamber (61) and the second low-stage compression chamber (62) of the first mechanism section (24).
  • the inflow passage (32) is constituted by a single suction pipe (32). For this reason, the flow volume fluctuation
  • the outer discharge port (65) and the inner discharge port (66) are formed in the first housing (51).
  • the outer discharge port (65) communicates the discharge side of the first low-stage compression chamber (61) and the first discharge space (46).
  • the outer discharge port (65) is provided with a first discharge valve (67).
  • the first discharge valve (67) opens the outer discharge port (65) when the refrigerant pressure on the discharge side of the first low-stage compression chamber (61) becomes equal to or higher than the refrigerant pressure in the first discharge space (46). It is configured.
  • the inner discharge port (66) communicates the discharge side of the second lower stage compression chamber (62) and the first discharge space (46).
  • the inner discharge port (66) is provided with a second discharge valve (68).
  • the outer discharge port (65) and the inner discharge port (66) of the first mechanism section (24) are open to the same first discharge space (46).
  • the refrigerant in the first low-stage compression chamber (61) and the refrigerant in the second low-stage compression chamber (62) are discharged into the same discharge space (46).
  • the first discharge space (46) is relatively wide so as to correspond to the discharge flow rate from the two compression chambers (61, 62), and the intermediate pressure communication pipe extending from the first discharge space (46). (33) also has a relatively large diameter.
  • a first higher-stage compression chamber (63) is formed between the outer peripheral surface of the second piston (57) and the outer wall of the second cylinder chamber (58), and the second piston ( 57) is formed between the inner peripheral surface of 57) and the inner wall of the second cylinder chamber (58).
  • the second outer communication path (60a) is formed in the outer cylinder part (56c), and the second inner communication path (60b) is formed in the inner cylinder part (56b).
  • the second outer communication passage (60a) communicates the suction space (39) outside the second cylinder (56) with the suction side of the first higher stage compression chamber (63).
  • the second inner communication path (60b) communicates the suction side of the first higher stage compression chamber (63) and the suction side of the second higher stage compression chamber (64).
  • the suction side of the first higher stage compression chamber (63) is connected to the intermediate pressure communication pipe (33) through the second outer communication path (60a).
  • the suction side of the second higher-stage compression chamber (64) is connected to the intermediate pressure communication pipe (33) via the second outer communication path (60a) and the second inner communication path (60b).
  • the fourth discharge valve (78) opens the inner discharge port (76) when the refrigerant pressure on the discharge side of the second higher-stage compression chamber (64) becomes equal to or higher than the refrigerant pressure in the second discharge space (47). It is configured.
  • the second discharge space (47) communicates with the discharge pipe (31) constituting the outflow passage (31) via the internal space (37).
  • the inflow passage (32 ) And the communication passage (33) since the refrigerant introduced into the outer fluid chambers (61, 63) and the inner fluid chambers (62, 64) of the mechanism portions (24, 25) flows through the same passage, the inflow passage (32 ) And the communication passage (33), the flow rate fluctuation of the refrigerant is alleviated. Accordingly, in the inflow passage (32) and the communication passage (33), it is possible to reduce the pressure pulsation caused by the refrigerant flow rate fluctuation and the vibration caused by the pressure pulsation.
  • the compressor (20) is connected to the refrigerant circuit (10) in which the pressure pulsation caused by the refrigerant flow rate fluctuation increases. Therefore, in order to reduce the pressure pulsation caused by the flow rate variation of the refrigerant, the refrigerant introduced into the outer fluid chamber (61) and the inner fluid chamber (62) of the first mechanism portion (24) flows through the same passage, The effect that the refrigerant introduced into the outer fluid chamber (63) and the inner fluid chamber (64) of the mechanism portion (25) flows through the same passage is increased.
  • the effects of the first embodiment described so far are common to the second embodiment.
  • the seal ring (81) is provided not only on the second mechanism portion (25) but also on the back side of the movable end plate portion (52a) of the first mechanism portion (24). Accordingly, not only the second mechanism portion (25) but also the first mechanism portion (24) can reduce the energy loss during the stop of the intermediate injection operation, so that the energy loss of the compression mechanism (30) can be reduced. it can.
  • Embodiment 2 of this invention is an air conditioner (1) provided with the fluid machine (20) which concerns on this invention similarly to the said Embodiment 1.
  • FIG. The second embodiment is different from the first embodiment in that the first mechanism portion (24) and the second mechanism portion (25) of the compressor (20) are piston movable. In the following, differences from the first embodiment will be mainly described.
  • the first cylinder (52) has a disk-shaped fixed side end plate part (52a), an annular inner cylinder part (52b) projecting upward from an inward position of the upper surface of the fixed side end plate part (52a), and a first cylinder (52a) And an annular outer cylinder portion (52c) protruding upward from the outer peripheral portion of the upper surface of the side end plate portion (52a).
  • the first cylinder (52) has an annular first cylinder chamber (54) between the inner cylinder part (52b) and the outer cylinder part (52c).
  • the first eccentric portion (23b) is fitted to the annular protrusion (51b).
  • the first movable member (51) rotates eccentrically around the axis of the main shaft (23a) as the drive shaft (23) rotates.
  • a space (99) is formed between the annular protrusion (51b) and the inner cylinder part (52b). In this space (99), the refrigerant is compressed. Absent.
  • the first mechanism portion (24) includes a blade (45) extending from the outer peripheral surface of the inner cylinder portion (52b) to the inner peripheral surface of the outer cylinder portion (52c).
  • the blade (45) is integrated with the first cylinder (52).
  • the blade (45) is disposed in the first cylinder chamber (54) and divides the outer fluid chamber (61) into a first chamber (61a) on the suction side and a second chamber (61b) on the discharge side,
  • the chamber (62) is partitioned into a first chamber (62a) on the suction side and a second chamber (62b) on the discharge side.
  • the blade (45) is inserted through the part of the C-shaped first piston (53) in which the annular part is parted.
  • the suction pipe (32) constituting the inflow passage (32) is connected to the first mechanism part (24).
  • the suction pipe (32) is connected to a first connection passage (86) formed in the fixed side end plate part (52a).
  • the first connection passage (86) has an inlet side extending in the radial direction of the fixed side end plate portion (52a), bent upward in the middle, and an outlet side extending in the axial direction of the fixed side end plate portion (52a).
  • the outlet end of the first connection passage (86) opens to both the outer fluid chamber (61) and the inner fluid chamber (62).
  • the outer fluid chamber (61) serves as the first lower stage compression chamber (61)
  • the inner fluid chamber (62) serves as the second lower stage compression chamber (62).
  • the refrigerant from the outside of the compressor (20) is supplied to the first low-stage compression chamber (61) and the second low-stage compression of the first mechanism section (24).
  • the inflow passage (32) for introduction into the chamber (62) is constituted by a single suction pipe (32).
  • the first mechanism section (24) includes an outer discharge port (65) for discharging refrigerant from the outer first low-stage compression chamber (61) and an inner second low-stage compression chamber (62).
  • An inner discharge port (66) for discharging the refrigerant and a first discharge space (46) in which both the outer discharge port (65) and the inner discharge port (66) are open are formed.
  • the outer discharge port (65) communicates the second chamber (61b) of the first lower stage compression chamber (61) and the first discharge space (46).
  • the outer discharge port (65) is provided with a first discharge valve (67).
  • the inner discharge port (66) communicates the second chamber (62b) of the second lower stage compression chamber (62) and the first discharge space (46).
  • the inner discharge port (66) is provided with a second discharge valve (68).
  • the inlet end of the intermediate pressure communication pipe (33) constituting the communication passage (33) is opened.
  • the outer discharge port (65) and the inner discharge port (66) of the first mechanism portion (24) are open to the same discharge space (46).
  • the second mechanism part (25) is composed of the same mechanical elements as the first mechanism part (24).
  • the second mechanism part (25) is provided upside down with respect to the first mechanism part (24) with a middle plate (41) described later interposed therebetween.
  • the second mechanism portion (25) includes a second cylinder (56) fixed to the casing (21) and an annular second piston (57), and is driven by the drive shaft (23). 2 movable members (55).
  • the second mechanism portion (25) is provided so that the back surface of a movable side end plate portion (55a) described later faces the first mechanism portion (24) side.
  • the 2nd mechanism part (25) comprises the 2nd eccentric rotation mechanism (25).
  • the second movable member (55) extends upward from the inner peripheral end of the upper surface of the disk-shaped movable side end plate portion (55a), the above-described second piston (57), and the movable side end plate portion (55a).
  • the movable side end plate part (55a) faces the second cylinder chamber (58) together with the fixed side end plate part (56a).
  • the second piston (57) protrudes upward from a position slightly closer to the outer periphery on the upper surface of the movable side end plate portion (55a).
  • the second piston (57) is eccentric with respect to the second cylinder (56) and is accommodated in the second cylinder chamber (58).
  • semicircular bushes (46, 46) are fitted into the divided portions of the second piston (57) so as to sandwich the blade (45).
  • the bushes (46, 46) are configured to be swingable with respect to the end surface of the second piston (57).
  • the second piston (57) can advance and retreat in the extending direction of the blade (45) and can swing together with the bushes (46, 46).
  • the intermediate pressure communication pipe (33) is connected to the second mechanism part (25).
  • the intermediate pressure communication pipe (33) is connected to a second connection passage (87) formed in the fixed side end plate part (56a).
  • the second connection passage (87) has an inlet side extending in the radial direction of the fixed side end plate portion (56a), bent downward in the middle, and an outlet side extending in the axial direction of the fixed side end plate portion (56a).
  • the outlet end of the second connection passage (87) opens to both the outer fluid chamber (63) and the inner fluid chamber (64).
  • the outer fluid chamber (63) serves as the first higher stage compression chamber (63)
  • the inner fluid chamber (64) serves as the second higher stage compression chamber (64).
  • the refrigerant discharged from the first low-stage compression chamber (61) and the second low-stage compression chamber (62) of the first mechanism section (24) is used as the first refrigerant.
  • the communication passage (33) for introduction into the first higher stage compression chamber (63) and the second higher stage compression chamber (64) of the mechanism part (25) has one intermediate pressure communication pipe (33). It is comprised by.
  • the second mechanism (25) includes an outer discharge port (75) for discharging refrigerant from the outer first high-stage compression chamber (63), and an inner second high-stage compression chamber (64).
  • An inner discharge port (76) for discharging the refrigerant and a second discharge space (47) in which both the outer discharge port (75) and the inner discharge port (76) are open are formed.
  • the outer discharge port (75) communicates the second chamber (63b) of the first higher stage compression chamber (63) and the second discharge space (47).
  • the outer discharge port (75) is provided with a third discharge valve (77).
  • the inner discharge port (76) communicates the second chamber (64b) of the second higher-stage compression chamber (64) and the second discharge space (47).
  • the first eccentric portion (23b) and the second eccentric portion (23c) are 180 degrees out of phase with each other about the axis of the drive shaft (23). Yes. That is, there is a first eccentric direction in which the first eccentric portion (23b) is eccentric with respect to the main shaft portion (23a) and a second eccentric direction in which the second eccentric portion (23c) is eccentric with respect to the main shaft portion (23a). It is shifted by 180 °.
  • the compressor (20) of the second embodiment includes the first high-stage compression chamber (63) with respect to the total suction volume of the first low-stage compression chamber (61) and the second low-stage compression chamber (62). ) And the second higher-stage compression chamber (64) is designed so that the suction volume ratio, which is the total suction volume, is 1.0, for example.
  • the cylinder chamber (54,58) and the piston (53,57) have the same cross-sectional shape and the same size, and the cylinder The chambers (54,58) have the same height.
  • the amount of eccentricity of the first eccentric portion (23b) is equal to the amount of eccentricity of the second eccentric portion (23c).
  • the suction volume of the first low-stage compression chamber (61) is equal to the suction volume of the first high-stage compression chamber (63), and the suction volume of the second low-stage compression chamber (62) is equal to the second volume.
  • the suction volume of the higher stage compression chamber (64) is equal. Accordingly, the total suction volume of the first low-stage compression chamber (61) and the second low-stage compression chamber (62), the first high-stage compression chamber (63), and the second high-stage compression chamber (64). Is equal to the total suction volume, and the suction volume ratio is 1.0.
  • a different ratio for example, 0.8
  • the height ratio which is the ratio between the first eccentric part
  • the eccentric amount ratio which is the ratio between the eccentric quantity of the first eccentric part (23b) and the eccentric quantity of the second eccentric part (23c). It is possible to set the volume ratio to a predetermined ratio.
  • the suction volume ratio is set to another ratio (for example, 0.8), only the height ratio of the height ratio and the eccentricity ratio may be adjusted.
  • the height ratio is set equal to the suction volume ratio to be set.
  • the first mechanism portion (24) and the second mechanism portion (25) have different cylinder chambers (54, 58).
  • the size of the end plate part (51a, 55a) occupying most of the movable member (51, 55) is adjusted between the first mechanism part (24) and the second mechanism part (25). Can be the same. For this reason, the weight difference between the first movable member (51) and the second movable member (55) can be reduced. Therefore, the difference between the torque fluctuation for driving the first movable member (51) and the torque fluctuation for driving the second movable member (55) is reduced, so that the torque fluctuations are offset. It is easy to reduce vibration associated with torque fluctuation.
  • the suction volume ratio is set to another ratio (for example, 0.8)
  • another ratio for example, 0.8
  • only the eccentric amount ratio of the height ratio and the eccentric amount ratio may be adjusted.
  • the first eccentric portion (23b) and the second eccentric portion (23c) have different amounts of eccentricity.
  • the cylinder chamber (54,58) and the piston (53,57) have the same cross-sectional shape and the same size.
  • the height of the cylinder chamber (54, 58) and the height of the piston (53, 57) become equal.
  • a middle plate (41) sandwiched between the portions (55a) and a pressing mechanism (80, 90) including a first pressing portion (80) and a second pressing portion (90) are provided.
  • the first pressing portion (80) includes a first seal ring (101) that forms a first high-pressure back pressure chamber (96).
  • the first seal ring (101) is fitted into a first annular groove (105) formed in the lower surface of the middle plate (41) so as to surround the insertion hole of the middle plate (41) in which the drive shaft (23) is inserted. It is.
  • the center of the first annular groove (105) is shifted to the discharge side (left side in FIG. 4) from the axis of the drive shaft (23).
  • the first high-pressure back pressure chamber (96) is formed inside the first seal ring (101) between the lower surface of the middle plate (41) and the upper surface of the movable side end plate portion (51a).
  • the first high pressure back pressure chamber (96) communicates with a gap around the drive shaft (23).
  • refrigerating machine oil in an oil reservoir is supplied to the outer peripheral surface of the drive shaft (23) through an oil supply passage in the drive shaft (23).
  • the oil sump is at high pressure.
  • the clearance around the drive shaft (23) becomes a high-pressure space
  • the first high-pressure back pressure chamber (96) becomes a high-pressure space.
  • the fluctuation range (difference between the maximum value and the minimum value) of the torque ratio of the compressor (20) of the second embodiment is approximately 0.4, and the fluctuation range of the torque ratio of the rotary compressor that is slightly less than 0.7. Compared to (torque fluctuation ratio), it is much smaller.
  • FIG. 7 shows values in the case of the piston moving method, the torque fluctuation range is also smaller in the piston fixing method than in the rotary compressor.
  • FIG. 9 shows the relationship between the phase difference between the first eccentric portion (23b) and the second eccentric portion (23c) and the fluctuation range of the torque ratio.
  • FIG. 9 is drawn so that the fluctuation range of the torque ratio is 1 when the phase difference between the first eccentric portion (23b) and the second eccentric portion (23c) is 180 °.
  • the fluctuation range of the torque ratio slightly exceeds 1.0 in the range of the phase difference of approximately 160 ° to 180 °
  • the second eccentric portion (23c) is approximately 1.0 or less in a range of 60 ° to 310 °.
  • the phase difference between the first eccentric portion (23b) and the second eccentric portion (23c) may be a value in the range of 60 ° to 310 ° (for example, 120 °, 240 °). The same tendency is observed with the piston fixing method.
  • a piston movable system is adopted in which the distance between the center of gravity of the swinging member and the swinging fulcrum is constant in each mechanism section (24, 25). For this reason, the difference between the swinging moment of the first mechanism portion (24) and the swinging moment of the second mechanism portion (25) does not vary. Further, since the first eccentric direction and the second eccentric direction are shifted by 180 °, the swing moment of the first mechanism portion (24) and the swing moment of the second mechanism portion (25) cancel each other. Accordingly, the swinging moment of the first mechanism portion (24) and the swinging moment of the second mechanism portion (25) always cancel each other out greatly, so that vibration caused by the swinging moment can be reduced.
  • the partitioning means (101, 102) causes the back surface of the movable side end plate part (51a) of the first mechanism part (24) and the movable side end plate part (55a) of the second mechanism part (25).
  • a high-pressure back pressure chamber (96, 97) is formed on the back surface.
  • the high-pressure back pressure chamber (96, 97) of each mechanism (24, 25) is adjusted to a high pressure. Accordingly, since only the outside of the high-pressure back pressure chamber (96, 97) needs to be partitioned, the configuration of the partition means (101, 102) can be simplified.
  • the high pressure back pressure chamber (96) of the first mechanism portion (24) and the high pressure back pressure chamber (97) of the second mechanism portion (25) are formed by separate seal rings (101, 102). Has been. For this reason, the area of the high-pressure back pressure chamber (96) of the first mechanism part (24) and the area of the high-pressure back pressure chamber (97) of the second mechanism part (25) should be set according to the separation force. Is possible. Therefore, in the first mechanism portion (24) having a small separation force, it is possible to avoid the pressing force from being excessive with respect to the separation force, and thus the friction loss of the first mechanism portion (24) is reduced. be able to.
  • the fluid machine (20) may be connected to the refrigerant circuit (10) as an expander (20) for expanding the refrigerant.
  • the fluid chambers (61, 62) of the first mechanism portion (24) become high-stage fluid chambers that reduce the high-pressure refrigerant to an intermediate pressure
  • the fluid chambers (63, 64) of the second mechanism portion (25). ) Is a low-stage fluid chamber that depressurizes the intermediate pressure refrigerant to a low pressure.
  • the refrigerant filled in the refrigerant circuit (10) may be a refrigerant other than carbon dioxide (for example, a fluorocarbon refrigerant).
  • the compressor (20) is configured for a chlorofluorocarbon refrigerant.
  • the compressor for chlorofluorocarbon refrigerant (20) has a smaller suction volume ratio of the high-stage compression chamber (63,64) to the low-stage compression chamber (61,62) than the compressor for carbon dioxide (for example, 0.7).
  • the compressor (20) may be a low-pressure dome type compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 低段側流体室と高段側流体室とが別々の偏心回転機構(24,25)に形成されるように、外部からの流体を第1偏心回転機構(24)の各流体室(61,62)に導入するための流入通路(32)と、第1偏心回転機構(24)の各流体室(61,62)から吐出された流体を第2偏心回転機構(25)の各流体室(63,64)に導入するための連絡通路(33)と、第2偏心回転機構(25)の各流体室(63,64)から吐出された流体を外部へ流出させるための流出通路(31)とを設ける。

Description

流体機械
 本発明は、流体を圧縮する、又は流体を膨張させる流体機械に関するものである。
 従来より、流体を圧縮する、又は流体を膨張させる流体機械が知られている。この種の流体機械の一例が、例えば特許文献1に開示されている。
 具体的に、特許文献1には、この種の流体機械として、冷媒の二段圧縮を行う圧縮機が記載されている。この圧縮機は、2つの偏心回転機構を備えている。各偏心回転機構では、環状のピストンの内外に圧縮室がそれぞれ形成されている。冷媒を二段圧縮する二段圧縮動作では、第1の偏心回転機構の第1圧縮室と第2の偏心回転機構の第2圧縮室が低段側の圧縮室になり、第1の偏心回転機構の第3圧縮室と第2の偏心回転機構の第4圧縮室が高段側の圧縮室になる。すなわち、各偏心回転機構では、一方の圧縮室が低段側圧縮室になり、他方の圧縮室が後段側圧縮室になる。
特開2007-239666号公報
 ところで、環状のピストンの内外に流体室がそれぞれ形成される偏心回転機構を備える流体機械では、環状のピストンの外側に形成される外側流体室と、環状のピストンの内側に形成される内側流体室との容積比が、幾何学的にある程度決まってしまい、その容積比を自由に設定することが困難である。
 ここで、上述したように、2つの偏心回転機構を備える従来の流体機械では、流体機械を圧縮機として用いる場合であれば、各偏心回転機構において、外側流体室及び内側流体室の一方が低圧冷媒を中間圧に圧縮する低段側流体室となり、他方が中間圧冷媒を高圧に圧縮する高段側流体室となる。このため、従来の流体機械では、低段側流体室の吸入容積に対する、高段側流体室の吸入容積の比率(吸入容積比)を自由に設定することが困難であった。同様に、流体機械を膨張機として用いる場合も、吸入容積比を自由に設定することが困難である。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、環状のピストンの内外に流体室がそれぞれ形成される偏心回転機構を有する流体機械において、低段側流体室の吸入容積に対する高段側流体室の吸入容積の比率を所定の比率に容易に設定することができるようにすることにある。
 第1の発明は、環状のシリンダ室(54,58)を有するシリンダ(52,56)と、該シリンダ(52,56)に対して偏心してシリンダ室(54,58)に収納され、該シリンダ室(54,58)を外側流体室(61,63)と内側流体室(62,64)とに区画する環状のピストン(53,57)と、該シリンダ室(54,58)に配置され、各流体室(61~64)をそれぞれ第1室と第2室とに区画するブレード(45)とを有し、上記シリンダ(52,56)と上記ピストン(53,57)とが相対的に偏心回転運動する第1偏心回転機構(24)及び第2偏心回転機構(25)と、主軸部(23a)と、該主軸部(23a)の軸心に対して偏心して上記第1偏心回転機構(24)に係合する第1偏心部(23b)と、該主軸部(23a)の軸心に対して偏心して上記第2偏心回転機構(25)に係合する第2偏心部(23c)とを有する駆動軸(23)とを備え、上記第1偏心回転機構(24)及び上記第2偏心回転機構(25)の各流体室(63,64)内で流体を圧縮する又は膨張させる流体機械(20)を対象とする。
 そして、この流体機械(20)は、外部からの流体を上記第1偏心回転機構(24)の各流体室(61,62)に導入するための流入通路(32)と、上記第1偏心回転機構(24)の各流体室(61,62)から吐出された流体を上記第2偏心回転機構(25)の各流体室(63,64)に導入するための連絡通路(33)と、上記第2偏心回転機構(25)の各流体室(63,64)から吐出された流体を外部へ流出させるための流出通路(31)とを備えている。
 第2の発明は、上記第1の発明において、上記第1偏心回転機構(24)の各流体室(61,62)で外部から導入した流体を圧縮し、上記第2偏心回転機構(25)の各流体室(63,64)で該第1偏心回転機構(24)の各流体室(61,62)で圧縮された流体を更に圧縮する。
 第3の発明は、上記第1又は第2の発明において、上記流入通路(32)が、上記第1偏心回転機構(24)の外側流体室(61)及び内側流体室(62)に繋がる1つの通路で構成され、上記連絡通路(33)が、上記第2偏心回転機構(25)の外側流体室(63)及び内側流体室(64)に繋がる1つの通路で構成されている。
 第4の発明は、上記第1乃至第3の何れか1つの発明において、上記各偏心回転機構(24,25)には、上記外側流体室(61,63)から流体を吐出させる外側吐出ポート(65,75)と、上記内側流体室(62,64)から流体を吐出させる内側吐出ポート(66,76)とがそれぞれ形成される一方、上記第1偏心回転機構(24)の外側吐出ポート(65)及び内側吐出ポート(66)は、上記連絡通路(33)に連通する第1吐出空間(46)に開口し、上記第2偏心回転機構(25)の外側吐出ポート(75)及び内側吐出ポート(76)は、上記流出通路(31)に連通する第2吐出空間(47)に開口する。
 第5の発明は、上記第1乃至第4の何れか1つの発明において、上記各偏心回転機構(24,25)が、上記シリンダ(52,56)が固定され、上記ピストン(53,57)が偏心回転運動するように構成されている。
 第6の発明は、上記第1乃至第5の何れか1つの発明において、上記第1偏心回転機構(24)と上記第2偏心回転機構(25)とでは、上記シリンダ室(54,58)の高さが互いに相違している。
 第7の発明は、上記第1乃至第6の何れか1つの発明において、上記第1偏心部(23b)と上記第2偏心部(23c)とでは、それぞれの軸心と上記主軸部(23a)の軸心との距離が互いに相違している。
 第8の発明は、上記第2の発明において、上記各偏心回転機構(24,25)では、上記シリンダ(52,56)と上記ピストン(53,57)とのそれぞれに、前面が外側流体室(61,63)及び内側流体室(62,64)に面する鏡板部(51a,52a,55a,56a)が形成され、該シリンダ(52,56)と該ピストン(53,57)のうち偏心回転運動する方の鏡板部(51a,52a,55a,56a)が可動側鏡板部(51a,52a,55a,56a)を構成する一方、上記第2偏心回転機構(25)から吐出された流体の圧力になる駆動軸(23)の周囲の隙間に連通する高圧背圧室(96,97)を、上記第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面と上記第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面とに形成する区画手段(101,102)を備えている。
 第9の発明は、上記第8の発明において、上記第1偏心回転機構(24)が、その可動側鏡板部(51a,52a)の背面が第2偏心回転機構(25)側を向くように設けられ、上記第2偏心回転機構(25)が、その可動側鏡板部(55a,56a)の背面が第1偏心回転機構(24)側を向くように設けられる一方、上記第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面と第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面とに挟まれたミドルプレート(41)を備え、上記区画手段(101,102)は、上記ミドルプレート(41)の片面と上記第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面との間に上記高圧背圧室(96)を形成する第1シールリング(101)と、該ミドルプレート(41)のもう片面と上記第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面との間に上記高圧背圧室(97)を形成する第2シールリング(102)とを備えている。
 第10の発明は、上記第1乃至第9の何れか1つの発明において、上記駆動軸(23)では、上記第1偏心部(23b)が上記主軸部(23a)に対して偏心する第1偏心方向と、上記第2偏心部(23c)が上記主軸部(23a)に対して偏心する第2偏心方向とが、60°以上310°以下の所定の角度ずれている。
 第11の発明は、上記第10の発明において、上記駆動軸(23)では、上記第1偏心方向と上記第2偏心方向とが180°ずれている。
 第12の発明は、上記第1乃至第11の何れか1つの発明において、冷媒として二酸化炭素が充填されて冷凍サイクルを行う冷媒回路(10)に接続される。
   -作用-
 第1の発明では、流体機械(20)が圧縮機として用いられる場合に、流入通路(32)を通じて第1偏心回転機構(24)の各流体室(61,62)に導入された流体が、その各流体室(61,62)で圧縮される。そして、第1偏心回転機構(24)の各流体室(61,62)から吐出された流体が、連絡通路(33)を通じて、第2偏心回転機構(25)の各流体室(63,64)に導入され、その各流体室(63,64)で更に圧縮される。第2偏心回転機構(25)の各流体室(63,64)から吐出された流体は、流出通路(31)を通じて外部へ流出する。すなわち、第1偏心回転機構(24)の各流体室(61,62)が低段側流体室となり、第2偏心回転機構(25)の各流体室(63,64)が高段側流体室となる。一方、流体機械(20)が膨張機として用いられる場合には、第1偏心回転機構(24)の各流体室(61,62)が高段側流体室となり、第2偏心回転機構(25)の各流体室(63,64)が低段側流体室となる。この第1の発明では、低段側流体室と高段側流体室とが別々の偏心回転機構(24,25)に形成される。従って、低段側流体室の吸入容積と高段側流体室の吸入容積との比率である吸入容積比が、第1偏心回転機構(24)のシリンダ室(54)の高さと第2偏心回転機構(25)のシリンダ室(58)の高さとの比率や、第1偏心部(23b)の偏心量(主軸部(23a)の軸心と第1偏心部(23b)の軸心との距離)と第2偏心部(23c)の偏心量(主軸部(23a)の軸心と第2偏心部(23c)の軸心との距離)との比率によって調節可能である。
 第2の発明では、第1偏心回転機構(24)の各流体室(61,62)が低段側流体室となって第2偏心回転機構(25)の各流体室(63,64)が高段側流体室となる二段圧縮が行われる。
 第3の発明では、第1偏心回転機構(24)の外側流体室(61)及び内側流体室(62)に導入される流体が同じ通路を流れ、第2偏心回転機構(25)の外側流体室(63)及び内側流体室(64)に導入される流体が同じ通路を流れる。ここで、各偏心回転機構(24,25)では、外側流体室(61,63)及び内側流体室(62,64)が吸入する流体の流量が、駆動軸(23)の回転に伴って変動する。このため、各偏心回転機構(24,25)の外側流体室(61,63)及び内側流体室(62,64)に導入される流体が別々の通路を流れる場合には、駆動軸(23)の回転に伴って、各通路を流通する流体の流量が大きく変動する。
 これに対して、この第3の発明では、各偏心回転機構(24,25)の外側流体室(61,63)及び内側流体室(62,64)に導入される流体が同じ通路を流れる。そして、各偏心回転機構(24,25)では、外側流体室(61,63)が吸入する流体の流量変動と、外側流体室(61,63)が吸入する流体の流量変動とが、逆位相になっている。このため、流入通路(32)における流体の流量変動、および連絡通路(33)における流体の流量変動が緩和される。
 第4の発明では、第1偏心回転機構(24)において、外側流体室(61)の流体及び内側流体室(62)の流体が、第1吐出空間(46)に吐出される。第2偏心回転機構(25)において、外側流体室(63)の流体及び内側流体室(64)の流体が、第2吐出空間(47)に吐出される。各偏心回転機構(24,25)では、外側流体室(61,63)の流体及び内側流体室(62,64)の流体が同じ吐出空間(46,47)に吐出される。
 第5の発明では、各偏心回転機構(24,25)において、シリンダ(52,56)とピストン(53,57)のうちピストン(53,57)が偏心回転運動する方式(以下、「ピストン可動方式」という。)が採用されている。ここで、偏心回転機構(24,25)には、ピストン可動方式以外に、シリンダ(52,56)とピストン(53,57)のうちシリンダ(52,56)が偏心回転運動する方式(以下、「ピストン固定方式」という。)がある。
 ここで、ピストン可動方式であってもピストン固定方式であっても、偏心回転機構(24,25)では、シリンダ(52,56)とピストン(53,57)のうち偏心回転運動する部材がブレード(45)に対して揺動する。このため、偏心回転運動する部材に揺動モーメントが発生し、その揺動モーメントの反力が流体機械(20)を加振する。
 なお、揺動モーメントとは、支点に対して振り子のように揺動する物体に作用する力のことであり、物体における支点回りの慣性モーメントと揺動角加速度との積で表される。支点には、揺動モーメントの反力が作用する。揺動モーメントは、揺動する部材の重心と揺動の支点との距離が大きいほど大きくなる。ピストン可動方式は、ピストン(53,57)と共に、揺動の支点が動くので、各偏心回転機構(24,25)において、揺動するピストン(53,57)の重心と揺動の支点との距離が一定である。一方、ピストン固定方式は、揺動の支点が動かないので、各偏心回転機構(24,25)において、揺動するシリンダ(52,56)の重心と揺動の支点との距離が変動する。この第5の発明では、各偏心回転機構(24,25)において、揺動する部材の重心と揺動の支点との距離が一定になるピストン可動方式が採用されている。
 第6の発明では、第1偏心回転機構(24)のシリンダ室(54)の高さと、第2偏心回転機構(25)のシリンダ室(58)の高さとが互いに相違している。この第6の発明では、吸入容積比がシリンダ室(54,58)の高さの比率によって調節されている。
 第7の発明では、第1偏心回転機構(24)の偏心量と、第2偏心回転機構(25)の偏心量とが互いに相違している。この第7の発明では、吸入容積比が偏心量の大きさの比率によって調節されている。
 第8の発明では、区画手段(101,102)によって、第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面と、第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面とに、第2偏心回転機構(25)から吐出された流体の圧力になる駆動軸(23)の周囲の隙間に連通する高圧背圧室(96,97)が形成されている。ここで、第2偏心回転機構(25)の各流体室(63,64)は、中間圧の流体が高圧に圧縮される高段側流体室となる。このため、駆動軸(23)の周囲の隙間は高圧空間になる。この第8の発明では、区画手段(101,102)によって、第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面と、第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面とに、高圧空間になる高圧背圧室(96,97)が形成されている。
 第9の発明では、第1シールリング(101)が、ミドルプレート(41)の片面と第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面との間に、第1偏心回転機構(24)の高圧背圧室(96)を形成する。第2シールリング(102)が、ミドルプレート(41)のもう片面と第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面との間に、第2偏心回転機構(25)の高圧背圧室(97)を形成する。
 第10の発明では、第1偏心方向と第2偏心方向とが、60°以上310°以下の所定の角度ずれている。つまり、第1偏心部(23b)と第2偏心部(23c)の位相差が、60°以上310°以下の所定の角度になる。ここで、図9に示すように、第1偏心部(23b)と第2偏心部(23c)の位相差が60°以上310°以下のときに、その位相差が180°のときのトルク変動幅を基準にしたトルク変動比が概ね1.0以下になる。この第10の発明では、トルク変動比が概ね1.0以下なるように、第1偏心方向と第2偏心方向とのずれ角度が設定されている。
 第11の発明では、第1偏心方向と第2偏心方向とが180°ずれている。このため、第1偏心部(23b)に作用する遠心力荷重と、第2偏心部(23c)に作用する遠心力荷重とが、正反対の方向に作用する。従って、第1偏心部(23b)に作用する遠心力荷重と第2偏心部(23c)に作用する遠心力荷重とが大きく打ち消し合う。
 第12の発明では、流体機械(20)が、二酸化炭素が充填された冷媒回路(10)に接続される。ここで、二酸化炭素冷媒は、フロン冷媒に比べて、密度が大きく、冷媒中の音速が大きくなる。ここで、流体の流量変動によって生じる圧力脈動は、流体の密度や、流体中の音速に比例する。このため、二酸化炭素が充填された冷媒回路(10)は、フロン冷媒が充填された冷媒回路(10)に比べて、冷媒の流量変動によって生じる圧力脈動が大きくなる。この第12の発明では、冷媒の流量変動によって生じる圧力脈動が大きくなる冷媒回路(10)に、流体機械(20)が接続されている。
 本発明では、低段側流体室と高段側流体室とが別々の偏心回転機構(24,25)に形成されているので、吸入容積比が、第1偏心回転機構(24)のシリンダ室(54)の高さと第2偏心回転機構(25)のシリンダ室(58)の高さとの比率や、第1偏心部(23b)の偏心量と第2偏心部(23c)の偏心量との比率によって調節可能である。シリンダ室(54,58)の高さの比率や、偏心量の比率は、容易に調節することが可能である。従って、吸入容積比を所定の比率に容易に設定することができる。
 また、本発明では、各偏心回転機構(24,25)にそれぞれ2つの流体室(61~64)が形成される。そして、各偏心回転機構(24,25)では、外側流体室(61,63)の容積変化の位相と内側流体室(62,64)の容積変化の位相とが180°ずれている(図3参照)。つまり、各偏心回転機構(24,25)では、外側流体室(61,63)の圧力変動の位相と内側流体室(62,64)の圧力変動の位相とがずれている。このため、各偏心回転機構(24,25)を駆動するときのトルク変動幅(最大トルクと最小トルクの差)が、図7に示すように、例えばロータリ式の偏心回転機構のように流体室が1つだけのものに比べて、小さくなる。従って、流体機械(20)の低振動化を図ることができる。
 また、上記第3の発明では、各偏心回転機構(24,25)の外側流体室(61,63)及び内側流体室(62,64)に導入される流体が同じ通路を流れるので、流入通路(32)及び連絡通路(33)の各々において流体の流量変動が緩和される。ここで、流体が流通する通路では、流体の流量変動に伴って圧力脈動が生じ、その圧力脈動によって振動が生じる。圧力脈動は、流体の流量変動が大きいほど大きくなる。この第3の発明では、流入通路(32)及び連絡通路(33)の各々において流体の流量変動が緩和される。従って、流入通路(32)及び連絡通路(33)において、流体の流量変動によって生じる圧力脈動、及びその圧力脈動によって生じる振動を抑制することができる。
 また、上記第4の発明では、各偏心回転機構(24,25)において、外側流体室(61,63)の流体及び内側流体室(62,64)の流体が同じ吐出空間(46,47)に吐出される。ここで、従来の流体機械のように、同じ偏心回転機構(24,25)において、外側流体室(61,63)の吐出流体の圧力と内側流体室(62,64)の吐出流体の圧力とが互いに相違する場合には、外側流体室(61,63)の吐出空間と内側流体室(62,64)の吐出空間とが別々になる。従って、吐出空間、及びその吐出空間から延びる通路が狭くなり、吐出流体の圧力損失が比較的大きくなる。
 これに対して、この第4の発明では、各偏心回転機構(24,25)において、外側流体室(61,63)の流体及び内側流体室(62,64)の流体が同じ吐出空間(46,47)に吐出されるので、その吐出空間(46,47)が2つの流体室からの吐出流体の流量に合わせて広くなり、その吐出空間(46,47)から延びる通路も広くなる。従って、吐出流体の圧力損失を低減させることができる。
 また、上記第5の発明では、各偏心回転機構(24,25)において、揺動する部材の重心と揺動の支点との距離が一定になるピストン可動方式が採用されている。このため、第1偏心回転機構(24)の揺動モーメントと第2偏心回転機構(25)の揺動モーメントとの差が変動しない。従って、第1偏心回転機構(24)のクランク角度と第2偏心回転機構(25)のクランク角度との位相差が、第1偏心回転機構(24)の揺動モーメントと第2偏心回転機構(25)の揺動モーメントとが互いに打ち消し合うような値に設定されている場合(例えば180°)には、第1偏心回転機構(24)の揺動モーメントと第2偏心回転機構(25)の揺動モーメントとが常に大きく打ち消し合うので、揺動モーメントに起因する振動を低減させることができる。
 また、上記第8の発明では、区画手段(101,102)によって、第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面と、第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面とに、高圧空間になる高圧背圧室(96,97)が形成されている。ここで、第1偏心回転機構(24)の各流体室(61,62)が低段側流体室となって第2偏心回転機構(25)の各流体室(63,64)が高段側流体室となる流体機械(20)では、各偏心回転機構(24,25)の背圧室の圧力を、その偏心回転機構(24,25)の流体室の吐出流体の圧力に調節することが考えられる。つまり、第1偏心回転機構(24)の背圧室を中間圧に調節して、第2偏心回転機構(25)の背圧室を高圧に調節することが考えられる。しかし、駆動軸(23)の周囲の隙間が高圧空間になる場合には、第1偏心回転機構(24)の背圧室と駆動軸(23)の周囲の隙間との連通を遮断する必要があり、第1偏心回転機構(24)の背圧室の外側と内側の両方を区画する必要がある。これに対して、この第8の発明では、各偏心回転機構(24,25)の高圧背圧室(96,97)が高圧に調節されるので、高圧背圧室(96,97)の外側だけを区画すればよい。従って、区画手段(101,102)の構成を簡素化することができる。
 また、上記第9の発明では、第1偏心回転機構(24)の高圧背圧室(96)と第2偏心回転機構(25)の高圧背圧室(97)とが別々のシールリング(101,102)により形成されている。ここで、第1偏心回転機構(24)の各流体室(61,62)が低段側流体室となって第2偏心回転機構(25)の各流体室(63,64)が高段側流体室となる流体機械(20)では、各流体室(61,62)が低段側流体室となる第1偏心回転機構(24)に比べて、各流体室(63,64)が高段側流体室となる第2偏心回転機構(25)の方が、流体室(61~64)の内圧によって可動側鏡板部(55a,56a)が離れようとする力(以下、「離反力」という。)が大きくなる。このため、第1偏心回転機構(24)の高圧背圧室(96)と第2偏心回転機構(25)の高圧背圧室(97)とが同じシールリングによって形成される場合には、離反力が大きくなる方の第2偏心回転機構(25)の可動側鏡板部(55a,56a)が離れないように、シールリングの大きさが設定されるので、離反力が小さい第1偏心回転機構(24)において、高圧背圧室(96)が可動側鏡板部(51a,52a)を押し付ける力(以下、「押付力」という。)が、離反力に対して過大になってしまう。
 これに対して、この第9の発明では、第1偏心回転機構(24)の高圧背圧室(96)と第2偏心回転機構(25)の高圧背圧室(97)とが別々のシールリング(101,102)により形成されているので、第1偏心回転機構(24)の高圧背圧室(96)の面積と第2偏心回転機構(25)の高圧背圧室(97)の面積とを、それぞれ離反力に合わせて設定することが可能である。従って、離反力が小さい第1偏心回転機構(24)において、押付力が離反力に対して過大になることを回避することが可能であるため、第1偏心回転機構(24)の摩擦損失を低減させることができる。
 また、上記第10の発明では、トルク変動比が1.0以下なるように、第1偏心方向と第2偏心方向とのずれ角度が設定されている。このため、低振動の流体機械(20)を構成することができる。
 また、上記第11の発明では、第1偏心方向と第2偏心方向とが180°ずれているので、第1偏心部(23b)に作用する遠心力荷重と第2偏心部(23c)に作用する遠心力荷重とが大きく打ち消し合う。このため、遠心力荷重による振動を大きく低減させることができる。
 また、上記第12の発明では、冷媒の流量変動によって生じる圧力脈動が大きくなる冷媒回路(10)に、流体機械(20)が接続されている。従って、冷媒の流量変動によって生じる圧力脈動を抑制するために、上記第3の発明のように、第1偏心回転機構(24)の外側流体室(61)及び内側流体室(62)に導入される流体が同じ通路を流れ、第2偏心回転機構(25)の外側流体室(63)及び内側流体室(64)に導入される流体が同じ通路を流れるように構成した場合に、その圧力脈動を低減させる効果が大きくなる。
図1は、実施形態1に係る空調機の冷媒回路の配管系統図である。 図2は、実施形態1に係る圧縮機の縦断面図である。 図3は、実施形態1に係る第1機構部(第2機構部)の横断面図である。 図4は、実施形態2に係る圧縮機の縦断面図である。 図5は、実施形態2に係る第1機構部(第2機構部)の横断面図である。 図6は、実施形態2に係る押付機構の拡大断面図である。 図7は、クランク角度(駆動軸の回転角度)の変化に伴う実施形態2の圧縮機のトルク比の変動及びロータリ式の圧縮機のトルク比の変動を表した図表である。 図8は、クランク角度の変化に伴う実施形態2の圧縮機のトルク比の変動を、第1偏心部と第2偏心部の位相差毎に表した図表である。 図9は、第1偏心部と第2偏心部の位相差とトルクの変動幅との関係を表した図表である。 図10は、参考形態に係る空調機の冷媒回路の配管系統図である。 図11は、参考形態に係る圧縮機の縦断面図である。 図12は、参考形態に係る第1機構部(第2機構部)の横断面図である。 図13は、参考形態に係る押付機構の拡大断面図である。
符号の説明
 20   圧縮機(流体機械)
 23   駆動軸
 23a   主軸部
 23b   第1偏心部
 23c   第2偏心部
 24   第1機構部(第1偏心回転機構)
 25   第2機構部(第2偏心回転機構)
 31   吐出管(流出通路)
 32   吸入管(流入通路)
 33   中間圧連絡管(連絡通路)
 52,56  シリンダ
 53,57  ピストン
 54,58  シリンダ室
 61,62  低段側圧縮室
 63,64  高段側圧縮室
 以下、本発明の実施形態を図面に基づいて詳細に説明する。但し、先ず最初に本発明の参考となる参考形態を図面に基づいて詳細に説明し、その後に本発明の実施形態を説明する。
  《参考形態》
 本発明の参考となる参考形態を図面に基づいて説明する。
 参考形態に係る冷凍装置は、本発明の参考となる流体機械(20)を備えて、室内の暖房と冷房とを切り換えて行う空調機(1)である。この空調機(1)は、冷媒が循環して冷凍サイクルを行う冷媒回路(10)を備えており、いわゆるヒートポンプ式の空調機を構成している。冷媒回路(10)には、冷媒として二酸化炭素が充填されている。
 図10に示すように、冷媒回路(10)には、主な構成機器として、圧縮機(20)、室内熱交換器(11)、膨張弁(12)、及び室外熱交換器(13)が設けられている。
 室内熱交換器(11)は室内機に設けられている。この室内熱交換器(11)は、室内ファン(図示省略)が送風する室内空気と冷媒とを熱交換させる。一方、室外熱交換器(13)は室外機に設けられている。この室外熱交換器(13)は、室外ファン(図示省略)が送風する室外空気と冷媒とを熱交換させる。また、膨張弁(12)は、後述する内部熱交換器(15)と後述するブリッジ回路(19)の第2端の間に設けられている。この膨張弁(12)は、その開度が調節可能な電子膨張弁で構成されている。
 冷媒回路(10)には、四路切換弁(14)、ブリッジ回路(19)、内部熱交換器(15)、減圧弁(16)、及び受液器(17)も設けられている。
 四路切換弁(14)は、第1から第4までの4つのポートを備えている。四路切換弁(14)は、その第1ポートが圧縮機(20)の吐出管(31)と接続し、その第2ポートが室内熱交換器(11)と接続し、その第3ポートが受液器(17)を介して圧縮機(20)の吸入管(32)と接続し、その第4ポートが室外熱交換器(13)と接続している。この四路切換弁(14)は、第1ポート(P1)と第2ポート(P2)が連通すると同時に第3ポート(P3)と第4ポート(P4)が連通する第1状態(図10に示す実線の状態)と、第1ポート(P1)と第4ポート(P4)が連通すると同時に第2ポート(P2)と第3ポート(P3)が連通する第2状態(図10に示す破線の状態)との間での切り換えを行うことが可能に構成されている。
 ブリッジ回路(19)は、第1接続ライン(19a)と第2接続ライン(19b)と第3接続ライン(19c)と第4接続ライン(19d)とをブリッジ状に接続した回路である。第1接続ライン(19a)は、室外熱交換器(13)と内部熱交換器(15)の一端側とを接続している。第2接続ライン(19b)は、室内熱交換器(11)と内部熱交換器(15)の一端側とを接続している。第3接続ライン(19c)は、室外熱交換器(13)と内部熱交換器(15)の他端側とを接続している。第4接続ライン(19d)は、室内熱交換器(11)と内部熱交換器(15)の他端側とを接続している。
 第1接続ライン(19a)には、内部熱交換器(15)の一端側から室外熱交換器(13)へ向かう冷媒の流れを禁止する第1逆止弁(CV1)が設けられている。第2接続ライン(19b)には、内部熱交換器(15)の一端側から室内熱交換器(11)へ向かう冷媒の流れを禁止する第2逆止弁(CV2)が設けられている。第3接続ライン(19c)には、室外熱交換器(13)から内部熱交換器(15)の他端側へ向かう冷媒の流れを禁止する第3逆止弁(CV3)が設けられている。第4接続ライン(19d)には、室内熱交換器(11)から内部熱交換器(15)の他端側へ向かう冷媒の流れを禁止する第4逆止弁(CV4)が設けられている。
 内部熱交換器(15)は、第1熱交換用流路(15a)と第2熱交換用流路(15b)とを有する二重管熱交換器を構成している。第1熱交換用流路(15a)は、第1接続ライン(19a)の出口端と第2接続ライン(19b)の出口端が接続されたブリッジ回路(19)の第1端と、第3接続ライン(19c)の入口端と第4接続ライン(19d)の入口端が接続されたブリッジ回路(19)の第2端とを結ぶ冷媒配管に跨るように配置されている。第2熱交換用流路(15b)は、内部熱交換器(15)とブリッジ回路(19)の第1端の間から分岐する中間インジェクション配管(18)に跨るように配置されている。中間インジェクション配管(18)は、中間インジェクション通路を構成しており、後述する中間圧連絡管(33)に接続されている。中間インジェクション配管(18)には、内部熱交換器(15)の上流側に、開閉機構を構成する減圧弁(16)が設けられている。そして、内部熱交換器(15)では、第1熱交換用流路(15a)を流れる高圧液冷媒と、第2熱交換用流路(15b)を流れる中間圧冷媒とが熱交換可能となっている。
 参考形態では、圧縮機(20)が二酸化炭素冷媒用の圧縮機として構成されている。圧縮機(20)は、第1機構部(24)と第2機構部(25)とから構成された圧縮機構(30)を備えている。各機構部(24,25)には低段側圧縮室(61,62)及び高段側圧縮室(63,64)がそれぞれ形成されている。なお、圧縮機(20)の内部の詳細については後述する。
 圧縮機(20)には複数の配管が接続されている。具体的に、第1機構部(24)の低段側圧縮室(61)の吸入側には、吸入管(32)から分岐した第1吸入分岐管(42a)が接続されている。第2機構部(25)の低段側圧縮室(62)の吸入側には、吸入管(32)から分岐した第2吸入分岐管(42b)が接続されている。また、第2機構部(25)の低段側圧縮室(61)の吐出側には、中間圧連絡管(33)が接続されている。第2機構部(25)の低段側圧縮室(62)の吐出側は、圧縮機(20)の内部で第1機構部(24)の低段側圧縮室(61)の吐出側に連通している。また、第1機構部(24)の高段側圧縮室(63)の吸入側には、中間圧連絡管(33)から分岐した第1中間分岐管(43a)が接続されている。第2機構部(25)の高段側圧縮室(64)の吸入側には、中間圧連絡管(33)から分岐した第2中間分岐管(43b)が接続されている。第2中間分岐管(43b)からは、後述する中間接続通路(79)に接続する接続管(69)が分岐している。
  〈圧縮機の構成〉
 図11に示すように、圧縮機(20)は、縦長で密閉容器状のケーシング(21)を備えている。ケーシング(21)の内部には、電動機(22)と圧縮機構(30)とが収納されている。この圧縮機(20)は、ケーシング(21)内が高圧の冷媒で満たされる、いわゆる高圧ドーム式の圧縮機で構成されている。
 電動機(22)は、ステータ(26)とロータ(27)とを備えている。ステータ(26)は、ケーシング(21)の胴部に固定されている。一方、ロータ(27)は、ステータ(26)の内側に配置され、駆動軸(23)の主軸部(23a)に連結されている。なお、電動機(22)の回転速度は、インバータ制御によって可変となっている。つまり、電動機(22)は、その容量が可変なインバータ式の圧縮機で構成されている。
 駆動軸(23)には、その下部寄りに位置する第1偏心部(23b)と、その中央部寄りに位置する第2偏心部(23c)とが形成されている。第1偏心部(23b)と第2偏心部(23c)とは、それぞれ駆動軸(23)の主軸部(23a)の軸心から偏心している。また、第1偏心部(23b)と第2偏心部(23c)とは、駆動軸(23)の軸心を中心として互いに180°位相がずれている。
 圧縮機構(30)は、電動機(22)の下側に配置されている。圧縮機構(30)は、ケーシング(21)の底部側寄りの第1機構部(24)と、電動機(22)側寄りの第2機構部(25)とを備えている。
 第1機構部(24)は、ケーシング(21)に固定される第1ハウジング(51)と、この第1ハウジング(51)内に収納される第1シリンダ(52)とを備えている。第1ハウジング(51)は固定部材を構成し、第1シリンダ(52)は可動部材を構成している。
 第1ハウジング(51)は、円盤状の固定側鏡板部(51a)と、固定側鏡板部(51a)の上面から上方に突出する環状の第1ピストン(53)とを備えている。一方、第1シリンダ(52)は、円盤状の可動側鏡板部(52a)と、可動側鏡板部(52a)の内周端部から下方に突出する環状の内側シリンダ部(52b)と、可動側鏡板部(52a)の外周端部から下方に突出する環状の外側シリンダ部(52c)とを備えている。第1シリンダ(52)の内側シリンダ部(52b)には、第1偏心部(23b)が嵌合している。そして、第1シリンダ(52)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転するように構成されている。
 また、第1シリンダ(52)には、その内側シリンダ部(52b)の外周面と外側シリンダ部(52c)の内周面との間に環状の第1シリンダ室(54)が形成されている。そして、第1シリンダ室(54)には、第1ピストン(53)が配置されている。その結果、第1シリンダ室(54)は、第1ピストン(53)の外周面と第1シリンダ室(54)の外壁との間に形成される第1低段側圧縮室(61)と、第1ピストン(53)の内周面と第1シリンダ室(54)の内壁との間に形成される第1高段側圧縮室(63)とに区画されている。また、第1シリンダ(52)の外側シリンダ部(52c)には、第1シリンダ(52)の外側の吸入空間(38)と、第1低段側圧縮室(61)とを連通させる第1連通路(59)が形成されている。
 図12に示すように、第1シリンダ(52)には、外側シリンダ部(52c)の内周面から内側シリンダ部(52b)の外周面まで延びるブレード(45)が設けられている。ブレード(45)は、第1シリンダ(52)と一体になっている。なお、図12では、括弧付きの符号が併記されている部材は、括弧がない符号が第1機構部(24)の符号を表し、括弧内の符号が第2機構部(25)の符号を表している。この点は、図3及び図5でも同じである。
 ブレード(45)は、第1低段側圧縮室(61)及び第1高段側圧縮室(63)を吸入側となる低圧室と吐出側となる高圧室とに区画している。一方、第1ピストン(53)は、環状の一部が分断されたC型形状をしており、この分断箇所にブレード(45)が挿通されている。また、ピストン(53)の分断箇所には、ブレード(45)を挟むように半円形状のブッシュ(46,46)が嵌合している。ブッシュ(46,46)はピストン(53)の端部で揺動自在に構成されている。以上の構成により、シリンダ(52)は、ブレード(45)の延伸方向に進退可能となり、また、ブッシュ(46,46)とともに揺動可能となる。駆動軸(23)が回転すると、シリンダ(52)は、図12の(A)から(D)の順に偏心回転し、第1低段側圧縮室(61)及び第1高段側圧縮室(63)で冷媒が圧縮される。
 第2機構部(25)は、第1機構部(24)と同じ機械要素によって構成されている。第2機構部(25)は、ミドルプレート(41)を挟んで、第1機構部(24)とは上下反転した状態で設けられている。
 具体的に、第2機構部(25)は、ケーシング(21)に固定される第2ハウジング(55)と、第2ハウジング(55)内に収納される第2シリンダ(56)とを備えている。第2ハウジング(55)は固定部材を構成し、第2シリンダ(56)は可動部材を構成している。
 第2ハウジング(55)は、円盤状の固定側鏡板部(55a)と、固定側鏡板部(55a)の下面から下方に突出する環状の第2ピストン(57)とを備えている。一方、第2シリンダ(56)は、円盤状の鏡板部(56a)と、鏡板部(56a)の内周端部から上方に突出する環状の内側シリンダ部(56b)と、鏡板部(56a)の外周端部から上方に突出する環状の外側シリンダ部(56c)とを備えている。第2シリンダ(56)の内側シリンダ部(56b)には、第2偏心部(23c)が嵌合している。そして、第2シリンダ(56)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転するように構成されている。
 また、第2シリンダ(56)には、その内側シリンダ部(56b)の外周面と外側シリンダ部(56c)の内周面との間に環状の第2シリンダ室(58)が形成されている。そして、第2シリンダ室(58)には、第2ピストン(57)が配置されている。その結果、第2シリンダ室(58)は、第2ピストン(57)の外周面と第2シリンダ室(58)の外壁との間に形成される第2低段側圧縮室(62)と、第2ピストン(57)の内周面と第2シリンダ室(58)の内壁との間に形成される第2高段側圧縮室(64)とに区画されている。また、第2シリンダ(56)の外側シリンダ部(56c)には、第2シリンダ(56)の外側の吸入空間(39)と、第2低段側圧縮室(62)とを連通させる第2連通路(60)が形成されている。
 第2機構部(25)は、駆動軸(23)が回転すると、第1機構部(24)と同様に、第2シリンダ(56)が偏心回転する。その結果、第2低段側圧縮室(62)及び第2高段側圧縮室(64)で冷媒が圧縮される。
 なお、第1機構部(24)及び第2機構部(25)の各機構部は、低段側圧縮室(61,62)に対する高段側圧縮室(63,64)の吸入容積比が0.8~1.3の間の値(例えば1.0)になるように設計されている。
 ケーシング(21)には、吐出管(31)、第1吸入分岐管(42a)、第2吸入分岐管(42b)、中間圧連絡管(33)、第1中間分岐管(43a)、及び第2中間分岐管(43b)が貫通している。ケーシング(21)では、吐出管(31)が頂部を貫通し、他の管(42,43)は胴部を貫通している。吐出管(31)は、圧縮機(20)の運転時に高圧空間となる内部空間(37)に開口している。
 第1機構部(24)には、第1吸入分岐管(42a)及び第1中間分岐管(43a)が接続されている。第1吸入分岐管(42a)は、第1連通路(59)を介して第1低段側圧縮室(61)の吸入側と繋がっている。第1低段側圧縮室(61)の吐出側は、第1ハウジング(51)、ミドルプレート(41)、及び第2ハウジング(55)に亘って形成された連絡通路(49)を介して第2低段側圧縮室(62)の吐出側と繋がっている。また、第1中間分岐管(43a)は、第1高段側圧縮室(63)の吸入側と繋がっている。なお、第1高段側圧縮室(63)の吐出側は、図示しない連絡通路を通じて、内部空間(37)と繋がっている。
 また、第1機構部(24)には、外側吐出ポート(65)及び内側吐出ポート(66)が第1ハウジング(51)に形成されている。外側吐出ポート(65)は、第1低段側圧縮室(61)の吐出側と連絡通路(49)とを連通している。外側吐出ポート(65)には、第1吐出弁(67)が設けられている。第1吐出弁(67)は、第1低段側圧縮室(61)の吐出側の冷媒圧力が連絡通路(49)側の冷媒圧力以上になると、外側吐出ポート(65)を開口するように構成されている。一方、内側吐出ポート(66)は、第1高段側圧縮室(63)の吐出側と内部空間(37)とを連通している。内側吐出ポート(66)には、第2吐出弁(68)が設けられている。第2吐出弁(68)は、第1高段側圧縮室(63)の吐出側の冷媒圧力がケーシング(21)の内部空間(37)の冷媒圧力以上になると、内側吐出ポート(66)を開口するように構成されている。
 第2機構部(25)には、第2吸入分岐管(42b)、中間圧連絡管(33)及び第2中間分岐管(43b)が接続されている。第2吸入分岐管(42b)は、第2連通路(60)を介して第2低段側圧縮室(62)の吸入側と繋がっている。中間圧連絡管(33)は、第2低段側圧縮室(62)の吐出側と繋がっている。また、第2中間分岐管(43b)は、第2高段側圧縮室(64)の吸入側と繋がっている。なお、第2高段側圧縮室(64)の吐出側は、図示しない連絡通路を通じて、内部空間(37)と繋がっている。
 また、第2機構部(25)には、第1機構部(24)と同様に、外側吐出ポート(75)及び内側吐出ポート(76)が第2ハウジング(55)に形成されている。外側吐出ポート(75)は、第2低段側圧縮室(62)の吐出側と中間圧連絡管(33)とを連通している。外側吐出ポート(75)には、第3吐出弁(77)が設けられている。第3吐出弁(77)は、第2低段側圧縮室(62)の吐出側の冷媒圧力が中間圧連絡管(33)側の冷媒圧力以上になると、外側吐出ポート(75)を開口するように構成されている。一方、内側吐出ポート(76)は、第2高段側圧縮室(64)の吐出側とケーシング(21)の内部空間(37)とを連通している。内側吐出ポート(76)には、第4吐出弁(78)が設けられている。第4吐出弁(78)は、第2高段側圧縮室(64)の吐出側の冷媒圧力がケーシング(21)の内部空間(37)の冷媒圧力以上になると、内側吐出ポート(76)を開口するように構成されている。
 また、ケーシング(21)の底部には、冷凍機油が貯留される油溜まりが形成されている。また、駆動軸(23)の下端には、油溜まりに浸漬する油ポンプ(28)が設けられている。駆動軸(23)の内部には、油ポンプ(28)が吸い上げた冷凍機油が流通する給油通路(図示省略)が形成されている。この圧縮機(20)では、駆動軸(23)の回転に伴って、油ポンプ(28)が吸い上げた冷凍機油が給油通路を通じて各機構部(24,25)の摺動部及び駆動軸(23)の軸受部に供給される。
 参考形態では、図13に示すように、ミドルプレート(41)に押付機構(80,90)が設けられている。押付機構(80,90)は、第1機構部(24)に対して設けられた第1押付部(80)と、第2機構部(25)に対して設けられた第2押付部(90)とから構成されている。
 第1押付部(80)は、第1ハウジング(51)に対して第1シリンダ(52)を押し付けるように構成されている。第1押付部(80)は、第1中間圧背圧室(85)を互いに形成する第1内側シールリング(81a)及び第1外側シールリング(81b)と、ミドルプレート(41)の内部に形成された中間接続通路(79)とを備えている。第1内側シールリング(81a)及び第1外側シールリング(81b)は、区画部材を構成している。
 第1内側シールリング(81a)は、駆動軸(23)が挿入されたミドルプレート(41)の挿通孔を囲うようにミドルプレート(41)の下面に形成された第1内側環状溝(83)に嵌め込まれている。一方、第1外側シールリング(81b)は、第1内側環状溝(83)を囲うようにミドルプレート(41)の下面に形成された第1外側環状溝(84)に嵌め込まれている。第1内側環状溝(83)及び第1外側環状溝(84)は同心に配置されている。第1中間圧背圧室(85)は、ミドルプレート(41)の下面と第1シリンダ(52)の上面との間において、第1内側環状溝(83)の外周と第1外側環状溝(84)の内周との間に形成されている。
 中間接続通路(79)は、一端がミドルプレート(41)の外周面に開口し、その一端で接続管(69)に接続されている。中間接続通路(79)は、ミドルプレート(41)の外周面から内側に延びる本通路(79a)と、本通路(79a)の内側端で下側に分岐する第1分岐通路(79b)と、本通路(79a)の内側端で上側に分岐する第2分岐通路(79c)とから構成されている。第1分岐通路(79b)は、ミドルプレート(41)の下面で第1中間圧背圧室(85)に開口している。第2分岐通路(79c)は、ミドルプレート(41)の上面で、後述する第2中間圧背圧室(95)に開口している。
 第1中間圧背圧室(85)は、第1分岐通路(79b)及び本通路(79a)を介して接続管(69)に連通している。このため、第1中間圧背圧室(85)には、第2高段側圧縮室(64)へ向かう中間圧冷媒が導入される。また、第1内側シールリング(81a)の内側には、駆動軸(23)側からの高圧の冷凍機油が導入される。また、第1外側シールリング(81b)の外側は、吸入空間(38)に連通している。第1押付部(80)は、第1内側シールリング(81a)の内側の高圧の冷凍機油と、第1中間圧背圧室(85)の中間圧冷媒と、第1外側シールリング(81b)の外側の低圧冷媒とによって、第1シリンダ(52)を第1ハウジング(51)に押し付けるように構成されている。
 また、第2押付部(90)は、第2ハウジング(55)に対して第2シリンダ(56)を押し付けるように構成されている。第2押付部(90)は、第2中間圧背圧室(95)を互いに形成する第2内側シールリング(91a)及び第2外側シールリング(91b)と、上記中間接続通路(79)とを備えている。第2内側シールリング(91a)及び第2外側シールリング(91b)は区画部材を構成している。押付機構(80,90)では、第1押付部(80)と第2押付部 (90)とで、中間接続通路(79)の本通路(79a)が共用されている。
 第2内側シールリング(91a)は、ミドルプレート(41)の挿通孔を囲うようにミドルプレート(41)の上面に形成された第2内側環状溝(93)に嵌め込まれている。一方、第2外側シールリング(91b)は、第2内側環状溝(93)を囲うようにミドルプレート(41)の上面に形成された第2外側環状溝(94)に嵌め込まれている。第2内側環状溝(93)及び第2外側環状溝(94)は同心に配置されている。第2中間圧背圧室(95)は、ミドルプレート(41)の上面と第2シリンダ(56)の下面との間において、第2内側環状溝(93)の外周と第2外側環状溝(94)の内周との間に形成されている。
 第2中間圧背圧室(95)は、第2分岐通路(79c)及び本通路(79a)を介して接続管(69)に連通している。このため、第2中間圧背圧室(95)には、第2高段側圧縮室(64)へ向かう中間圧冷媒が導入される。また、第2内側シールリング(91a)の内側には、駆動軸(23)側からの高圧の冷凍機油が導入される。また、第2外側シールリング(91b)の外側は、吸入空間(39)に連通している。第2押付部(90)は、第2内側シールリング(91a)の内側の高圧の冷凍機油と、第2中間圧背圧室(95)の中間圧冷媒と、第2外側シールリング(91b)の外側の低圧冷媒とによって、第2シリンダ(56)を第2ハウジング(55)に押し付けるように構成されている。
 以上の構成により、参考形態の圧縮機(20)では、駆動軸(23)の回転に伴い、各機構部(24,25)の各シリンダ(52,56)が各ピストン(53,57)に対して相対的に偏心回転運動を行う。その結果、第1機構部(24)及び第2機構部(25)の各圧縮室(61~64)の容積が周期的に変化することによって、第1機構部(24)及び第2機構部(25)の各圧縮室(61~64)で冷媒が圧縮される。
  -運転動作-
 次に、参考形態に係る空調機(1)の運転動作について説明する。この空調機(1)では、以下に述べる暖房運転や冷房運転等が切り換え可能となっている。
  (暖房運転)
 空調機(1)の暖房運転では、四路切換弁(14)が第1状態に設定されると共に、膨張弁(12)の開度が適宜調節される。この状態で、圧縮機(20)の運転が行われると、冷媒回路(10)では室内熱交換器(11)が放熱器となって室外熱交換器(13)が蒸発器となる冷凍サイクルが行われる。なお、この空調機(1)では、冷凍サイクルの高圧圧力が二酸化炭素冷媒の臨界圧力よりも高くなる超臨界の冷凍サイクルが行われる。この点は、以下の冷房運転も同じである。
 なお、この空調機(1)では、必要となる暖房能力が比較的大きい場合には、減圧弁(16)が開状態に設定される。減圧弁(16)が開状態に設定されると、中間インジェクション配管(18)を通じて圧縮機(20)の各機構部(24,25)の高段側圧縮室(63,64)に冷凍サイクルの中間圧冷媒を注入する中間インジェクション動作が実行される。中間インジェクション動作の実行中は、減圧弁(16)の開度が適宜調節される。一方、必要となる暖房能力が比較的小さい場合には、減圧弁(16)が閉状態に設定され、中間インジェクション動作が停止される。
 まず、中間インジェクション動作の停止中の冷媒の流れについて説明する。圧縮機(20)の吐出管(31)から吐出された高圧冷媒は、四路切換弁(14)を経由して室内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空気へ放熱する。その結果、室内の暖房が行われる。
 室内熱交換器(11)で冷却された冷媒は、内部熱交換器(15)の第1熱交換用流路(15a)を流れ、膨張弁(12)で低圧まで減圧された後、室外熱交換器(13)を流れる。室外熱交換器(13)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(13)で蒸発した冷媒は、受液器(17)を経由して、圧縮機(20)の吸入側へ送られる。
 圧縮機(20)の吸入側へ流れた冷媒は、第1吸入分岐管(42a)及び第2吸入分岐管(42b)へ分流する。第1吸入分岐管(42a)に流入した冷媒は、第1機構部(24)の第1低段側圧縮室(61)内で圧縮される。第2吸入分岐管(42b)に流入した冷媒は、第2機構部(25)の第2低段側圧縮室(62)内で圧縮される。各低段側圧縮室(61,62)で圧縮された冷媒は、合流後に中間圧連絡管(33)を流通して、第1中間分岐管(43a)及び第2中間分岐管(43b)へ分流する。第1中間分岐管(43a)に流入した冷媒は、第1機構部(24)の第1高段側圧縮室(63)内で圧縮される。第2中間分岐管(43b)に流入した冷媒は、第2機構部(25)の第2高段側圧縮室(64)内で圧縮される。各高段側圧縮室(63,64)で圧縮された冷媒は、共にケーシング(21)の内部空間(37)に流れ込み、吐出管(31)から吐出される。
 続いて、中間インジェクション動作の実行中の冷媒の流れについて説明する。以下では、中間インジェクション動作の停止中と異なる点について説明する。中間インジェクション動作の実行中は、室内熱交換器(11)で冷却された冷媒の一部が、減圧弁(16)で中間圧まで減圧された後に第2熱交換用流路(15b)へ流入する。このため、内部熱交換器(15)では、高圧の冷媒が第1熱交換用流路(15a)を流通して、中間圧冷媒が第2熱交換用流路(15b)を流通する状態になる。内部熱交換器(15)では、第1熱交換用流路(15a)側の冷媒の熱が、第2熱交換用流路(15b)側の冷媒に付与され、この第2熱交換用流路(15b)側の冷媒が蒸発する。第2熱交換用流路(15b)で蒸発した冷媒は、各低段側圧縮室(61,62)で圧縮された冷媒と合流し、各高段側圧縮室(63,64)で圧縮される。
 参考形態では、各機構部(24,25)に対して設けられた押付部(80,90)が、中間圧背圧室(85,95)を可動側鏡板部(52a,56a)の背面側に形成するシールリング(81,91)を備えている。各機構部(24,25)のシリンダ(52,56)は、中間圧背圧室(85,95)内の中間圧冷媒の圧力によってハウジング(51,55)に押し付けられる。ここで、中間圧冷媒の圧力は、中間インジェクション動作の実行中に比べて、中間インジェクション動作の停止中の方が低くなる。このため、各押付部(80,90)の押付力は、中間インジェクション動作の実行中に比べて中間インジェクション動作の停止中の方が低くなる。一方、シリンダ(52,56)に作用する離反力は、中間インジェクション動作の実行中に比べて中間インジェクション動作の停止中の方が小さくなる。参考形態では、各機構部(24,25)の可動側鏡板部(52a,56a)の背面側にシールリング(81,91)を設けることで、可動部材(52,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、押付機構(80,90)の押付力が小さくなるようにしている。
  (冷房運転)
 空調機(1)の冷房運転では、四路切換弁(14)が第2状態に設定されると共に、膨張弁(12)の開度が適宜調節される。この状態で、圧縮機(20)の運転が行われると、冷媒回路(10)では室外熱交換器(13)が放熱器となって室内熱交換器(11)が蒸発器となる冷凍サイクルが行われる。なお、冷房運転でも暖房運転と同様にインジェクション動作が実行可能であるが、以下ではインジェクション動作の停止中のみについて説明する。
 具体的に、圧縮機(20)の吐出管(31)から吐出された高圧冷媒は、四路切換弁(14)を経由して室外熱交換器(13)を流れる。室外熱交換器(13)では、冷媒が室外空気へ放熱する。室外熱交換器(13)で冷却された冷媒は、膨張弁(12)で低圧まで減圧された後、室内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器(11)で蒸発した冷媒は、受液器(17)を経由して圧縮機(20)の吸入側へ送られる。
 圧縮機(20)では、冷房運転と同様に、第1機構部(24)及び第2機構部(25)でそれぞれ冷媒が二段圧縮される。各機構部(24,25)で圧縮された冷媒は、吐出管(31)から再び吐出される。
  -参考形態の効果-
 以上のように、上記参考形態では、中間圧背圧室(85,95)を可動側鏡板部(52a,56a)の背面側に形成するシールリング(81,91)を設けることで、シリンダ(52,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、押付機構(80,90)の押付力が小さくなる。このため、可動側鏡板部(52a,56a)に背面側に導入した高圧冷凍機油のみによって押付力を得るようにしている従来の圧縮機では、中間インジェクション動作を停止する前後で押付機構(80,90)の押付力が概ね一定であるのに対して、この参考形態の圧縮機(20)では、中間インジェクション動作の停止中に押付力が小さくなるので、中間インジェクション動作の停止中における押付力と離反力の差が小さくなる。従って、中間インジェクション動作の停止中には、押付力と離反力の差によって生じる摩擦力が小さくなるので、圧縮機構(30)のエネルギー損失を低減させることができる。
 また、上記参考形態では、中間インジェクション動作を行う冷凍装置(1)の圧縮機(20)として、中間インジェクション動作の停止中に押付機構(80,90)の押付力が小さくなる圧縮機(20)が適用されている。このため、中間インジェクション動作の停止中における圧縮機(20)のエネルギー損失が小さくなるので、冷凍装置(1)の運転効率を向上させることができる。
  《実施形態1》
 本発明の実施形態1は、本発明に係る流体機械(20)により構成された圧縮機(20)を備えて、室内の暖房と冷房とを切り換えて行うヒートポンプ式の空調機(1)である。冷凍サイクルを行う冷媒回路(10)には、上記参考形態と同様に、冷媒として二酸化炭素が充填されている。この空調機(1)は、上記参考形態の空調機(1)とは、圧縮機(20)の構成及び圧縮機(20)の接続状態が異なっている。但し、圧縮機(20)の第1機構部(24)及び第2機構部(25)がピストン固定方式になっている点は、上記参考形態と同じである。以下では、主に、上記参考形態と異なる点について説明する。
 実施形態1の圧縮機(20)では、図1に示すように、第1機構部(24)に第1低段側圧縮室(61)及び第2低段側圧縮室(62)が形成され、第2機構部(25)に第1高段側圧縮室(63)及び第2高段側圧縮室(64)が形成されている。
 実施形態1では、第1機構部(24)が第1偏心回転機構(24)を構成し、第2機構部(25)が第2偏心回転機構(25)を構成している。また、第1機構部(24)では、第1低段側圧縮室(61)が外側流体室(61)を構成し、第2低段側圧縮室(62)が内側流体室(62)を構成している。第2機構部(25)では、第1高段側圧縮室(63)が外側流体室(63)を構成し、第2高段側圧縮室(64)が内側流体室(64)を構成している。
 第1機構部(24)の吸入側には、流入通路(32)を構成する吸入管(32)が接続されている。第1機構部(24)の吐出側は、連絡通路(33)を構成する中間圧連絡管(33)を介して、第2機構部(25)の吸入側に接続されている。
 図2及び図3に示すように、第1機構部(24)では、第1ピストン(53)の外周面と第1シリンダ室(54)の外壁との間に第1低段側圧縮室(61)が形成され、第1ピストン(53)の内周面と第1シリンダ室(54)の内壁との間に第2低段側圧縮室(62)が形成されている。
 また、第1シリンダ(52)では、外側シリンダ部(52c)に第1外側連通路(59a)が形成され、内側シリンダ部(52b)に第1内側連通路(59b)が形成されている。第1外側連通路(59a)は、第1シリンダ(52)の外側の吸入空間(38)と、第1低段側圧縮室(61)の吸入側とを連通している。第1内側連通路(59b)は、第1低段側圧縮室(61)の吸入側と第2低段側圧縮室(62)の吸入側とを連通している。第1機構部(24)では、第1低段側圧縮室(61)の吸入側が、第1外側連通路(59a)を介して吸入管(32)と繋がっている。第2低段側圧縮室(62)の吸入側が、第1外側連通路(59a)及び第1内側連通路(59b)を介して吸入管(32)と繋がっている。
 本実施形態1では、圧縮機(20)の外部からの冷媒を第1機構部(24)の第1低段側圧縮室(61)及び第2低段側圧縮室(62)に導入するための流入通路(32)が、1本の吸入管(32)により構成されている。このため、流入通路(32)における冷媒の流量変動が緩和される。
 また、第1機構部(24)では、外側吐出ポート(65)及び内側吐出ポート(66)が第1ハウジング(51)に形成されている。外側吐出ポート(65)は、第1低段側圧縮室(61)の吐出側と第1吐出空間(46)とを連通している。外側吐出ポート(65)には、第1吐出弁(67)が設けられている。第1吐出弁(67)は、第1低段側圧縮室(61)の吐出側の冷媒圧力が第1吐出空間(46)の冷媒圧力以上になると、外側吐出ポート(65)を開口するように構成されている。一方、内側吐出ポート(66)は、第2低段側圧縮室(62)の吐出側と第1吐出空間(46)とを連通している。内側吐出ポート(66)には、第2吐出弁(68)が設けられている。第2吐出弁(68)は、第2低段側圧縮室(62)の吐出側の冷媒圧力が第1吐出空間(46)の冷媒圧力以上になると、内側吐出ポート(66)を開口するように構成されている。第1吐出空間(46)には中間圧連絡管(33)が開口している。
 本実施形態1では、第1機構部(24)の外側吐出ポート(65)及び内側吐出ポート(66)が、同じ第1吐出空間(46)に開口している。第1機構部(24)では、第1低段側圧縮室(61)の冷媒及び第2低段側圧縮室(62)の冷媒が同じ吐出空間(46)に吐出される。このため、第1吐出空間(46)は、2つの圧縮室(61,62)からの吐出流量に対応できるように比較的広くなっており、第1吐出空間(46)から延びる中間圧連絡管(33)も径が比較的大きくなっている。
 第2機構部(25)では、第2ピストン(57)の外周面と第2シリンダ室(58)の外壁との間に第1高段側圧縮室(63)が形成され、第2ピストン(57)の内周面と第2シリンダ室(58)の内壁との間に第2高段側圧縮室(64)が形成されている。
 また、第2シリンダ(56)では、外側シリンダ部(56c)に第2外側連通路(60a)が形成され、内側シリンダ部(56b)に第2内側連通路(60b)が形成されている。第2外側連通路(60a)は、第2シリンダ(56)の外側の吸入空間(39)と、第1高段側圧縮室(63)の吸入側とを連通している。第2内側連通路(60b)は、第1高段側圧縮室(63)の吸入側と第2高段側圧縮室(64)の吸入側とを連通している。第2機構部(25)では、第1高段側圧縮室(63)の吸入側が、第2外側連通路(60a)を介して中間圧連絡管(33)と繋がっている。第2高段側圧縮室(64)の吸入側が、第2外側連通路(60a)及び第2内側連通路(60b)を介して中間圧連絡管(33)と繋がっている。
 本実施形態1では、第1機構部(24)の第1低段側圧縮室(61)及び第2低段側圧縮室(62)から吐出された冷媒を第2機構部(25)の第1高段側圧縮室(63)及び第2高段側圧縮室(64)に導入するための連絡通路(33)が、1本の中間圧連絡管(33)により構成されている。このため、連絡通路(33)における冷媒の流量変動が緩和される。
 また、第2機構部(25)では、外側吐出ポート(75)及び内側吐出ポート(76)が第2ハウジング(55)に形成されている。外側吐出ポート(75)は、第1高段側圧縮室(63)の吐出側と第2吐出空間(47)とを連通している。外側吐出ポート(75)には、第3吐出弁(77)が設けられている。第3吐出弁(77)は、第1高段側圧縮室(63)の吐出側の冷媒圧力が第2吐出空間(47)の冷媒圧力以上になると、外側吐出ポート(75)を開口するように構成されている。一方、内側吐出ポート(76)は、第2高段側圧縮室(64)の吐出側と第2吐出空間(47)とを連通している。内側吐出ポート(76)には、第4吐出弁(78)が設けられている。第4吐出弁(78)は、第2高段側圧縮室(64)の吐出側の冷媒圧力が第2吐出空間(47)の冷媒圧力以上になると、内側吐出ポート(76)を開口するように構成されている。第2吐出空間(47)は、内部空間(37)を介して、流出通路(31)を構成する吐出管(31)に連通している。
 本実施形態1では、第2機構部(25)の外側吐出ポート(75)及び内側吐出ポート(76)が、同じ第2吐出空間(47)に開口している。第2機構部(25)では、第1高段側圧縮室(63)の冷媒及び第2高段側圧縮室(64)の冷媒が同じ吐出空間(47)に吐出される。このため、第2吐出空間(47)は、2つの圧縮室(63,64)からの吐出流量に対応できるように比較的広くなっている。
 なお、本実施形態1の押付機構(80,90)の構成は、実施形態1と同じである。本実施形態1では、低段側圧縮室(61,62)だけが形成された第1機構部(24)に対して設けられた第1押付部(80)が、中間圧背圧室(85)を形成する第1内側シールリング(81a)及び第1外側シールリング(81b)を備えている。また、高段側圧縮室(63,64)だけが形成された第2機構部(25)に対して設けられた第2押付部(90)が、中間圧背圧室(95)を形成する第2内側シールリング(91a)及び第2外側シールリング(91b)を備えている。このため、各機構部(24,25)では、シリンダ(52,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、押付機構(80,90)の押付力が小さくなる。
 ここで、低段側圧縮室(61,62)に対する高段側圧縮室(63,64)の吸入容積比が例えば1.0の場合には、中間インジェクション動作の停止中に、低段側圧縮室(61,62)の吸入側と吐出側の圧力が等しくなり、中間圧冷媒の圧力は低段側圧縮室(61,62)に吸入される冷媒の圧力と等しくなる。つまり、中間インジェクション動作の停止中は、第1機構部(24)で冷媒が実質的に圧縮されずに、第1シリンダ(52)が空回りする状態になる。この実施形態1では、中間インジェクション動作の停止中において、第1押付部(80)の押付力が小さくなるので、空回りする第1シリンダ(52)におけるエネルギー損失が低減される。
  -実施形態1の効果-
 以上のように、上記実施形態1では、低段側圧縮室(61,62)と高段側圧縮室(63,64)とが別々の機構部(24,25)に形成されているので、吸入容積比が、第1機構部(24)の第1シリンダ室(54)の高さと第2機構部(25)の第2シリンダ室(58)の高さとの比率や、第1偏心部(23b)の偏心量と第2偏心部(23c)の偏心量との比率によって調節可能である。シリンダ室(54,58)の高さの比率や、偏心量の比率は、容易に調節することが可能である。従って、吸入容積比を所定の比率に容易に設定することができる。
 また、上記実施形態1では、各機構部(24,25)の外側流体室(61,63)及び内側流体室(62,64)に導入される冷媒が同じ通路を流れるので、流入通路(32)及び連絡通路(33)の各々において冷媒の流量変動が緩和される。従って、流入通路(32)及び連絡通路(33)において、冷媒の流量変動によって生じる圧力脈動、及びその圧力脈動によって生じる振動を低減させることができる。
 また、上記実施形態1では、各機構部(24,25)において、外側流体室(61,63)の冷媒及び内側流体室(62,64)の冷媒が同じ吐出空間(46,47)に吐出される。従って、その吐出空間(46,47)が2つの流体室からの吐出流量に合わせて広くなり、その吐出空間(46,47)から延びる通路も広くなっている。従って、吐出冷媒の圧力損失を低減させることができる。
 また、上記実施形態1では、第1偏心方向と第2偏心方向とが180°ずれているので、第1偏心部(23b)に作用する遠心力荷重と第2偏心部(23c)に作用する遠心力荷重とが大きく打ち消し合う。このため、遠心力荷重による振動を大きく低減させることができる。
 また、上記実施形態1では、冷媒の流量変動によって生じる圧力脈動が大きくなる冷媒回路(10)に、圧縮機(20)が接続されている。従って、冷媒の流量変動によって生じる圧力脈動を低減させるために、第1機構部(24)の外側流体室(61)及び内側流体室(62)に導入される冷媒が同じ通路を流れ、第2機構部(25)の外側流体室(63)及び内側流体室(64)に導入される冷媒が同じ通路を流れるように構成した効果が大きくなる。なお、ここまで記載した実施形態1の効果は、実施形態2にも共通する。
 また、上記実施形態1では、第1機構部(24)に比べて中間インジェクション動作の停止による離反力の変化率が大きくなる第2機構部(25)に対して、可動側鏡板部(56a)の背面側にシールリング(91)が設けられている。つまり、本実施形態1の区画部材(81,91)によって可動側鏡板部(52a,56a)の背面側に中間圧背圧室(85,95)を形成しなければ、第1機構部(24)に比べて中間インジェクション動作の停止中に押付力と離反力の差によるエネルギー損失が大きくなる第2機構部(25)に対して、可動側鏡板部(56a)の背面側にシールリング(91)が設けられている。このため、中間圧背圧室(85,95)を形成することの効果が第1機構部(24)よりも第2機構部(25)の方が大きいので、圧縮機構(30)のエネルギー損失を効果的に低減させることができる。
 また、上記実施形態1では、第2機構部(25)だけでなく第1機構部(24)の可動側鏡板部(52a)の背面側にもシールリング(81)が設けられている。従って、第2機構部(25)だけでなく第1機構部(24)でも中間インジェクション動作の停止中のエネルギー損失を低減させることができるので、圧縮機構(30)のエネルギー損失を低減させることができる。
  《実施形態2》
 本発明の実施形態2は、上記実施形態1と同様に、本発明に係る流体機械(20)を備える空調機(1)である。実施形態2は、圧縮機(20)の第1機構部(24)及び第2機構部(25)がピストン可動方式になっている点が、上記実施形態1とは異なっている。以下では、主に、上記実施形態1と異なる点について説明する。
 第1機構部(24)は、図4及び図5に示すように、ケーシング(21)に固定される第1シリンダ(52)と、環状の第1ピストン(53)を有して駆動軸(23)によって駆動する第1可動部材(51)とを備えている。第1機構部(24)は、後述する可動側鏡板部(51a)の背面が第2機構部(25)側を向くように設けられている。第1機構部(24)は第1偏心回転機構(24)を構成している。
 第1シリンダ(52)は、円盤状の固定側鏡板部(52a)と、固定側鏡板部(52a)の上面の内寄りの位置から上方に突出する環状の内側シリンダ部(52b)と、固定側鏡板部(52a)の上面の外周部から上方に突出する環状の外側シリンダ部(52c)とを備えている。第1シリンダ(52)は、内側シリンダ部(52b)と外側シリンダ部(52c)との間に、環状の第1シリンダ室(54)を有している。
 一方、第1可動部材(51)は、円盤状の可動側鏡板部(51a)と、上述の第1ピストン(53)と、可動側鏡板部(51a)の下面の内周端部から下方に突出する環状突出部(51b)とを備えている。可動側鏡板部(51a)は、固定側鏡板部(52a)と共に、第1シリンダ室(54)に面している。第1ピストン(53)は、可動側鏡板部(51a)の下面のやや外周寄りの位置から下方に突出している。第1ピストン(53)は、第1シリンダ(52)に対して偏心して第1シリンダ室(54)に収納され、第1シリンダ室(54)を外側流体室(61)と内側流体室(62)とに区画している。
 なお、第1ピストン(53)と第1シリンダ(52)とは、第1ピストン(53)の外周面と外側シリンダ部(52c)の内周面とが1点で実質的に接する状態(厳密にはミクロンオーダーの隙間があるが、その隙間での冷媒の漏れが問題にならない状態)において、その接点と位相が180°異なる位置で、第1ピストン(53)の内周面と内側シリンダ部(52b)の外周面とが1点で実質的に接するようになっている。この点は、第2機構部(25)においても同じであり、上記実施形態1及び上記参考形態の各機構部(24,25)においても同じである。
 環状突出部(51b)には、第1偏心部(23b)が嵌合している。第1可動部材(51)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転する。なお、第1機構部(24)では、環状突出部(51b)と内側シリンダ部(52b)との間に空間(99)が形成されるが、この空間(99)では冷媒の圧縮は行われない。
 また、第1機構部(24)は、図5に示すように、内側シリンダ部(52b)の外周面から外側シリンダ部(52c)の内周面まで延びるブレード(45)を備えている。ブレード(45)は、第1シリンダ(52)と一体になっている。ブレード(45)は、第1シリンダ室(54)に配置され、外側流体室(61)を吸入側の第1室(61a)と吐出側の第2室(61b)とに区画し、内側流体室(62)を吸入側の第1室(62a)と吐出側の第2室(62b)とに区画している。ブレード(45)は、環状の一部が分断されたC型形状の第1ピストン(53)の分断箇所を挿通している。また、第1ピストン(53)の分断箇所には、ブレード(45)を挟むように半円形状のブッシュ(46,46)が嵌合している。ブッシュ(46,46)は、第1ピストン(53)の端面に対して揺動自在に構成されている。これにより、第1ピストン(53)は、ブレード(45)の延伸方向に進退可能で且つブッシュ(46,46)と共に揺動可能になっている。
 第1機構部(24)には、流入通路(32)を構成する吸入管(32)が接続されている。吸入管(32)は、固定側鏡板部(52a)に形成された第1接続通路(86)に接続されている。第1接続通路(86)は、入口側が固定側鏡板部(52a)の径方向に延び、途中で上方へ折れ曲がって、出口側が固定側鏡板部(52a)の軸方向に延びている。第1接続通路(86)の出口端は、外側流体室(61)と内側流体室(62)の両方に開口している。第1機構部(24)では、外側流体室(61)が第1低段側圧縮室(61)となり、内側流体室(62)が第2低段側圧縮室(62)となる。本実施形態2では、上記実施形態1と同様に、圧縮機(20)の外部からの冷媒を第1機構部(24)の第1低段側圧縮室(61)及び第2低段側圧縮室(62)に導入するための流入通路(32)が、1本の吸入管(32)により構成されている。
 また、第1機構部(24)には、外側の第1低段側圧縮室(61)から冷媒を吐出させる外側吐出ポート(65)と、内側の第2低段側圧縮室(62)から冷媒を吐出させる内側吐出ポート(66)と、外側吐出ポート(65)及び内側吐出ポート(66)の両方が開口する第1吐出空間(46)とが形成されている。外側吐出ポート(65)は、第1低段側圧縮室(61)の第2室(61b)と第1吐出空間(46)とを連通している。外側吐出ポート(65)には、第1吐出弁(67)が設けられている。一方、内側吐出ポート(66)は、第2低段側圧縮室(62)の第2室(62b)と第1吐出空間(46)とを連通している。内側吐出ポート(66)には、第2吐出弁(68)が設けられている。第1吐出空間(46)には、連絡通路(33)を構成する中間圧連絡管(33)の入口端が開口している。本実施形態2では、上記実施形態1と同様に、第1機構部(24)の外側吐出ポート(65)及び内側吐出ポート(66)が、同じ吐出空間(46)に開口している。
 以上の構成により、駆動軸(23)が回転すると、第1ピストン(53)は、図5の(A)から(H)の順に偏心回転する。そして、その偏心回転に伴って、第1低段側圧縮室(61)及び第2低段側圧縮室(62)では、吸入管(32)を通じて導入された低圧の冷媒が圧縮される。第1低段側圧縮室(61)及び第2低段側圧縮室(62)から吐出された冷媒は、中間圧連絡管(33)に流入する。
 第2機構部(25)は、第1機構部(24)と同じ機械要素によって構成されている。第2機構部(25)は、後述するミドルプレート(41)を挟んで、第1機構部(24)とは上下反転した状態で設けられている。
 具体的に、第2機構部(25)は、ケーシング(21)に固定される第2シリンダ(56)と、環状の第2ピストン(57)を有して駆動軸(23)によって駆動する第2可動部材(55)とを備えている。第2機構部(25)は、後述する可動側鏡板部(55a)の背面が第1機構部(24)側を向くように設けられている。第2機構部(25)は第2偏心回転機構(25)を構成している。
 第2シリンダ(56)は、円盤状の固定側鏡板部(56a)と、固定側鏡板部(56a)の下面の内寄りの位置から下方に突出する環状の内側シリンダ部(56b)と、固定側鏡板部(56a)の下面の外周部から下方に突出する環状の外側シリンダ部(56c)とを備えている。第2シリンダ(56)は、内側シリンダ部(56b)と外側シリンダ部(56c)との間に、環状の第2シリンダ室(58)を有している。
 一方、第2可動部材(55)は、円盤状の可動側鏡板部(55a)と、上述の第2ピストン(57)と、可動側鏡板部(55a)の上面の内周端部から上方に突出する環状突出部(55b)とを備えている。可動側鏡板部(55a)は、固定側鏡板部(56a)と共に、第2シリンダ室(58)に面している。第2ピストン(57)は、可動側鏡板部(55a)の上面のやや外周寄りの位置から上方に突出している。第2ピストン(57)は、第2シリンダ(56)に対して偏心して第2シリンダ室(58)に収納され、第2シリンダ室(58)を外側流体室(63)と内側流体室(64)とに区画している。環状突出部(55b)には、第2偏心部(23c)が嵌合している。第2可動部材(55)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転する。なお、第2機構部(25)では、環状突出部(55b)と内側シリンダ部(56b)との間に空間(100)が形成されるが、この空間(100)では冷媒の圧縮は行われない。
 また、第2機構部(25)は、内側シリンダ部(56b)の外周面から外側シリンダ部(56c)の内周面まで延びるブレード(45)を備えている。ブレード(45)は、第2シリンダ(56)と一体になっている。ブレード(45)は、第2シリンダ室(58)に配置され、外側流体室(63)を吸入側の第1室(63a)と吐出側の第2室(63b)とに区画し、内側流体室(64)を吸入側の第1室(64a)と吐出側の第2室(64b)とに区画している。ブレード(45)は、環状の一部が分断されたC型形状の第2ピストン(57)の分断箇所を挿通している。また、第2ピストン(57)の分断箇所には、ブレード(45)を挟むように半円形状のブッシュ(46,46)が嵌合している。ブッシュ(46,46)は第2ピストン(57)の端面に対して揺動自在に構成されている。これにより、第2ピストン(57)は、ブレード(45)の延伸方向に進退可能で且つブッシュ(46,46)と共に揺動可能になっている。
 第2機構部(25)には、中間圧連絡管(33)が接続されている。中間圧連絡管(33)は、固定側鏡板部(56a)に形成された第2接続通路(87)に接続されている。第2接続通路(87)は、入口側が固定側鏡板部(56a)の径方向に延び、途中で下方へ折れ曲がって、出口側が固定側鏡板部(56a)の軸方向に延びている。第2接続通路(87)の出口端は、外側流体室(63)と内側流体室(64)の両方に開口している。第2機構部(25)では、外側流体室(63)が第1高段側圧縮室(63)となり、内側流体室(64)が第2高段側圧縮室(64)となる。本実施形態2では、上記実施形態1と同様に、第1機構部(24)の第1低段側圧縮室(61)及び第2低段側圧縮室(62)から吐出された冷媒を第2機構部(25)の第1高段側圧縮室(63)及び第2高段側圧縮室(64)に導入するための連絡通路(33)が、1本の中間圧連絡管(33)により構成されている。
 また、第2機構部(25)には、外側の第1高段側圧縮室(63)から冷媒を吐出させる外側吐出ポート(75)と、内側の第2高段側圧縮室(64)から冷媒を吐出させる内側吐出ポート(76)と、外側吐出ポート(75)及び内側吐出ポート(76)の両方が開口する第2吐出空間(47)とが形成されている。外側吐出ポート(75)は、第1高段側圧縮室(63)の第2室(63b)と第2吐出空間(47)とを連通している。外側吐出ポート(75)には、第3吐出弁(77)が設けられている。一方、内側吐出ポート(76)は、第2高段側圧縮室(64)の第2室(64b)と第2吐出空間(47)とを連通している。内側吐出ポート(76)には、第4吐出弁(78)が設けられている。第2吐出空間(47)は、内部空間(37)を介して、流出通路(31)を構成する吐出管(31)に連通している。本実施形態2では、上記実施形態1と同様に、第2機構部(25)の外側吐出ポート(75)及び内側吐出ポート(76)が、同じ吐出空間(47)に開口している。
 以上の構成により、駆動軸(23)が回転すると、第2ピストン(57)は、第1ピストン(53)と同様に、偏心回転する。そして、その偏心回転に伴って、第1高段側圧縮室(63)及び第2高段側圧縮室(64)では、中間圧連絡管(33)を通じて導入された中間圧の冷媒が圧縮される。第1高段側圧縮室(63)及び第2高段側圧縮室(64)から吐出された冷媒は、吐出管(31)に流入する。
 本実施形態2では、上記実施形態1と同様に、第1偏心部(23b)と第2偏心部(23c)とが、駆動軸(23)の軸心を中心として互いに180°位相がずれている。つまり、第1偏心部(23b)が主軸部(23a)に対して偏心する第1偏心方向と、第2偏心部(23c)が主軸部(23a)に対して偏心する第2偏心方向とが180°ずれている。
 また、本実施形態2の圧縮機(20)は、第1低段側圧縮室(61)と第2低段側圧縮室(62)の合計吸入容積に対する、第1高段側圧縮室(63)と第2高段側圧縮室(64)の合計吸入容積である吸入容積比が例えば1.0になるように設計されている。具体的に、第1機構部(24)と第2機構部(25)とでは、シリンダ室(54,58)とピストン(53,57)とが同じ断面形状で、同じ大きさであり、シリンダ室(54,58)の高さが等しくなっている。また、第1偏心部(23b)の偏心量と第2偏心部(23c)の偏心量とが等しくなっている。このため、第1低段側圧縮室(61)の吸入容積と第1高段側圧縮室(63)の吸入容積とは等しく、第2低段側圧縮室(62)の吸入容積と第2高段側圧縮室(64)の吸入容積とは等しい。従って、第1低段側圧縮室(61)と第2低段側圧縮室(62)の合計吸入容積と、第1高段側圧縮室(63)と第2高段側圧縮室(64)の合計吸入容積とは等しく、吸入容積比は1.0になっている。
 なお、本実施形態2では、低段側圧縮室(61,62)と高段側圧縮室(63,64)とが別々の機構部(24,25)に形成されているので、吸入容積比を別の比率(例えば0.8)にする場合に、第1機構部(24)の第1シリンダ室(54)の高さと第2機構部(25)の第2シリンダ室(58)の高さとの比率である高さ比率と、第1偏心部(23b)の偏心量と第2偏心部(23c)の偏心量との比率である偏心量比率との少なくとも一方を調節することによって、吸入容積比を所定の比率に設定することが可能である。
 吸入容積比を別の比率(例えば0.8)にする場合に、上記高さ比率と上記偏心量比率のうち高さ比率だけを調節してもよい。高さ比率は、設定しようとする吸入容積比に等しくする。第1機構部(24)と第2機構部(25)とでは、シリンダ室(54,58)の高さが互いに相違している。
 高さ比率だけを調節する場合、第1機構部(24)と第2機構部(25)とで、可動部材(51,55)の大部分を占める鏡板部(51a,55a)の大きさを同じにすることができる。このため、第1可動部材(51)と第2可動部材(55)の重量差を小さくすることができる。従って、第1可動部材(51)を駆動させるためのトルクの変動と、第2可動部材(55)を駆動させるためのトルクの変動との差が小さくなるので、互いのトルクの変動が相殺されやすく、トルク変動に伴う振動を低減させることが可能である。
 また、吸入容積比を別の比率(例えば0.8)にする場合に、上記高さ比率と上記偏心量比率のうち偏心量比率だけを調節してもよい。第1偏心部(23b)と第2偏心部(23c)では、偏心量が互いに相違している。
 偏心量比率だけを調節する場合、第1機構部(24)と第2機構部(25)とでは、シリンダ室(54,58)とピストン(53,57)とが同じ断面形状で、同じ大きさになり、シリンダ室(54,58)の高さ及びピストン(53,57)の高さが等しくなる。このため、第1機構部(24)と第2機構部(25)とで、同じ可動部材(51,55)を用いることが可能である。また、シリンダ(52,56)の共通化を図ることも可能である。
 また、本実施形態2では、上記実施形態1と同様に、図6に示すように、第1機構部(24)の可動側鏡板部(51a)と第2機構部(25)の可動側鏡板部(55a)とに挟まれたミドルプレート(41)と、第1押付部(80)と第2押付部(90)とからなる押付機構(80,90)とが設けられている。
 第1押付部(80)は、第1高圧背圧室(96)を形成する第1シールリング(101)を備えている。第1シールリング(101)は、駆動軸(23)が挿入されたミドルプレート(41)の挿通孔を囲うようにミドルプレート(41)の下面に形成された第1環状溝(105)に嵌め込まれている。第1環状溝(105)の中心は、駆動軸(23)の軸心よりも吐出側(図4における左側)にずれている。第1高圧背圧室(96)は、ミドルプレート(41)の下面と可動側鏡板部(51a)の上面との間において、第1シールリング(101)の内側に形成されている。第1高圧背圧室(96)は、駆動軸(23)の周囲の隙間に連通している。
 ここで、駆動軸(23)の外周面には、駆動軸(23)内の給油通路を通じて、油溜まりの冷凍機油が供給される。油溜まりは高圧になっている。このため、駆動軸(23)の周囲の隙間は高圧空間になり、第1高圧背圧室(96)は高圧空間になる。
 第2押付部(90)は、第2高圧背圧室(97)を形成する第2シールリング(102)を備えている。第2シールリング(102)は、駆動軸(23)が挿入されたミドルプレート(41)の挿通孔を囲うようにミドルプレート(41)の上面に形成された第2環状溝(106)に嵌め込まれている。第2環状溝(106)の中心は、駆動軸(23)の軸心よりも吐出側(図4における左側)にずれている。第2高圧背圧室(97)は、ミドルプレート(41)の上面と可動側鏡板部(55a)の下面との間において、第2シールリング(102)の内側に形成されている。第2高圧背圧室(97)は、駆動軸(23)の周囲の隙間に連通している。第2高圧背圧室(97)は高圧空間になる。
 実施形態2では、第1シールリング(101)よりも第2シールリング(102)の方が大径に形成されている。このため、第1押付部(80)よりも第2押付部(90)の方が、可動部材(51,55)をシリンダ(52,56)に押し付ける押付力が強くなる。なお、第1シールリング(101)及び第2シールリング(102)は、区画手段(101,102)を構成している。
  -実施形態2の効果-
 上記実施形態2では、各機構部(24,25)において、2つの流体室(61~64)が形成される。そして、各機構部(24,25)では、外側流体室(61,63)と内側流体室(62,64)とで、容積変化の位相が180°ずれている。つまり、各機構部(24,25)では、外側流体室(61,63)と内側流体室(62,64)とで、圧力変動の位相がずれている。このため、各機構部(24,25)では、図7に示すように、例えばロータリ式の偏心回転機構のように流体室が1つだけのものに比べて、トルク変動幅を小さくすることができる。従って、圧縮機(20)の低振動化を図ることができる。
 なお、図7におけるトルク比は、ロータリ式の圧縮機の最大トルクを1にした場合の値である。また、図7における実施形態2の圧縮機(20)のトルク比は、第1偏心部(23b)と第2偏心部(23c)との位相差が180°で吸入容積比が0.9の場合の値である。
 実施形態2の圧縮機(20)のトルク比の変動幅(最大値と最小値の差)は、概ね0.4であり、0.7弱となるロータリ式の圧縮機のトルク比の変動幅(トルク変動比)に比べて、大幅に小さくなっている。なお、図7は、ピストン可動方式の場合の値であるが、ピストン固定方式でも同様に、ロータリ式の圧縮機に比べて、トルク変動幅が小さくなる。
 また、図8に、第1偏心部(23b)と第2偏心部(23c)との位相差毎(0°,90°,180°,270°)のトルク比の変動を示す。なお、図8は、第1偏心部(23b)と第2偏心部(23c)との位相差が180°の場合のトルク比の変動幅が1になるように描かれている。
 また、図9に、第1偏心部(23b)と第2偏心部(23c)との位相差と、トルク比の変動幅との関係を示す。図9は、第1偏心部(23b)と第2偏心部(23c)との位相差が180°の場合のトルク比の変動幅が1になるように描かれている。図9から分かるように、実施形態2の圧縮機(20)は、位相差が略160°~180°の範囲でトルク比の変動幅が1.0を若干上回るものの、第1偏心部(23b)と第2偏心部(23c)との位相差が60°以上310°以下の範囲で、概ね1.0以下となる。つまり、トルク比の変動幅が1.0を若干上回る範囲を含めた位相差が60°以上310°以下の範囲で、トルク比の変動幅が概ね1.0以下となる。このため、第1偏心部(23b)と第2偏心部(23c)との位相差は、60°以上310°以下の範囲(例えば120°,240°)の値としてもよい。なお、ピストン固定方式でも同様の傾向になる。
 また、上記実施形態2では、各機構部(24,25)において、揺動する部材の重心と揺動の支点との距離が一定になるピストン可動方式が採用されている。このため、第1機構部(24)の揺動モーメントと第2機構部(25)の揺動モーメントとの差が変動しない。また、第1偏心方向と第2偏心方向とが180°ずれているので、第1機構部(24)の揺動モーメントと第2機構部(25)の揺動モーメントとが互いに打ち消し合う。従って、第1機構部(24)の揺動モーメントと第2機構部(25)の揺動モーメントとが常に大きく打ち消し合うので、揺動モーメントに起因する振動を低減させることができる。
 また、上記実施形態2では、区画手段(101,102)によって、第1機構部(24)の可動側鏡板部(51a)の背面と、第2機構部(25)の可動側鏡板部(55a)の背面とに、高圧背圧室(96,97)が形成されている。各機構部(24,25)の高圧背圧室(96,97)は高圧に調節される。従って、高圧背圧室(96,97)の外側だけを区画すればよいので、区画手段(101,102)の構成を簡素化することができる。
 また、上記実施形態2では、第1機構部(24)の高圧背圧室(96)と第2機構部(25)の高圧背圧室(97)とが別々のシールリング(101,102)により形成されている。このため、第1機構部(24)の高圧背圧室(96)の面積と第2機構部(25)の高圧背圧室(97)の面積とを、それぞれ離反力に合わせて設定することが可能である。従って、離反力が小さい第1機構部(24)において、押付力が離反力に対して過大になることを回避することが可能であるため、第1機構部(24)の摩擦損失を低減させることができる。
 《その他の実施形態》
 上述した各実施形態については、以下のような構成としてもよい。
 上記実施形態について、流体機械(20)が、冷媒を膨張させる膨張機(20)として、冷媒回路(10)に接続されていてもよい。この場合、第1機構部(24)の各流体室(61,62)が高圧冷媒を中間圧に減圧する高段側流体室となり、第2機構部(25)の各流体室(63,64)が中間圧冷媒を低圧に減圧する低段側流体室となる。
 また、上記実施形態について、冷媒回路(10)に充填される冷媒が二酸化炭素以外の冷媒(例えばフロン冷媒)であってもよい。この場合、圧縮機(20)はフロン冷媒用に構成される。フロン冷媒用の圧縮機(20)は、低段側圧縮室(61,62)に対する高段側圧縮室(63,64)の吸入容積比が二酸化炭素用の圧縮機に比べて小さな値(例えば0.7)になるように設計される。
 また、上記実施形態について、圧縮機(20)が低圧ドーム型の圧縮機であってもよい。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、流体を圧縮する、又は流体を膨張させる流体機械について有用である。

Claims (12)

  1.  環状のシリンダ室(54,58)を有するシリンダ(52,56)と、該シリンダ(52,56)に対して偏心してシリンダ室(54,58)に収納され、該シリンダ室(54,58)を外側流体室(61,63)と内側流体室(62,64)とに区画する環状のピストン(53,57)と、該シリンダ室(54,58)に配置され、各流体室(61~64)をそれぞれ第1室と第2室とに区画するブレード(45)とを有し、上記シリンダ(52,56)と上記ピストン(53,57)とが相対的に偏心回転運動する第1偏心回転機構(24)及び第2偏心回転機構(25)と、
     主軸部(23a)と、該主軸部(23a)の軸心に対して偏心して上記第1偏心回転機構(24)に係合する第1偏心部(23b)と、該主軸部(23a)の軸心に対して偏心して上記第2偏心回転機構(25)に係合する第2偏心部(23c)とを有する駆動軸(23)とを備え、
     上記第1偏心回転機構(24)及び上記第2偏心回転機構(25)の各流体室(63,64)内で流体を圧縮する又は膨張させる流体機械であって、
     外部からの流体を上記第1偏心回転機構(24)の各流体室(61,62)に導入するための流入通路(32)と、
     上記第1偏心回転機構(24)の各流体室(61,62)から吐出された流体を上記第2偏心回転機構(25)の各流体室(63,64)に導入するための連絡通路(33)と、
     上記第2偏心回転機構(25)の各流体室(63,64)から吐出された流体を外部へ流出させるための流出通路(31)とを備えていることを特徴とする流体機械。
  2.  請求項1において、
     上記第1偏心回転機構(24)の各流体室(61,62)で外部から導入した流体を圧縮し、上記第2偏心回転機構(25)の各流体室(63,64)で該第1偏心回転機構(24)の各流体室(61,62)で圧縮された流体を更に圧縮することを特徴とする流体機械。
  3.  請求項1又は2において、
     上記流入通路(32)は、上記第1偏心回転機構(24)の外側流体室(61)及び内側流体室(62)に繋がる1つの通路で構成され、
     上記連絡通路(33)は、上記第2偏心回転機構(25)の外側流体室(63)及び内側流体室(64)に繋がる1つの通路で構成されていることを特徴とする流体機械。
  4.  請求項1において、
     上記各偏心回転機構(24,25)には、上記外側流体室(61,63)から流体を吐出させる外側吐出ポート(65,75)と、上記内側流体室(62,64)から流体を吐出させる内側吐出ポート(66,76)とがそれぞれ形成される一方、
     上記第1偏心回転機構(24)の外側吐出ポート(65)及び内側吐出ポート(66)は、上記連絡通路(33)に連通する第1吐出空間(46)に開口し、
     上記第2偏心回転機構(25)の外側吐出ポート(75)及び内側吐出ポート(76)は、上記流出通路(31)に連通する第2吐出空間(47)に開口することを特徴とする流体機械。
  5.  請求項1において、
     上記各偏心回転機構(24,25)は、上記シリンダ(52,56)が固定され、上記ピストン(53,57)が偏心回転運動するように構成されていることを特徴とする流体機械。
  6.  請求項1において、
     上記第1偏心回転機構(24)と上記第2偏心回転機構(25)とでは、上記シリンダ室(54,58)の高さが互いに相違していることを特徴とする流体機械。
  7.  請求項1において、
     上記第1偏心部(23b)と上記第2偏心部(23c)とでは、それぞれの軸心と上記主軸部(23a)の軸心との距離が互いに相違していることを特徴とする流体機械。
  8.  請求項2において、
     上記各偏心回転機構(24,25)では、上記シリンダ(52,56)と上記ピストン(53,57)とのそれぞれに、前面が外側流体室(61,63)及び内側流体室(62,64)に面する鏡板部(51a,52a,55a,56a)が形成され、該シリンダ(52,56)と該ピストン(53,57)のうち偏心回転運動する方の鏡板部(51a,52a,55a,56a)が可動側鏡板部(51a,52a,55a,56a)を構成する一方、
     上記第2偏心回転機構(25)から吐出された流体の圧力になる駆動軸(23)の周囲の隙間に連通する高圧背圧室(96,97)を、上記第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面と上記第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面とに形成する区画手段(101,102)を備えていることを特徴とする流体機械。
  9.  請求項8において、
     上記第1偏心回転機構(24)は、その可動側鏡板部(51a,52a)の背面が第2偏心回転機構(25)側を向くように設けられ、
     上記第2偏心回転機構(25)は、その可動側鏡板部(55a,56a)の背面が第1偏心回転機構(24)側を向くように設けられる一方、
     上記第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面と第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面とに挟まれたミドルプレート(41)を備え、
     上記区画手段(101,102)は、上記ミドルプレート(41)の片面と上記第1偏心回転機構(24)の可動側鏡板部(51a,52a)の背面との間に上記高圧背圧室(96)を形成する第1シールリング(101)と、該ミドルプレート(41)のもう片面と上記第2偏心回転機構(25)の可動側鏡板部(55a,56a)の背面との間に上記高圧背圧室(97)を形成する第2シールリング(102)とを備えていることを特徴とする流体機械。
  10.  請求項1において、
     上記駆動軸(23)では、上記第1偏心部(23b)が上記主軸部(23a)に対して偏心する第1偏心方向と、上記第2偏心部(23c)が上記主軸部(23a)に対して偏心する第2偏心方向とが、60°以上310°以下の所定の角度ずれていることを特徴とする流体機械。
  11.  請求項10において、
     上記駆動軸(23)では、上記第1偏心方向と上記第2偏心方向とが180°ずれていることを特徴とする流体機械。
  12.  請求項1において、
     冷媒として二酸化炭素が充填されて冷凍サイクルを行う冷媒回路(10)に接続されることを特徴とする流体機械。
PCT/JP2009/000431 2008-02-04 2009-02-04 流体機械 WO2009098872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09707985.9A EP2246570B1 (en) 2008-02-04 2009-02-04 Fluid machine
US12/866,008 US8353693B2 (en) 2008-02-04 2009-02-04 Fluid machine
CN2009801041434A CN101939546B (zh) 2008-02-04 2009-02-04 流体机械

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008023704 2008-02-04
JP2008-023704 2008-02-04
JP2008-250917 2008-09-29
JP2008250917A JP4396773B2 (ja) 2008-02-04 2008-09-29 流体機械

Publications (1)

Publication Number Publication Date
WO2009098872A1 true WO2009098872A1 (ja) 2009-08-13

Family

ID=40951952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000431 WO2009098872A1 (ja) 2008-02-04 2009-02-04 流体機械

Country Status (5)

Country Link
US (1) US8353693B2 (ja)
EP (1) EP2246570B1 (ja)
JP (1) JP4396773B2 (ja)
CN (1) CN101939546B (ja)
WO (1) WO2009098872A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047567A (ja) * 2009-08-26 2011-03-10 Daikin Industries Ltd 冷凍装置
CN106351834A (zh) * 2016-09-20 2017-01-25 珠海凌达压缩机有限公司 压缩机及空调器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962585B2 (ja) * 2010-03-19 2012-06-27 ダイキン工業株式会社 回転式圧縮機
JP5423538B2 (ja) * 2010-03-31 2014-02-19 ダイキン工業株式会社 回転式圧縮機
JP2012251485A (ja) * 2011-06-03 2012-12-20 Fujitsu General Ltd ロータリ圧縮機
JP5413493B1 (ja) * 2012-08-20 2014-02-12 ダイキン工業株式会社 回転式圧縮機
CN103835948B (zh) * 2012-11-22 2016-08-03 珠海格力节能环保制冷技术研究中心有限公司 压缩机泵体及压缩机
KR101973623B1 (ko) * 2012-12-28 2019-04-29 엘지전자 주식회사 압축기
KR101983049B1 (ko) * 2012-12-28 2019-09-03 엘지전자 주식회사 압축기
JP6077352B2 (ja) * 2013-03-26 2017-02-08 東芝キヤリア株式会社 多気筒回転式圧縮機及び冷凍サイクル装置
CN109690023B (zh) * 2016-10-12 2021-11-16 皮尔伯格泵技术有限责任公司 自动可变机械润滑油泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027A (ja) 1989-01-04 1990-01-05 Fuji Photo Film Co Ltd カメラの測距装置
JP2000087892A (ja) * 1998-09-08 2000-03-28 Daikin Ind Ltd 2段圧縮機及び空気調和装置
JP2004100608A (ja) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc 圧縮機
WO2005103496A1 (ja) * 2004-04-23 2005-11-03 Daikin Industries, Ltd. 回転式流体機械
JP2007239666A (ja) * 2006-03-09 2007-09-20 Daikin Ind Ltd 冷凍装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3778203B2 (ja) 2004-05-11 2006-05-24 ダイキン工業株式会社 回転式圧縮機
JP3757977B2 (ja) * 2004-05-11 2006-03-22 ダイキン工業株式会社 回転式流体機械
CN100465447C (zh) 2004-05-24 2009-03-04 大金工业株式会社 旋转式压缩机
JP3724495B1 (ja) 2004-07-09 2005-12-07 ダイキン工業株式会社 回転式流体機械
JP2007263109A (ja) 2006-03-03 2007-10-11 Daikin Ind Ltd 回転式圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027A (ja) 1989-01-04 1990-01-05 Fuji Photo Film Co Ltd カメラの測距装置
JP2000087892A (ja) * 1998-09-08 2000-03-28 Daikin Ind Ltd 2段圧縮機及び空気調和装置
JP2004100608A (ja) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc 圧縮機
WO2005103496A1 (ja) * 2004-04-23 2005-11-03 Daikin Industries, Ltd. 回転式流体機械
JP2007239666A (ja) * 2006-03-09 2007-09-20 Daikin Ind Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246570A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047567A (ja) * 2009-08-26 2011-03-10 Daikin Industries Ltd 冷凍装置
CN106351834A (zh) * 2016-09-20 2017-01-25 珠海凌达压缩机有限公司 压缩机及空调器
CN106351834B (zh) * 2016-09-20 2018-08-07 珠海凌达压缩机有限公司 压缩机及空调器

Also Published As

Publication number Publication date
JP4396773B2 (ja) 2010-01-13
CN101939546A (zh) 2011-01-05
US8353693B2 (en) 2013-01-15
EP2246570A1 (en) 2010-11-03
US20100326128A1 (en) 2010-12-30
EP2246570A4 (en) 2015-08-19
CN101939546B (zh) 2013-06-12
JP2009209927A (ja) 2009-09-17
EP2246570B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP4396773B2 (ja) 流体機械
JP4367567B2 (ja) 圧縮機及び冷凍装置
US8225624B2 (en) Refrigeration system
JP5040907B2 (ja) 冷凍装置
WO2012004992A1 (ja) ロータリ圧縮機及び冷凍サイクル装置
JP2008286037A (ja) ロータリ圧縮機およびヒートポンプシステム
WO2011055444A1 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
WO2006013959A1 (ja) 容積型膨張機及び流体機械
JP2008240667A (ja) ロータリ圧縮機
KR20190000035A (ko) 스크롤 압축기 및 이를 구비한 공기 조화기
JP2008303858A (ja) スクロール圧縮機
JP2007023993A (ja) 二段圧縮機
JP5401899B2 (ja) 冷凍装置
JP2010156244A (ja) 圧縮機および冷凍装置
JP4682795B2 (ja) 膨張機一体型圧縮機及び冷凍サイクル装置
JP2010156246A (ja) 圧縮機
JP5234168B2 (ja) 冷凍装置
JP2010156487A (ja) 冷凍装置
JP2008196343A (ja) 多段圧縮機
WO2012104934A1 (ja) スクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置
JP5181463B2 (ja) 流体機械
JP5321055B2 (ja) 冷凍装置
JP2013024194A (ja) 冷凍装置
JP2011058387A (ja) 回転式圧縮機
JP2008190493A (ja) 回転式圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104143.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707985

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009707985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009707985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12866008

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE