JP2011047567A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2011047567A
JP2011047567A JP2009195844A JP2009195844A JP2011047567A JP 2011047567 A JP2011047567 A JP 2011047567A JP 2009195844 A JP2009195844 A JP 2009195844A JP 2009195844 A JP2009195844 A JP 2009195844A JP 2011047567 A JP2011047567 A JP 2011047567A
Authority
JP
Japan
Prior art keywords
pressure
stage compression
refrigerant
compression section
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009195844A
Other languages
English (en)
Inventor
Yoshitaka Shibamoto
祥孝 芝本
Ryuzo Sotojima
隆造 外島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009195844A priority Critical patent/JP2011047567A/ja
Publication of JP2011047567A publication Critical patent/JP2011047567A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】二段圧縮式の圧縮機構を有する圧縮機を備えた冷凍装置において、圧縮機の起動時に、高段側圧縮部の可動部材と固定部材との隙間のシールを速やかに確保できるようにする。
【解決手段】圧縮機構(40)は、高段側圧縮部(70)から吐出される高圧冷媒の圧力を高段側圧縮部(70)の可動側鏡板部(71a)の背面に作用させることで、高段側圧縮部(70)の可動部材(71)を高段側圧縮部(70)の固定部材(72)の方向に押し付けるように構成される。冷凍装置(10)では、圧縮機(20)の起動時に、高段側圧縮部(70)に吸入される冷媒の圧力の上昇を抑制する昇圧抑制動作が行われる。
【選択図】図5

Description

本発明は、冷媒を二段に圧縮する圧縮機が接続される冷媒回路を備えた冷凍装置に関するものである。
従来より、冷媒を圧縮する圧縮機が接続されて冷凍サイクルが行われる冷媒回路を備えた冷凍装置が知られている。この種の冷凍装置として、特許文献1には、2つの圧縮部(偏心回転機構)で冷媒を二段に圧縮する圧縮機を備えたものが開示されている。
具体的に、特許文献1に開示された圧縮機は、低段側圧縮部と高段側圧縮部とを備えている。各圧縮部は、固定部材としてのシリンダと、可動部材としての環状ピストンとをそれぞれ有している。各圧縮部では、シリンダと環状ピストンの間に圧縮室が区画される。駆動軸によって環状ピストンが偏心回転されることで、圧縮室内の冷媒が圧縮される。これにより、冷媒回路では、いわゆる二段圧縮式の冷凍サイクルが行われる。
具体的に、冷媒回路では、圧縮機から吐出された高圧冷媒が、放熱器で放熱した後、膨張弁で減圧される。減圧後の冷媒は、蒸発器で空気から吸熱して蒸発する。蒸発後の低圧冷媒は、圧縮機の低段側圧縮部に吸入され、この低段側圧縮部で中間圧(冷媒回路の高圧と低圧との間の圧力)にまで圧縮される。中間圧の冷媒は、高段側圧縮部に吸入され、この高段側圧縮部で高圧冷媒にまで圧縮され、冷媒回路に吐出されて放熱器へ送られる。
特開2007−239666号公報
ところで、特許文献1に開示のような圧縮機においては、高圧冷媒の圧力を利用して可動部材を固定部材へ押し付ける構造を採用することが考えられる。この点について詳細に説明する。
上記のような圧縮機の運転時には、圧縮室の内圧が高くなることで、可動部材の鏡板に軸方向のガス力(即ち、スラスト力)が作用してしまう。その結果、固定部材に対して可動部材が離反してしまうため、圧縮室のシール性が損なわれて圧縮効率が低下してしまうことがある。
そこで、圧縮室における固定部材と可動部材との間の隙間のシールを確保するために、可動部材の鏡板の背面側に圧縮部で圧縮された後の高圧冷媒を作用させる押し付け構造を採用することができる。これにより、上記のスラスト力に抗するように可動部材を固定部材に向かって押し付けることができるので、圧縮室のシール性を向上できる。
一方、特許文献1に開示されるような二段圧縮式の圧縮機の高段側圧縮部においては、上記の押し付け構造を採用したとしても、圧縮機の起動時に所望の効果を発揮できないという問題が生じ得る。この点について更に詳細に説明する。
二段圧縮式の圧縮機の起動時には、例えば図8に示すように、中間圧の冷媒(即ち、低段側圧縮部の吐出冷媒、又は高段側圧縮部の吸入冷媒)の圧力(MP)と比較して、高圧冷媒(高段側圧縮部の吐出冷媒)の圧力(HP)が上昇しにくい傾向になる。これは、冷媒回路には、高圧冷媒が流れる流路に放熱器が設けられており、圧縮機の起動時には、この放熱器が比較的低い温度になっていることに起因する。即ち、圧縮機の起動時には、圧縮機から吐出された高圧冷媒が放熱器で急激に冷やされてしまうため、高圧冷媒の圧力がなかなか上昇しない。
上述した押し付け構造を高段側圧縮部に採用した圧縮機において、圧縮機の起動時に高圧冷媒の圧力の上昇が遅くなると、中間圧冷媒の圧力と高圧冷媒の圧力の圧力差もなかなか大きくならない。そうすると、高段側圧縮部の圧縮室の内圧と比較して、可動部材の鏡板に作用する高圧冷媒の圧力が小さくなってしまい、スラスト力に対して可動部材の押し付け力が相対的に小さくなってしまう。その結果、高段側圧縮部では、可動部材と固定部材との間の隙間がなかなかシールされないため、圧縮室で充分に冷媒を圧縮できない。すると、高段側圧縮部で圧縮された後の高圧冷媒の圧力上昇が更に遅くなり、可動部材の鏡板に作用する圧力もなかなか上昇せず、可動部材と固定部材との間の隙間のシールがますます遅れてしまう、という悪循環が生じる。なお、図8では、時点t0における圧縮機の起動の後、時点taにおいてようやく可動部材と固定部材との間の隙間が実質的にシールされ、その後に高圧冷媒と中間圧冷媒との差圧が大きくなっている。
以上のように、圧縮機の起動時には、上記の押し付け構造を採用しても高段側圧縮部の圧縮室のシールがなかなか確保できない。その結果、圧縮機の起動時において、高段側圧縮部の可動部材が軸心に対して傾いてしまい、軸受け部で片当たりが生じたり、冷凍装置の運転が定常状態に至るまでの時間が長くなったりする、という問題が生じる。
本発明は、かかる点に鑑みてなされたものであり、その目的は、二段圧縮式の圧縮機構を有する圧縮機を備えた冷凍装置において、圧縮機の起動時に、高段側圧縮部の可動部材と固定部材との隙間のシールを速やかに確保できるようにすることにある。
第1の発明は、低段側の圧縮部(50)の圧縮室(61,62)で圧縮した冷媒を高段側の圧縮部(70)の圧縮室(81,82)で更に圧縮する二段圧縮式の圧縮機構(40)を有する圧縮機(20)と、該圧縮機(20)が接続されて冷凍サイクルが行われる冷媒回路(11)とを備え、上記高段側圧縮部(70)は、固定側鏡板部(72a)を有する固定部材(72)と、可動側鏡板部(71a)を有する可動部材(71)とを備え、上記固定部材(72)と上記可動部材(71)との間に上記圧縮室(81,82)を区画しながら該可動部材(71)を偏心回転させることで冷媒を圧縮するように構成され、上記圧縮機構(40)は、上記高段側圧縮部(70)から吐出される高圧冷媒の圧力を高段側圧縮部(70)の可動側鏡板部(71a)の背面に作用させることで、高段側圧縮部(70)の可動部材(71)を該高段側圧縮部(70)の固定部材(72)の方向に押し付けるように構成されている冷凍装置を対象とする。そして、この冷凍装置は、上記圧縮機(20)の起動時に、上記高段側圧縮部(70)に吸入される冷媒の圧力の上昇を抑制する昇圧抑制動作を行うための昇圧抑制部(25,26,27)を備えていることを特徴とする。
第1の発明では、冷媒回路(11)の低圧冷媒が低段側圧縮部(50)の圧縮室(61,62)に吸入されて圧縮される。低段側圧縮部(50)の圧縮室(61,62)で圧縮された後の中間圧冷媒は、高段側圧縮部(70)の圧縮室(81,82)に吸入されて更に圧縮される。高段側圧縮部(70)の圧縮室(81,82)で圧縮された後の高圧冷媒は、冷媒回路(11)に吐出される。以上のようにして、冷媒回路(11)では、二段圧縮式の冷凍サイクルが行われる。
冷凍装置の定常運転時において、高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力が、可動部材(71)の可動側鏡板部(71a)の背面に作用する。その結果、可動部材(71)が固定部材(72)に向かって押し付けられる。従って、高段側圧縮部(70)では、圧縮室(81,82)の内圧に起因するスラスト力に抗するように可動部材(71)に押し付け力を作用させることができるので、可動部材(71)と固定部材(72)との隙間のシールが確保される。
本発明では、冷凍装置の運転開始時(即ち、圧縮機(20)の起動時)において、昇圧抑制部(25,26,27)によって、高段側圧縮部(70)の圧縮室(81,82)に吸入される冷媒の圧力の上昇を抑制する昇圧抑制動作が行われる。即ち、圧縮機(20)の起動時には、高段側圧縮部(70)の高圧冷媒の圧力が上昇しにくい傾向にあるが、本発明では、この昇圧抑制動作を実行することで、高段側圧縮部(70)に吸入される冷媒の圧力も上昇しにくくなり、ひいては高段側圧縮部(70)の圧縮室(81,82)の内圧も上昇しにくくなる。これにより、圧縮機(20)の起動時には、高段側圧縮部(70)の可動側鏡板部(71a)に作用するスラスト力が小さくなる。従って、圧縮機(20)の起動時において、高段側圧縮部(70)の可動側鏡板部(71a)に作用する高圧冷媒の圧力が未だ充分に上昇していないとしても、可動部材(71)を固定部材(72)に押し付けることができる。その結果、圧縮機(20)の起動時においても、可動部材(71)と固定部材(72)の隙間のシールを速やかに確保できる。
以上のようにして、可動部材(71)と固定部材(72)との隙間のシールが確保されると、高段側圧縮部(70)で冷媒が確実に圧縮される。そうなると、高段側圧縮部(70)から吐出される高圧冷媒の圧力が速やかに上昇し、可動側鏡板部(71a)に作用する押し付け力も速やかに大きくなる。
第2の発明は、第1の発明において、上記冷媒回路(11)には、該冷媒回路(11)の放熱器(12,14)で放熱した後の高圧冷媒を、上記低段側圧縮部(50)の吐出側と上記高段側圧縮部(70)の吸入側とを繋ぐ中間流路(24)に導入するためのインジェクション流路(18)が設けられ、上記昇圧抑制部(25)は、上記圧縮機(20)の起動時における昇圧抑制動作時に上記インジェクション流路(18)を閉鎖し、該昇圧抑制動作が終了するとインジェクション流路(18)を開放する中間側開閉機構(25)を有していることを特徴とする。
第2の発明の冷凍装置には、冷媒回路(11)にインジェクション流路(18)が設けられる。これにより、放熱器(12,14)で放熱した後の冷媒を、インジェクション流路(18)を経由して、低段側圧縮部(50)の吐出側と高段側圧縮部(70)の吸入側との間の中間流路(24)へ導入することができる。
一方、このようにインジェクション流路(18)を設けると、圧縮機(20)の起動時において、高段側圧縮部(70)に吸入される冷媒の圧力が上昇し易くなる。具体的に、冷媒回路(11)にインジェクション流路(18)を設けた構成では、放熱後の高圧冷媒の一部がインジェクション流路(18)を経由して中間流路(24)へ送られる。このため、圧縮機(20)の起動時には、中間流路(24)の冷媒の圧力、ひいては高段側圧縮部(70)に吸入される冷媒の圧力が上昇し易くなる。その結果、高段側圧縮部(70)の圧縮室(81,82)の内圧も速やかに上昇してしまうため、可動部材(71)と固定部材(72)の隙間をなかなかシールできなくなる。
そこで、第2の発明では、昇圧抑制部としての中間側開閉機構(25)によって、昇圧抑制動作時にインジェクション流路(18)が閉鎖される。これにより、冷媒回路(11)では、高圧冷媒が流れる高圧流路と、低段側圧縮部(50)と高段側圧縮部(70)との間の中間流路とが導通しないため、高段側圧縮部(70)に吸入される冷媒の圧力の上昇が抑制される。その結果、圧縮機(20)の起動時において、高段側圧縮部(70)の圧縮室(81,82)の内圧の上昇が抑制されるので、可動部材(71)が固定部材(72)に対して離反しにくくなる。従って、可動部材(71)と固定部材(72)の隙間を速やかにシールできる。
昇圧抑制動作が終了すると、中間側開閉機構(25)によってインジェクション流路(18)が開放される。このため、冷凍装置の定常運転においては、放熱器(12,14)で放熱した後の冷媒の一部がインジェクション流路(18)を経由して中間流路(24)へ導入される。
第3の発明は、第1の発明において、上記昇圧抑制部(26,27)は、上記低段側圧縮部(50)の吐出側と該低段側圧縮部(50)の吸入側とを連通させるための連通管(26)と、上記圧縮機(20)の起動時における昇圧抑制動作時に上記連通管(26)を開放し、該昇圧抑制動作が終了すると連通管(26)を閉鎖する低段側開閉機構(27)とを有していることを特徴とする。
第3の発明の冷凍装置には、昇圧抑制部として連通管(26)と低段側開閉機構(27)とが設けられる。低段側圧縮部(50)の吐出側と該低段側圧縮部(50)の吸入側とが連通管(26)によって連通可能となっている。第3の発明の昇圧抑制動作では、低段側開閉機構(27)によって連通管(26)が開放される。これにより、圧縮機(20)の起動時には、低段側圧縮部(50)の吐出側から吐出された冷媒の一部が低段側圧縮部(50)の吸入側に送られる。このため、圧縮機(20)の起動時には、低段側圧縮部(50)から吐出される冷媒の圧力、即ち、高段側圧縮部(70)に吸入される冷媒の圧力の上昇が抑制される。その結果、圧縮機(20)の起動時において、可動部材(71)と固定部材(72)の隙間を速やかにシールできる。
昇圧抑制動作が終了すると、低段側開閉機構(27)によって連通管(26)が閉鎖される。このため、冷凍装置では、低段側圧縮部(50)で圧縮された後の冷媒が全て高段側圧縮部(70)に吸入されて更に圧縮される。
第4の発明は、第1乃至第3のいずれか1つの発明において、上記圧縮機(20)が起動してから所定の時間が経過する、又は上記高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力が所定値を越える又は、上記高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力と高段側圧縮部(70)に吸入される中間圧の冷媒の圧力との差が所定値を越えると、上記昇圧抑制動作が終了することを特徴とする。
第4の発明では、圧縮機(20)の起動時に昇圧抑制動作が実行された後、所定の条件が成立すると、自動的に昇圧抑制動作が終了される。具体的に、昇圧抑制動作は、上記圧縮機(20)が起動してから所定の時間が経過するか、あるいは上記高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力が所定値を越えるか、あるいは上記高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力と高段側圧縮部(70)に吸入される中間圧の冷媒の圧力との差が所定値を越えると終了する。
第5の発明は、第1乃至第4のいずれか1つの発明において、上記低段側圧縮部(50)は、固定側鏡板部(52a)を有する固定部材(52)と、可動側鏡板部(51a)を有する可動部材(51)とを備え、上記固定部材(52)と上記可動部材(51)との間に上記圧縮室(61,62)を区画しながら該可動部材(51)を偏心回転させることで冷媒を圧縮するように構成され、上記圧縮機構(40)は、上記高段側圧縮部(70)から吐出される高圧冷媒の圧力を高段側圧縮部(70)の可動側鏡板部(71a)の背面に作用させることで、高段側圧縮部(70)の可動部材(71)を該高段側圧縮部(70)の固定部材(72)の方向に押し付けると共に、上記高段側圧縮部(70)から吐出される高圧冷媒の圧力を低段側圧縮部(50)の可動側鏡板部(51a)の背面にも作用させることで、低段側圧縮部(50)の可動部材(51)を該低段側圧縮部(50)の固定部材(52)の方向に押し付けるように構成されていることを特徴とする。
第5の発明の圧縮機(20)では、低段側圧縮部(50)と高段側圧縮部(70)との双方に、固定部材(52,72)と可動部材(51,71)とがそれぞれ設けられる。そして、高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力が、低段側圧縮部(50)の可動側鏡板部(51a)の背面にも作用する。ここで、上述のように圧縮機(20)の起動時には、高段側圧縮部(70)の高圧冷媒の圧力の上昇は比較的遅くなる。しかしながら、低段側圧縮部(50)の圧縮室(61,62)の内圧は、高段側圧縮部(70)の圧縮室(81,82)の内圧よりも低いため、低段側圧縮部(50)では可動部材(51)を固定部材(52)に充分に押し付けることができる。従って、圧縮機(20)の起動時においては、低段側圧縮部(50)の可動部材(51)と固定部材(52)の隙間のシールも充分確保できる。
第6の発明は、第5の発明において、上記圧縮機構(40)は、上記高段側圧縮部(70)の固定部材(72)の先端面との間に上記高段側圧縮部(70)の可動側鏡板部(71a)を狭持するように該高段側圧縮部(70)の可動側鏡板部(71a)の背面側に設けられる高段側支持部(41c)と、上記低段側圧縮部(50)の固定部材(52)の先端面との間に上記低段側圧縮部(50)の可動側鏡板部(51a)を狭持するように該低段側圧縮部(50)の可動側鏡板部(51a)の背面側に設けられる低段側支持部(41d)とを有し、上記低段側圧縮部(50)の固定部材(52)の先端面と上記低段側支持部(41d)との間隔をL1とし、上記低段側圧縮部(50)の可動側鏡板部(51a)の厚みをD1とし、上記高段側圧縮部(70)の固定部材(72)の先端面と上記高段側支持部(41c)との間隔をL2とし、上記高段側圧縮部(70)の可動側鏡板部(71a)の厚みをD2とすると、上記圧縮機構(40)は、(L1−D1)>(L2−D2)の関係を満たすように構成されていることを特徴とする。
第6の発明では、高段側圧縮部(70)において、固定部材(72)と高段側支持部(41c)との間に可動側鏡板部(71a)が設けられて保持される。高段側圧縮部(70)では、可動側鏡板部(71a)が固定部材(72)の先端面や高段側支持部(41c)の表面と摺接するようにして、可動部材(71)が偏心回転する。同様に、低段側圧縮部(50)においては、固定部材(52)と低段側支持部(41d)との間に可動側鏡板部(51a)が設けられて保持される。低段側圧縮部(50)では、可動側鏡板部(51a)が固定部材(52)の先端面や低段側支持部(41d)の表面と摺接するようにして、可動部材(51)が偏心回転する。
第6の発明では、高段側圧縮部(70)の可動側鏡板部(71a)の挟み込み隙間(即ち、高段側圧縮部(70)の固定部材(72)の先端面と高段側支持部(41c)との間隔L2から高段側圧縮部(70)の可動側鏡板部(71a)の厚みD2を引いた値(L2−D2))が、低段側圧縮部(50)の可動側鏡板部(51a)の挟み込み隙間(即ち、低段側圧縮部(50)の固定部材(52)の先端面と低段側支持部(41d)との間隔L1から低段側圧縮部(50)の可動側鏡板部(51a)の厚みD1を引いた値(L1−D1))よりも小さくなっている。
このように、高段側圧縮部(70)の可動側鏡板部(71a)の挟み込み隙間(L2−D2)を比較的小さくすると、高段側圧縮部(70)における固定部材(72)と可動部材(71)の隙間のシール性が更に向上する。従って、圧縮機(20)の起動時において、高段側圧縮部(70)から吐出される高圧冷媒の圧力の上昇を早めることができる。その結果、高段側圧縮部(70)の可動側鏡板部(71a)の背面に作用する圧力上昇も早くなるので、固定部材(52)と可動部材(51)の隙間のシールを一層速やかに確保できる。
本発明によれば、圧縮機(20)の起動時において、高段側圧縮部(70)に吸入される冷媒の圧力の上昇を抑制する昇圧抑制動作を行うようにしている。このため、圧縮機(20)の起動時においても、高段側圧縮部(70)の可動部材(71)を固定部材(72)に押し付けることができ、可動部材(71)と固定部材(72)の隙間のシールを速やかに確保できる。従って、高段側圧縮部(70)から吐出される高圧冷媒の圧力を速やかに上昇できるので、圧縮機(20)の起動時において、可動部材(71)が転覆して軸受け部で片当たりが生じてしまうことを防止できる。また、冷凍装置が定常運転に至るまでの時間を短縮できるので、冷凍装置の省エネ性、信頼性を向上できる。更に、高圧冷媒の圧力を利用して潤滑油(冷凍機油)を圧縮機構(40)の摺動部や軸受け等に供給する方式においては、このように高圧冷媒の圧力の上昇を促すことで、潤滑油を速やかに摺動部や軸受け等へ送ることができる。
また、第2の発明によれば、いわゆる中間インジェクション動作を行う冷凍装置において、圧縮機(20)の起動時にインジェクション流路(18)を閉鎖することで、比較的単純な構成により、高段側圧縮部(70)における可動部材(71)と固定部材(72)の隙間を速やかにシールできる。
また、第3の発明によれば、圧縮機(20)の起動時において、低段側圧縮部(50)の吐出側と吸入側とを連通させることで、高段側圧縮部(70)に吸入される冷媒の圧力の上昇を確実に抑制できる。従って、圧縮機(20)の起動時において、高段圧縮部(70)における可動部材(71)と固定部材(72)の隙間を速やか且つ確実にシールできる。
第4の発明によれば、圧縮機(20)の起動後において、所定の条件が成立すると、昇圧抑制動作を自動的に終了させるようにしている。このため、昇圧抑制動作の実行時間が長くなり過ぎて定常運転への移行が遅れてしまうことを確実に回避できる。
第5の発明では、高段側圧縮部(70)と低段側圧縮部(50)との双方において、高圧冷媒の圧力を利用して可動部材(51,71)を固定部材(52,72)へ押し付けるようにしている。このため、圧縮機(20)の起動時において、高段側圧縮部(70)の圧縮室(81,82)のシールの確保に加えて、低段側圧縮部(50)の圧縮室(61,62)のシールも充分に確保できる。
特に第6の発明では、高段側圧縮部(70)の可動側鏡板部(71a)の挟み込み隙間(L2−D2)を、低段側圧縮部(50)の可動側鏡板部(51a)の挟み込み隙間(L1−D1)よりも小さくしている。このため、高段側圧縮部(70)では、圧縮室(81,82)からの冷媒の漏れを確実に防止でき、圧縮機(20)の起動時における高圧冷媒の圧力上昇を促進できる。従って、圧縮機(20)の起動時において、高段側圧縮部(70)のシールを一層速やかに確保できる。また、低段側圧縮部(50)では、挟み込み隙間(L1−D1)を比較的大きくしている。このため、湿り度が比較的高い低圧冷媒が圧縮機(20)に吸入された場合、低段側圧縮部(50)の可動部材(51)と固定部材(52)との隙間より冷媒を逃がすことできる。即ち、低段側圧縮部(50)では、挟み込み隙間(L1−D1)を比較的大きくすることで、圧縮室(61,62)で液冷媒を圧縮してしまう、いわゆる液圧縮現象を未然に回避できる。
図1は、実施形態1に係る空調機の冷媒回路の概略構成を示す配管系統図である。 図2は、実施形態1に係る圧縮機の全体構成を示す縦断面図である。 図3は、実施形態1に係る圧縮機の要部(圧縮機構)の縦断面図である。 実施形態1に係る圧縮機構の横断面図であって、図4(A)〜(H)の順に行われる圧縮動作を説明するための説明図である。 図5は、実施形態1に係る圧縮機において、圧縮機の起動から定常運転に至るまでの間の高圧、中間圧、及び低圧の変化を表したものである。 図6は、実施形態2に係る空調機の冷媒回路の概略構成を示す配管系統図である。 図7は、実施形態2に係る圧縮機において、圧縮機の起動から定常運転に至るまでの間の高圧、中間圧、及び低圧の変化を表したものである。 図8は、本発明の比較例に係る圧縮機において、圧縮機の起動から定常運転に至るまでの間の高圧、中間圧、及び低圧の変化を表したものである。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
《発明の実施形態1》
本発明の実施形態1に係る冷凍装置は、室内の冷房と暖房とを切り換えて行う空調機(10)を構成している。空調機(10)は、冷媒が循環して冷凍サイクルを行う冷媒回路(11)を備えており、ヒートポンプ式の空調機を構成している。冷媒回路(11)には、冷媒として二酸化炭素が充填されている。
〈空気調和装置の全体構成〉
図1に示すように、冷媒回路(11)には、圧縮機(20)、室内熱交換器(12)、膨張弁(13)、及び室外熱交換器(14)が設けられている。
圧縮機(20)は、ケーシング(21)と、該ケーシング(21)内に収容される駆動機構(30)及び圧縮機構(40)を備えている。圧縮機構(40)は、第1偏心回転機構(50)及び第2偏心回転機構(70)を有し、第1偏心回転機構(50)で圧縮した冷媒を第2偏心回転機構(70)で更に圧縮する二段圧縮式に構成されている。また、圧縮機(20)は、吐出管(22)と吸入管(23)と中間連絡管(24)とを有している。圧縮機(20)の詳細は後述する。
室内熱交換器(12)は、クロスフィン式に構成され、室内ファン(図示省略)が送風する室内空気と冷媒とを熱交換させる。膨張弁(13)は、開度が調節可能な電子膨張弁で構成されている。室外熱交換器(14)は、クロスフィン式に構成され、室外ファン(図示省略)が送風する室外空気と冷媒とを熱交換させる。
冷媒回路(11)には、四路切換弁(15)、ブリッジ回路(16)、内部熱交換器(17)、中間インジェクション管(18)、及び減圧弁(19)が設けられている。
四路切換弁(15)は、第1から第4までの4つのポートを備えている。四路切換弁(15)は、第1ポートが圧縮機(20)の吐出管(22)と接続し、第2ポートが圧縮機(20)の吸入管(23)と接続している。また、四路切換弁(15)は、第3ポートが室外熱交換器(14)と接続し、第4ポートが室内熱交換器(12)と接続している。四路切換弁(15)は、第1ポートと第3ポートが連通すると同時に第2ポートと第4ポートが連通する第1状態(図1に示す実線の状態)と、第1ポートと第4ポートが連通すると同時に第2ポートと第3ポートが連通する第2状態(図1に示す破線の状態)とに切り換え可能に構成されている。
ブリッジ回路(16)は、第1接続ライン(16a)と第2接続ライン(16b)と第3接続ライン(16c)と第4接続ライン(16d)とをブリッジ状に接続した回路である。第1接続ライン(16a)は、室外熱交換器(14)と内部熱交換器(17)の一端側とを接続している。第2接続ライン(16b)は、室内熱交換器(12)と内部熱交換器(17)の一端側とを接続している。第3接続ライン(16c)は、室外熱交換器(14)と内部熱交換器(17)の他端側とを接続している。第4接続ライン(16d)は、室内熱交換器(12)と内部熱交換器(17)の他端側とを接続している。第1接続ライン(16a)、第2接続ライン(16b)、第3接続ライン(16c)、及び第4接続ライン(16d)には、それぞれ逆止弁(CV)が設けられている。各逆止弁は、図1に示す矢印方向への冷媒の流れを許容し、その逆方向への冷媒の流れを禁止している。
内部熱交換器(17)は、第1流路(17a)と第2流路(17b)とを有する二重管熱交換器を構成している。第1流路(17a)は内側寄りの円柱状の流路を構成し、第2流路(17b)は外側寄りの筒状の流路を構成している。内部熱交換器(17)では、第1流路(17a)を流れる冷媒と第2流路(17b)を流れる冷媒との間で熱交換が行われる。第1流路(17a)の一端は、第1接続ライン(16a)と第2接続ライン(16b)の接続部と連通している。第1流路(17a)の他端は、膨張弁(13)を介して第3接続ライン(16c)と第4接続ライン(16d)との接続部と連通している。第2流路(17b)は、中間インジェクション管(18)に跨るように配設されている。
中間インジェクション管(18)の流入端は、上記第1接続ライン(16a)及び第2接続ライン(16b)の流出側に接続されている。中間インジェクション管(18)の流出端は、圧縮機(20)の中間連絡管(24)と接続している。中間インジェクション管(18)は、冷媒回路(11)の放熱器(室内熱交換器(12)又は室外熱交換器(14))で放熱した後の冷媒を、圧縮機(20)の中間連絡管(24)へ導入するためのインジェクション流路を構成している。
減圧弁(19)は、中間インジェクション管(18)において、第2流路(17b)の上流側に設けられている。減圧弁(19)は、中間インジェクション管(18)に流入した高圧冷媒を中間圧にまで減圧するための減圧機構を構成している。また、中間インジェクション管(18)において、第2流路(17b)の下流側には中間開閉弁(25)が設けられている。中間開閉弁(25)は、圧縮機(20)の起動時に、上記高段側圧縮部(70)に吸入される冷媒の圧力の上昇を抑制する昇圧抑制動作(詳細は後述する)を行うための昇圧抑制部を構成している。より具体的には、中間開閉弁(25)は、圧縮機(20)の起動時における昇圧抑制動作時に中間インジェクション管(18)を閉鎖し、該昇圧抑制動作が終了すると中間インジェクション管(18)を開放する中間側開閉機構を構成している。更に、空調機(10)には、中間開閉弁(25)を制御するためのコントローラ(90)が設けられている(詳細は後述する)。
〈圧縮機の全体構成〉
図2に示すように、圧縮機(20)は、縦長で密閉容器状のケーシング(21)を備えている。ケーシング(21)の内部には、駆動機構(30)と圧縮機構(40)とが収納されている。圧縮機(20)は、ケーシング(21)の内部空間が高圧冷媒で満たされる、いわゆる高圧ドーム式に構成されている。
駆動機構(30)は、電動機(31)と、該電動機(31)によって回転駆動される駆動軸(34)とを有している。電動機(31)は、ステータ(32)とロータ(33)とを有している。ステータ(32)は、ケーシング(21)の胴部に固定されている。ロータ(33)は、ステータ(32)の内側に配置され、駆動軸(34)の主軸部(34a)に連結されている。電動機(31)は、その回転速度が可変なインバータ式に構成されている。
駆動軸(34)には、その下部寄りに2つの偏心部(35,36)が設けられている。具体的に、駆動軸(34)には、下側に第1偏心部(35)が形成され、上側に第2偏心部(36)が形成されている。第1偏心部(35)と第2偏心部(36)とは、駆動軸(34)の主軸部(34a)の軸心から偏心している。また、第1偏心部(35)と第2偏心部(36)とは、両者の偏心方向が回転方向に180度ずれている。
駆動軸(34)の下端部には、油ポンプ(37)が設けられている。油ポンプ(37)の吐出口は、駆動軸(34)の内部に形成された給油通路(図示省略)と連通している。油ポンプ(37)は、ケーシング(21)の内部空間の内圧(高圧冷媒の圧力)を利用することで、ケーシング(21)の底部に溜まった冷凍機油を給油通路へ搬送する、差圧駆動式に構成されている。油ポンプ(37)から給油通路へ搬送された冷凍機油は、駆動軸(34)の各軸受けや、圧縮機構(40)の各摺動部等の潤滑に利用される。
〈圧縮機構の構成〉
圧縮機構(40)は、電動機(31)の下側に設けられている。圧縮機構(40)は、下側寄りの第1偏心回転機構(50)と上側寄りの第2偏心回転機構(70)とを有している。第1偏心回転機構(50)は、冷媒回路(11)からの低圧冷媒を中間圧の冷媒にまで圧縮する、低段側圧縮部を構成している。また、第2偏心回転機構(70)は、第1偏心回転機構(50)からの中間圧冷媒を高圧の冷媒にまで圧縮する、高段側圧縮部を構成している。また、圧縮機構(40)は、ミドルプレート(41)と2つのシールリング(42,43)とを備えている(詳細は後述する)。
[第1偏心回転機構]
図2〜図4に示すように、第1偏心回転機構(50)は、第1シリンダ(52)と第1可動部材(51)とを備えている。
第1シリンダ(52)は、ケーシング(21)の胴部に固定される固定部材を構成している。第1シリンダ(52)は、円盤状の固定側鏡板部(52a)と、固定側鏡板部(52a)の上面の内寄りの位置から上方に突出する環状の内側シリンダ部(52b)と、固定側鏡板部(52a)の上面の外周部から上方に突出する環状の外側シリンダ部(52c)とを備えている。第1シリンダ(52)は、内側シリンダ部(52b)と外側シリンダ部(52c)との間に、環状の第1シリンダ室(54)を有している。
第1可動部材(51)は、円盤状の可動側鏡板部(51a)と、可動側鏡板部(51a)の下面の内周端部から下方に突出する環状突出部(51b)と、可動側鏡板部(51a)の下面の外周寄りの位置から下方に突出する環状の第1ピストン(53)とを備えている。第1ピストン(53)は、第1シリンダ(52)に対して偏心するように第1シリンダ室(54)に収納され、第1シリンダ室(54)を外側流体室(61)と内側流体室(62)とに区画している。外側流体室(61)は、第1の低段側圧縮室を構成し、内側流体室(62)は、第2の低段側圧縮室を構成している。
なお、第1ピストン(53)と第1シリンダ(52)とは、第1ピストン(53)の外周面と外側シリンダ部(52c)の内周面とが1点で実質的に接する状態(厳密にはミクロンオーダーの隙間があるが、その隙間での冷媒の漏れが問題にならない状態)において、その接点と位相が180°異なる位置で、第1ピストン(53)の内周面と内側シリンダ部(52b)の外周面とが1点で実質的に接するようになっている。
環状突出部(51b)には、第1偏心部(35)が嵌合している。第1可動部材(51)は、駆動軸(34)の回転に伴い主軸部(34a)の軸心を中心として偏心回転する。なお、第1偏心回転機構(50)では、環状突出部(51b)と内側シリンダ部(52b)との間に空間が形成されるが、この空間では冷媒の圧縮は行われない。
第1偏心回転機構(50)は、内側シリンダ部(52b)の外周面から外側シリンダ部(52c)の内周面まで延びるブレード(55)を備えている。ブレード(55)は、第1シリンダ(52)と一体になっている。ブレード(55)は、第1シリンダ室(54)に配置され、外側流体室(61)を吸入側の第1室(61a)と吐出側の第2室(61b)とに区画し、内側流体室(62)を吸入側の第1室(62a)と吐出側の第2室(62b)とに区画している。ブレード(55)は、環状の一部が分断されたC型形状の第1ピストン(53)の分断箇所を挿通している。また、第1ピストン(53)の分断箇所には、ブレード(55)を挟むように半円形状のブッシュ(56,56)が嵌合している。ブッシュ(56,56)は、第1ピストン(53)の端面に対して揺動自在に構成されている。これにより、第1ピストン(53)は、ブレード(55)の延伸方向に進退可能で且つブッシュ(56,56)と共に揺動可能になっている。
第1偏心回転機構(50)には、上記の吸入管(23)が接続されている。吸入管(23)は、固定側鏡板部(52a)に形成された第1接続通路(63)に接続されている。第1接続通路(63)は、入口側が固定側鏡板部(52a)の径方向に延び、途中で上方へ折れ曲がって、出口側が固定側鏡板部(52a)の軸方向に延びている。第1接続通路(63)の出口端は、外側流体室(61)と内側流体室(62)の双方に跨るように開口している。つまり、第1偏心回転機構(50)では、第1接続通路(63)を流出した冷媒が、外側流体室(61)と内側流体室(62)とに分流し、各流体室(61,62)でそれぞれ冷媒が圧縮される。
第1偏心回転機構(50)には、外側流体室(61)から冷媒を吐出させるための外側吐出ポート(57)と、内側流体室(62)から冷媒を吐出させるための内側吐出ポート(58)と、外側吐出ポート(57)及び内側吐出ポート(58)の両方が開口する第1吐出空間(64)とが形成されている。外側吐出ポート(57)は、外側流体室(61)の第2室(61b)と第1吐出空間(64)とを連通させている。外側吐出ポート(57)には、第1吐出弁(57a)が設けられている。第1吐出弁(57a)は、外側流体室(61)の第2室(61b)の内圧に抗して外側吐出ポート(57)を閉鎖するように付勢力が作用している。外側流体室(61)の第2室(61b)の内圧が所定圧力に達すると、付勢力に反して第1吐出弁(57a)が外側吐出ポート(57)を開放する位置に変位する。内側吐出ポート(58)は、内側流体室(62)の第2室(62b)と第1吐出空間(64)とを連通させている。内側吐出ポート(58)には、第2吐出弁(58a)が設けられている。第2吐出弁(58a)は、内側流体室(62)の第2室(62b)の内圧に抗して内側吐出ポート(58)を閉鎖するように付勢力が作用している。内側流体室(62)の第2室(62b)の内圧が所定圧力に達すると、付勢力に反して第2吐出弁(58a)が内側吐出ポート(58)を開放する位置に変位する。第1吐出空間(64)には、上記の中間連絡管(24)の入口端が開口している。
以上のような構成の第1偏心回転機構(50)において、駆動軸(34)が回転すると、第1ピストン(53)が図4の(A)〜(H)の順に偏心回転する。これにより、外側流体室(61)及び内側流体室(62)では、吸入管(23)を通じて導入された低圧の冷媒が圧縮される。外側流体室(61)及び内側流体室(62)でそれぞれ圧縮された冷媒は、各吐出ポート(57,58)から第1吐出空間(64)に吐出され、中間連絡管(24)に流出する。
[第2偏心回転機構]
図2〜図4に示すように、第2偏心回転機構(70)は、第1偏心回転機構(50)と同様の機械要素で構成されている。第2偏心回転機構(70)は、ミドルプレート(41)を挟んで第2偏心回転機構(70)を上下反転させたような構成となっている。具体的に、第2偏心回転機構(70)は、第2シリンダ(72)と第2可動部材(71)とを備えている。
第2シリンダ(72)は、ケーシング(21)の胴部に固定される固定部材を構成している。第2シリンダ(72)は、円盤状の固定側鏡板部(72a)と、固定側鏡板部(72a)の下面の内寄りの位置から下方に突出する環状の内側シリンダ部(72b)と、固定側鏡板部(72a)の下面の外周部から下方に突出する環状の外側シリンダ部(72c)とを備えている。第2シリンダ(72)は、内側シリンダ部(72b)と外側シリンダ部(72c)との間に、環状の第2シリンダ室(74)を有している。
第2可動部材(71)は、円盤状の可動側鏡板部(71a)と、可動側鏡板部(71a)の上面の内周端部から上方に突出する環状突出部(71b)と、可動側鏡板部(71a)の下面の外周寄りの位置から上方に突出する環状の第2ピストン(73)とを備えている。第2ピストン(73)は、第2シリンダ(72)に対して偏心するように第2シリンダ室(74)に収納され、第2シリンダ室(74)を外側流体室(81)と内側流体室(82)とに区画している。外側流体室(81)は、第1の高段側圧縮室を構成し、内側流体室(82)は、第2の高段側圧縮室を構成している。
なお、第2ピストン(73)と第2シリンダ(72)とは、第2ピストン(73)の外周面と外側シリンダ部(72c)の内周面とが1点で実質的に接する状態(厳密にはミクロンオーダーの隙間があるが、その隙間での冷媒の漏れが問題にならない状態)において、その接点と位相が180°異なる位置で、第2ピストン(73)の内周面と内側シリンダ部(72b)の外周面とが1点で実質的に接するようになっている。
環状突出部(71b)には、第2偏心部(36)が嵌合している。第2可動部材(71)は、駆動軸(34)の回転に伴い主軸部(34a)の軸心を中心として偏心回転する。なお、第2偏心回転機構(70)では、環状突出部(71b)と内側シリンダ部(72b)との間に空間が形成されるが、この空間では冷媒の圧縮は行われない。
第2偏心回転機構(70)は、内側シリンダ部(72b)の外周面から外側シリンダ部(72c)の内周面まで延びるブレード(75)を備えている。ブレード(75)は、第2シリンダ(72)と一体になっている。ブレード(75)は、第2シリンダ室(74)に配置され、外側流体室(81)を吸入側の第1室(81a)と吐出側の第2室(81b)とに区画し、内側流体室(82)を吸入側の第1室(82a)と吐出側の第2室(82b)とに区画している。ブレード(75)は、環状の一部が分断されたC型形状の第2ピストン(73)の分断箇所を挿通している。また、第2ピストン(73)の分断箇所には、ブレード(75)を挟むように半円形状のブッシュ(76,76)が嵌合している。ブッシュ(76,76)は、第2ピストン(73)の端面に対して揺動自在に構成されている。これにより、第2ピストン(73)は、ブレード(75)の延伸方向に進退可能で且つブッシュ(76,76)と共に揺動可能になっている。
第2偏心回転機構(70)には、上記の中間連絡管(24)の出口端が接続されている。中間連絡管(24)は、固定側鏡板部(72a)に形成された第2接続通路(83)に接続されている。第2接続通路(83)は、入口側が固定側鏡板部(72a)の径方向に延び、途中で下方へ折れ曲がって、出口側が固定側鏡板部(72a)の軸方向に延びている。第2接続通路(83)の出口端は、外側流体室(81)と内側流体室(82)の双方に跨るように開口している。つまり、第2偏心回転機構(70)では、第2接続通路(83)を流出した冷媒が、外側流体室(81)と内側流体室(82)とに分流し、各流体室(81,82)でそれぞれ冷媒が圧縮される。
第2偏心回転機構(70)には、外側流体室(81)から冷媒を吐出させるための外側吐出ポート(77)と、内側流体室(62)から冷媒を吐出させるための内側吐出ポート(78)と、外側吐出ポート(77)及び内側吐出ポート(78)の両方が開口する第2吐出空間(84)とが形成されている。外側吐出ポート(77)は、外側流体室(81)の第2室(81b)と第2吐出空間(84)とを連通させている。外側吐出ポート(77)には、第3吐出弁(77a)が設けられている。第3吐出弁(77a)は、外側流体室(81)の第2室(81b)の内圧に抗して外側吐出ポート(77)を閉鎖するように付勢力が作用している。外側流体室(81)の第2室(81b)の内圧が所定圧力に達すると、付勢力に反して第3吐出弁(77a)が外側吐出ポート(77)を開放する位置に変位する。内側吐出ポート(78)は、内側流体室(82)の第2室(82b)と第2吐出空間(84)とを連通させている。内側吐出ポート(78)には、第4吐出弁(78a)が設けられている。第4吐出弁(78a)は、内側流体室(82)の第2室(82b)の内圧に抗して内側吐出ポート(78)を閉鎖するように付勢力が作用している。内側流体室(82)の第2室(82b)の内圧が所定圧力に達すると、付勢力に反して第4吐出弁(78a)が内側吐出ポート(78)を開放する位置に変位する。第2吐出空間(84)は、ケーシング(21)の内部空間における電動機(31)の下側に開口している。一方、上記の吐出管(22)の入口端は、ケーシング(21)の内部空間における電動機(31)の上側に開口している。つまり、第2吐出空間(84)は、ケーシング(21)の内部空間を介して吐出管(22)と連通している。
以上のような構成の第2偏心回転機構(70)において、駆動軸(34)が回転すると、第2ピストン(73)が図4の(A)〜(H)の順に偏心回転する。これにより、外側流体室(81)及び内側流体室(82)では、中間連絡管(24)を通じて導入された中間圧の冷媒が圧縮される。外側流体室(81)及び内側流体室(82)でそれぞれ圧縮された冷媒は、各吐出ポート(77,78)から第2吐出空間(84)に吐出される。(
[ミドルプレート]
図2及び図3に示すように、ミドルプレート(41)は、第1偏心回転機構(50)と第2偏心回転機構(70)との間に介設されている。ミドルプレート(41)は、外周端に形成される円筒部(41a)と、該円筒部(41a)内に形成される仕切部(41b)とを有している。円筒部(41a)は、上下に扁平な筒状に形成されている。円筒部(41a)は、第1シリンダ(52)の外側シリンダ部(52c)の上端面と、第2シリンダ(72)の外側シリンダ部(72c)の下端面との間に狭持されている。仕切部(41b)は、円筒部(41a)の内部を上下に仕切るように、該円筒部(41a)の上下方向の中間位置に形成されている。仕切部(41b)は、中央に開口を有する環状に形成され、その開口を駆動軸(34)が貫通している。仕切部(41b)は、円筒部(41a)と一体形成されている。
ミドルプレート(41)では、仕切部(41b)の上側の部位が、高段側支持部(41c)を構成している。つまり、高段側支持部(41c)は、高段側の可動側鏡板部(71a)の背面側に設けられて、第2シリンダ(72)の先端面(下面)との間に可動側鏡板部(71a)を狭持している。また、ミドルプレート(41)では、仕切部(41b)の下側の部位が、低段側支持部(41d)を構成している。つまり、低段側支持部(41d)は、低段側の可動側鏡板部(51a)の背面側に設けられて、第1シリンダ(52)の先端面(上面)との間に可動側鏡板部(51a)を狭持している。
[シールリング]
図3に示すように、圧縮機構(40)は、2つの環状のシールリング(42,43)を有している。具体的に、ミドルプレート(41)の高段側支持部(41c)と、第1可動部材(51)の可動側鏡板部(51a)との間には、第1シールリング(42)が設けられている。また、ミドルプレート(41)の低段側支持部(41d)と、第2可動部材(71)の可動側鏡板部(71a)との間には、第2シールリング(43)が設けられている。
第1シールリング(42)は、仕切部(41b)の下面に形成された第1環状溝(42a)に嵌り込んでいる。第1環状溝(42a)の中心は、駆動軸(34)の軸心よりも吐出側(吐出ポート(57,58)寄り)に偏心している。第1シールリング(42)の内側には、第1背圧室(65)が区画されている。第1背圧室(65)は、駆動軸(34)の外周の隙間と連通しており、この隙間には上述した油溜まりの冷凍機油が給油通路を通じて供給される。このため、第1背圧室(65)には、油溜まりの圧力と同等の圧力、つまり、ケーシング(21)の内部に満たされる高圧冷媒と同等の圧力が作用している。これにより、第1背圧室(65)では、第1可動部材(51)の可動側鏡板部(51a)に高圧冷媒の圧力が作用し、第1可動部材(51)が第1シリンダ(52)の方向へ押し付けられる。以上のように、第1シールリング(42)の内側には、高圧冷媒の圧力を利用して第1可動部材(51)を第1シリンダ(52)側へ押し付ける、第1押し付け部(44)が形成されている。
第2シールリング(43)は、仕切部(41b)の上面に形成された第2環状溝(43a)に嵌り込んでいる。第2環状溝(43a)の中心は、駆動軸(34)の軸心よりも吐出側(吐出ポート(77,78)寄り)に偏心している。第2シールリング(43)の内側には、第2背圧室(85)が区画されている。第2背圧室(85)は、駆動軸(34)の周囲の隙間と連通しており、この隙間には上述した油溜まりの冷凍機油が給油通路を通じて供給される。このため、第2背圧室(85)には、油溜まりの圧力と同等の圧力、つまり、ケーシング(21)の内部に満たされる高圧冷媒と同等の圧力が作用している。これにより、第2背圧室(85)では、第2可動部材(71)の可動側鏡板部(71a)に高圧冷媒の圧力が作用し、第2可動部材(71)が第2シリンダ(72)の方向へ押し付けられる。以上のように、第2シールリング(43)の内側には、高圧冷媒の圧力を利用して第2可動部材(71)を第2シリンダ(72)側へ押し付ける、第2押し付け部(45)が形成されている。
本実施形態では、第1シールリング(42)の内径よりも、第2シールリング(43)の内径の方が大きくなっている。つまり、第1可動部材(51)の可動側鏡板部(51a)よりも第2可動部材(71)の可動側鏡板部(71a)の方が、高圧冷媒の圧力が作用する受圧面の面積が大きくなっている。これにより、第1押し付け部(44)よりも第2押し付け部(45)の方が押し付け力も大きくなっている。
[可動部材の挟み込み隙間について]
図3に示すように、圧縮機構(40)では、第2シリンダ(72)とミドルプレート(41)との間における第2可動部材(71)の挟み込み隙間が、第1シリンダ(52)とミドルプレート(41)との間における第1可動部材(51)の挟み込み隙間よりも小さくなっている。この点について詳細に説明する。
圧縮機構(40)では、可動側鏡板部(51a,71a)の外周縁部が、外側シリンダ部(52c,72c)の先端面とミドルプレート(41)の仕切部(41b)との間に狭持されている。ここで、第1可動部材(51)の可動側鏡板部(51a)の狭持部位において、第1シリンダ(52)の外側シリンダ部(52c)とミドルプレート(41)の低段側支持部(41d)との間隔をL1とし可動側鏡板部(51a)の厚さをD1とする。また、第2可動部材(71)の可動側鏡板部(71a)の狭持部位において、第2シリンダ(72)の外側シリンダ部(72c)とミドルプレート(41)の高段側支持部(41c)との間の間隔をL2とし可動側鏡板部(71a)の厚さをD2とする。そうすると、第1可動部材(51)の挟み込み隙間は、L1−D1で表すことができ、第2可動部材(71)の挟み込み隙間は、L2−D2で表すことができる。つまり、可動部材(51,71)の“挟み込み隙間”とは、シリンダ(52,72)とミドルプレート(41)との間において可動部材(51,71)の軸方向の変位を許容するための微小隙間である。そして、本実施形態の圧縮機構(40)では、第2可動部材(71)の挟み込み隙間(L1−D1)が、第1可動部材(51)の挟み込み隙間(L2−D2)よりも小さくなっている。
〈コントローラ構成〉
本実施形態の空調機(10)は、コントローラ(90)を有している(図1を参照)。コントローラ(90)は、空調機(10)の各要素機器(圧縮機(20)、膨張弁(13)、減圧弁(19)等)を制御するように構成されている。コントローラ(90)には、空調機(10)の運転開始時(即ち、圧縮機(20)の起動時)において、昇圧抑制動作を実行させるための制御部(91)を備えている。
実施形態1の制御部(91)は、昇圧抑制動作時に上記の中間開閉弁(25)を閉鎖するように構成されている。また、コントローラ(90)には、昇圧抑制動作の終了の判定を行うための手段として、タイマー(92)が設けられている。タイマー(92)は、圧縮機(20)が起動した時点から時間を計測し、この計測時間が所定の設定時間に到達すると、制御部(91)に信号を出力する。制御部(91)は、この信号を受けることで、中間開閉弁(25)を開放させるように構成されている。
−運転動作−
次に、本実施形態に係る空調機(10)の運転動作について説明する。この空調機(1)では、以下に述べる暖房運転や冷房運転等が切り換え可能となっている。なお、次に述べる冷房運転及び暖房運転は、空調機(1)の運転開始から所定時間が経過した後の定常運転(冷凍サイクルが安定状態となった運転)での動作である。
[冷房運転]
空調機(10)の冷房運転では、圧縮機(20)が運転状態となり、四路切換弁(15)が第1状態に設定されると共に、膨張弁(13)の開度が適宜調節される。冷房運転時の冷媒回路(11)では、室外熱交換器(14)が放熱器となって室内熱交換器(12)が蒸発器となる冷凍サイクルが行われる。なお、この空調機(10)では、冷凍サイクルの高圧圧力が二酸化炭素冷媒の臨界圧力よりも高くなる超臨界の冷凍サイクルが行われる。また、定常運転時の冷房運転には、中間開閉弁(25)が開放される。そして、中間インジェクション管(18)では、運転条件に応じて減圧弁(16)の開度が適宜調節されることで、中間インジェクション動作が適宜行われる。
具体的に、冷房運転時には、圧縮機(20)の吐出管(22)を流出した高圧冷媒が、放熱器としての室外熱交換器(14)を流れる。室外熱交換器(14)では、冷媒が室外空気に放熱する。放熱後の高圧冷媒は、一部が中間インジェクション管(18)を流れ、残りが内部熱交換器(17)の第1流路(17a)を流れる。中間インジェクション管(18)に流入した冷媒は、減圧弁(19)で中間圧にまで減圧された後、内部熱交換器(17)の第2流路(17b)を流れる。内部熱交換器(17)では、第2流路(17b)を流れる減圧後の液冷媒が、第1流路(17a)を流れる高圧の液冷媒から吸熱する。これにより、第1流路(17a)を流れる液冷媒が冷却され、この液冷媒の過冷却度が大きくなる。また、第2流路(17b)を流れる液冷媒は加熱されて蒸発する。第2流路(17b)で蒸発した冷媒は、中間インジェクション管(18)を流れて圧縮機(20)の中間連絡管(24)へ送られる。
第1流路(17a)で冷却された冷媒は、膨張弁(13)で減圧された後、室内熱交換器(12)を流れる。室内熱交換器(12)では、冷媒が室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。蒸発後の冷媒は、圧縮機(20)の吸入管(23)に吸入される。
吸入管(23)に吸入された冷媒は、第1偏心回転機構(50)の外側流体室(61)と内側流体室(62)とに流入する。外側流体室(61)と内側流体室(62)とでは、それぞれ冷媒が圧縮される。この際、各流体室(61,62)の内圧の上昇に起因して、第1可動部材(51)の可動側鏡板部(51a)にスラスト力が作用する。しかしながら、可動側鏡板部(51a)の背面(上面)には、第1押し付け部(44)によって高圧冷媒の圧力が作用している。このため、可動側鏡板部(51a)はスラスト力に抗して第1シリンダ(52)側へ押し付けられる。その結果、第1シリンダ(52)と第1可動部材(51)との隙間が確実にシールされると共に、可動側鏡板部(51a)の転覆が防止される。
第1偏心回転機構(50)で中間圧にまで圧縮された冷媒は、第1吐出空間(59)に吐出されて中間連絡管(24)に流入する。中間連絡管(24)を流れる冷媒は、中間インジェクション管(18)を流出した冷媒と合流する。合流後の冷媒は、中間連絡管(24)を流れて、第2偏心回転機構(70)の外側流体室(81)と内側流体室(82)とに流入する。外側流体室(81)と内側流体室(82)とでは、それぞれ冷媒が圧縮される。この際、各流体室(81,82)の内圧の上昇に起因して、第2可動部材(71)の可動側鏡板部(71a)にスラスト力が作用する。しかしながら、可動側鏡板部(71a)の背面(下面)には、第2押し付け部(45)によって高圧冷媒の圧力が作用している。このため、可動側鏡板部(71a)はスラスト力に抗して第2シリンダ(72)側へ押し付けられる。その結果、第2シリンダ(72)と第2可動部材(71)との隙間が確実にシールされると共に、可動側鏡板部(71a)の転覆が防止される。
第2偏心回転機構(70)で高圧にまで圧縮された冷媒は、第2吐出空間(84)に吐出されて、ケーシング(21)の内部空間に流出する。この冷媒は、上方に流れて電動機(31)を通過した後、吐出管(22)に流入して冷媒回路(11)へ送られる。
[暖房運転]
空調機(10)の暖房運転では、圧縮機(20)が運転状態となり、四路切換弁(15)が第2状態に設定されると共に、膨張弁(13)の開度が適宜調節される。暖房運転時の冷媒回路(11)では、室内熱交換器(12)が放熱器となって室外熱交換器(14)が蒸発器となる冷凍サイクルが行われる。なお、この空調機(10)では、冷凍サイクルの高圧圧力が二酸化炭素冷媒の臨界圧力よりも高くなる超臨界の冷凍サイクルが行われる。また、定常運転時の暖房運転には、中間開閉弁(25)が開放される。そして、中間インジェクション管(18)では、運転条件に応じて減圧弁(16)の開度が適宜調節されることで、中間インジェクション動作が適宜行われる。
具体的に、暖房運転時には、圧縮機(20)の吐出管(22)を流出した高圧冷媒が、放熱器としての室内熱交換器(12)を流れる。室内熱交換器(12)では、冷媒が室内空気に放熱する。これにより、室内空気が加熱される。放熱後の高圧冷媒は、一部が中間インジェクション管(18)を流れ、残りが内部熱交換器(17)の第1流路(17a)を流れる。暖房運転では、上記冷房運転と同様にして、中間インジェクション動作が適宜行われる。
内部熱交換器(17)の第1流路(17a)で冷却された冷媒は、膨張弁(13)で減圧された後、室外熱交換器(14)を流れる。室外熱交換器(14)では、冷媒が室外空気から吸熱して蒸発する。蒸発後の冷媒は、圧縮機(20)の吸入管(23)に吸入される。圧縮機(20)において、冷媒が二段圧縮される動作は、上記の冷房運転と同様である。
〈昇圧抑制動作について〉
上記の如く、空調機(10)の冷房運転や暖房運転では、第1偏心回転機構(50)及び第2偏心回転機構(70)において、押し付け部(44,45)が可動側鏡板部(51a,71a)をシリンダ(52,72)側に押し付けることで、可動部材(51,71)とシリンダ(52,72)の間の隙間をシールすると共に、可動部材(51,71)の転覆を防止している。ところが、空調機(10)の運転開始時(即ち、圧縮機(20)の起動時)において、高段側となる第2偏心回転機構(70)では、第2押し付け部(45)で所期の効果を発揮できないという問題が生じ得る。
具体的には、圧縮機(20)の起動時には、中間圧の冷媒(即ち、第2偏心回転機構(70)に吸入冷媒)と比較して、高圧冷媒(即ち、第2偏心回転機構(70)の吐出冷媒)の圧力が上昇しにくい傾向にある。なぜなら、冷房運転や暖房運転の開始時においては、冷媒回路(11)の放熱器(12,14)が比較的低温となっていることから、圧縮機(20)から吐出された高圧冷媒が放熱器(12,14)で急激に冷やされてなかなか昇圧されないからである。このようにして、圧縮機(20)の起動時に高圧冷媒の上昇が遅くなると(例えば図5の破線で示す比較例の圧力変化を参照)、第2シールリング(43)内の第2背圧室(85)に作用する圧力もなかなか上昇しない。その結果、第2押し付け部(45)では、圧縮機(20)の起動時に充分な押し付け力を得ることができず、これにより、第2シリンダ(72)と第2可動部材(71)の隙間もなかなかシールされなくなってしまう。
圧縮機(20)の起動時において、このようにして第2シリンダ(72)と第2可動部材(71)の隙間のシールが不十分となると、この隙間から冷媒が漏れてしまい、第2偏心回転機構(70)でなかなか冷媒が圧縮されない。そうすると、高圧冷媒の上昇がますます遅くなってしまい、冷房運転や暖房運転の立ち上がり時間(運転開始から定常運転に至るまでの時間)も遅くなる。また、第2可動部材(71)の押し付け力が不十分となることで、第2可動部材(71)が軸心に対して傾いてしまい(転覆してしまい)、軸受け部で片当たりが生じてしまう。更に、高圧冷媒の上昇が遅くなることで、油ポンプ(37)から軸受け等の摺動部へ供給される油の量も不足してしまい、これらの摺動部の潤滑不良を招いてしまう。そこで、本実施形態では、圧縮機(20)の起動時において、このような不具合を回避すべく、以下のよう昇圧抑制動作を行うようにしている。
本実施形態では、空調機(10)の運転が開始されて圧縮機(20)が起動されると、コントローラ(90)の制御部(91)が、中間インジェクション管(18)の中間開閉弁(25)を閉鎖する。同時に、タイマー(92)は、圧縮機(20)の起動の時点t0からの時間の経過を計測する。
中間インジェクション管(18)が閉鎖されると、冷媒回路(11)の高圧ラインと、圧縮機(20)の中間連絡管(24)との連通が禁止される。このため、冷媒回路(11)の高圧冷媒が中間連絡管(24)へ流出することがないため、第2偏心回転機構(70)に吸入される冷媒の圧力の上昇が抑制される。その結果、圧縮機(20)の起動時において、第2偏心回転機構(70)の各流体室(81,82)の内圧の上昇が抑制されるので、各シリンダ(52,72)に対して各可動部材(51,71)が離反しにくくなる。
このようにして、高圧冷媒の圧力(図5に示す実線HP)と中間圧冷媒の圧力(図5に示す実線MP)との差圧が所定値を越えると、例えば図5に示す時点taにおいて、第2可動部材(71)と第2シリンダ(72)との隙間のシールが確保される。これにより、第2偏心回転機構(70)の各流体室(81,82)では、冷媒の漏れが抑制され、高圧冷媒の圧力が速やかに上昇する。その結果、第2背圧室(85)の内圧も速やかに上昇していくので、第2押し付け部(45)の押し付け力も速やかに増大していく。
以上のような昇圧抑制動作により、冷媒回路(11)の高圧冷媒、中間圧冷媒、及び低圧冷媒の各圧力の差が顕著となり、これらの各圧力が徐々に安定していく。ここで、本実施形態では、タイマー(92)で計測された時間が所定の設定時間に達すると、制御部(91)が中間開閉弁(25)を開放して昇圧抑制動作を終了させる。なお、図5の例では、時点t1において昇圧抑制動作が終了して中間開閉弁(25)が開放されている。その結果、空調機(10)では、上述したインジェクション動作が行われ、定常運転が行われる。
−実施形態1の効果−
本実施形態によれば、圧縮機(20)の起動時において、中間インジェクション管(18)の中間開閉弁(25)を閉鎖することで、第2偏心回転機構(70)に吸入される冷媒の圧力の上昇を抑制するようにしている。このため、圧縮機(20)の起動時において、比較的単純な構成により、第2可動部材(71)を第2シリンダ(72)に押し付けることができ、第2可動部材(71)と第2シリンダ(72)の隙間のシールを速やかに確保できる。従って、図5に示すように、冷媒回路(11)の高圧(HP)、中間圧(MP)、及び低圧(LP)をそれぞれ速やかに安定させることができ、空調機(10)の定常運転の立ち上げ時間を短縮できる。
また、このようにして第2可動部材(71)と第2シリンダ(72)の隙間のシールを速やかに確保するようにすると、第2押し付け部(45)の押し付け力も速やかに確保できる。このため、第2可動部材(71)の転覆を防止して軸受け部の片当たりを未然に回避できる。また、高圧の上昇を促すことで、油ポンプ(37)から各摺動部への油の供給を確実に行うことができ、空調機(10)の信頼性を向上できる。
また、上記実施形態では、第2偏心回転機構(70)の可動側鏡板部(71a)の挟み込み隙間(L2−D2)を第1偏心回転機構(50)の可動側鏡板部(51a)の挟み込み隙間(L1−D1)よりも小さくしている。このため、第2偏心回転機構(70)では、第2可動部材(71)と第2シリンダ(72)の隙間からの冷媒の漏れを防止でき、圧縮機(20)の起動時における高圧冷媒(HP)の圧力上昇を更に促進できる。
また、第1偏心回転機構(50)では、可動側鏡板部(71a)の挟み込み隙間(L1−D1)を比較的大きくしている。このため、湿り度が比較的高い低圧冷媒が圧縮機(20)に吸入された場合、第1偏心回転機構(50)の第1可動部材(51)と第1シリンダ(52)との隙間より冷媒を逃がすことできる。即ち、第1偏心回転機構(50)では、挟み込み隙間(L1−D1)を比較的大きくすることで、液状態の冷媒を圧縮してしまう、いわゆる液圧縮現象を未然に回避できる。
一方、第2偏心回転機構(70)では、圧縮された後の高圧冷媒が臨界状態となるように、冷媒を圧縮している。このため、第2偏心回転機構(70)では、各流体室(81,82)に液冷媒が入ってしまうことほとんどない。従って、第2偏心回転機構(70)の挟み込み隙間(L2−D2)を比較的狭くしたとしても、液圧縮現象を招いてしまう虞はない。
《実施形態2》
実施形態2に係る空調機(10)は、上記実施形態1と昇圧抑制部の構成が異なるものである。
図6に示すように、実施形態2の冷媒回路(11)では、実施形態1の中間開閉弁(25)が省略されている。一方、冷媒回路(11)には、吸入管(23)と中間連絡管(24)とを繋ぐ連通管(26)が設けられている。即ち、連通管(26)は、第1偏心回転機構(50)の吐出口(吐出ポート(57,58))と第1偏心回転機構(50)の吸入口(第1接続通路(63))とを連通させるための連通路を構成している。
また、連通管(26)には、低段側開閉弁(27)が設けられている。低段側開閉弁(27)は、圧縮機(20)の起動時における昇圧抑制動作時に連通管(26)を開放し、該昇圧抑制動作が終了すると連通管(26)を閉鎖する低段側開閉機構を構成している。実施形態2では、連通管(26)及び低段側開閉弁(27)が、圧縮機(20)の起動時に昇圧抑制動作を行うための昇圧抑制部を構成している。
実施形態2のコントローラ(90)は、実施形態1と同様、制御部(91)とタイマー(92)とを有している。実施形態2の制御部(91)は、昇圧抑制動作時に上記の低段側開閉弁(27)を閉鎖するように構成されている。
具体的に、実施形態2の空調機(10)の運転が開始されて、圧縮機(20)が起動されと、制御部(91)は、連通管(26)の低段側開閉弁(27)を開放する。また、タイマー(92)は、圧縮機(20)の起動の時点t0からの時間の経過を計測する。
低段側開閉弁(27)が開放されると、第1偏心回転機構(50)で圧縮されて中間連絡管(24)へ吐出された冷媒の一部が吸入管(23)へ送られる。このため、圧縮機(20)の起動時には、第1偏心回転機構(50)から吐出される冷媒の圧力(即ち、第2偏心回転機構(70)に吸入される冷媒の圧力)の上昇が抑制される。従って、図7に示すように、第2偏心回転機構(70)では、高圧冷媒の圧力(実線で示すHP)と中間圧冷媒の圧力(実線で示すMP)との差が速やかに所定値を越える。その結果、実施形態2では、圧縮機(20)の起動時において、第2偏心回転機構(70)の第2可動部材(71)と第2シリンダ(72)との隙間のシールが速やかに確保される。これにより、第2偏心回転機構(70)の各流体室(81,82)では、冷媒の漏れが抑制され、高圧冷媒が速やかに上昇する。その結果、第2背圧室(85)の内圧も速やかに上昇していくので、第2押し付け部(45)の押し付け力も速やかに増大していく。
以上のような昇圧抑制動作により、冷媒回路(11)の高圧冷媒、中間圧冷媒、及び低圧冷媒の各圧力の差が顕著となっていく。ここで、本実施形態では、タイマー(92)で計測された時間が所定の設定時間に達すると、制御部(91)が低段側開閉弁(27)を閉鎖して昇圧抑制動作を終了させる。なお、図7の例では、時点t1において低段側開閉弁(27)が閉鎖されて昇圧抑制動作が終了される。このため、第1偏心回転機構(50)では、通常の冷媒の圧縮動作が行われるため、低圧(LP)と中間圧(MP)との差圧も速やかに確保される。その結果、低圧、中間圧、及び高圧が安定状態となり、定常状態での冷房運転や暖房運転が行われる。
−実施形態2の効果−
本実施形態によれば、圧縮機(20)の起動時において、第1偏心回転機構(50)の吐出側と吸入側とを繋ぐ連通管(26)の低段側開閉弁(27)を開放することで、第2偏心回転機構(70)に吸入される冷媒の圧力の上昇を抑制するようにしている。このため、圧縮機(20)の起動時において、高圧(HP)と中間圧(MP)との差圧を確実に確保して、第2可動部材(71)を第2シリンダ(72)に押し付けることができ、第2可動部材(71)と第2シリンダ(72)の隙間のシールを速やかに確保できる。従って、図7に示すように、冷媒回路(11)の高圧(HP)、中間圧(MP)、及び低圧(LP)をそれぞれ速やかに安定させることができ、空調機(10)の定常運転の立ち上げ時間を短縮できる。
また、上記実施形態1と同様にして、第2可動部材(71)の転覆を防止して軸受け部の片当たりを未然に回避できる。また、高圧の上昇を促すことで、油ポンプ(37)から各摺動部への油の供給を確実に行うことができ、空調機(10)の信頼性を向上できる。
《その他の実施形態》
上述した各実施形態については、以下のような構成としてもよい。
〈昇圧抑制動作の終了判定について〉
上記各実施形態では、コントローラ(90)のタイマー(92)によって昇圧抑制動作の終了判定を行っている。しかしながら、このような終了判定を他の手段によって行っても良い。具体的には、昇圧抑制動作の終了判定を高圧冷媒の圧力に基づいて行うようにしても良い。この場合、圧縮機(20)の起動後において、第2偏心回転機構(70)で圧縮された後の高圧冷媒の圧力が所定値を越えると、昇圧抑制動作を終了させる。なお、高圧冷媒の圧力は、例えば吐出管(22)に圧力センサ等(圧力検出手段)を設けることで容易に検出できる。
また、昇圧抑制動作の終了判定を高圧冷媒の圧力と中間圧冷媒の圧力との差に基づいて行うようにしても良い。この場合、圧縮機(20)の起動後において、第2偏心回転機構(70)で圧縮された後の高圧冷媒の圧力と、第2偏心回転機構(70)に吸入される中間圧冷媒の圧力との差が所定値を越えると、昇圧抑制動作を終了させる。なお、中間圧冷媒の圧力は、中間連絡管(24)や中間インジェクション管(18)に圧力センサ等(圧力検出手段)を設けることで容易に検出できる。
〈圧縮機構の方式について〉
上記各実施形態の圧縮機構(40)は、環状のシリンダ室(54,74)が形成されるシリンダ(52,72)と、環状のピストン(53,73)を有する可動部材(51,71))との間に圧縮室を区画する方式である。しかしながら、これ以外にも、可動側鏡板部と可動側ラップとを有する可動スクロールと、固定側鏡板部と固定側ラップとを有する固定スクロールとの間に圧縮室を区画する、スクロール式の圧縮機構を採用しても良い。この場合にも、本発明を適用することで、圧縮機(20)の起動時において、両スクロール間のシールを速やかに確保できる。
〈冷媒回路について〉
上記各実施形態の空調機(10)は、室内熱交換器(12)を1つしか例示していないが、冷媒回路(11)に複数の室内熱交換器(12)を並列に設けて空調機(10)をマルチ式としても良い。また、冷媒回路(11)は、二酸化炭素からなる冷媒を臨界圧力以上まで圧縮する、いわゆる超臨界サイクルを行うものである。しかしながら、冷媒回路(11)に二酸化炭素以外の冷媒を充填して、通常の冷凍サイクルを行うよういしても良い。
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、本発明は、 冷媒を二段に圧縮する圧縮機が接続される冷媒回路を備えた冷凍装置に関し有用である。
10 空調機(冷凍装置)
11 冷媒回路
12 室内熱交換器(放熱器)
14 室外熱交換器(放熱器)
18 中間インジェクション管(インジェクション流路)
20 圧縮機
24 中間連絡管(中間流路)
25 中間開閉弁(中間側開閉機構、昇圧抑制部)
26 連通路(連通管、昇圧抑制部)
27 低段側開閉弁(低段側開閉機構、昇圧抑制部)
40 圧縮機構
41c 高段側支持部
41d 低段側支持部
50 第1偏心回転機構(低段側圧縮部)
51 第1可動部材(可動部材)
51a 可動側鏡板部
52 第1シリンダ(固定部材)
52a 固定側鏡板部
61 外側流体室(圧縮室)
62 内側流体室(圧縮室)
70 第2偏心回転機構(高段側圧縮部)
71 第2可動部材(可動部材)
71a 可動側鏡板部
72 第2シリンダ(固定部材)
72a 固定側鏡板部
81 外側流体室(圧縮室)
82 内側流体室(圧縮室)

Claims (6)

  1. 低段側の圧縮部(50)の圧縮室(61,62)で圧縮した冷媒を高段側の圧縮部(70)の圧縮室(81,82)で更に圧縮する二段圧縮式の圧縮機構(40)を有する圧縮機(20)と、該圧縮機(20)が接続されて冷凍サイクルが行われる冷媒回路(11)とを備え、
    上記高段側圧縮部(70)は、固定側鏡板部(72a)を有する固定部材(72)と、可動側鏡板部(71a)を有する可動部材(71)とを備え、上記固定部材(72)と上記可動部材(71)との間に上記圧縮室(81,82)を区画しながら該可動部材(71)を偏心回転させることで冷媒を圧縮するように構成され、
    上記圧縮機構(40)は、上記高段側圧縮部(70)から吐出される高圧冷媒の圧力を高段側圧縮部(70)の可動側鏡板部(71a)の背面に作用させることで、高段側圧縮部(70)の可動部材(71)を該高段側圧縮部(70)の固定部材(72)の方向に押し付けるように構成されている冷凍装置であって、
    上記圧縮機(20)の起動時に、上記高段側圧縮部(70)に吸入される冷媒の圧力の上昇を抑制する昇圧抑制動作を行うための昇圧抑制部(25,26,27)を備えていることを特徴とする冷凍装置。
  2. 請求項1において、
    上記冷媒回路(11)には、該冷媒回路(11)の放熱器(12,14)で放熱した後の高圧冷媒を、上記低段側圧縮部(50)の吐出側と上記高段側圧縮部(70)の吸入側とを繋ぐ中間流路(24)に導入するためのインジェクション流路(18)が設けられ、
    上記昇圧抑制部(25)は、上記圧縮機(20)の起動時における昇圧抑制動作時に上記インジェクション流路(18)を閉鎖し、該昇圧抑制動作が終了するとインジェクション流路(18)を開放する中間側開閉機構(25)を有していることを特徴とする冷凍装置。
  3. 請求項1において、
    上記昇圧抑制部(26,27)は、
    上記低段側圧縮部(50)の吐出側と該低段側圧縮部(50)の吸入側とを連通させるための連通管(26)と、
    上記圧縮機(20)の起動時における昇圧抑制動作時に上記連通管(26)を開放し、該昇圧抑制動作が終了すると連通管(26)を閉鎖する低段側開閉機構(27)とを有していることを特徴とする冷凍装置。
  4. 請求項1乃至3のいずれか1つにおいて、
    上記圧縮機(20)が起動してから所定の時間が経過する、又は上記高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力が所定値を越える又は、上記高段側圧縮部(70)で圧縮された後の高圧冷媒の圧力と高段側圧縮部(70)に吸入される中間圧の冷媒の圧力との差が所定値を越えると、上記昇圧抑制動作が終了することを特徴とする冷凍装置。
  5. 請求項1乃至4のいずれか1つにおいて、
    上記低段側圧縮部(50)は、固定側鏡板部(52a)を有する固定部材(52)と、可動側鏡板部(51a)を有する可動部材(51)とを備え、上記固定部材(52)と上記可動部材(51)との間に上記圧縮室(61,62)を区画しながら該可動部材(51)を偏心回転させることで冷媒を圧縮するように構成され、
    上記圧縮機構(40)は、上記高段側圧縮部(70)から吐出される高圧冷媒の圧力を高段側圧縮部(70)の可動側鏡板部(71a)の背面に作用させることで、高段側圧縮部(70)の可動部材(71)を該高段側圧縮部(70)の固定部材(72)の方向に押し付けると共に、上記高段側圧縮部(70)から吐出される高圧冷媒の圧力を低段側圧縮部(50)の可動側鏡板部(51a)の背面にも作用させることで、低段側圧縮部(50)の可動部材(51)を該低段側圧縮部(50)の固定部材(52)の方向に押し付けるように構成されていることを特徴とする冷凍装置。
  6. 請求項5において、
    上記圧縮機構(40)は、
    上記高段側圧縮部(70)の固定部材(72)の先端面との間に上記高段側圧縮部(70)の可動側鏡板部(71a)を狭持するように該高段側圧縮部(70)の可動側鏡板部(71a)の背面側に設けられる高段側支持部(41c)と、
    上記低段側圧縮部(50)の固定部材(52)の先端面との間に上記低段側圧縮部(50)の可動側鏡板部(51a)を狭持するように該低段側圧縮部(50)の可動側鏡板部(51a)の背面側に設けられる低段側支持部(41d)とを有し、
    上記低段側圧縮部(50)の固定部材(52)の先端面と上記低段側支持部(41d)との間隔をL1とし、上記低段側圧縮部(50)の可動側鏡板部(51a)の厚みをD1とし、上記高段側圧縮部(70)の固定部材(72)の先端面と上記高段側支持部(41c)との間隔をL2とし、上記高段側圧縮部(70)の可動側鏡板部(71a)の厚みをD2とすると、
    上記圧縮機構(40)は、(L1−D1)>(L2−D2)の関係を満たすように構成されていることを特徴とする冷凍装置。
JP2009195844A 2009-08-26 2009-08-26 冷凍装置 Pending JP2011047567A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195844A JP2011047567A (ja) 2009-08-26 2009-08-26 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195844A JP2011047567A (ja) 2009-08-26 2009-08-26 冷凍装置

Publications (1)

Publication Number Publication Date
JP2011047567A true JP2011047567A (ja) 2011-03-10

Family

ID=43834089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195844A Pending JP2011047567A (ja) 2009-08-26 2009-08-26 冷凍装置

Country Status (1)

Country Link
JP (1) JP2011047567A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160597A1 (ja) * 2011-05-23 2012-11-29 三菱電機株式会社 空気調和装置
CN103940051A (zh) * 2014-05-13 2014-07-23 珠海格力电器股份有限公司 一种空调器模式转换的控制方法及控制***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237259A (ja) * 1988-07-26 1990-02-07 Toshiba Corp 2段圧縮冷凍サイクル
JPH07259774A (ja) * 1994-03-23 1995-10-09 Sanyo Electric Co Ltd 回転式スクロール圧縮機
JP2003202161A (ja) * 2002-01-10 2003-07-18 Hitachi Ltd 冷凍空調装置
JP2004251513A (ja) * 2003-02-19 2004-09-09 Sanyo Electric Co Ltd 冷媒サイクル装置
WO2009098872A1 (ja) * 2008-02-04 2009-08-13 Daikin Industries, Ltd. 流体機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237259A (ja) * 1988-07-26 1990-02-07 Toshiba Corp 2段圧縮冷凍サイクル
JPH07259774A (ja) * 1994-03-23 1995-10-09 Sanyo Electric Co Ltd 回転式スクロール圧縮機
JP2003202161A (ja) * 2002-01-10 2003-07-18 Hitachi Ltd 冷凍空調装置
JP2004251513A (ja) * 2003-02-19 2004-09-09 Sanyo Electric Co Ltd 冷媒サイクル装置
WO2009098872A1 (ja) * 2008-02-04 2009-08-13 Daikin Industries, Ltd. 流体機械

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160597A1 (ja) * 2011-05-23 2012-11-29 三菱電機株式会社 空気調和装置
JPWO2012160597A1 (ja) * 2011-05-23 2014-07-31 三菱電機株式会社 空気調和装置
US9494348B2 (en) 2011-05-23 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103940051A (zh) * 2014-05-13 2014-07-23 珠海格力电器股份有限公司 一种空调器模式转换的控制方法及控制***
CN103940051B (zh) * 2014-05-13 2017-02-22 珠海格力电器股份有限公司 一种空调器模式转换的控制方法及控制***

Similar Documents

Publication Publication Date Title
JP4367567B2 (ja) 圧縮機及び冷凍装置
JP5018993B2 (ja) スクロール圧縮機
WO2006013959A1 (ja) 容積型膨張機及び流体機械
JP2008190377A (ja) 多段圧縮機
US20120151948A1 (en) Refrigeration cycle apparatus
KR20070035067A (ko) 냉동장치
JP6253278B2 (ja) 冷凍サイクル
JP2015113817A (ja) スクロール型圧縮機
JP2004197640A (ja) 容積型膨張機及び流体機械
JP5515289B2 (ja) 冷凍装置
JP6061044B2 (ja) スクロール型圧縮機
JP2012127565A (ja) 冷凍サイクル装置
CN106196674B (zh) 油冷式二级压缩机以及热泵
JP2017194064A (ja) 冷凍サイクル
JP2011047567A (ja) 冷凍装置
JP4765587B2 (ja) 冷凍装置
WO2012042698A1 (ja) 冷凍空調装置
JP2011058387A (ja) 回転式圧縮機
JP4618266B2 (ja) 冷凍装置
JP2013024194A (ja) 冷凍装置
JP2009133319A (ja) 容積型膨張機及び流体機械
WO2022185956A1 (ja) 圧縮機及び冷凍サイクル装置
JP4617810B2 (ja) 回転式膨張機及び流体機械
JP5484604B2 (ja) 冷凍空調装置
JP5835299B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204