WO2009096050A1 - シロキサン系樹脂組成物 - Google Patents

シロキサン系樹脂組成物 Download PDF

Info

Publication number
WO2009096050A1
WO2009096050A1 PCT/JP2008/059689 JP2008059689W WO2009096050A1 WO 2009096050 A1 WO2009096050 A1 WO 2009096050A1 JP 2008059689 W JP2008059689 W JP 2008059689W WO 2009096050 A1 WO2009096050 A1 WO 2009096050A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
siloxane
based resin
resin composition
general formula
Prior art date
Application number
PCT/JP2008/059689
Other languages
English (en)
French (fr)
Inventor
Mitsuhito Suwa
Hirokazu Iimori
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP08764722.8A priority Critical patent/EP2239301B1/en
Priority to CN2008801246285A priority patent/CN101910318B/zh
Priority to JP2008527243A priority patent/JP5375094B2/ja
Priority to US12/864,832 priority patent/US8389649B2/en
Publication of WO2009096050A1 publication Critical patent/WO2009096050A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a siloxane-based resin composition.
  • the curable composition for an antireflection film for microlens containing titanium oxide particles coated with a metal element oxide, a curable compound, and a curing catalyst allows the light caused by the refractive index difference between the air medium and the microlens. It has been proposed to suppress reflection (see, for example, Patent Document 1). In addition, a variety of refractive index adjustments have been made to suppress reflection of light caused by refractive index differences between the light receiving unit and the color filter, between the color filter and the microlens, and to flatten the base step. A planarizing film is used.
  • a coating material for such a flattened film for example, a siloxane-based resin composition obtained by hydrolyzing and condensing an alkoxysilane compound in the presence of metal compound particles (for example, see Patent Document 2), fluorine A thermosetting resin composition containing a fluorine-containing siloxane polymer containing a silane compound and an epoxy group-containing silane compound as a copolymerization component (for example, see Patent Document 3) is disclosed.
  • the coating materials used for flattening film applications not only have the characteristics of completely covering and flattening the base step, but also have sufficient adhesion to the substrate surface, resin surface, and element surface made of base metal and inorganic materials. Sex is required.
  • it is known to contain a silane coupling agent in order to improve adhesion (see, for example, Patent Documents 4 to 5).
  • a silane coupling agent in order to improve adhesion (see, for example, Patent Documents 4 to 5).
  • the silane coupling agents disclosed therein are added to the siloxane-based resin composition, sufficient adhesion cannot be obtained.
  • JP 2005-283786 A JP 2007-246877 A JP 2007-119744 A JP 2003-43688 paragraph 0032
  • Japanese Patent Laying-Open No. 2005-49791 paragraph 0109
  • the present invention has been made based on the above circumstances, and provides a siloxane-based resin composition capable of obtaining a cured film having excellent adhesiveness.
  • the present invention is a siloxane-based resin composition containing (a) a siloxane-based resin and (b) an imidosilane compound represented by the following general formula (4).
  • the present invention also provides (a) a siloxane-based resin composition containing a siloxane-based resin, wherein the (a) siloxane-based resin is any one of (a-2) the following general formulas (1) to (3):
  • a siloxane-based resin which is a reaction product obtained by hydrolyzing one or more alkoxysilane compounds represented by the above formula and an imidosilane compound represented by the following general formula (5) and subjecting the hydrolyzate to a condensation reaction It is a composition.
  • R 7 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms, a phenyl group, a phenoxy group, or a substituted product thereof.
  • R 10 may be the same or different and each represents a trivalent organic group having 3 to 30 carbon atoms.
  • R 11 may be the same or different and each represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms that does not contain a silicon atom.
  • represents an integer of 1 to 3.
  • R 1 Si (OR 2 ) 3 (1)
  • R 1 represents hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof.
  • R 2 may be the same or different and represents a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group.
  • R 3 and R 4 each represent hydrogen, an alkyl group, an alkenyl group, an aryl group or substituted versions thereof.
  • R 5 may be the same or different and each represents a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group.
  • R 6 may be the same or different and represents a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group.
  • R 8 and R 9 may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a substituted product thereof.
  • R 10 may be the same or different and each represents a trivalent organic group having 3 to 30 carbon atoms.
  • R 11 may be the same or different and each represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms that does not contain a silicon atom.
  • represents an integer of 1 to 3, and ⁇ represents an integer of 0 to 2. However, ⁇ + ⁇ ⁇ 4.
  • a cured film having excellent adhesiveness can be formed.
  • the cured film obtained by using the siloxane-based resin composition of the present invention can be suitably used for optical articles such as a solid-state imaging device and a display optical filter.
  • the siloxane-based resin composition of the present invention uses an imidosilane compound having a specific structure and can be classified into the following two types depending on the method of introducing the imidosilane compound.
  • the first embodiment is a siloxane-based resin composition containing (a) a siloxane-based resin and (b) an imidosilane compound represented by the general formula (4).
  • the imide silane compound as the component (b) described later, the adhesiveness of the obtained cured film can be dramatically improved.
  • one or more alkoxysilane compounds represented by any one of the general formulas (1) to (3) and an imidosilane compound represented by the general formula (5) are hydrolyzed, It is a siloxane-based resin composition containing a siloxane-based resin that is a reaction product obtained by a condensation reaction of a hydrolyzate.
  • a siloxane resin composition containing a siloxane-based resin that is a reaction product obtained by a condensation reaction of a hydrolyzate.
  • the imidosilane compound represented by the general formula (4) or (5) serves as an adhesion improver.
  • the siloxane-based resin refers to both a siloxane resin and a particle surface graft polysiloxane described later.
  • the siloxane-based resin is not particularly limited as long as it is a resin having a continuous siloxane bond as a skeleton.
  • (a-1) a reaction product obtained by hydrolyzing one or more alkoxysilane compounds represented by any one of the following general formulas (1) to (3) and subjecting the hydrolyzate to a condensation reaction
  • the siloxane resin which is a thing is mentioned.
  • R 1 represents hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof.
  • the alkyl group and alkenyl group preferably have 1 to 4 carbon atoms, and the aryl group preferably has 6 to 14 carbon atoms.
  • Examples of the substituent introduced into the substituent include a halogen-containing group, an epoxy-containing group, an amino-containing group, a (meth) acryloyl-containing group, a cyano-containing group, a fluorene-containing group, and a vinyl group.
  • R 2 may be the same or different and represents a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group.
  • the butyl group is preferably an n-butyl group.
  • R 3 and R 4 each represent hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof.
  • the alkyl group and alkenyl group preferably have 1 to 4 carbon atoms, and the aryl group preferably has 6 to 14 carbon atoms.
  • Examples of the substituent introduced into the substituent include a halogen-containing group, an epoxy-containing group, an amino-containing group, a (meth) acryloyl-containing group, and a vinyl group.
  • R 5 may be the same or different and each represents a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group.
  • the butyl group is preferably an n-butyl group.
  • R 6 may be the same or different and represents a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group. A methyl group or an ethyl group is preferred.
  • Examples of the trifunctional alkoxysilane compound represented by the general formula (1) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyltrimethoxysilane.
  • Ethyltriethoxysilane hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, naphthyltrimethoxysilane, naphthyltriethoxysilane, naphthyltriisoiso Propoxysilane, anthracenyltrimethoxysilane, anthracenyltriethoxysilane, anthracenyltriisopropoxysilane, phenanthryltrimethoxy Silane, phenanthryl triethoxysilane, phenanthryl triisopropoxysilane, biphenyltrimethoxysilane, biphenyltriethoxysilane, biphenyltriisopropoxysi
  • Examples of the bifunctional alkoxysilane compound represented by the general formula (2) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, and methylvinyl.
  • Examples of the tetrafunctional alkoxysilane compound represented by the general formula (3) include tetramethoxysilane and tetraethoxysilane.
  • alkoxysilane compounds represented by any of the general formulas (1) to (3) may be used alone or in combination of two or more.
  • the siloxane-based resin is (a-2) one type represented by any one of the general formulas (1) to (3). It is a reaction product obtained by hydrolyzing the above alkoxysilane compound and the imidosilane compound represented by the following general formula (5) and subjecting the hydrolyzate to a condensation reaction. Two or more of the alkoxysilane compounds and imidosilane compounds may be used in combination.
  • R 8 and R 9 may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a substituted product thereof.
  • R 10 may be the same or different and each represents a trivalent organic group having 3 to 30 carbon atoms.
  • R 11 may be the same or different and each represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms that does not contain a silicon atom.
  • represents an integer of 1 to 3, and ⁇ represents an integer of 0 to 2. However, ⁇ + ⁇ ⁇ 4.
  • the imidosilane compound represented by the general formula (5) has an imide moiety excellent in solvent resistance, adhesiveness, and flexibility.
  • the Si— [OR 9 ] ⁇ portion of the imidosilane compound is incorporated into the reaction product by a hydrolysis / condensation reaction with the alkoxysilane compound represented by any one of the general formulas (1) to (3). Thereby, the softness
  • the imide silane compound is taken into the siloxane skeleton by the Si— [OR 9 ] ⁇ moiety, the nitrogen atom in the imide group faces outward in the cured film (or the substrate side in the configuration having the cured film on the substrate). It is conceivable that. For this reason, it is considered that the lone pair of nitrogen atoms and the hydroxyl group generally present on the substrate such as silicon efficiently interact with each other by hydrogen bonds and the like, thereby improving the adhesion.
  • the imide portion is suppressed from curing shrinkage as compared with a compound having an amic acid structure that is ring-closed by heat, the siloxane-based resin composition of the present invention has excellent planarization characteristics.
  • R 8 and R 9 include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a phenyl group.
  • substituents include an alkoxyalkyl group, an alkylphenyl group, and an alkoxyphenyl group.
  • is preferably 0. Further, from the viewpoint of adhesiveness, ⁇ + ⁇ ⁇ 2 is preferable.
  • R 10 may be the same or different and represents a trivalent organic group having 3 to 30 carbon atoms and is a residue of an acid anhydride in an acid anhydride-containing silane compound.
  • the acid anhydride constituting R 10 preferably contains an aromatic ring or an aliphatic ring.
  • acid anhydrides include maleic anhydride, phthalic anhydride, methyl phthalic anhydride, succinic anhydride, glutaric anhydride, 4-methylcyclohexane-1,2-dicarboxylic anhydride, cis- 4-cyclohexene-1,2-dicarboxylic anhydride, cis-1,2-cyclohexanedicarboxylic anhydride, 1,8-naphthalic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride, 5 -Norbornene-2,3-dicarboxylic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, "Licacid (registered trademark)" HNA (trade name, manufactured by Shin Nippon Rika Co., Ltd.), “Ricacid “HNA-100 (trade name, manufactured by Shin Nippon Rika Co., Ltd.) and those obtained by substituting some hydrogen atoms of these acid anhydrides with
  • Examples of monovalent organic groups having 1 to 10 carbon atoms include alkyl groups such as methyl, ethyl, n-propyl, n-butyl, and n-pentyl, oxymethyl, oxyethyl, and oxy n-propyl. And oxyalkyl groups such as an oxy n-butyl group and an oxy n-pentyl group. Of these, a methyl group, an ethyl group, an n-propyl group, and an n-butyl group are preferable because they can be easily produced.
  • phthalic anhydride succinic anhydride, glutaric anhydride, 4-methylcyclohexane-1,2-dicarboxylic anhydride, 1,8-naphthalic anhydride, 5-norbornene-2,3 -Dicarboxylic anhydrides, methyl phthalic anhydrides, and those substituted with monovalent organic groups having 1 to 10 carbon atoms are preferred.
  • phthalic anhydride, succinic anhydride, and glutaric anhydride are more preferable from the viewpoints of transparency and adhesiveness.
  • R 11 may be the same or different and each represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms that does not contain a silicon atom.
  • the organic group include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, t-butyl groups, cyclohexyl groups and other alkyl groups, 2-hydroxyethyl groups and other hydroxyalkyl groups, An aryl group such as a phenyl group, an alkoxyaryl group such as a methoxyphenyl group, an alkoxyl group such as a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.
  • An isopropyl group, a t-butyl group, a cyclohexyl group, a methoxy group or an ethoxy group is preferable because of easy synthesis.
  • a hydrogen atom, a hydroxyalkyl group such as a methylol group or an ethylol group, an i-propyl group, a t-butyl group, or a phenyl group that decomposes into a hydrogen atom upon curing is preferable. More preferred are a hydrogen atom, i-propyl group, and t-butyl group.
  • imide silane compound represented by the general formula (5) examples include compounds shown below and compounds described later as examples of the imide silane compound represented by the general formula (4).
  • the amount of the imidosilane compound represented by the general formula (5) used for the reaction product of (a-2) is the same as that of the alkoxysilane compound represented by any one of the general formulas (1) to (3).
  • 5 parts by weight or more is preferable with respect to 100 parts by weight of the total amount of the imidosilane compound represented by the general formula (5), and the adhesiveness, crack resistance and solvent resistance of the cured film are further improved.
  • 10 weight part or more is more preferable, a shrinkage
  • 50 weight part or less is preferable and can maintain high transparency of a cured film.
  • the siloxane-based resin composition of the present invention when (a) the siloxane-based resin is the reaction product of (a-1), silicon compound particles, aluminum compound particles, tin compound particles, titanium compound particles, and zirconium compound particles In the presence of at least one compound particle selected from the group consisting of: one or more alkoxysilane compounds represented by any one of the general formulas (1) to (3), A particle surface graft polysiloxane which is a reaction product obtained by a condensation reaction is preferable. In the case of the reaction product (a-2), in the presence of at least one compound particle selected from the group consisting of silicon compound particles, aluminum compound particles, tin compound particles, titanium compound particles and zirconium compound particles.
  • One or more alkoxysilane compounds represented by any one of the general formulas (1) to (3) and an imidosilane compound represented by the general formula (5) are hydrolyzed, and the hydrolyzate is condensed.
  • a particle surface grafted polysiloxane, which is a reaction product obtained by reaction, is preferred. By containing these compound particles, the refractive index of the obtained coating film and cured film can be easily adjusted.
  • the compound particles include silicon, aluminum, tin, titanium or zirconium oxides, sulfides and hydroxides. What is necessary is just to select a compound particle suitably according to the refractive index of the target coating film and a cured film.
  • a compound particle suitably according to the refractive index of the target coating film and a cured film.
  • zirconium oxide particles, tin oxide particles, titanium oxide particles, and composite particles thereof are preferably used.
  • titanium oxide particles and zirconium oxide particles are preferable because they have a high refractive index improving effect, and titanium oxide particles are more preferable.
  • silica particles, aluminum oxide particles, and composite particles thereof are preferably used.
  • silica particles are preferable because the refractive index can be further lowered. Two or more kinds of these compound particles may be used. Moreover, in order to make it easy to react with an alkoxysilane compound or an imidosilane compound, the compound particle which has groups, such as a hydroxyl group which can react with an alkoxysilane compound or an imidosilane compound, on the surface is preferable.
  • the number average particle diameter of the compound particles is preferably 1 nm or more from the viewpoint of crack resistance of the resulting cured film. Further, when used as a waveguide embedding material, 40 nm or less is preferable from the viewpoint of embedding. In order to achieve both crack resistance, transparency and embedding properties of the cured film, the number average particle diameter is more preferably 1 nm to 30 nm.
  • the number average particle size of the compound particles is measured by a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a method of directly measuring the particle size by a transmission electron microscope or a scanning electron microscope, and the like.
  • the number average particle diameter in the present invention refers to a value measured by a dynamic light scattering method.
  • the content of the compound particles in the siloxane-based resin composition is preferably 5% by weight or more, and more preferably 10% by weight or more in the reaction product of (a-1) or (a-2). Moreover, 90 weight% or less is preferable and 70 weight% or less is more preferable. Within this range, a cured film with better transmittance and crack resistance can be obtained. Furthermore, in order to reduce the curing shrinkage, it is preferably 20% by weight or more in the reaction product of (a-1) or (a-2).
  • metal compound particles include tin oxide-titanium oxide composite particles “OPTRAIK (registered trademark)” TR-502, “OPTRAIK” TR-504, “OPTRAIK” TR. -520, "Optlake” TR-513, “Oplake” TR-503, “Optlake” TR-527, “Optlake” TR-528, “Optlake” TR-529 of silicon oxide-titanium oxide composite particles "Op-tlake” TR-505 (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.), zirconium oxide particles (manufactured by Kojundo Chemical Laboratory Co., Ltd.), tin oxide-zirconium oxide composite particles ( Catalyst Chemical Industry Co., Ltd.) and tin oxide particles (manufactured by Kojundo Chemical Laboratory Co., Ltd.).
  • IPA-ST having a number average particle diameter of 12 nm using isopropanol as a dispersion medium
  • MIBK-ST having a number average particle diameter of 12 nm using methyl isobutyl ketone as a dispersion medium
  • propylene glycol monomethyl ether as a dispersion medium.
  • PGM-ST having a number average particle diameter of 15 nm (trade name, manufactured by Nissan Chemical Industries, Ltd.), Oscar 101 having a number average particle diameter of 12 nm using ⁇ -butyrolactone as a dispersion medium, and propylene glycol monomethyl ether as a dispersion medium.
  • Quartron PL-2L-PGME having a number average particle diameter of 16 nm
  • Quartron PL-2L-BL having a number average particle diameter of 17 nm using ⁇ -butyrolactone as a dispersion medium
  • Quatron PL having a number average particle diameter of 17 nm using diacetone alcohol as a dispersion medium -2L-DAA
  • the number that the dispersion is water examples include Quartron PL-2L and GP-2L (trade names, manufactured by Fuso Chemical Industry Co., Ltd.) having an average particle diameter of 18 to 20 nm.
  • (A-1) and (a-2) used in the present invention hydrolyze the alkoxysilane compound and, if necessary, an imidosilane compound (hereinafter collectively referred to as a silane compound), and condense the hydrolyzate. It is a reaction product obtained by reacting. It is preferable to hydrolyze the silane compound in the presence of the compound particles and cause the hydrolyzate to undergo a condensation reaction.
  • a silane compound an imidosilane compound
  • the hydrolysis reaction is preferably performed with an acid catalyst in a solvent. Specifically, it is preferable to add an acid catalyst and water to the silane compound in a solvent over 1 to 180 minutes, and then react at room temperature to 110 ° C. for 1 to 180 minutes. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed.
  • the reaction temperature is more preferably 40 to 105 ° C.
  • the condensation reaction by heating the reaction solution at a temperature of 50 ° C. or higher and lower than the boiling point of the solvent for 1 to 100 hours.
  • reheating or addition of a base catalyst may be performed.
  • Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins.
  • acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins.
  • an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferred.
  • the preferred content of these acid catalysts is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight or more, based on 100 parts by weight of the total silane compounds used during the hydrolysis reaction. It is 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the total silane compound amount refers to an amount including all of the silane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
  • the solvent is not particularly limited, but is appropriately selected in consideration of the stability, wettability, volatility, etc. of the siloxane-based resin composition. Not only one type of solvent but also two or more types of solvents can be used. Examples of the solvent include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, and 3-methyl-3-methoxy.
  • -1-alcohols such as butanol and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , Propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol Ethers such as coal diethyl ether, ethylene glycol dibutyl ether, diethyl ether; ketones such as methyl ethyl ketone, acetyl acetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone; dimethylformamide, Amides such as dimethylacetamide;
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol monobutyl ether t-Butyl ether, ⁇ -butyrolactone and the like are preferably used.
  • concentration as a resin composition by adding a solvent after completion
  • the amount of the solvent used in the hydrolysis reaction is preferably 50 parts by weight or more, more preferably 80 parts by weight or more with respect to 100 parts by weight of the total silane compound. Moreover, 500 weight part or less is preferable and 200 weight part or less is more preferable.
  • generation of a gel can be suppressed by making the quantity of a solvent into 50 weight part or more. Moreover, a hydrolysis reaction advances rapidly by setting it as 500 parts weight or less.
  • the water used for the hydrolysis reaction is preferably ion-exchanged water.
  • the amount of water can be arbitrarily selected, but is preferably in the range of 1.0 to 4.0 mol with respect to 1 mol of the silane compound.
  • an imidosilane compound represented by the following general formula (4) will be described.
  • the adhesiveness of the resulting cured film can be dramatically improved by containing such an imide silane compound.
  • the imidosilane compound represented by the general formula (4) has an imide moiety excellent in solvent resistance, adhesiveness, and flexibility.
  • the Si- [R 7 ] ⁇ portion reacts with the siloxane matrix formed by the siloxane-based resin of the component (a), and the imide portion is taken into the cured film by organic bonds it is conceivable that. Thereby, the softness
  • the imide silane compound is taken into the siloxane matrix by the Si— [R 7 ] ⁇ portion, the nitrogen atoms in the imide group face outward in the cured film (or the substrate side in the configuration having the cured film on the substrate). It is conceivable that. For this reason, it is considered that the lone pair of nitrogen atoms and the hydroxyl group generally present on the substrate such as silicon efficiently interact with each other by hydrogen bonds and the like, thereby improving the adhesion.
  • the imide portion is suppressed from curing shrinkage as compared with a compound having an amic acid structure that is ring-closed by heat, the siloxane-based resin composition of the present invention has excellent planarization characteristics. In this invention, you may contain 2 or more types of the imide silane compound of (b) component. Moreover, also in the 2nd aspect of the siloxane-type resin composition of this invention, it is preferable to contain such (b) imidosilane compound.
  • R 7 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms, a phenyl group, a phenoxy group, or a substituted product thereof.
  • R 10 may be the same or different and each represents a trivalent organic group having 3 to 30 carbon atoms.
  • R 11 may be the same or different and each represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms that does not contain a silicon atom.
  • represents an integer of 1 to 3.
  • specific examples of the alkyl group represented by R 7 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • a methyl group or an ethyl group is preferable because of ease of synthesis.
  • Specific examples of the alkoxyl group include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group. From the viewpoint of ease of synthesis, a methoxy group or an ethoxy group is preferable.
  • substituents include the groups listed as examples of substituents in R 8 to R 9 , alkylphenoxy groups such as 4-methylphenoxy group and 4-ethylphenoxy group, 4-methoxyphenoxy group, Examples include alkoxyphenoxy groups such as 4-ethoxyphenoxy group.
  • R 10 and R 11 are as described in the general formula (5). From the viewpoint of adhesiveness, ⁇ ⁇ 2 is preferable.
  • Examples of the imidosilane compound represented by the general formula (4) include the following compounds.
  • the imidosilane compound represented by the general formula (4) or (5) includes a primary amine compound represented by the following general formula (9) and an acid anhydride-containing silane represented by the general formula (10) or (11) It can be easily obtained from a compound by a known imidization method via amic acid.
  • R 11 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms that does not contain a silicon atom.
  • R 7 may be the same or different, and represents an alkyl group having 1 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms, a phenyl group, a phenoxy group, or a substituent thereof.
  • R 8 and R 9 may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a substituted product thereof.
  • R 10 may be the same or different and each represents a trivalent organic group having 3 to 30 carbon atoms.
  • represents an integer of 1 to 3.
  • represents an integer of 1 to 3, and ⁇ represents an integer of 0 to 2. However, ⁇ + ⁇ ⁇ 4.
  • the content of the imidosilane compound represented by the general formula (4) is 0.1 weight with respect to 100 parts by weight of the (a) siloxane-based resin.
  • Part or more is preferable, and the adhesiveness, crack resistance and solvent resistance of the cured film can be further improved.
  • 4 weight part or more is more preferable, a cure shrinkage rate can be reduced and crack resistance can be improved more.
  • 20 weight part or less is preferable and can maintain the transparency of a cured film high.
  • the content thereof is (a) 100 parts by weight of the siloxane-based resin. 0.1 parts by weight or more is preferable, and the adhesiveness, crack resistance and solvent resistance of the cured film can be further improved. Moreover, 10 weight part or less is preferable and can maintain the transparency of a cured film high.
  • the total amount of the residue of the imidosilane compound represented by the general formula (5) and the imidosilane compound represented by the general formula (4) is 1.1 with respect to 100 parts by weight of the (a) siloxane-based resin.
  • weight part More than the weight part is preferable and can improve adhesiveness, crack resistance, and solvent resistance more. Furthermore, 5 weight part or more is more preferable, a cure shrinkage rate can be reduced and crack resistance can be improved more. Moreover, 50 weight part or less is preferable and can maintain high transparency of a cured film.
  • the siloxane-based resin composition of the present invention preferably contains (c) an acid generator or a base generator.
  • a cured film can be formed in a temperature range of 120 ° C. to 200 ° C. Since the curing is completed at a low temperature, the molecular motion in the subsequent high-temperature heat treatment is small, and the curing shrinkage is small. For this reason, thermal stress is reduced and crack resistance is further improved.
  • the acid generator includes a compound that generates an acid by light (hereinafter referred to as a photoacid generator) and a compound that generates an acid by heat (hereinafter referred to as a thermal acid generator).
  • the base generator includes a compound that generates a base by light (hereinafter referred to as a base generator) and a compound that generates a base by heat (hereinafter referred to as a thermal base generator).
  • photoacid generator examples include onium salt compounds, halogen-containing compounds, diazoketone compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and sulfonimide compounds. Two or more of these may be used.
  • the onium salt compounds include diazonium salts, ammonium salts, iodonium salts, sulfonium salts, phosphonium salts, oxonium salts and the like.
  • diphenyliodonium triflate diphenyliodonium pyrenesulfonate, diphenyliodonium dodecylbenzenesulfonate, triphenylsulfonium triflate (trade name “TPS-105” manufactured by Midori Chemical Co., Ltd.), 4-t-butylphenyldiphenylsulfonium triflate ( Trade name “WPAG-339” manufactured by Wako Pure Chemical Industries, Ltd.), 4-methoxyphenyldiphenylsulfonium triflate (trade name “WPAG-370” manufactured by Wako Pure Chemical Industries, Ltd.), triphenylsulfonium nonaflate (product) “TPS-109” manufactured by Midori Chemical
  • halogen-containing compounds examples include 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2-naphthyl-4,6. -Bis (trichloromethyl) -s-triazine and the like.
  • diazoketone compound examples include esters of 1,2-naphthoquinonediazide-4-sulfonic acid and 2,2,3,4,4′-tetrahydroxybenzophenone, 1,2-naphthoquinonediazide-4-sulfonic acid and 1,1 , Esters with 1-tris (4-hydroxyphenyl) ethane, and the like.
  • diazomethane compound examples include diazomethane, methylsulfonyl-p-toluenesulfonyldiazomethane, cyclohexylsulfonyl (1,1-dimethylethylsulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, phenylsulfonyl (benzoyl) diazomethane, and the like. It is done.
  • sulfone compound examples include benzoin tosylate, pyrogallol trimesylate, nitrobenzyl-9,10-diethoxyanthracene-2-sulfonate, and the like.
  • 5-norbornene-2,3-dicarboxyimidyl triflate (trade name “NDI-105” manufactured by Midori Chemical Co., Ltd.), 5-norbornene-2,3-dicarboxyimidyl naphthalimidyl butane sulfonate , 5-norbornene-2,3-dicarboxyimidyl tosylate (trade name “NDI-101” manufactured by Midori Chemical Co., Ltd.), 4-methylphenylsulfonyloxyimino- ⁇ - (4-methoxyphenyl) acetonitrile (trade name) “PAI-101” manufactured by Midori Chemical Co., Ltd.), trifluoromethylsulfonyloxyimino- ⁇ - (4-methoxyphenyl) acetonitrile (trade name “PAI-105” manufactured by Midori Chemical Co., Ltd.), 9-camphorsulfonyloxy Imino ⁇ -4-methoxyphenylacet
  • the content of the photoacid generator is usually 1 to 10 parts by weight, more preferably 1 to 7 parts by weight with respect to 100 parts by weight of (a) siloxane-based resin. If it is 1 part by weight or more, the effect of promoting curing can be sufficiently obtained even when a cured film is formed in a temperature range of 120 ° C. to 200 ° C., and crack resistance and solvent resistance are further improved. If it is 10 weight or less, the transparency of a cured film can be kept high.
  • these photoacid generators are preferably used in combination with 9,10-disubstituted anthracene compounds as sensitizers. Since the 9,10-disubstituted anthracene-based compound is not colored by the photobleaching reaction, high transparency can be maintained even when it remains in the cured film.
  • Examples of 9,10-disubstituted anthracene compounds include 9,10-diphenylanthracene, 9,10-bis (4-methoxyphenyl) anthracene, 9,10-bis (triphenylsilyl) anthracene, and 9,10-dimethoxyanthracene. 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-dibutoxyanthracene, 9,10-dipentaoxyanthracene, 2-t-butyl-9,10-dibutoxyanthracene, 9, And 10-bis (trimethylsilylethynyl) anthracene.
  • 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, and 9,10-dibutoxyanthracene are particularly preferable. Two or more of these sensitizers may be used.
  • the content of the sensitizer is usually 0.05 to 5 parts by weight, more preferably 0.1 to 3 parts by weight, based on 100 parts by weight of (a) siloxane-based resin. If it is 0.05 parts by weight or more, the acid generation efficiency by light is improved, and a sufficient curing promoting effect can be obtained even when a cured film is formed in the temperature range of 120 ° C. to 200 ° C. More improved. If it is 5 parts by weight or less, the transparency of the cured film can be kept high.
  • thermal acid generator examples include SI-60, SI-80, SI-100, SI-110, SI-145, SI-150, SI-60L, SI-80L, SI-100L, SI- 110L, SI-145L, SI-150L, SI-160L, SI-180L (all from Sanshin Chemical Industry Co., Ltd.), 4-hydroxyphenyldimethylsulfonium, benzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl -4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-acetylphenylmethylsulfonium, 2-methylbenzyl-4-benzoyloxyphenylmethylsulfonium, their methanesulfonate, trifluoromethanesulfonate, camphorsulfonate P-toluenesulfonate is It is below.
  • 4-hydroxyphenyldimethylsulfonium benzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-acetylphenylmethylsulfonium, 2-methylbenzyl-4- Benzoyloxyphenylmethylsulfonium, their trifluoromethanesulfonate, camphorsulfonate, and p-toluenesulfonate.
  • the content of the thermal acid generator is usually 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the (a) siloxane resin. If it is 0.01 parts by weight or more, curing proceeds sufficiently even when a cured film is formed in a temperature range of 120 ° C. to 200 ° C., and crack resistance and solvent resistance are further improved. If it is 10 parts by weight or less, the transparency of the cured film can be kept high.
  • Preferred examples of the photobase generator include propionyl acetophenone oxime, propionyl benzophenone oxime, propionyl acetone oxime, butyryl acetophenone oxime, butyryl benzophenone oxime, butyryl acetone oxime, adipoyl acetophenone oxime, adipoyl benzophenone oxime, Poylacetone oxime, acryloylacetophenone oxime, acryloylbenzophenone oxime, acryloylacetone oxime, [[(2-nitrobenzyl) oxy] carbonyl] cyclohexylamine, bis [[(2-nitrobenzyl) oxy] carbonyl] hexamethylene Diamine, bis [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] hexamethylenediamine, and the like. I can get lost. Two or more of these
  • the content of the photobase generator is usually 1 to 10 parts by weight, more preferably 1 to 7 parts by weight with respect to 100 parts by weight of (a) siloxane-based resin.
  • the amount is 1 part by weight or more, a sufficient curing acceleration effect can be obtained even when a cured film is formed in a temperature range of 120 ° C. to 200 ° C., and crack resistance and solvent resistance are further improved. If it is 10 parts by weight or less, the transparency of the cured film can be kept high.
  • the sensitizer of the photoacid generator it is preferable to use a combination of the sensitizers listed above as the sensitizer of the photoacid generator.
  • the content of the sensitizer is usually 0.05 to 5 parts by weight, more preferably 0.1 to 3 parts by weight, based on 100 parts by weight of the (a) siloxane-based resin. If it is 0.05 parts by weight or more, a curing acceleration effect can be sufficiently obtained even when a cured film is formed in a temperature range of 120 ° C. to 200 ° C., and crack resistance and solvent resistance are further improved. If it is 5 parts by weight or less, the transparency of the cured film can be kept high.
  • thermal base generator examples include carbamate derivatives such as 1-methyl-1- (4-biphenylyl) ethyl carbamate and 1,1-dimethyl-2-cyanoethyl carbamate, urea and N, N-dimethyl- Examples include urea derivatives such as N′-methylurea, dihydropyridine derivatives such as 1,4-dihydronicotinamide, quaternized ammonium salts of organic silane and organic borane, dicyandiamide, and the like. Two or more of these may be used.
  • 1-methyl-1- (4-biphenylyl) ethylcarbamate, 1,1-dimethyl-2-cyanoethylcarbamate, N, N-dimethyl-N′-methylurea, 1,4-dihydronicotinamide preferable.
  • the content of the thermal base generator is usually 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the (a) siloxane resin. If it is 0.01 parts by weight or more, a curing acceleration effect can be sufficiently obtained even when a cured film is formed in a temperature range of 120 ° C. to 200 ° C., and crack resistance and solvent resistance are further improved. If it is 10 parts by weight or less, the transparency of the cured film can be kept high.
  • the siloxane-based resin composition of the present invention may contain a solvent so that the solid content has an appropriate concentration.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, diacetone alcohol, ⁇ -butyrolactone, and the like are preferable. .
  • the content of the total solvent in the siloxane-based resin composition of the present invention is preferably 100 to 9900 parts by weight, more preferably 100 to 5000 parts by weight with respect to 100 parts by weight of (a) siloxane-based resin.
  • the siloxane-based resin composition of the present invention may contain various surfactants in order to improve flowability and film thickness uniformity during coating.
  • various surfactants there is no restriction
  • a fluorine-type surfactant, a silicone type surfactant, a polyalkylene oxide type surfactant, a poly (meth) acrylate type surfactant etc. can be used. Two or more of these may be contained. From the viewpoint of flowability and film thickness uniformity, a fluorosurfactant is preferred.
  • Fluorosurfactants include "Megafac (registered trademark)" F172 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), BM-1000, BM-1100 (above, trade names, Yusho Co., Ltd.) NBX-15, FTX-218 (trade name, manufactured by Neos Co., Ltd.) are particularly preferable from the viewpoint of flowability and film thickness uniformity.
  • silicone surfactants examples include SH28PA, SH7PA, SH21PA, SH30PA, ST94PA (all manufactured by Toray Dow Corning Silicone Co., Ltd.), BYK-333 (manufactured by Big Chemie Japan Co., Ltd.), and the like. It is done.
  • surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene distearate and the like.
  • the surfactant content is usually 0.001 to 10 parts by weight per 100 parts by weight of (a) siloxane-based resin.
  • the siloxane-based resin composition of the present invention can contain a viscosity modifier, a stabilizer, a colorant, a vitreous forming agent, and the like as necessary.
  • the siloxane-based resin composition of the present invention includes (d) a group represented by the following general formula (6) or (7) that promotes or facilitates curing of the siloxane-based resin composition.
  • You may contain the crosslinkable compound which does not have a silicon atom which has, and / or the crosslinkable compound represented by following General formula (8).
  • the matrix material (a) siloxane-based resin is firmly bonded, and high heat cycle properties are obtained, and crack resistance is improved.
  • a cured film having excellent properties can be formed. Two or more of these may be contained.
  • R 12 may be the same or different and represents a hydrogen atom or a monovalent organic group.
  • n represents an integer of 1 to 4.
  • R 13 and R 14 represent a hydrogen atom or a monovalent organic group.
  • Specific examples of R 12 to R 14 include a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, and an aryl group such as a phenyl group. From the viewpoint of the temporal stability of the resin composition and the reactivity of the crosslinkable compound, a methyl group and an ethyl group are preferred.
  • R 15 and R 16 may be the same or different and each represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a substituted product thereof. However, at least one of p R 15 and R 16 is a phenyl group or a substituted product thereof.
  • the substituent of the alkyl group or phenyl group include CF 3 group, CH 2 CF 3 group, C 2 H 4 CF 3 group, C 6 H 4 CH 3 group, and C 6 H 4 t-Bu group.
  • R 15 and R 16 are preferably a methyl group or a phenyl group.
  • p represents an integer of 4 or more and 20 or less.
  • crosslinkable compound having a group represented by the general formula (6) and having no silicon atom are shown.
  • crosslinkable compound having a group represented by the general formula (7) and having no silicon atom are shown.
  • “NIKALAC (registered trademark)” MX-280, “NIKACALAC” MX-270 (above, trade name, manufactured by Sanwa Chemical Co., Ltd.) having a group represented by the general formula (7) is a viewpoint of crack resistance.
  • NIKALAC registered trademark
  • NIKACALAC NIKACALAC
  • crosslinkable compound represented by the general formula (8) Specific examples of the crosslinkable compound represented by the general formula (8) are shown below. Since such a crosslinkable compound has a phenyl group, the transmittance can be further improved while keeping the refractive index of the resulting composition high. In addition, by containing such a crosslinkable compound, unlike the case of containing a reaction product obtained by condensation reaction of the compound, the crosslinkable compound undergoes a curing reaction during the heat treatment of the composition, thereby further improving crack resistance. Can be made.
  • crosslinkable compounds represented by the general formula (8) when the molar ratio of the alkyl group to the phenyl group in R 15 and R 16 (alkyl group / phenyl group) is 0 to 1, the transmittance and crack resistance Can be further improved. Specifically, S-3, S-4, S-11, S-12, S-13, S-14, and S-15 are preferable.
  • the crosslinkable compound having a group represented by the general formula (6) or (7) is an organic compound having no silicon atom, and the effect of improving crack resistance is remarkably exhibited even if the content is small.
  • the content of these crosslinkable compounds is preferably 0.1 parts by weight or more, and 0.5 parts by weight or more with respect to 100 parts by weight of the (a) siloxane resin in the siloxane resin composition. More preferred. Moreover, 20 weight part or less is preferable and 10 weight part or less is more preferable. If it is this range, the oxidation deterioration of the crosslinkable compound by heat processing can be suppressed, and the transmittance
  • the crosslinkable compound represented by the general formula (8) is a compound having a silicon atom, and is preferably contained in a larger amount than the crosslinkable compound represented by the general formula (6) or (7). .
  • 10 parts by weight or more is preferable and 20 parts by weight or more is more preferable with respect to 100 parts by weight of (a) siloxane-based resin in the siloxane-based resin composition.
  • the crack resistance can be further improved.
  • 30 parts by weight or more is preferable in order to reduce the curing shrinkage rate.
  • 50 parts by weight or less is preferable, and 40 parts by weight or less is more preferable.
  • the total content thereof is preferably 10 parts by weight or more, more preferably 20 parts by weight or more with respect to 100 parts by weight of the (a) siloxane resin in the siloxane resin composition. . Moreover, 40 weight part or less is more preferable.
  • the content of the crosslinkable compound represented by the general formula (6) or (7) is preferably 0.1% by weight or more based on the total solid content in the siloxane-based resin composition. More preferably, it is more than wt%. Moreover, 20 weight% or less is preferable and 10 weight% or less is more preferable.
  • the crack resistance can be greatly improved by a synergistic effect thereof.
  • siloxane-based resin composition of the present invention By mixing (a) a siloxane-based resin with (b) an imidosilane compound, and (c) an acid generator or base generator, a crosslinkable compound, a surfactant, etc.
  • the siloxane-based resin composition of the present invention can be obtained. At this time, it may be diluted with an arbitrary solvent.
  • the mixing temperature is not particularly limited, but is preferably in the range of 5 to 50 ° C. for ease of operation.
  • the siloxane-based resin composition of the present invention is suitably used as a solid-state image sensor material.
  • the refractive index is 1.60 to 1.80, it is suitably used as a waveguide planarizing film material, and when the refractive index is less than 1.6, it is suitably used as a color filter planarizing film material.
  • the siloxane-based resin composition of the present invention can be applied on a substrate to obtain a coating film, and then cured to form a cured film. Heating is generally used as a method for curing the coating film, and the coating film may be dried by heating as necessary.
  • microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, flow coating, and the like can be preferably used.
  • the heating and drying conditions are appropriately selected according to the base material and resin composition to be applied, but it is usually preferable to perform the treatment at a temperature of room temperature to 400 ° C. for 0.5 minutes to 240 minutes.
  • a particularly preferred curing temperature is 100 to 400 ° C, more preferably 150 to 400 ° C.
  • the coating film and the film thickness after curing are not particularly limited, but both are generally in the range of 0.001 to 100 ⁇ m.
  • the coating film and the cured film formed from the siloxane-based resin composition of the present invention are suitably used for optical articles such as a solid-state imaging device and a display optical filter such as a liquid crystal display. More specifically, it can be used for a planarization film of a solid-state imaging device or a buried planarization film for a waveguide. Further, it can be used for a low refractive index layer, a high refractive index layer and a hard coat layer such as an antireflection film and an antireflection plate of an optical filter.
  • the obtained coating film is subjected to an ultraviolet intensity of about 5 mW / cm 2 (wavelength using an exposure machine (Contact Aligner PLA501F, manufactured by Canon Inc.)). The whole surface was exposed to ultraviolet full-wavelength for 3 minutes (bleaching exposure main wavelengths: 365 nm, 405 nm, 436 nm) at 365 nm. Subsequently, after heating at 250 degreeC for 5 minutes on the hotplate in an air atmosphere, it heated at 300 degreeC for 5 minutes, and obtained the cured film.
  • the obtained coating film is heated at 250 ° C. for 5 minutes on a hot plate in an air atmosphere and then heated at 300 ° C. for 5 minutes. Thus, a cured film was obtained.
  • Synthesis Example 6 Synthesis of aromatic bisimide oligomer (vi) In a vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, 32.58 g (220 mmol) of phthalic anhydride, 1.39 g of ⁇ -picoline, N-methyl A solution obtained by adding 130.3 g of -2-pyrrolidone (hereinafter abbreviated as NMP) to which 24.8 g (100 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane was dissolved in 99.4 g of NMP was added. The solution was added dropwise and stirred for 2 hours under nitrogen and nitrogen atmosphere.
  • NMP -2-pyrrolidone
  • Synthesis Example 7 Synthesis of Silicone Polyimide Precursor (vii) 35.42 g (160 mmol) of aminopropyltriethoxysilane was added to 40 g of ⁇ -butyrolactone and dissolved by stirring. After adding 24.82 g (80 mmol) of 4,4′-oxydiphthalic dianhydride and stirring at room temperature for 30 minutes, the mixture was stirred at 40 ° C. for 2 hours. The resulting solution was diluted with ⁇ -butyrolactone so that the solid content concentration was 20% by weight to obtain a solution of a silicone polyimide precursor (vii) represented by the following structure.
  • Example 1 Methyltrimethoxysilane 20.4 g (0.15 mol), phenyltrimethoxysilane 69.4 g (0.35 mol), number-average particle diameter 15 nm “OPTRAIK” TR-521 (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 30% by weight of titanium oxide particles, 70% by weight of ⁇ -butyrolactone) 70.6 g and 44.1 g of ⁇ -butyrolactone were placed in a reaction vessel, and 30.6 g of water and 0.48 g of phosphoric acid were stirred into this solution. However, it was added dropwise so that the reaction temperature did not exceed 40 ° C.
  • a siloxane-based resin composition 1 was obtained by adding 10 g of ⁇ -butyrolactone and 2.5 g of a solution of imidosilane compound (i) (0.5 g of solid content) to 10 g of the obtained polymer solution A and dissolving.
  • the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 2 “OPTRAIK” TR- with 8.2 g (0.06 mol) of methyltrimethoxysilane, 55.5 g (0.28 mol) of phenyltrimethoxysilane, 7.2 g (0.06 mol) of dimethyldimethoxysilane, and a number average particle diameter of 15 nm 521 71.1 g and ⁇ -butyrolactone 23.9 g were placed in a reaction vessel, and 34.5 g of water and 1.0 g of phosphoric acid were added dropwise to this solution with stirring so that the reaction temperature did not exceed 40 ° C.
  • a cured film was prepared using the obtained siloxane-based resin composition 2, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 3 A siloxane-based resin composition 3 was obtained in the same manner as in Example 2 except that Nicalac MX-270 was not used. A cured film was prepared using the obtained siloxane-based resin composition 3, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 4 70.0 g of propylene glycol monomethyl ether acetate dispersion of zirconium oxide particles having a number average particle size of 30 nm (zirconium oxide 30% by weight, propylene glycol monomethyl ether acetate 70% by weight) instead of 71.1 g of “OPTRAIK” TR-521
  • a polymer solution C (solid content: 46% by weight) was obtained in the same manner as in Example 2 except that was used.
  • To 10 g of the resulting polymer solution C 15 g of propylene glycol monomethyl ether acetate and 2.05 g (solid content 0.41 g) of the imidosilane compound (i) were added and dissolved to obtain a siloxane-based resin composition 4.
  • a cured film was prepared using the obtained siloxane-based resin composition 4, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 5 "OPTRAIK" TR-521 75.0g instead of propylene glycol monomethyl ether acetate dispersion of aluminum oxide particles with a number average particle size of 30nm (30% aluminum oxide, 70% propylene glycol monomethyl ether acetate) 45.0g The same operation as in Example 2 was performed except that was used to obtain a polymer solution D (solid content: 40% by weight).
  • a siloxane-based resin composition 5 was obtained by adding 1.8 g of the above solution (solid content: 0.36 g) and dissolving.
  • a cured film was prepared using the obtained siloxane-based resin composition 5 and evaluated for refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 6 A siloxane-based resin composition 6 was obtained in the same manner as in Example 5 except that BHPMT was not used. A cured film was prepared using the obtained siloxane-based resin composition 6 and evaluated for refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 7 8.2 g (0.06 mol) of methyltrimethoxysilane, 55.5 g (0.28 mol) of phenyltrimethoxysilane, 5.4 g (0.026 mol) of tetraethoxysilane, 52.4 g of “Optlake” TR-521, ⁇ -20.5 g of butyrolactone was placed in a reaction vessel, and 34.5 g of water and 1.0 g of phosphoric acid were added dropwise to this solution with stirring so that the reaction temperature did not exceed 40 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C.
  • a cured film was prepared using the obtained siloxane-based resin composition 7, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 8 A siloxane-based resin composition 8 was obtained in the same manner as in Example 7 except that NDI-101 and DBA were not used. A cured film was prepared using the obtained siloxane-based resin composition 8, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 9 Methyltrimethoxysilane 12.3 g (0.15 mol), phenyltrimethoxysilane 41.6 g (0.35 mol), “OPTRAIK” TR-527 (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) having a number average particle size of 15 nm
  • Composition 193 g of titanium oxide particles 20 wt%, methanol 80 wt%) and 94.0 g of propylene glycol monomethyl ether acetate were put in a reaction vessel, and 16.2 g of water and 0.27 g of phosphoric acid were added to this solution while stirring. The reaction was dropwise added so that the reaction temperature did not exceed 40 ° C.
  • a cured film was prepared using the obtained siloxane-based resin composition 9, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 10 A siloxane-based resin composition 8 was obtained in the same manner as in Example 9 except that NCA and DPA were not used. A cured film was prepared using the obtained siloxane-based resin composition 10 and evaluated for refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 11 To 20 g of the polymer solution F used in Example 9, 25 g of propylene glycol monomethyl ether acetate, 1.76 g of a solution of imidosilane compound (iii) (solid content 0.352 g), and 2,2-dimethoxymethyl-4 which is a crosslinkable compound 0.264 g of t-butylphenol (trade name, DMOM-PTBP, manufactured by Honshu Chemical Industry Co., Ltd.) and 2-methylbenzyl-4-acetylphenylmethylsulfonium trifluoromethanesulfonate (MBAPMT) 0 which is a thermal acid generator 0.088 g was added and dissolved to obtain a siloxane-based resin composition 11.
  • imidosilane compound (iii) solid content 0.352 g
  • 2,2-dimethoxymethyl-4 which is a crosslinkable compound 0.264 g of t-butylphenol (trade name, DMOM-PTBP, manufactured by Honshu Chemical Industry Co., Ltd.)
  • a cured film was prepared using the obtained siloxane-based resin composition 11, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 12 A siloxane-based resin composition 12 was obtained in the same manner as in Example 11 except that DMOM-PTBP and MBAPMT were not used. A cured film was prepared using the obtained siloxane-based resin composition 12, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 13 20 g of the polymer solution F used in Example 9, 25 g of propylene glycol monomethyl ether acetate, 1.76 g of a solution of imidosilane compound (iii) (solid content 0.352 g), 2.64 g of S-3 as a crosslinkable compound, and thermal acid 0.0176 g of benzyl-4-hydroxyphenylmethylsulfonium trifluoromethanesulfonate (BHPMT) as a generator was added and dissolved to obtain a siloxane-based resin composition 13.
  • BHPMT benzyl-4-hydroxyphenylmethylsulfonium trifluoromethanesulfonate
  • a cured film was prepared using the obtained siloxane-based resin composition 13, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 14 A siloxane-based resin composition 14 was obtained in the same manner as in Example 13 except that S-3 was not used. A cured film was prepared using the obtained siloxane-based resin composition 14, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 15 20 g of the polymer solution F used in Example 9, 25 g of propylene glycol monomethyl ether acetate, 1.76 g of a solution of imidosilane compound (iii) (solid content: 0.352 g), “Nicalak” MX-270 (Sanwa) as a crosslinkable compound Chemical Co., Ltd. (0.88 g) and thermal base generator 1-methyl-1- (4-biphenylyl) ethylcarbamate (MBEC) 0.176 g were added and dissolved to obtain siloxane-based resin composition 15. It was.
  • a cured film was prepared using the obtained siloxane-based resin composition 15 and evaluated for refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 16 A siloxane-based resin composition 16 was obtained in the same manner as in Example 15 except that MBEC was not used. A cured film was prepared using the obtained siloxane-based resin composition 16 and evaluated for refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 17 20 g of the polymer solution F used in Example 9, 25 g of propylene glycol monomethyl ether acetate, 1.76 g of a solution of imidosilane compound (iii) (solid content: 0.352 g), TML-BPA (Honshu Chemical Co., Ltd.) 1) 1.32 g and 0.44 g of thermal acid generator benzyl-4-hydroxyphenylmethylsulfonium trifluoromethanesulfonate (BHPMT) were added and dissolved to obtain a siloxane-based resin composition 17.
  • imidosilane compound (iii) solid content: 0.352 g
  • TML-BPA Hyshu Chemical Co., Ltd.
  • BHPMT thermal acid generator benzyl-4-hydroxyphenylmethylsulfonium trifluoromethanesulfonate
  • a cured film was prepared using the obtained siloxane-based resin composition 17, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 18 24.5 g (0.18 mol) of methyltrimethoxysilane, 83.3 g (0.42 mol) of phenyltrimethoxysilane and 124.0 g of ⁇ -butyrolactone were placed in a reaction vessel, and while stirring, 38 g of water and 0.57 g of phosphoric acid was added dropwise so that the reaction temperature did not exceed 30 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C.
  • the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 19 A siloxane-based resin composition 19 was obtained in the same manner as in Example 18 except that the solution of the imidosilane compound (i) was changed to 0.32 g (solid content: 0.064 g). A cured film was prepared using the obtained siloxane-based resin composition 19, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 20 Methyltrimethoxysilane 12.3 g (0.15 mol), phenyltrimethoxysilane 41.6 g (0.35 mol), number average particle diameter 20 nm silica particle diacetone alcohol solvent dispersion “Quartron” PL-2L-DAA (product) Name, Fuso Chemical Industries Co., Ltd .: solid content 26.4 wt%) 146.21 g and propylene glycol monomethyl ether acetate 94.0 g were put in a reaction vessel. To this solution, water 16.2 g and phosphoric acid 0. 27 g was added dropwise with stirring so that the reaction temperature did not exceed 40 ° C.
  • a cured film was prepared using the obtained siloxane-based resin composition 20, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 21 A siloxane-based resin composition 21 was obtained in the same manner as in Example 20 except that S-11 was not used. A cured film was prepared using the obtained siloxane-based resin composition 21, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 22 152.67 g (0.7 mol) of trifluoropropyltrimethoxysilane and 70.89 g (0.3 mol) of ⁇ -glycidoxypropyltrimethoxysilane were dissolved in 280.22 g of propylene glycol monobutyl ether (boiling point 170 ° C.). To this, 54.0 g of water and 1.12 g of phosphoric acid were added with stirring. The obtained solution was heated at a bath temperature of 105 ° C. for 2 hours, the internal temperature was raised to 90 ° C., and a component mainly composed of methanol produced as a by-product was distilled off. Subsequently, the bath temperature is heated at 130 ° C.
  • the internal temperature is increased to 118 ° C., and a component mainly composed of water and propylene glycol monobutyl ether is distilled off, followed by cooling to room temperature and the polymer solution I (solid content) A concentration of 45% by weight) was obtained.
  • 20 g of the obtained polymer solution I was taken, 0.9 g of the imidosilane compound (i) solution (solid content 0.18 g), 2-methylbenzyl-4-acetylphenylmethylsulfonium trifluoromethanesulfonate as a thermal acid generator (MBAPMT) 0.18 g and propylene glycol monomethyl ether acetate 20 g were added and dissolved to obtain a siloxane-based resin composition 22.
  • MBAPMT thermal acid generator
  • a cured film was prepared using the obtained siloxane-based resin composition 22, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 23 A siloxane-based resin composition 23 was obtained in the same manner as in Example 22 except that MBAPMT was not used. A cured film was prepared using the obtained siloxane-based resin composition 23, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 24 234.05 g (0.5 mol) of tridecafluorooctyltrimethoxysilane and 123.2 g (0.5 mol) of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane (propylene glycol monomethyl ether (boiling point 121 ° C.)) It melt
  • the mixture was heated at a bath temperature of 115 ° C. for 4.0 hours, the internal temperature was raised to 118 ° C., and a component mainly composed of water and propylene glycol monomethyl ether was distilled off, followed by cooling to room temperature and the polymer solution J (solid content A concentration of 43% by weight) was obtained.
  • a cured film was prepared using the obtained siloxane-based resin composition 24, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 25 Trifluoropropyltrimethoxysilane 32.72 g (0.15 mol), ⁇ -glycidoxypropyltrimethoxysilane 82.71 g (0.35 mol), silica particle diacetone alcohol solvent dispersion “Quartron” PL-2L-DAA 146.21 g and 94.0 g of propylene glycol monomethyl ether acetate were placed in a reaction vessel, and 16.2 g of water and 0.27 g of phosphoric acid were added dropwise to this solution with stirring so that the reaction temperature did not exceed 40 ° C. .
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours, and then cooled to room temperature to obtain a polymer solution K (solid content: 44% by weight). 20 g of the resulting polymer solution K was taken, 0.88 g of the imidosilane compound (i) solution (solid content 0.176 g), ⁇ -4-methoxyphenylacetonitrile (trade name, PAI-106, Midori) as a photoacid generator Chemical Co., Ltd. (0.176 g) and propylene glycol monomethyl ether acetate (20 g) were added and dissolved to obtain a siloxane-based resin composition 25.
  • the imidosilane compound (i) solution solid content 0.176 g
  • a cured film was prepared using the obtained siloxane-based resin composition 25, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 26 A siloxane-based resin composition 26 was obtained in the same manner as in Example 25 except that PAI-106 was not used. A cured film was prepared using the obtained siloxane-based resin composition 26, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 27 A siloxane-based resin composition 27 was obtained in the same manner as in Example 12 except that the solution of the imidosilane compound (iii) was changed to 9.7 g (solid content: 1.94 g). A cured film was prepared using the obtained siloxane-based resin composition 27, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 28 A siloxane-based resin composition 28 was obtained in the same manner as in Example 18 except that the solution of the imidosilane compound (i) was changed to 4.0 g (solid content 0.8 g). A cured film was prepared using the obtained siloxane-based resin composition 28, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 29 A siloxane-based resin composition 29 was obtained in the same manner as in Example 23 except that the solution of the imidosilane compound (i) was changed to 0.036 g (solid content: 0.0072 g). A cured film was prepared using the obtained siloxane-based resin composition 29, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 30 Methyltrimethoxysilane 20.4 g (0.15 mol), phenyltrimethoxysilane 39.66 g (0.20 mol), imide silane compound (i) solution 238.09 g (solid content 47.62 g, 0.15 mol), number average 70.6 g of “Optlake” TR-521 having a particle diameter of 15 nm and 44.1 g of ⁇ -butyrolactone were placed in a reaction vessel. To this solution, 30.6 g of water and 0.48 g of phosphoric acid were stirred while the reaction temperature was changed. The solution was added dropwise so as not to exceed 40 ° C.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain a polymer solution L (solid content: 55% by weight).
  • a polymer solution L solid content: 55% by weight.
  • 10 g of the obtained polymer solution L 10 g of ⁇ -butyrolactone was added and dissolved to obtain a siloxane-based resin composition 30.
  • the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 31 To 10 g of the polymer solution L used in Example 30, 10 g of ⁇ -butyrolactone and 2.5 g of the imidosilane compound (i) solution (solid content 0.5 g) were added and dissolved to obtain a siloxane-based resin composition 31.
  • the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 32 24.5 g (0.18 mol) of methyltrimethoxysilane, 43.63 g (0.22 mol) of phenyltrimethoxysilane, 339.42 g of a solution of imidosilane compound (ii) (solid content 67.88 g, 0.20 mol), ⁇ - 124.0 g of butyrolactone was placed in a reaction vessel, and 38 g of water and 0.57 g of phosphoric acid were added dropwise with stirring so that the reaction temperature did not exceed 30 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C.
  • the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 33 24.5 g (0.18 mol) of methyltrimethoxysilane, 43.63 g (0.22 mol) of phenyltrimethoxysilane, 339.42 g of a solution of imidosilane compound (ii) (solid content 67.88 g) (0.20 mol), ⁇ -124.0 g of butyrolactone was placed in a reaction vessel, and 38 g of water and 0.57 g of phosphoric acid were added dropwise with stirring so that the reaction temperature did not exceed 30 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C.
  • the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 34 152.67 g (0.7 mol) of trifluoropropyltrimethoxysilane, 47.26 g (0.2 mol) of ⁇ -glycidoxypropyltrimethoxysilane, and 139.71 g of a solution of imidosilane compound (ii) (solid content 33.33 g). 94 g, 0.1 mol) was dissolved in 280.22 g of propylene glycol monobutyl ether (boiling point: 170 ° C.), and 54.0 g of water and 1.12 g of phosphoric acid were added thereto with stirring. The obtained solution was heated at a bath temperature of 105 ° C.
  • the internal temperature was raised to 90 ° C., and a component mainly composed of methanol produced as a by-product was distilled off. Subsequently, the bath temperature is heated at 130 ° C. for 4.0 hours, the internal temperature is increased to 118 ° C., and a component mainly composed of water and propylene glycol monobutyl ether is distilled off, followed by cooling to room temperature, and the polymer solution N (solid content) A concentration of 45% by weight) was obtained.
  • a cured film was prepared using the obtained siloxane-based resin composition 34, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 35 To 10 g of the polymer solution A obtained in Example 1, 10 g of ⁇ -butyrolactone and 2.5 g of a solution of imidosilane compound (viii) (solid content 0.5 g) were added and dissolved to obtain a siloxane-based resin composition 35. It was. Using the obtained siloxane-based resin composition 35, the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 36 A siloxane-based resin composition 36 was obtained in the same manner as in Example 35 except that the imidosilane compound (viii) was changed to the imidosilane compound (ix). Using the obtained siloxane-based resin composition 36, the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 37 A siloxane-based resin composition 37 was obtained in the same manner as in Example 35 except that the imidosilane compound (viii) was changed to the imidosilane compound (x). Using the obtained siloxane-based resin composition 37, the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above-described methods.
  • Example 38 10.0 g of the polymer solution M used in Example 33 was added, and 1.92 g of the imidosilane compound (viii) solution (solid content: 0.384 g) and propylene glycol monomethyl ether acetate were added and stirred, and the siloxane system A resin composition 38 was obtained. Using the obtained siloxane-based resin composition 38, the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 39 10.0 g of the polymer solution M used in Example 33 was added, and 1.92 g of the imidosilane compound (x) solution (solid content: 0.384 g) and propylene glycol monomethyl ether acetate were added thereto and stirred. A resin composition 39 was obtained. Using the obtained siloxane-based resin composition 39, the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Example 1 A siloxane-based resin composition A1 was obtained in the same manner as in Example 1 except that the imidosilane compound (i) was not used. A cured film was prepared using the obtained siloxane-based resin composition A1, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 2 A siloxane-based resin composition A2 was obtained in the same manner as in Example 4 except that the imidosilane compound (i) was not used. A cured film was prepared using the obtained siloxane-based resin composition A2, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 3 A siloxane-based resin composition A3 was obtained in the same manner as in Example 5 except that the imidosilane compound (i) was not used. A cured film was prepared using the obtained siloxane-based resin composition A3, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 4 A siloxane-based resin composition A4 was obtained in the same manner as in Example 7 except that the imidosilane compound (ii) was not used. A cured film was prepared using the obtained siloxane-based resin composition A4, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 5 A siloxane-based resin composition A5 was obtained in the same manner as in Example 15 except that the imidosilane compound (iii) was not used. A cured film was prepared using the obtained siloxane-based resin composition A5, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 6 A siloxane-based resin composition A6 was obtained in the same manner as in Example 18 except that the imidosilane compound (i) was not used. A cured film was prepared using the obtained siloxane-based resin composition A6, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 7 A siloxane-based resin composition A7 was obtained in the same manner as in Example 22 except that the imidosilane compound (i) was not used. A cured film was prepared using the obtained siloxane-based resin composition A7, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 8 A siloxane-based resin composition A8 was obtained in the same manner as in Example 24 except that the imidosilane compound (i) was not used. A cured film was prepared using the obtained siloxane-based resin composition A8, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 9 A siloxane-based resin composition A9 was obtained in the same manner as in Example 25 except that the imidosilane compound (i) was not used. A cured film was prepared using the obtained siloxane-based resin composition A9, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 10 A siloxane-based resin composition A10 was obtained in the same manner as in Example 1 except that the imidosilane compound (i) was changed to imidosilane (iv). A cured film was prepared using the obtained siloxane-based resin composition A10, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Example 11 A siloxane-based resin composition A11 was obtained in the same manner as in Example 11 except that the imidosilane compound (iii) was changed to imidosilane (v). A cured film was prepared using the obtained siloxane-based resin composition A11, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 12 A siloxane-based resin composition A12 was obtained in the same manner as in Example 18 except that the imidosilane compound (i) was changed to the aromatic bisimide oligomer (vi). A cured film was prepared using the obtained siloxane-based resin composition A12, and evaluation was performed with respect to a refractive index, a transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 13 A siloxane-based resin composition A13 was obtained in the same manner as in Example 25 except that the imidosilane compound (i) was changed to the silicone polyimide precursor (vii). A cured film was prepared using the obtained siloxane-based resin composition A13, and evaluation was performed on the refractive index, transmittance, crack resistance, adhesion, and planarization performance by the above-described methods.
  • Comparative Example 14 In a 2 L separable flask equipped with a condenser and a stirrer, 172.8 g (1.6 mol) of m-cresol, 36.6 g (0.3 mol) of 2.3-dimethylphenol, 3.4-dimethylphenol 12 0.2 g (0.1 mol), 37 wt% formaldehyde aqueous solution 12.6 g (formaldehyde: 1.5 mol), oxalic acid dihydrate 12.6 g (0.1 mol) and methyl isobutyl ketone 554 g were added and stirred for 30 minutes. Then, it was left still for 1 hour.
  • HPE resin solution solid content: 43% by weight
  • 20 g of the resulting novolak resin solution was taken, 0.77 g of imidosilane compound (i), ⁇ -4-methoxyphenylacetonitrile (trade name, PAI-106, manufactured by Midori Chemical Co., Ltd.) 0.172 g as a photoacid generator.
  • 20 g of propylene glycol monomethyl ether acetate was added and dissolved to obtain a novolac resin composition B1.
  • a cured film was prepared using the obtained novolac resin composition B1, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • Comparative Example 15 A 500 mL three-necked flask was charged with 5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 g of diethylene glycol ethyl methyl ether (EDM). Subsequently, 25 g of styrene, 20 g of methacrylic acid, 45 g of glycidyl methacrylate and 10 g of tricyclo [5.2.1.02,6] decan-8-yl methacrylate were charged and stirred at room temperature for 30 minutes, and then the atmosphere in the flask was replaced with nitrogen. Thereafter, the flask was immersed in an oil bath at 70 ° C. and heated and stirred for 5 hours.
  • EDM diethylene glycol ethyl methyl ether
  • EDM was further added to the obtained EDM resin solution to obtain an acrylic resin solution (solid content: 43% by weight).
  • the weight average molecular weight (Mw) of the obtained acrylic polymer was 15000.
  • 20 g of the resulting acrylic resin solution was taken and 0.77 g of imidosilane compound (ii), 0.258 g of crosslinkable compound “Nicalac” MX-270 and 20 g of propylene glycol monomethyl ether acetate were added and dissolved to obtain an acrylic resin composition B2 was obtained.
  • a cured film was prepared using the obtained acrylic resin composition B2, and the refractive index, transmittance, crack resistance, adhesion, and planarization performance were evaluated by the above methods.
  • compositions of Examples 1 to 39 and Comparative Examples 1 to 15 are shown in Tables 1 to 4, and the evaluation results are shown in Tables 5 to 6.
  • the cured film formed from the siloxane-based resin composition of the present invention is suitably used for optical articles such as solid-state imaging devices and optical filters for displays such as liquid crystal displays. More specifically, it can be used for a planarization film of a solid-state imaging device or a buried planarization film for a waveguide. Further, it can be used for a low refractive index layer, a high refractive index layer and a hard coat layer such as an antireflection film and an antireflection plate of an optical filter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 本発明は、シロキサン系樹脂および特定の構造を有するイミドシラン化合物を含有するシロキサン系樹脂組成物である。また、本発明は、アルコキシシラン化合物と特定の構造を有するイミドシラン化合物とを加水分解し、該加水分解物を縮合反応させて得られる反応生成物であるシロキサン系樹脂を含有するシロキサン系樹脂組成物である。本発明によれば、接着性に優れる硬化膜を形成することができる。

Description

シロキサン系樹脂組成物
 本発明は、シロキサン系樹脂組成物に関する。
 近年、デジタルカメラやカメラ付携帯電話等の急速な発展に伴って、固体撮像素子をはじめとする光学物品の小型化、高画素化が要求されている。固体撮像素子の小型化は感度低下を招くことから、入射光の取り込み効率を向上するために、様々な工夫がなされている。例えば、固体撮像素子の最外部に集光レンズ(以下マイクロレンズと呼ぶ)を配置することで、光を効率的に集光し、感度の低下を防いでいる。また、金属元素酸化物で被覆された酸化チタン粒子、硬化性化合物、硬化触媒を含有するマイクロレンズ反射防止膜用硬化性組成物により、空気媒体とマイクロレンズとの屈折率差に起因する光の反射を抑制することが提案されている(例えば、特許文献1参照)。また、受光部とカラーフィルターの間や、カラーフィルターとマイクロレンズの間などの屈折率差に起因する光の反射を抑制し、下地段差を平坦化する目的で、屈折率が調節された様々な平坦化膜が使用されている。このような平坦化膜用のコーティング材料として、例えば、金属化合物粒子の存在下、アルコキシシラン化合物を加水分解、縮合反応させて得られるシロキサン系樹脂組成物(例えば、特許文献2参照)や、フッ素含有シラン化合物およびエポキシ基含有シラン化合物を共重合成分とするフッ素含有シロキサンポリマーを含有する熱硬化性樹脂組成物(例えば、特許文献3参照)が開示されている。
 こうした、平坦化膜用途に用いられるコーティング材料には、下地段差を完全に被覆し平坦化する特性だけでなく、下地金属や無機物で構成される基板表面や樹脂表面、素子表面との十分な接着性が求められる。一般に、接着性を改善するために、シランカップリング剤を含有することが知られている(例えば、特許文献4~5参照)。しかしながら、これらに開示されたシランカップリング剤をシロキサン系樹脂組成物に添加しても、十分な接着性を得ることができなかった。
特開2005-283786号公報 特開2007-246877号公報 特開2007-119744号公報 特開2003-43688号公報(0032段落) 特開2005-49691号公報(0109段落)
 本発明は、上記のような事情に基づいてなされたものであり、接着性に優れる硬化膜を得ることができるシロキサン系樹脂組成物を提供することにある。
 本発明は、(a)シロキサン系樹脂および(b)下記一般式(4)で表されるイミドシラン化合物を含有するシロキサン系樹脂組成物である。また、本発明は、(a)シロキサン系樹脂を含有するシロキサン系樹脂組成物であって、前記(a)シロキサン系樹脂が、(a-2)下記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物と下記一般式(5)で表されるイミドシラン化合物とを加水分解し、該加水分解物を縮合反応させて得られる反応生成物であるシロキサン系樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
 一般式(4)中、Rは同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシル基、フェニル基、フェノキシ基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。αは1~3の整数を表す。
          RSi(OR     (1)
 一般式(1)中、Rは水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。
          RSi(OR    (2)
 一般式(2)中、RおよびRは、それぞれ水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。
          Si(OR       (3)
 一般式(3)中、Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。
Figure JPOXMLDOC01-appb-C000006
 一般式(5)中、RおよびRはそれぞれ同じでも異なってもよく、水素原子あるいは炭素数1~6のアルキル基、フェニル基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。βは1~3の整数、γは0~2の整数を表す。ただし、β+γ<4である。
 本発明のシロキサン系樹脂組成物によれば、接着性に優れる硬化膜を形成することができる。本発明のシロキサン系樹脂組成物を用いて得られる硬化膜は、固体撮像素子やディスプレイ用光学フィルターなどの光学物品に好適に用いることができる。
 本発明のシロキサン系樹脂組成物は、特定の構造を有するイミドシラン化合物を用いるものであり、イミドシラン化合物の導入方法により次の2種の態様に分類できる。第一の態様は、(a)シロキサン系樹脂および(b)前記一般式(4)で表されるイミドシラン化合物を含有するシロキサン系樹脂組成物である。後述する(b)成分のイミドシラン化合物を含有することにより、得られる硬化膜の接着性を飛躍的に向上させることができる。第二の態様は、前記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物と前記一般式(5)で表されるイミドシラン化合物とを加水分解し、該加水分解物を縮合反応させて得られる反応生成物であるシロキサン系樹脂を含有するシロキサン系樹脂組成物である。一般式(5)で表されるイミドシラン化合物を用いてシロキサン系樹脂を合成することにより、後述するイミドシラン化合物に由来する特定構造をシロキサン系樹脂に導入することができ、得られる硬化膜の接着性を飛躍的に向上させることができる。すなわち、一般式(4)または(5)で表されるイミドシラン化合物が、接着改良剤となる。なお、本発明においてシロキサン系樹脂とは、シロキサン樹脂および後述する粒子表面グラフトポリシロキサンの両方を指す。
 まず、(a)シロキサン系樹脂について説明する。
 本発明のシロキサン系樹脂組成物の第一の態様において、(a)シロキサン系樹脂は、連続したシロキサン結合を骨格とする樹脂であれば特に限定されない。一例として、(a-1)下記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物を加水分解し、該加水分解物を縮合反応させて得られる反応生成物であるシロキサン樹脂が挙げられる。
          RSi(OR     (1)
 一般式(1)中、Rは水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。アルキル基およびアルケニル基の炭素数は1~4が好ましく、アリール基の炭素数は6~14が好ましい。また、置換体に導入される置換基としては、ハロゲン含有基、エポキシ含有基、アミノ含有基、(メタ)アクリロイル含有基、シアノ含有基、フルオレン含有基、ビニル基などが挙げられる。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。ブチル基はn-ブチル基が好ましい。
        RSi(OR    (2)
 一般式(2)中、RおよびRは、それぞれ水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。アルキル基およびアルケニル基の炭素数は1~4が好ましく、アリール基の炭素数は6~14が好ましい。また、置換体に導入される置換基としては、ハロゲン含有基、エポキシ含有基、アミノ含有基、(メタ)アクリロイル含有基、ビニル基などが挙げられる。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。ブチル基はn-ブチル基が好ましい。
         Si(OR       (3)
 一般式(3)中、Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。メチル基またはエチル基が好ましい。
 一般式(1)で表される3官能性アルコキシシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、ナフチルトリイソプロポキシシラン、アントラセニルトリメトキシシラン、アントラセニルトリエトキシシラン、アントラセニルトリイソプロポキシシラン、フェナントリルトリメトキシシラン、フェナントリルトリエトキシシラン、フェナントリルトリイソプロポキシシラン、ビフェニルトリメトキシシラン、ビフェニルトリエトキシシラン、ビフェニルトリイソプロポキシシラン、フルオレニルトリメトキシシラン、フルオレニルトリエトキシシラン、フルオレニルトリイソプロポキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メタクリルオキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシシラン、γ-グリシドキシプロピルトリイソプロポキシシシラン、γ-グリシドキシプロピルトリブトキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルエチルトリメトキシシラン、パーフルオロプロピルエチルトリエトキシシラン、パーフルオロペンチルエチルトリメトキシシラン、パーフルオロペンチルエチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどが挙げられる。これらのうち、得られる硬化膜の耐クラック性の観点から、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、およびフェニルトリエトキシシランが好ましい。
 一般式(2)で表される2官能性アルコキシシラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジ(メトキシエトキシ)シラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、トリフルオロプロピルビニルジメトキシシラン、トリフルオロプロピルビニルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシランなどが挙げられる。これらのうち、得られる硬化膜に可とう性を付与させる目的には、ジメチルジアルコキシシランが好ましく用いられる。
 一般式(3)で表される4官能性アルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。
 これら一般式(1)~(3)のいずれかで表されるアルコキシシラン化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
 次に、本発明のシロキサン系樹脂組成物の第二の態様において、(a)シロキサン系樹脂は、(a-2)前記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物と下記一般式(5)で表されるイミドシラン化合物を加水分解し、該加水分解物を縮合反応させて得られる反応生成物である。前記アルコキシシラン化合物、イミドシラン化合物はいずれも2種以上組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000007
 一般式(5)中、RおよびRはそれぞれ同じでも異なってもよく、水素原子あるいは炭素数1~6のアルキル基、フェニル基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。βは1~3の整数、γは0~2の整数を表す。ただし、β+γ<4である。
 一般式(5)で表されるイミドシラン化合物を用いて(a-2)反応生成物を合成することにより、得られる硬化膜の接着性を飛躍的に向上させることができる。一般式(5)で表されるイミドシラン化合物は、耐溶剤性、接着性、柔軟性に優れたイミド部位を有する。イミドシラン化合物のSi-[ORβ部分が、一般式(1)~(3)のいずれかで表されるアルコキシシラン化合物との加水分解・縮合反応により反応生成物に取り込まれる。これにより、硬化膜の柔軟性と耐溶剤性が向上する。さらに、イミドシラン化合物がSi-[ORβ部分によりシロキサン骨格に取り込まれることから、イミド基中の窒素原子は硬化膜中で外側(基板上に硬化膜を有する構成においては基板側)を向くと考えられる。このため、窒素原子の孤立電子対と、シリコンなどの基板上に一般的に存在する水酸基とが効率良く水素結合などの相互作用をし、接着性が向上するものと考えられる。また、熱により閉環するアミド酸構造を有する化合物に比べて、イミド部位は硬化収縮が抑えられることから、本発明のシロキサン系樹脂組成物は、優れた平坦化特性を有する。
 上記一般式(5)中、RおよびRの具体例としては、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基などが挙げられる。また、これらの置換体として、アルコキシアルキル基、アルキルフェニル基、アルコキシフェニル基などが挙げられる。
 前記一般式(1)~(3)のいずれかで表されるアルコキシシラン化合物との反応性の観点から、γは0が好ましい。また、接着性の観点から、β+γ≦2が好ましい。
 上記一般式(5)中、R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表し、酸無水物含有シラン化合物における酸無水物の残基である。R10を構成する酸無水物は、芳香族環または脂肪族環を含有することが好ましい。このような酸無水物の具体例としては、無水マレイン酸、無水フタル酸、メチル無水フタル酸、無水コハク酸、グルタル酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、シス-4-シクロヘキセン-1,2-ジカルボン酸無水物、シス-1,2-シクロヘキサンジカルボン酸無水物、1,8-ナフタル酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、“リカシッド(登録商標)”HNA(商品名、新日本理化(株)社製)、“リカシッド”HNA-100(商品名、新日本理化(株)社製)や、これら酸無水物の一部の水素原子を炭素数1~10の1価の有機基で置換したものを挙げることができる。炭素数1~10の1価の有機基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基などのアルキル基、オキシメチル基、オキシエチル基、オキシn-プロピル基、オキシn-ブチル基、オキシn-ペンチル基などのオキシアルキル基などが挙げられる。なかでも、メチル基、エチル基、n-プロピル基、n-ブチル基が、容易に作製できる点で好ましい。前記酸無水物のうち、無水フタル酸、無水コハク酸、グルタル酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、1,8-ナフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、メチル無水フタル酸や、これらを炭素数1~10の1価の有機基で置換したものが好ましい。なかでも、無水フタル酸、無水コハク酸、グルタル酸無水物が、透明性、接着性の観点からより好ましい。
 上記一般式(5)中、R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。有機基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、シクロヘキシル基などのアルキル基、2-ヒドロキシエチル基などのヒドロキシアルキル基、フェニル基などのアリール基、メトキシフェニル基などのアルコキシアリール基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基などのアルコキシル基などが挙げられる。合成の容易性からイソプロピル基、t-ブチル基、シクロヘキシル基、メトキシ基またはエトキシ基が好ましい。また、接着性の観点から、水素原子や、メチロール基、エチロール基などのヒドロキシアルキル基、硬化時に分解して水素原子となるi-プロピル基、t-ブチル基、フェニル基が好ましい。さらに好ましくは、水素原子、i-プロピル基、t-ブチル基である。
 一般式(5)で表されるイミドシラン化合物の具体例として、下に示す化合物や、一般式(4)で表されるイミドシラン化合物の例として後述する化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 本発明において、(a-2)の反応生成物に用いられる一般式(5)で表されるイミドシラン化合物量は、一般式(1)~(3)のいずれかで表されるアルコキシシラン化合物と一般式(5)で表されるイミドシラン化合物の総量100重量部に対して、5重量部以上が好ましく、硬化膜の接着性、耐クラック性や耐溶剤性がより向上する。さらに、10重量部以上がより好ましく、硬化収縮率を低減し、耐クラック性をより向上させることができる。また、50重量部以下が好ましく、硬化膜の透明性を高く保つことができる。
 本発明のシロキサン系樹脂組成物において、(a)シロキサン系樹脂が前記(a-1)の反応生成物である場合、シリコン化合物粒子、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子およびジルコニウム化合物粒子からなる群より選ばれる少なくとも1種の化合物粒子の存在下、前記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物を加水分解し、該加水分解物を縮合反応させて得られる反応生成物である粒子表面グラフトポリシロキサンであることが好ましい。また、前記(a-2)の反応生成物である場合、シリコン化合物粒子、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子およびジルコニウム化合物粒子からなる群より選ばれる少なくとも1種の化合物粒子の存在下、前記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物と前記一般式(5)で表されるイミドシラン化合物とを加水分解し、該加水分解物を縮合反応させて得られる反応生成物である粒子表面グラフトポリシロキサンであることが好ましい。これらの化合物粒子を含有させることにより、得られる塗膜および硬化膜の屈折率を容易に調整することができる。
 化合物粒子としては、シリコン、アルミニウム、スズ、チタンまたはジルコニウムの酸化物、硫化物、水酸化物などが挙げられる。目的とする塗膜、硬化膜の屈折率に応じて、化合物粒子を適宜選択すればよい。例えば、屈折率を1.60~1.80の範囲にするためには、酸化ジルコニウム粒子、酸化スズ粒子、酸化チタン粒子およびこれらの複合粒子が好ましく用いられる。中でも、酸化チタン粒子および酸化ジルコニウム粒子は屈折率向上効果が高いため好ましく、酸化チタン粒子がより好ましい。一方、屈折率を1.60未満にするためには、シリカ粒子、酸化アルミニウム粒子およびこれらの複合粒子が好ましく用いられる。中でも、シリカ粒子は屈折率をより低くすることができるため好ましい。これら化合物粒子を2種以上用いてもよい。また、アルコキシシラン化合物やイミドシラン化合物と反応しやすくするため、表面にアルコキシシラン化合物やイミドシラン化合物と反応し得る水酸基などの基を有する化合物粒子が好ましい。
 化合物粒子の数平均粒子径は、得られる硬化膜の耐クラック性の観点から1nm以上が好ましい。また、導波路用埋め込み材料として使用する場合、埋め込み性の観点から40nm以下が好ましい。硬化膜の耐クラック性と透明性、埋め込み性を両立するためには、数平均粒子径は1nm~30nmがより好ましい。ここで、化合物粒子の数平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡や走査型電子顕微鏡により粒子径を直接測定する方法などに測定することができるが、本発明における数平均粒子径とは、動的光散乱法により測定した値をいう。
 シロキサン系樹脂組成物における化合物粒子の含有量は、(a-1)や(a-2)の反応生成物中5重量%以上が好ましく、10重量%以上がより好ましい。また、90重量%以下が好ましく、70重量%以下がより好ましい。この範囲内であれば、透過率と耐クラック性のより良好な硬化膜を得ることができる。さらに、硬化収縮率を小さくするためには、(a-1)や(a-2)の反応生成物中20重量%以上が好ましい。
 化合物粒子の例としては、市販されている金属化合物粒子としては、酸化スズ-酸化チタン複合粒子の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-504、“オプトレイク”TR-520、“オプトレイク”TR-513、酸化ケイ素-酸化チタン複合粒子の“オプトレイク”TR-503、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、酸化チタン粒子の“オプトレイク”TR-505(以上、商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、酸化スズ粒子((株)高純度化学研究所製)が挙げられる。また、シリコン化合物粒子としては、イソプロパノールを分散媒とした数平均粒子径12nmのIPA-ST、メチルイソブチルケトンを分散媒とした数平均粒子径12nmのMIBK-ST、プロピレングリコールモノメチルエーテルを分散媒とした数平均粒子径15nmのPGM-ST(以上商品名、日産化学工業(株)製)、γ-ブチロラクトンを分散媒とした数平均粒子径12nmのオスカル101、プロピレングリコールモノメチルエーテルを分散媒とした数平均粒子径16nmのクォートロンPL-2L-PGME、γ-ブチロラクトンを分散媒とした数平均粒子径17nmのクォートロンPL-2L-BL、ジアセトンアルコールを分散媒とした数平均粒子径17nmのクォートロンPL-2L-DAA、分散溶液が水である数平均粒子径18~20nmのクォートロンPL-2L、GP-2L(以上商品名、扶桑化学工業(株)製)等が挙げられる。
 本発明に用いられる(a-1)や(a-2)は、前記アルコキシシラン化合物および必要によりイミドシラン化合物(以下、これらをあわせてシラン化合物とよぶ)を加水分解し、該加水分解物を縮合反応させて得られる反応生成物である。前記化合物粒子の存在下でシラン化合物を加水分解し、該加水分解物を縮合反応させることが好ましい。
 加水分解反応は、溶媒中、酸触媒により行うことが好ましい。具体的には、溶媒中、前記シラン化合物に酸触媒および水を1~180分かけて添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは40~105℃である。
 また、加水分解反応によりシラノール化合物を得た後、50℃以上、溶媒の沸点以下の温度で反応液を1~100時間加熱し、縮合反応を行うことが好ましい。また、反応生成物の重合度を上げるために、再加熱もしくは塩基触媒の添加を行ってもよい。
 加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、例えば酸濃度、反応温度、反応時間などを設定することによって、目的とする用途に適した物性を得ることができる。
 加水分解反応に用いる酸触媒としては、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸あるいはその無水物、イオン交換樹脂などの酸触媒が挙げられる。特に蟻酸、酢酸またはリン酸を用いた酸性水溶液が好ましい。
 これら酸触媒の好ましい含有量は、加水分解反応時に使用される全シラン化合物100重量部に対して、好ましくは、0.05重量部以上、より好ましくは0.1重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。ここで、全シラン化合物量とは、シラン化合物、その加水分解物およびその縮合物の全てを含む量を指し、以下同じとする。酸触媒の量を0.05重量部以上とすることでスムーズに加水分解が進行し、また10重量部以下とすることで加水分解反応の制御が容易となる。
 溶媒は特に限定されないが、シロキサン系樹脂組成物の安定性、濡れ性、揮発性などを考慮して適宜選択する。溶媒は1種のみならず2種以上用いることも可能である。溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素のほか、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどを挙げることができる。これらのうち、硬化膜の透過率、耐クラック性等の点で、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン等が好ましく用いられる。また、加水分解反応終了後に、さらに溶媒を添加することにより、樹脂組成物として適切な濃度に調整することも好ましい。また、加水分解後に加熱および/または減圧下により生成アルコール等の全量あるいは一部を留出、除去し、その後好適な溶媒を添加してもよい。
 加水分解反応時に使用される溶媒の量は、全シラン化合物100重量部に対して50重量部以上が好ましく、80重量部以上がより好ましい。また、500重量部以下が好ましく、200重量部以下がより好ましい。溶媒の量を50重量部以上とすることでゲルの生成を抑制できる。また500重量部以下とすることで加水分解反応が速やかに進行する。
 また、加水分解反応に用いる水は、イオン交換水が好ましい。水の量は任意に選択可能であるが、シラン化合物1モルに対して、1.0~4.0モルの範囲が好ましい。
 次に、(b)下記一般式(4)で表されるイミドシラン化合物について説明する。本発明のシロキサン系樹脂組成物の第一の態様において、このようなイミドシラン化合物を含有することにより、得られる硬化膜の接着性を飛躍的に向上させることができる。(b)一般式(4)で表されるイミドシラン化合物は、耐溶剤性、接着性、柔軟性に優れたイミド部位を有する。シロキサン系樹脂組成物を硬化させる際に、Si-[Rα部分が(a)成分のシロキサン系樹脂により形成されるシロキサンマトリックスと反応し、イミド部位が有機結合により硬化膜に取り込まれるものと考えられる。これにより、硬化膜の柔軟性と耐溶剤性が向上する。さらに、イミドシラン化合物がSi-[Rα部分によりシロキサンマトリックスに取り込まれることから、イミド基中の窒素原子は硬化膜中で外側(基板上に硬化膜を有する構成においては基板側)を向くと考えられる。このため、窒素原子の孤立電子対と、シリコンなどの基板上に一般的に存在する水酸基とが効率良く水素結合などの相互作用をし、接着性が向上するものと考えられる。また、熱により閉環するアミド酸構造を有する化合物に比べて、イミド部位は硬化収縮が抑えられることから、本発明のシロキサン系樹脂組成物は、優れた平坦化特性を有する。本発明において、(b)成分のイミドシラン化合物を2種以上含有してもよい。また、本発明のシロキサン系樹脂組成物の第二の態様においても、このような(b)イミドシラン化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(4)中、Rは同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシル基、フェニル基、フェノキシ基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。αは1~3の整数を表す。
 上記一般式(4)中、Rのアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。合成の容易性からメチル基またはエチル基が好ましい。また、アルコキシル基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基が挙げられる。合成の容易性からメトキシ基またはエトキシ基が好ましい。また、これらの置換体の例としては、R~Rにおいて置換体の例として挙げた基や、4-メチルフェノキシ基や4-エチルフェノキシ基などのアルキルフェノキシ基、4-メトキシフェノキシ基、4-エトキシフェノキシ基などのアルコキシフェノキシ基が挙げられる。
 上記一般式(4)中、R10およびR11は、一般式(5)において説明したとおりである。また、接着性の観点から、α≦2が好ましい。
 一般式(4)で表されるイミドシラン化合物としては、次に示す化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 一般式(4)または(5)で表されるイミドシラン化合物は、下記一般式(9)で表される一級アミン化合物と、一般式(10)または(11)で表される酸無水物含有シラン化合物から、公知のアミド酸を経由したイミド化法により、容易に得ることができる。
Figure JPOXMLDOC01-appb-C000013
 一般式(9)中、R11は水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。
 一般式(10)~(11)中、Rは同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシル基、フェニル基、フェノキシ基またはそれらの置換体を表す。RおよびRはそれぞれ同じでも異なってもよく、水素原子あるいは炭素数1~6のアルキル基、フェニル基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。αは1~3の整数を表す。βは1~3の整数、γは0~2の整数を表す。ただし、β+γ<4である。
 本発明のシロキサン系樹脂組成物の第一の態様において、(b)一般式(4)で表されるイミドシラン化合物の含有量は、(a)シロキサン系樹脂100重量部に対して0.1重量部以上が好ましく、硬化膜の接着性、耐クラック性や耐溶剤性をより向上させることができる。さらに、4重量部以上がより好ましく、硬化収縮率を低減し、耐クラック性をより向上させることができる。また、20重量部以下が好ましく、硬化膜の透明性を高く保つことができる。
 本発明のシロキサン系樹脂組成物の第二の態様において、(b)一般式(4)で表されるイミドシラン化合物を含有する場合、その含有量は、(a)シロキサン系樹脂100重量部に対して0.1重量部以上が好ましく、硬化膜の接着性、耐クラック性や耐溶剤性をより向上させることができる。また、10重量部以下が好ましく、硬化膜の透明性を高く保つことができる。また、(a)シロキサン系樹脂100重量部に対して、一般式(5)で表されるイミドシラン化合物の残基および(b)一般式(4)で表されるイミドシラン化合物の総量は1.1重量部以上が好ましく、接着性、耐クラック性や耐溶剤性をより向上させることができる。さらに、5重量部以上がより好ましく、硬化収縮率を低減し、耐クラック性をより向上させることができる。また、50重量部以下が好ましく、硬化膜の透明性を高く保つことができる。
 本発明のシロキサン系樹脂組成物は、(c)酸発生剤または塩基発生剤を含有することが好ましい。これにより硬化を促進し、120℃~200℃の温度範囲で硬化膜を形成することが可能となる。低温で硬化が終了するため、その後の高温熱処理における分子運動が小さく、硬化収縮が小さくなる。このため、熱ストレスを低減し、耐クラック性がより向上する。
 酸発生剤は、光により酸を発生する化合物(以下、光酸発生剤と呼ぶ)と、熱により酸を発生する化合物(以下、熱酸発生剤と呼ぶ)がある。また、塩基発生剤は、光により塩基を発生する化合物(以下、塩基発生剤と呼ぶ)と、熱により塩基を発生する化合物(以下、熱塩基発生剤と呼ぶ)がある。
 光酸発生剤としては、オニウム塩化合物、ハロゲン含有化合物、ジアゾケトン化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物などを例として挙げることができる。これらを2種以上用いてもよい。
 オニウム塩化合物の具体的な例としては、ジアゾニウム塩、アンモニウム塩、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、オキソニウム塩などを挙げることができる。例えば、ジフェニルヨードニウムトリフレート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムドデシルベンゼンスルホネート、トリフェニルスルホニウムトリフレート(商品名「TPS-105」みどり化学(株)製)、4-t-ブチルフェニルジフェニルスルホニウムトリフレート(商品名「WPAG-339」和光純薬工業(株)製)、4-メトキシフェニルジフェニルスルホニウムトリフレート(商品名「WPAG-370」和光純薬工業(株)製)、トリフェニルスルホニウムノナフレート(商品名「TPS-109」みどり化学(株)製)、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムナフタレンスルホネート、(ヒドロキシフェニル)ベンジルメチルスルホニウムトルエンスルホネートなどが挙げられる。
 ハロゲン含有化合物としては、1,1-ビス(4-クロロフェニル)-2,2,2-トリクロロエタン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ナフチル-4,6-ビス(トリクロロメチル)-s-トリアジンなどが挙げられる。
 ジアゾケトン化合物としては、1,2-ナフトキノンジアジド-4-スルホン酸と2,2,3,4,4’-テトラヒドロキシベンゾフェノンとのエステル、1,2-ナフトキノンジアジド-4-スルホン酸と1,1,1-トリス(4-ヒドロキシフェニル)エタンとのエステルなどが挙げられる。
 ジアゾメタン化合物としては、ジアゾメタン、メチルスルホニル-p-トルエンスルホニルジアゾメタン、シクロヘキシルスルホニル(1,1-ジメチルエチルスルホニル)ジアゾメタン、ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン、フェニルスルホニル(ベンゾイル)ジアゾメタンなどが挙げられる。
 スルホン化合物としては、ベンゾイントシレート、ピロガロールトリメシレート、ニトロベンジル-9,10-ジエトキシアントラセン-2-スルホネートなどが挙げられる。
 その他、5-ノルボルネン-2,3-ジカルボキシイミジルトリフレート(商品名「NDI-105」みどり化学(株)製)、5-ノルボルネン-2,3-ジカルボキシイミジルナフタルイミジルブタンスルフォネート、5-ノルボルネン-2,3-ジカルボキシイミジルトシレート(商品名「NDI-101」みどり化学(株)製)、4-メチルフェニルスルフォニルオキシイミノ-α-(4-メトキシフェニル)アセトニトリル(商品名「PAI-101」みどり化学(株)製)、トリフルオロメチルスルフォニルオキシイミノ-α-(4-メトキシフェニル)アセトニトリル(商品名「PAI-105」みどり化学(株)製)、9-カンファースルフォニルオキシイミノ α-4-メトキシフェニルアセトニトリル(商品名「PAI-106」みどり化学(株)製)、1,8-ナフタルイミジルブタンスルフォネート(商品名「NAI-1004」みどり化学(株)製)、1,8-ナフタルイミジルトシレート(商品名「NAI-101」みどり化学(株)製)、1,8-ナフタルイミジルトリフレート(商品名「NAI-105」みどり化学(株)製)、1,8-ナフタルイミジル ノナフルオロブタンスルフォネート(商品名「NAI-109」みどり化学(株)製)等を挙げることができる。
 光酸発生剤の含有量は通例、(a)シロキサン系樹脂100重量部に対して1~10重量部であり、より好ましくは1~7重量部である。1重量部以上であれば、120℃~200℃の温度範囲で硬化膜を形成する場合にも硬化促進効果が十分得られ、耐クラック性および耐溶剤性がより向上する。10重量以下であれば、硬化膜の透明性を高く保つことができる。
 さらに、これらの光酸発生剤は、増感剤として、9,10-二置換アントラセン系化合物と組み合わせて用いることが好ましい。9,10-二置換アントラセン系化合物は光退色反応で着色を生じないため、硬化膜に残存した場合においても、高透明性を維持できる。
 9,10-二置換アントラセン系化合物としては、9,10-ジフェニルアントラセン、9,10-ビス(4-メトキシフェニル)アントラセン、9,10-ビス(トリフェニルシリル)アントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジブトキシアントラセン、9,10-ジペンタオキシアントラセン、2―t-ブチル-9,10-ジブトキシアントラセン、9,10-ビス(トリメチルシリルエチニル)アントラセンなどが挙げられる。これらの中で、特に好ましいのは、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジブトキシアントラセンである。これらの増感剤は2種以上用いてもよい。
 増感剤の含有量は通例、(a)シロキサン系樹脂100重量部に対して0.05~5重量部であり、より好ましくは0.1~3重量部である。0.05重量部以上であれば、光による酸発生効率が向上し、120℃~200℃の温度範囲で硬化膜を形成する場合にも硬化促進効果が十分得られ、耐クラック性や耐溶剤性がより向上する。5重量部以下であれば、硬化膜の透明性を高く保つことができる。
 熱酸発生剤の具体的な例としては、SI-60、SI-80、SI-100、SI-110、SI-145、SI-150、SI-60L、SI-80L、SI-100L、SI-110L、SI-145L、SI-150L、SI-160L、SI-180L(いずれも三新化学工業(株)製)、4-ヒドロキシフェニルジメチルスルホニウム、ベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-アセチルフェニルメチルスルホニウム、2-メチルベンジル-4-ベンゾイルオキシフェニルメチルスルホニウム、これらのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩、p-トルエンスルホン酸塩が挙げられる。より好ましくは4-ヒドロキシフェニルジメチルスルホニウム、ベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-アセチルフェニルメチルスルホニウム、2-メチルベンジル-4-ベンゾイルオキシフェニルメチルスルホニウム、これらのトリフルオロメタンスルホン酸塩、カンファースルホン酸塩、p-トルエンスルホン酸塩である。なお、これらの化合物は2種以上組み合わせて使用してもよい。
 熱酸発生剤の含有量は通例、(a)シロキサン系樹脂100重量部に対して0.01~10重量部であり、より好ましくは0.01~5重量部である。0.01重量部以上であれば、120℃~200℃の温度範囲で硬化膜を形成する場合にも硬化が十分進行し、耐クラック性や耐溶剤性がより向上する。10重量部以下であれば、硬化膜の透明性を高く保つことができる。
 光塩基発生剤の好ましい例としては、プロピオニルアセトフェノンオキシム、プロピオニルベンゾフェノンオキシム、プロピオニルアセトンオキシム、ブチリルアセトフェノンオキシム、ブチリルベンゾフェノンオキシム、ブチリルアセトンオキシム、アジポイルアセトフェノンオキシム、アジポイルベンゾフェノンオキシム、アジポイルアセトンオキシム、アクロイルアセトフェノンオキシム、アクロイルベンゾフェノンオキシム、アクロイルアセトンオキシム、[[(2-ニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ヘキサメチレンジアミンなどが挙げられる。これらを2種以上用いてもよい。
 光塩基発生剤の含有量は通例、(a)シロキサン系樹脂100重量部に対して1~10重量部であり、より好ましくは1~7重量部である。1重量部以上であれば、120℃~200℃の温度範囲で硬化膜を形成する場合にも硬化促進効果十分得られ、耐クラック性や耐溶剤性がより向上する。10重量部以下であれば、硬化膜の透明性を高く保つことができる。
 また、増感剤として、前記光酸発生剤の増感剤として挙げたものを組み合わせて用いることが好ましい。増感剤の含有量は通例、(a)シロキサン系樹脂100重量部に対して0.05~5重量部であり、より好ましくは0.1~3重量部である。0.05重量部以上であれば、120℃~200℃の温度範囲で硬化膜を形成する場合にも硬化促進効果が十分得られ、耐クラック性や耐溶剤性がより向上する。5重量部以下であれば、硬化膜の透明性を高く保つことができる。
 熱塩基発生剤の具体的な例としては、1-メチル-1-(4-ビフェニルイル)エチルカルバメート、1,1-ジメチル-2-シアノエチルカルバメートなどのカルバメート誘導体、尿素やN,N-ジメチル-N’-メチル尿素などの尿素誘導体、1,4-ジヒドロニコチンアミドなどのジヒドロピリジン誘導体、有機シランや有機ボランの四級化アンモニウム塩、ジシアンジアミドなどが挙げられる。これらを2種以上用いてもよい。これらのうち、1-メチル-1-(4-ビフェニルイル)エチルカルバメート、1,1-ジメチル-2-シアノエチルカルバメート、N,N-ジメチル-N’-メチル尿素、1,4-ジヒドロニコチンアミドが好ましい。
 熱塩基発生剤の含有量は通例、(a)シロキサン系樹脂100重量部に対して0.01~10重量部であり、より好ましくは0.01~5重量部である。0.01重量部以上であれば、120℃~200℃の温度範囲で硬化膜を形成する場合にも硬化促進効果が十分得られ、耐クラック性や耐溶剤性がより向上する。10重量部以下であれば、硬化膜の透明性を高く保つことができる。
 本発明のシロキサン系樹脂組成物は、固形分が適当な濃度となるよう溶媒を含んでもよい。具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル等のアセテート類、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン等のケトン類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、γ-ブチロラクトン、N-メチルピロリジノン等が挙げられる。これらを2種以上用いてもかまわない。これらのうち、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、ジアセトンアルコール、γ-ブチロラクトン等が好ましい。
 本発明のシロキサン系樹脂組成物における全溶媒の含有量は、(a)シロキサン系樹脂100重量部に対して100~9900重量部が好ましく、より好ましくは100~5000重量部である。
 本発明のシロキサン系樹脂組成物には、塗布時におけるフロー性や膜厚の均一性向上のために、各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらを2種以上含有してもよい。フロー性や膜厚均一性の観点から、フッ素系界面活性剤が好ましい。
 フッ素系界面活性剤としては、“メガファック(登録商標)”F172(商品名、大日本インキ化学工業(株)製)、BM-1000、BM-1100(以上、商品名、裕商(株)製)、NBX-15、FTX-218(以上、商品名、(株)ネオス製)がフロー性や膜厚均一性の観点から特に好ましい。
 シリコーン系界面活性剤の市販品としては、SH28PA、SH7PA、SH21PA、SH30PA、ST94PA(いずれも東レ・ダウコーニング・シリコーン(株)製)、BYK-333(ビックケミー・ジャパン(株)製)などが挙げられる。その他の界面活性剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンジステアレートなどが挙げられる。
 界面活性剤の含有量は、(a)シロキサン系樹脂100重量部に対して、通常0.001~10重量部である。
 本発明のシロキサン系樹脂組成物には、必要に応じて、粘度調整剤、安定化剤、着色剤、ガラス質形成剤などを含有することができる。
 また、本発明のシロキサン系樹脂組成物には、シロキサン系樹脂組成物の硬化を促進させる、あるいは硬化を容易ならしめる、(d)下記一般式(6)または(7)で表される基を有するケイ素原子を有さない架橋性化合物、および/または下記一般式(8)で表される架橋性化合物を含有してもよい。このような架橋性化合物を含有することにより、本発明のシロキサン系樹脂組成物を硬化すると、マトリックス材料である(a)シロキサン系樹脂が強固に結合し、高いヒートサイクル性が得られ、耐クラック性に優れた硬化膜を形成することができる。これらを2種以上含有してもよい。
Figure JPOXMLDOC01-appb-C000014
 一般式(6)中、R12は同じでも異なってもよく、水素原子または1価の有機基を示す。nは1~4の整数を表す。一般式(7)中、R13およびR14は水素原子または1価の有機基を示す。R12~R14の具体例としては水素原子、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、フェニル基などのアリール基等が挙げられる。樹脂組成物の経時安定性と架橋性化合物の反応性の観点から、メチル基、エチル基が好ましい。一般式(8)中、R15およびR16はそれぞれ同じでも異なってもよく、炭素数1~4のアルキル基、フェニル基またはそれらの置換体を示す。ただし、p個のR15およびR16のうち少なくとも1つはフェニル基またはその置換体である。アルキル基またはフェニル基の置換体の置換基としては、CF基、CHCF基、CCF基、CCH基、Ct-Bu基などを挙げることができる。屈折率を向上させ、耐クラック性をより向上させる観点から、R15およびR16はメチル基またはフェニル基が好ましい。pは4以上20以下の整数を示す。
 一般式(6)で表される基を有する、ケイ素原子を有さない架橋性化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 一般式(7)で表される基を有する、ケイ素原子を有さない架橋性化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000017
 上記の中でも、一般式(6)で表される基を有する2,2-dimethoxymethyl-4-t-butyl phenol、2,2-dimethoxymethyl-p-cresol、TML-BPA、TMOM-BP、HML-TPHAP、一般式(7)で表される基を有する “NIKALAC(登録商標)”MX-280、“NIKALAC”MX-270(以上、商品名、(株)三和ケミカル製)が耐クラック性の観点から好ましい。さらに、280℃以上の高温で硬化膜を形成する場合、硬化膜の透明性の観点からフェノール性水酸基を含まないものが好ましく、“NIKALAC”MX-280、“NIKALAC”MX-270が好ましい。
 以下に、一般式(8)で表される架橋性化合物の具体例を示す。このような架橋性化合物は、フェニル基を有するため、得られる組成物の屈折率を高く保ちながら透過率をより向上させることができる。また、かかる架橋性化合物を含有することにより、該化合物を縮合反応させた反応生成物を含有する場合と異なり、架橋性化合物が組成物の熱処理時に硬化反応することから、耐クラック性をより向上させることができる。
Figure JPOXMLDOC01-appb-C000018
 一般式(8)で表される架橋性化合物のうち、R15およびR16におけるフェニル基に対するアルキル基のモル比(アルキル基/フェニル基)が0~1であると、透過率および耐クラック性をより向上させることができるため好ましい。具体的には、S-3、S-4、S-11、S-12、S-13、S-14、S-15が好ましい。
 一般式(6)または(7)で表される基を有する架橋性化合物は、ケイ素原子を有しない有機系化合物であり、含有量が少なくても耐クラック性向上効果が顕著に現れる。本発明において、これらの架橋性化合物の含有量は、シロキサン系樹脂組成物中の(a)シロキサン系樹脂100重量部に対して、0.1重量部以上が好ましく、0.5重量部以上がより好ましい。また、20重量部以下が好ましく、10重量部以下がより好ましい。この範囲であれば、熱処理による架橋性化合物の酸化劣化を抑え、透過率および屈折率をより高いレベルで維持することができる。また、硬化収縮率を小さくするためには、3重量部以上が好ましい。
 一方、一般式(8)で表される架橋性化合物は、ケイ素原子を有する化合物であり、一般式(6)または(7)で表される架橋性化合物に比べて多量に含有することが好ましい。具体的には、シロキサン系樹脂組成物中の(a)シロキサン系樹脂100重量部に対して、10重量部以上が好ましく、20重量部以上がより好ましい。10重量部以上含有することで、耐クラック性をより向上させることができる。また、硬化収縮率を小さくするためには30重量部以上が好ましい。一方、50重量部以下が好ましく、40重量部以下がより好ましい。
 上記架橋性化合物を併用する場合、これらの総含有量は、シロキサン系樹脂組成物中の(a)シロキサン系樹脂100重量部に対して、10重量部以上が好ましく、20重量部以上がより好ましい。また、40重量部以下がより好ましい。この場合、一般式(6)または(7)で表される架橋性化合物の含有量は、シロキサン系樹脂組成物中の固形分全量に対して、0.1重量%以上が好ましく、0.5重量%以上がより好ましい。また、20重量%以下が好ましく、10重量%以下がより好ましい。
 本発明において、上記架橋性化合物を前記(c)酸発生剤または塩基発生剤とともに含有する場合、これらの相乗効果により耐クラック性を大幅に向上させることができる。
 次に、本発明のシロキサン系樹脂組成物の製造方法を説明する。(a)シロキサン系樹脂と、第一の態様においては(b)イミドシラン化合物、および必要に応じて(c)酸発生剤または塩基発生剤、架橋性化合物、界面活性剤等を混合することにより、本発明のシロキサン系樹脂組成物を得ることができる。この際、任意の溶媒で希釈してもよい。混合温度に特に制限はないが、操作の簡便さから5~50℃の範囲が好ましい。
 本発明のシロキサン系樹脂組成物は、固体撮像素子用材料として好適に用いられる。例えば、屈折率が1.60~1.80の場合は導波路用埋め込み平坦化膜材料として、屈折率が1.6未満の場合はカラーフィルターの平坦化膜材料として好適に用いられる。
 本発明のシロキサン系樹脂組成物は、基材上に塗布して塗布膜を得、これを硬化させることにより硬化膜を形成することができる。塗布膜を硬化させる方法としては加熱が一般的であり、必要に応じて加熱により塗布膜を乾燥してもよい。
 本発明におけるシロキサン系樹脂組成物の塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、流し塗り法などを好ましく用いることができる。
 加熱および乾燥条件は、適用される基材および樹脂組成物に応じて適宜選択されるが、通常は室温以上400℃以下の温度で、0.5分間~240分間の処理を行うことが好ましい。特に好ましい硬化温度は100~400℃、さらに好ましくは150~400℃である。
 塗布膜および硬化後の膜厚に特に制限はないが、ともに0.001~100μmの範囲にあるのが一般的である。
 本発明のシロキサン系樹脂組成物により形成された塗膜および硬化膜は、固体撮像素子、液晶ディスプレイ等のディスプレイ用光学フィルター等の光学物品に好適に用いられる。より詳しくは、固体撮像素子の平坦化膜や導波路用埋め込み平坦化膜に用いることができる。また、光学フィルターの反射防止膜や反射防止板などの低屈折率層、高屈折率層およびハードコート層に用いることができる。
 以下、実施例および技術をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の樹脂組成物の評価は、以下の方法により行った。
 (1)硬化膜の作製
 6インチシリコンウエハ上または40mm角ガラス基板上に、シロキサン系樹脂組成物をスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数で塗布し、ついでホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて、空気雰囲気下で120℃で3分プリベークすることにより、膜厚2μmの塗布膜を得た。
 光酸発生剤または光塩基発生剤を含む樹脂組成物の場合は、得られた塗布膜を、露光機(キャノン(株)社製コンタクトアライナーPLA501F)を用いて紫外線強度約5mW/cm(波長365nm換算)で3分間紫外線全波長全面露光(ブリーチング露光 主用波長:365nm、405nm、436nm)した。ついで、空気雰囲気下のホットプレート上で250℃で5分加熱した後、300℃で5分加熱して硬化膜を得た。
 光酸発生剤または光塩基発生剤を含まない樹脂組成物の場合は、得られた塗布膜を、空気雰囲気下のホットプレート上で250℃で5分加熱した後、300℃で5分加熱して硬化膜を得た。
 (2)屈折率および膜厚の測定
 前記(1)に記載の方法で作製した6インチシリコンウエハ上の硬化膜について、プリズムカプラーMODEL2010(Metricon(株)製)を用いて、23℃での633nm(He-Neレーザー使用)における膜面に対して垂直方向の屈折率(TE)および膜厚を測定した。
 (3)透過率の測定
 前記(1)に記載の方法で40mm角ガラス基板上に作製した硬化膜について、紫外-可視分光光度計UV-260(島津製作所(株)製)を用いて、400nmの透過率を測定し、膜厚1.0μmに換算して透過率を算出した。
 (4)耐クラック性の評価
  前記(1)に記載の方法で6インチシリコンウエハ上に作製した硬化膜について、以下の温度履歴でヒートサイクル試験を行い、各温度において光学顕微鏡でクラックの有無を観察した。加熱は空気雰囲気下のホットプレート上で行った。
ヒートサイクル試験の温度履歴
250℃5分→室温(23℃)5分→280℃5分→室温(23℃)5分→300℃5分→室温(23℃)5分→320℃5分→室温(23℃)5分→340℃5分→室温(23℃)5分→360℃5分→室温(23℃)5分→380℃5分→室温(23℃)5分→400℃5分→室温(23℃)5分→420℃5分→室温(23℃)5分→440℃5分→室温(23℃)5分→460℃5分→室温(23℃)5分。
 (5)接着性の評価
 前記(1)に記載の方法で40mm角ガラス基板上に作製した硬化膜について、JIS K5400 8.5.2(1990)碁盤目テープ法に準じて接着性を評価した。すなわち、硬化膜つき40mm角ガラス基板上の薄膜表面に、カッターナイフでガラス板の素地に到達するように、直交する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。切られた薄膜表面にセロハン粘着テープ(幅=18mm、粘着力=3.7N/10mm)を張り付け、消しゴム(JIS S6050合格品)で擦って密着させ、テープの一端を持ち、板に直角に保ち瞬間的に剥離した際のマス目の残存数を目視によって評価した。
 (6)平坦化性能の評価
 前記(1)記載の方法でシリコンウエハ上に作製した硬化膜について、キュア前後の硬化収縮率を算出した。この値が0~15%の場合、平坦化性能は良好といえる。硬化収縮率は以下の式に従って算出した。
硬化収縮率(%)=(1-キュアで得られた硬化膜の膜厚÷塗布膜の膜厚)×100 。
 合成例1 イミドシラン化合物(i)の合成
 プロピレングリコールモノメチルエーテル400gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とt-ブチルアミン11.70g(160mmol)を加えて室温にて30分撹拌した後、60℃にて2時間撹拌した。その後、140℃まで昇温し、プロピレングリコールモノメチルエーテルと水を共沸させながら、6時間反応させた。得られた溶液を固形分濃度が20重量%になるようにジアセトンアルコールで希釈して、下記構造で表されるイミドシラン化合物(i)の溶液を得た。
Figure JPOXMLDOC01-appb-C000019
 合成例2 イミドシラン化合物(ii)の合成
 ジアセトンアルコール400gに2-トリメトキシシリルエチルフタル酸無水物23.71g(80mmol)とモノエタノールアミン4.89g(80mmol)を加えて室温にて30分間撹拌した後、60℃にて2時間撹拌した。その後、140℃まで昇温し、プロピレングリコールモノメチルエーテルと水を共沸させながら、6時間反応させた。得られた溶液を固形分濃度が20重量%になるようにジアセトンアルコールで希釈して、下記構造で表されるイミドシラン化合物(ii)の溶液を得た。
Figure JPOXMLDOC01-appb-C000020
 合成例3 イミドシラン化合物(iii)の合成
 プロピレングリコールモノメチルエーテルアセテート400gに3-トリメトキシシリルプロピルコハク酸無水物20.99g(80mmol)とアニリン7.45g(80mmol)を加えて室温にて30分間撹拌した後、60℃にて2時間撹拌した。その後、160℃まで昇温し、プロピレングリコールモノメチルエーテルと水を共沸させながら、6時間反応させた。得られた溶液を固形分濃度が20重量%になるようにジアセトンアルコールで希釈して、下記構造で表されるイミドシラン化合物(iii)の溶液を得た。
Figure JPOXMLDOC01-appb-C000021
 合成例4 イミドシラン化合物(iv)の合成
 γ-ブチロラクトン40gにイソシアネートプロピルトリメトキシシラン32.84g(160mmol)を加えて撹拌し溶解させた。フタル酸無水物23.70g(160mmol)を加えて室温にて30分間撹拌した後、140℃にて2時間撹拌した。得られた溶液を固形分濃度が20%重量になるようにγ-ブチロラクトンで希釈して、下記構造で表されるイミドシラン化合物(iv)の溶液を得た。
Figure JPOXMLDOC01-appb-C000022
 合成例5 イミドシラン化合物(v)の合成
 ジアセトンアルコール400gにアミノプロピルトリエトキシシラン35.42g(160mmol)と、無水コハク酸16.01g(160mmol)を加えて室温にて30分間撹拌した後、60℃にて2時間撹拌した。その後、160℃まで昇温し、ジアセトンアルコールと水を共沸させながら、6時間反応させた。得られた溶液を固形分濃度が20重量%になるようにジアセトンアルコールで希釈して、下記構造で表されるイミドシラン化合物(v)の溶液を得た。
Figure JPOXMLDOC01-appb-C000023
 合成例6 芳香族ビスイミドオリゴマー(vi)の合成
 撹拌機、還流冷却管、および窒素導入管を備えた容器に、無水フタル酸32.58g(220mmol)、γ-ピコリン1.39g、N-メチル-2-ピロリドン(以下NMPと略す)130.3gを添加し、ここに、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン24.8g(100mmol)をNMP99.4gに溶解したものを滴下し、窒素、窒素雰囲気下で2時間撹拌した。その後、無水酢酸40.8g(400mmol)を添加し、窒素雰囲気下で撹拌しながら70℃まで加熱昇温し70℃で4時間反応させた。反応終了後室温まで冷却し、2000mlの水に投入し、ビスイミド粉43.24gを得た。このビスイミド粉の赤外吸収スペクトルを測定したところ、1720cm-1、1780cm-1にイミド環の特性吸収が確認された。得られたビスイミド粉を、固形分濃度が20重量%になるようにγ-ブチロラクトンに溶解して、下記構造で表される芳香族ビスイミドオリゴマー(vi)の溶液を得た。
Figure JPOXMLDOC01-appb-C000024
 合成例7 シリコーンポリイミド前駆体(vii)の合成
 γ-ブチロラクトン40gにアミノプロピルトリエトキシシラン35.42g(160mmol)を加えて撹拌し溶解させた。4,4’-オキシジフタル酸二無水物24.82g(80mmol)を加えて室温にて30分間撹拌した後、40℃にて2時間撹拌した。得られた溶液を固形分濃度が20重量%になるようにγ-ブチロラクトンで希釈して、下記構造で表されるシリコーンポリイミド前駆体(vii)の溶液を得た。
Figure JPOXMLDOC01-appb-C000025
 合成例8 イミドシラン化合物(viii)の合成
 プロピレングリコールモノメチルエーテル400gにジメトキシシリル-3,3’-ビス(プロピルコハク酸無水物)29.80g(80mmol)とt-ブチルアミン11.70g(160mmol)を加えて室温にて30分撹拌した後、60℃にて2時間撹拌した。その後、140℃まで昇温し、プロピレングリコールモノメチルエーテルと水を共沸させながら、6時間反応させた。得られた溶液を固形分濃度が20重量%になるようにジアセトンアルコールで希釈して、下記構造で表されるイミドシラン化合物(viii)の溶液を得た。
Figure JPOXMLDOC01-appb-C000026
 合成例9 イミドシラン化合物(ix)の合成
 ジアセトンアルコール400gにジメトキシシリル-2,2’-ビス(エチルフタル酸無水物)35.24g(80mmol)とモノエタノールアミン9.78g(160mmol)を加えて室温にて30分間撹拌した後、60℃にて2時間撹拌した。その後、140℃まで昇温し、プロピレングリコールモノメチルエーテルと水を共沸させながら、6時間反応させた。得られた溶液を固形分濃度が20重量%になるようにジアセトンアルコールで希釈して、下記構造で表されるイミドシラン化合物(ix)の溶液を得た。
Figure JPOXMLDOC01-appb-C000027
 合成例10 イミドシラン化合物(x)の合成
 プロピレングリコールモノメチルエーテル400gにメトキシシリル-3,3’,3”-トリス(プロピルコハク酸無水物)24.13g(50mmol)とi-プロピルアミン8.87g(150mmol)を加えて室温にて30分撹拌した後、60℃にて2時間撹拌した。その後、140℃まで昇温し、プロピレングリコールモノメチルエーテルと水を共沸させながら、6時間反応させた。得られた溶液を固形分濃度が20重量%になるようにジアセトンアルコールで希釈して、下記構造で表されるイミドシラン化合物(x)の溶液を得た。
Figure JPOXMLDOC01-appb-C000028
 実施例1
 メチルトリメトキシシラン 20.4g(0.15mol)、フェニルトリメトキシシラン 69.4g(0.35mol)、数平均粒子径15nmの“オプトレイク”TR-521(商品名、触媒化成工業(株)製 組成:酸化チタン粒子30重量%、γ-ブチロラクトン70重量%)70.6g、γ-ブチロラクトン 44.1gを反応容器に入れ、この溶液に、水30.6gおよびリン酸0.48gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液A(固形分55重量%)を得た。得られたポリマー溶液A10gに、γ-ブチロラクトン10gおよびイミドシラン化合物(i)の溶液2.5g(固形分0.5gを加えて溶解し、シロキサン系樹脂組成物1を得た。
 得られたシロキサン系樹脂組成物1を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例2
 メチルトリメトキシシラン 8.2g(0.06mol)、フェニルトリメトキシシラン 55.5g(0.28mol)、ジメチルジメトキシシラン 7.2g(0.06mol)、数平均粒子径15nmの“オプトレイク”TR-521 71.1g、γ-ブチロラクトン 23.9gを反応容器に入れ、この溶液に、水34.5gおよびリン酸1.0gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液B(固形分48重量%)を得た。得られたポリマー溶液B10gに、γ-ブチロラクトン10g、架橋性化合物である“ニカラック”MX-270(三和ケミカル(株)製)0.24gおよびイミドシラン化合物(ii)の溶液3.6g(固形分0.72g)を加えて溶解し、シロキサン系樹脂組成物2を得た。
 得られたシロキサン系樹脂組成物2を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例3
 ニカラックMX-270を用いなかった他は実施例2と同様にしてシロキサン系樹脂組成物3を得た。得られたシロキサン系樹脂組成物3を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例4、
 “オプトレイク”TR-521 71.1gの替わりに、数平均粒子径30nmの酸化ジルコニウム粒子のプロピレングリコールモノメチルエーテルアセテート分散液(酸化ジルコニウム30重量%、プロピレングリコールモノメチルエーテルアセテート70重量%)70.0gを用いた以外は実施例2と同様の操作を行い、ポリマー溶液C(固形分46重量%)を得た。得られたポリマー溶液C10gにプロピレングリコールモノメチルエーテルアセテート15gおよびイミドシラン化合物(i)の溶液2.05g(固形分0.41g)を加えて溶解し、シロキサン系樹脂組成物4を得た。
 得られたシロキサン系樹脂組成物4を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例5
 “オプトレイク”TR-521 71.1gの替わりに、数平均粒子径30nmの酸化アルミニウム粒子のプロピレングリコールモノメチルエーテルアセテート分散液(酸化アルミニウム30重量%、プロピレングリコールモノメチルエーテルアセテート70重量%)45.0gを用いた以外は実施例2と同様の操作を行い、ポリマー溶液D(固形分40%重量%)を得た。得られたポリマー溶液D10gに、3-メチル-3-メトキシブチルアセテート20g、熱酸発生剤であるベンジル-4-ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルフォネート(BHPMT)0.12gおよびイミドシラン化合物(i)の溶液1.8g(固形分0.36g)を加えて溶解し、シロキサン系樹脂組成物5を得た。
 得られたシロキサン系樹脂組成物5を用いて硬化膜を作製し前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例6
 BHPMTを用いなかった他は実施例5と同様にしてシロキサン系樹脂組成物6を得た。得られたシロキサン系樹脂組成物6を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例7
 メチルトリメトキシシラン 8.2g(0.06mol)、フェニルトリメトキシシラン 55.5g(0.28mol)、テトラエトキシシラン 5.4g(0.026mol)、“オプトレイク”TR-521 52.4g、γ-ブチロラクトン20.5gを反応容器に入れ、この溶液に、水34.5gおよびリン酸1.0gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールおよびエタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液E(固形分60重量%)を得た。得られたポリマー溶液E20gに、γ-ブチロラクトン40g、光酸発生剤である5-ノルボルネン-2,3-ジカルボキシイミジルトシレート(商品名NDI-101、みどり化学(株)製)0.48g、増感剤である9,10-ジブトキシアントラセン(DBA)0.036gおよびイミドシラン化合物(ii)の溶液0.12g(固形分0.024g)を加えて溶解し、シロキサン系樹脂組成物7を得た。
 得られたシロキサン系樹脂組成物7を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例8
 NDI-101およびDBAを用いなかった他は実施例7と同様にしてシロキサン系樹脂組成物8を得た。得られたシロキサン系樹脂組成物8を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例9
 メチルトリメトキシシラン 12.3g(0.15mol)、フェニルトリメトキシシラン 41.6g(0.35mol)、数平均粒子径15nmの“オプトレイク”TR-527(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)193g、プロピレングリコールモノメチルエーテルアセテート94.0gを反応容器に入れ、この溶液に、水16.2gおよびリン酸0.27gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液F(固形分44重量%)を得た。得られたポリマー溶液Fを20g取り、光塩基発生剤である[[(2-ニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン(NCA)0.352g、イミドシラン化合物(i)の溶液3.96g(固形分0.792g)、イミドシラン化合物(iii)の溶液3.96g(固形分0.792g)、増感剤である9,10-ジプロポキシアントラセン(DPA)0.044gおよびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、シロキサン系樹脂組成物9を得た。
 得られたシロキサン系樹脂組成物9を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例10
 NCAおよびDPAを用いなかった他は実施例9と同様にしてシロキサン系樹脂組成物8を得た。得られたシロキサン系樹脂組成物10を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例11
 実施例9で用いたポリマー溶液F20gに、プロピレングリコールモノメチルエーテルアセテート25g、イミドシラン化合物(iii)の溶液1.76g(固形分0.352g)、および架橋性化合物である2,2-ジメトキシメチル-4-t-ブチルフェノール(商品名、DMOM-PTBP、本州化学工業(株)製)0.264gおよび熱酸発生剤である2-メチルベンジル-4-アセチルフェニルメチルスルホニウムトリフルオロメタンスルフォネート(MBAPMT)0.088gを加えて溶解し、シロキサン系樹脂組成物11を得た。
 得られたシロキサン系樹脂組成物11を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例12
 DMOM-PTBPおよびMBAPMTを用いなかった他は実施例11と同様してシロキサン系樹脂組成物12を得た。得られたシロキサン系樹脂組成物12を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例13
 実施例9で用いたポリマー溶液F20gに、プロピレングリコールモノメチルエーテルアセテート25g、イミドシラン化合物(iii)の溶液1.76g(固形分0.352g)、架橋性化合物であるS-3 2.64gおよび熱酸発生剤であるベンジル-4-ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルフォネート(BHPMT)0.0176gを加えて溶解し、シロキサン系樹脂組成物13を得た。
 得られたシロキサン系樹脂組成物13を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例14
 S-3を用いなかった他は実施例13と同様にしてシロキサン系樹脂組成物14を得た。得られたシロキサン系樹脂組成物14を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例15
 実施例9で用いたポリマー溶液F20gに、プロピレングリコールモノメチルエーテルアセテート25g、イミドシラン化合物(iii)の溶液1.76g(固形分0.352g)、架橋性化合物である“ニカラック”MX-270(三和ケミカル(株)製)0.88gおよび熱塩基発生剤である1-メチル-1-(4-ビフェニルイル)エチルカルバメート(MBEC)0.176gを加えて溶解し、シロキサン系樹脂組成物15を得た。
 得られたシロキサン系樹脂組成物15を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例16
 MBECを用いなかった他は実施例15と同様にしてシロキサン系樹脂組成物16を得た。得られたシロキサン系樹脂組成物16を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例17
 実施例9で用いたポリマー溶液F20gに、プロピレングリコールモノメチルエーテルアセテート25g、イミドシラン化合物(iii)の溶液1.76g(固形分0.352g)、架橋性化合物であるTML-BPA(本州化学工業(株)製)1.32gおよび熱酸発生剤であるベンジル-4-ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルフォネート(BHPMT)0.44gを加えて溶解し、シロキサン系樹脂組成物17を得た。
 得られたシロキサン系樹脂組成物17を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例18
 メチルトリメトキシシラン 24.5g(0.18mol)、フェニルトリメトキシシラン 83.3g(0.42mol)、γ-ブチロラクトン124.0gを反応容器に入れ、撹拌しながら、水38gおよびリン酸0.57gを反応温度が30℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液G(固形分32重量%)を得た。得られたポリマー溶液Gを10.0gとり、これにイミドシラン化合物(i)の溶液1.92g(固形分0.384g)、およびプロピレングリコールモノメチルエーテルアセテートを添加して撹拌し、シロキサン系樹脂組成物18を得た。
 得られたシロキサン系樹脂組成物18を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例19
 イミドシラン化合物(i)の溶液を0.32g(固形分0.064g)に変更した他は実施例18と同様にしてシロキサン系樹脂組成物19を得た。得られたシロキサン系樹脂組成物19を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例20
 メチルトリメトキシシラン 12.3g(0.15mol)、フェニルトリメトキシシラン 41.6g(0.35mol)、数平均粒子径20nmの シリカ粒子ジアセトンアルコール溶剤分散液“クォートロン”PL-2L-DAA(商品名、扶桑化学工業(株)製:固形分26.4重量%)を146.21g、プロピレングリコールモノメチルエーテルアセテート94.0gを反応容器に入れ、この溶液に、水16.2gおよびリン酸0.27gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液H(固形分44重量%)を得た。得られたポリマー溶液Hを20g取り、架橋性化合物であるS-11(商品名、PDS-9931(ゲレスト(株)製))3.52g、イミドシラン化合物(iii)の溶液2.2g(固形分0.44g)、およびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、シロキサン系樹脂組成物20を得た。
 得られたシロキサン系樹脂組成物20を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例21
 S-11を用いなかった他は実施例20と同様にしてシロキサン系樹脂組成物21を得た。得られたシロキサン系樹脂組成物21を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例22
 トリフルオロプロピルトリメトキシシラン 152.67g(0.7モル)、γ-グリシドキシプロピルトリメトキシシラン 70.89g(0.3モル)をプロピレングリコールモノブチルエーテル(沸点170℃)280.22gに溶解し、これに、水54.0g、リン酸1.12gを撹拌しながら加えた。得られた溶液をバス温105℃で2時間加熱し、内温を90℃まで上げて、主として副生するメタノールからなる成分を留出せしめた。次いでバス温130℃で4.0時間加熱し、内温を118℃まで上げて、主として水とプロピレングリコールモノブチルエーテルからなる成分を留出せしめた後、室温まで冷却し、ポリマー溶液I(固形分濃度45重量%)を得た。得られたポリマー溶液Iを20g取り、イミドシラン化合物(i)の溶液0.9g(固形分0.18g)、熱酸発生剤である2-メチルベンジル-4-アセチルフェニルメチルスルホニウムトリフルオロメタンスルフォネート(MBAPMT)0.18gおよびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、シロキサン系樹脂組成物22を得た。
 得られたシロキサン系樹脂組成物22を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例23
 MBAPMTを用いなかった他は実施例22と同様にしてシロキサン系樹脂組成物23を得た。得られたシロキサン系樹脂組成物23を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例24
 トリデカフルオロオクチルトリメトキシシラン 234.05g(0.5モル)、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン 123.2g(0.5モル)をプロピレングリコールモノメチルエーテル(沸点121℃)471.09gに溶解し、これに、水63.0g、リン酸1.79gを撹拌しながら加えた。得られた溶液をバス温105℃で2時間加熱し、内温を90℃まで上げて、主として副生するメタノールからなる成分を留出せしめた。次いでバス温115℃で4.0時間加熱し、内温を118℃まで上げて、主として水とプロピレングリコールモノメチルエーテルからなる成分を留出せしめた後、室温まで冷却し、ポリマー溶液J(固形分濃度43重量%)を得た。得られたポリマー溶液Jを20g取り、イミドシラン化合物(i)の溶液0.9g(固形分0.18g)、架橋性化合物である“ニカラック”MX-280(三和ケミカル(株)製)0.18gおよびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、シロキサン系樹脂組成物24を得た。
 得られたシロキサン系樹脂組成物24を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例25
 トリフルオロプロピルトリメトキシシラン 32.72g(0.15mol)、γ-グリシドキシプロピルトリメトキシシラン 82.71g(0.35mol)、シリカ粒子ジアセトンアルコール溶剤分散液“クォートロン”PL-2L-DAAを146.21g、プロピレングリコールモノメチルエーテルアセテート94.0gを反応容器に入れ、この溶液に、水16.2gおよびリン酸0.27gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液K(固形分44重量%)を得た。得られたポリマー溶液Kを20g取り、イミドシラン化合物(i)の溶液0.88g(固形分0.176g)、光酸発生剤であるα-4-メトキシフェニルアセトニトリル(商品名、PAI-106、みどり化学(株)製)0.176gおよびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、シロキサン系樹脂組成物25を得た。
 得られたシロキサン系樹脂組成物25を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例26
 PAI-106を用いなかった他は実施例25と同様してシロキサン系樹脂組成物26を得た。得られたシロキサン系樹脂組成物26を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例27
 イミドシラン化合物(iii)の溶液を9.7g(固形分1.94g)に変更した他は実施例12と同様にしてシロキサン系樹脂組成物27を得た。得られたシロキサン系樹脂組成物27を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例28
 イミドシラン化合物(i)の溶液を4.0g(固形分0.8g)に変更した他は実施例18と同様にしてシロキサン系樹脂組成物28を得た。得られたシロキサン系樹脂組成物28を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例29
 イミドシラン化合物(i)の溶液を0.036g(固形分0.0072g)に変更した他は実施例23と同様にしてシロキサン系樹脂組成物29を得た。得られたシロキサン系樹脂組成物29を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例30
 メチルトリメトキシシラン 20.4g(0.15mol)、フェニルトリメトキシシラン 39.66g(0.20mol)、イミドシラン化合物(i)の溶液238.09g(固形分47.62g、0.15mol)、数平均粒子径15nmの“オプトレイク”TR-521 70.6g、γ-ブチロラクトン 44.1gを反応容器に入れ、この溶液に、水30.6gおよびリン酸0.48gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液L(固形分55重量%)を得た。得られたポリマー溶液L 10gに、γ-ブチロラクトン10gを加えて溶解し、シロキサン系樹脂組成物30を得た。
 得られたシロキサン系樹脂組成物30を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例31
 実施例30で用いたポリマー溶液L 10gに、γ-ブチロラクトン10gおよびイミドシラン化合物(i)の溶液2.5g(固形分0.5g)を加えて溶解し、シロキサン系樹脂組成物31を得た。
 得られたシロキサン系樹脂組成物31を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例32
 メチルトリメトキシシラン 24.5g(0.18mol)、フェニルトリメトキシシラン 43.63g(0.22mol)、イミドシラン化合物(ii)の溶液339.42g(固形分67.88g、0.20mol)、γ-ブチロラクトン124.0gを反応容器に入れ、撹拌しながら、水38gおよびリン酸0.57gを反応温度が30℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液M(固形分32重量%)を得た。得られたポリマー溶液Mを10.0gとり、これにプロピレングリコールモノメチルエーテルアセテートを添加して撹拌し、シロキサン系樹脂組成物32を得た。
 得られたシロキサン系樹脂組成物32を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例33
 メチルトリメトキシシラン 24.5g(0.18mol)、フェニルトリメトキシシラン 43.63g(0.22mol)、イミドシラン化合物(ii)の溶液339.42g(固形分67.88g)(0.20mol)、γ-ブチロラクトン124.0gを反応容器に入れ、撹拌しながら、水38gおよびリン酸0.57gを反応温度が30℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液M(固形分32重量%)を得た。得られたポリマー溶液Mを10.0gとり、これにイミドシラン化合物(i)の溶液1.92g(固形分0.384g)およびプロピレングリコールモノメチルエーテルアセテートを添加して撹拌し、シロキサン系樹脂組成物33を得た。
 得られたシロキサン系樹脂組成物33を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例34
 トリフルオロプロピルトリメトキシシラン 152.67g(0.7モル)、γ-グリシドキシプロピルトリメトキシシラン 47.26g(0.2モル)、イミドシラン化合物(ii)の溶液139.71g(固形分33.94g、0.1mol)をプロピレングリコールモノブチルエーテル(沸点170℃)280.22gに溶解し、これに、水54.0g、リン酸1.12gを撹拌しながら加えた。得られた溶液をバス温105℃で2時間加熱し、内温を90℃まで上げて、主として副生するメタノールからなる成分を留出せしめた。次いでバス温130℃で4.0時間加熱し、内温を118℃まで上げて、主として水とプロピレングリコールモノブチルエーテルからなる成分を留出せしめた後、室温まで冷却し、ポリマー溶液N(固形分濃度45重量%)を得た。得られたポリマー溶液Nを20g取り、イミドシラン化合物(i)の溶液0.9g(固形分0.18g)、熱酸発生剤である2-メチルベンジル-4-アセチルフェニルメチルスルホニウムトリフルオロメタンスルフォネート(MBAPMT)0.18gおよびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、シロキサン系樹脂組成物34を得た。
 得られたシロキサン系樹脂組成物34を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例35
 実施例1で用いた得られたポリマー溶液A10gに、γ-ブチロラクトン10gおよびイミドシラン化合物(viii)の溶液2.5g(固形分0.5g)を加えて溶解し、シロキサン系樹脂組成物35を得た。得られたシロキサン系樹脂組成物35を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例36
 イミドシラン化合物(viii)をイミドシラン化合物(ix)に変更した以外は実施例35と同様にしてシロキサン系樹脂組成物36を得た。得られたシロキサン系樹脂組成物36を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例37
 イミドシラン化合物(viii)をイミドシラン化合物(x)に変更した以外は実施例35と同様にしてシロキサン系樹脂組成物37を得た。得られたシロキサン系樹脂組成物37を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例38
 実施例33で用いたポリマー溶液Mを10.0gとり、これにイミドシラン化合物(viii)の溶液1.92g(固形分0.384g)、およびプロピレングリコールモノメチルエーテルアセテートを添加して撹拌し、シロキサン系樹脂組成物38を得た。得られたシロキサン系樹脂組成物38を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例39
 実施例33で用いたポリマー溶液Mを10.0gとり、これにイミドシラン化合物(x)の溶液1.92g(固形分0.384g)、およびプロピレングリコールモノメチルエーテルアセテートを添加して撹拌し、シロキサン系樹脂組成物39を得た。得られたシロキサン系樹脂組成物39を用い、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例1
 イミドシラン化合物(i)を用いなかった他は実施例1と同様にしてシロキサン系樹脂組成物A1を得た。得られたシロキサン系樹脂組成物A1を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例2
 イミドシラン化合物(i)を用いなかった他は実施例4と同様にしてシロキサン系樹脂組成物A2を得た。得られたシロキサン系樹脂組成物A2を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例3
 イミドシラン化合物(i)を用いなかった他は実施例5と同様にしてシロキサン系樹脂組成物A3を得た。得られたシロキサン系樹脂組成物A3を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例4
 イミドシラン化合物(ii)を用いなかった他は実施例7と同様してシロキサン系樹脂組成物A4を得た。得られたシロキサン系樹脂組成物A4を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例5
 イミドシラン化合物(iii)を用いなかった他は実施例15と同様にしてシロキサン系樹脂組成物A5を得た。得られたシロキサン系樹脂組成物A5を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例6
 イミドシラン化合物(i)を用いなかった他は実施例18と同様にしてシロキサン系樹脂組成物A6を得た。得られたシロキサン系樹脂組成物A6を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例7
 イミドシラン化合物(i)を用いなかった他は実施例22と同様にしてシロキサン系樹脂組成物A7を得た。得られたシロキサン系樹脂組成物A7を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例8
 イミドシラン化合物(i)を用いなかった他は実施例24と同様にしてシロキサン系樹脂組成物A8を得た。得られたシロキサン系樹脂組成物A8を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例9
 イミドシラン化合物(i)を用いなかった他は実施例25と同様にしてシロキサン系樹脂組成物A9を得た。得られたシロキサン系樹脂組成物A9を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例10
 イミドシラン化合物(i)をイミドシラン(iv)に変更した他は実施例1と同様にしてシロキサン系樹脂組成物A10を得た。得られたシロキサン系樹脂組成物A10を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例11
 イミドシラン化合物(iii)をイミドシラン(v)に変更した他は実施例11と同様にしてシロキサン系樹脂組成物A11を得た。得られたシロキサン系樹脂組成物A11を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例12      
 イミドシラン化合物(i)を芳香族ビスイミドオリゴマー(vi)に変更した他は実施例18と同様にしてシロキサン系樹脂組成物A12を得た。得られたシロキサン系樹脂組成物A12を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例13
 イミドシラン化合物(i)をシリコーンポリイミド前駆体(vii)に変更した他は実施例25と同様にしてシロキサン系樹脂組成物A13を得た。得られたシロキサン系樹脂組成物A13を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例14
 冷却管と撹拌装置を装着した2Lのセパラブルフラスコに、m-クレゾール172.8g(1.6mol)、2.3-ジメチルフェノール36.6g(0.3モル)、3.4-ジメチルフェノール12.2g(0.1mol)、37重量%ホルムアルデヒド水溶液12.6g(ホルムアルデヒド:1.5mol)、シュウ酸2水和物12.6g(0.1mol)及びメチルイソブチルケトン554gを加え、30分撹拌した後、1時間静置した。2層に分離した上層をデカンテーションによって除去し、2-ヒドロキシプロピオン酸エチル(HPE)を加え、残存メチルイソブチルケトン、水を減圧濃縮によって除去し、HPE樹脂溶液を得た。得られたHPE樹脂溶液にさらにHPEを加えてノボラック樹脂溶液(固形分43重量%)を得た。得られたノボラック樹脂溶液を20g取り、イミドシラン化合物(i)0.77g、光酸発生剤であるα-4-メトキシフェニルアセトニトリル(商品名、PAI-106、みどり化学(株)製)0.172gおよびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、ノボラック系樹脂組成物B1を得た。
 得られたノボラック系樹脂組成物B1を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 比較例15
 2,2’-アゾビス(2,4-ジメチルバレロニトリル)5g、ジエチレングリコールエチルメチルエーテル(EDM)200gを500mLの三口フラスコに仕込んだ。引き続きスチレン25g、メタクリル酸20g、メタクリル酸グリシジル45g、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレート10gを仕込み、室温で30分間撹拌した後、フラスコ内を窒素置換した。その後、フラスコを70℃のオイルバスに浸けて、5時間加熱撹拌した。得られたEDM樹脂溶液に、さらにEDMを加えてアクリル樹脂溶液(固形分43重量%)を得た。なお、得られたアクリルポリマーの重量平均分子量(Mw)は15000であった。得られたアクリル樹脂溶液を20g取り、イミドシラン化合物(ii)0.77g、架橋性化合物“ニカラック”MX-270 0.258g、およびプロピレングリコールモノメチルエーテルアセテート20gを加えて溶解し、アクリル系樹脂組成物B2を得た。
 得られたアクリル系樹脂組成物B2を用いて硬化膜を作製し、前記方法で屈折率、透過率、耐クラック性、接着性、平坦化性能について評価を行った。
 実施例1~39および比較例1~15の組成を表1~4に、評価結果を表5~6に示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 本発明のシロキサン系樹脂組成物により形成された硬化膜は、固体撮像素子、液晶ディスプレイ等のディスプレイ用光学フィルター等の光学物品に好適に用いられる。より詳しくは、固体撮像素子の平坦化膜や導波路用埋め込み平坦化膜に用いることができる。また、光学フィルターの反射防止膜や反射防止板などの低屈折率層、高屈折率層およびハードコート層に用いることができる。

Claims (13)

  1. (a)シロキサン系樹脂および(b)下記一般式(4)で表されるイミドシラン化合物を含有するシロキサン系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(4)中、Rは同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシル基、フェニル基、フェノキシ基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。αは1~3の整数を表す。)
  2. 前記(a)シロキサン系樹脂が、(a-1)下記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物を加水分解し、該加水分解物を縮合反応させて得られる反応生成物である請求項1記載のシロキサン系樹脂組成物。
              RSi(OR     (1)
    (一般式(1)中、Rは水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。)
            RSi(OR    (2)
    (一般式(2)中、RおよびRは、それぞれ水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。)
              Si(OR       (3)
    (一般式(3)中、Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。)
  3. 前記(a-1)の反応生成物が、シリコン化合物粒子、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子およびジルコニウム化合物粒子からなる群より選ばれる少なくとも1種の化合物粒子の存在下、前記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物を加水分解し、該加水分解物を縮合反応させて得られる反応生成物である請求項2記載のシロキサン系樹脂組成物。
  4. (a)シロキサン系樹脂を含有するシロキサン系樹脂組成物であって、前記(a)シロキサン系樹脂が、(a-2)下記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物と下記一般式(5)で表されるイミドシラン化合物とを加水分解し、該加水分解物を縮合反応させて得られる反応生成物であるシロキサン系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(5)中、RおよびRはそれぞれ同じでも異なってもよく、水素原子あるいは炭素数1~6のアルキル基、フェニル基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。βは1~3の整数、γは0~2の整数を表す。ただし、β+γ<4である。)
              RSi(OR     (1)
    (一般式(1)中、Rは水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。)
            RSi(OR    (2)
    (一般式(2)中、RおよびRは、それぞれ水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。)
              Si(OR       (3) 
    (一般式(3)中、Rは同じでも異なってもよく、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。)
  5. 前記(a-2)の反応生成物が、シリコン化合物粒子、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子およびジルコニウム化合物粒子からなる群より選ばれる少なくとも1種の化合物粒子の存在下、前記一般式(1)~(3)のいずれかで表される1種以上のアルコキシシラン化合物と前記一般式(5)で表されるイミドシラン化合物とを加水分解し、該加水分解物を縮合反応させて得られる反応生成物である請求項4記載のシロキサン系樹脂組成物。
  6. 前記(a)シロキサン系樹脂がフッ素を含有する請求項1~5いずれか記載のシロキサン系樹脂組成物。
  7. さらに(c)酸発生剤または塩基発生剤を含有する請求項1~6いずれか記載のシロキサン系樹脂組成物。
  8. さらに(d)下記一般式(6)または(7)で表される基を有する、ケイ素原子を有さない架橋性化合物、および/または下記一般式(8)で表される架橋性化合物を含有する請求項1~7いずれかに記載のシロキサン系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(6)中、R12は同じでも異なってもよく、水素原子または1価の有機基を示す。nは1~4の整数を表す。一般式(7)中、R13およびR14は水素原子または1価の有機基を示す。一般式(8)中、R15およびR16はそれぞれ同じでも異なってもよく、炭素数1~4のアルキル基、フェニル基またはそれらの置換体を示す。ただし、p個のR15およびR16のうち少なくとも1つはフェニル基またはその置換体である。)
  9. 請求項1~8いずれか記載のシロキサン系樹脂組成物を含む固体撮像素子用材料。
  10. 請求項1~9いずれか記載のシロキサン系樹脂組成物を硬化させてなる硬化膜。
  11. 請求項10記載の硬化膜を有する光学物品。
  12. 請求項10記載の硬化膜を有する固体撮像素子。
  13. 下記一般式(4)または一般式(5)で表されるイミドシラン化合物を含有する接着改良剤。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)~(5)中、Rは同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシル基、フェニル基、フェノキシ基またはそれらの置換体を表す。RおよびRはそれぞれ同じでも異なってもよく、水素原子あるいは炭素数1~6のアルキル基、フェニル基またはそれらの置換体を表す。R10は同じでも異なってもよく、炭素数3~30の3価の有機基を表す。R11は同じでも異なってもよく、水素原子、またはケイ素原子を含まない炭素数1~20の1価の有機基を表す。αは1~3の整数を表す。βは1~3の整数、γは0~2の整数を表す。ただし、β+γ<4である。)
PCT/JP2008/059689 2008-01-28 2008-05-27 シロキサン系樹脂組成物 WO2009096050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08764722.8A EP2239301B1 (en) 2008-01-28 2008-05-27 Siloxane resin compositions
CN2008801246285A CN101910318B (zh) 2008-01-28 2008-05-27 硅氧烷类树脂组合物
JP2008527243A JP5375094B2 (ja) 2008-01-28 2008-05-27 シロキサン系樹脂組成物
US12/864,832 US8389649B2 (en) 2008-01-28 2008-05-27 Siloxane-based resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-015904 2008-01-28
JP2008015904 2008-01-28

Publications (1)

Publication Number Publication Date
WO2009096050A1 true WO2009096050A1 (ja) 2009-08-06

Family

ID=40912415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059689 WO2009096050A1 (ja) 2008-01-28 2008-05-27 シロキサン系樹脂組成物

Country Status (7)

Country Link
US (1) US8389649B2 (ja)
EP (1) EP2239301B1 (ja)
JP (1) JP5375094B2 (ja)
KR (1) KR101471234B1 (ja)
CN (1) CN101910318B (ja)
TW (1) TWI437029B (ja)
WO (1) WO2009096050A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039023A (ja) * 2008-08-01 2010-02-18 Jsr Corp 感放射線性組成物、その製造方法、ならびにパターン形成方法
WO2011114995A1 (ja) * 2010-03-17 2011-09-22 東レ株式会社 シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
JP2012107094A (ja) * 2010-11-16 2012-06-07 Jnc Corp 新規物質及び熱硬化性組成物
JP2013014680A (ja) * 2011-07-04 2013-01-24 Toray Ind Inc シロキサン系樹脂組成物およびその製造方法、それを硬化してなる硬化膜ならびにそれを有する光学物品および固体撮像素子
WO2013146130A1 (ja) * 2012-03-30 2013-10-03 東レ株式会社 シランカップリング剤、感光性樹脂組成物、硬化膜及びタッチパネル部材
JP2014125430A (ja) * 2012-12-25 2014-07-07 Dow Corning Toray Co Ltd イミド基含有有機ケイ素化合物の製造方法
JP2015021029A (ja) * 2013-07-17 2015-02-02 東レ株式会社 組成物、これを用いた反射防止層およびその形成方法、ならびにそれを有するガラスおよび太陽電池モジュール
JP2015137271A (ja) * 2014-01-24 2015-07-30 信越化学工業株式会社 シランカップリング剤及びその製造方法、プライマー組成物並びに塗料組成物
WO2017110522A1 (ja) * 2015-12-25 2017-06-29 株式会社ニコン・エシロール ハードコート層形成用組成物、および、光学部材
WO2018193979A1 (ja) * 2017-04-17 2018-10-25 株式会社ダイセル フッ素含有エポキシ変性シルセスキオキサン、及びそれを含む硬化性組成物
WO2019107196A1 (ja) * 2017-11-30 2019-06-06 ダウ・東レ株式会社 硬化性シリコーンゴム組成物
WO2020066127A1 (ja) * 2018-09-27 2020-04-02 Jsr株式会社 固体撮像素子
JP7376347B2 (ja) 2019-12-25 2023-11-08 東京応化工業株式会社 樹脂組成物、硬化物、及びシロキサン変性(メタ)アクリル樹脂

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847382B1 (ko) * 2010-02-25 2018-04-10 닛산 가가쿠 고교 가부시키 가이샤 아믹산을 포함하는 실리콘 함유 레지스트 하층막 형성 조성물
US11041080B2 (en) 2011-11-11 2021-06-22 Velox Flow, Llc Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
WO2013071212A1 (en) * 2011-11-11 2013-05-16 United Protective Technologies Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
JP6371502B2 (ja) * 2013-07-30 2018-08-08 大日本印刷株式会社 光学フィルムの製造方法
CN103665020A (zh) * 2013-11-14 2014-03-26 南昌大学 含酰亚胺环结构单元的硅烷偶联剂的制备方法
TWI540396B (zh) * 2014-02-18 2016-07-01 奇美實業股份有限公司 感光性聚矽氧烷組成物、保護膜及具有保護膜的元件
CN103819500A (zh) * 2014-03-17 2014-05-28 武汉大学 高折光率烷氧基硅烷及其硅树脂
TWI521308B (zh) * 2014-03-28 2016-02-11 奇美實業股份有限公司 感光性聚矽氧烷組成物及其應用
WO2016043203A1 (ja) * 2014-09-17 2016-03-24 富士フイルム株式会社 ポジ型感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置、有機エレクトロルミネッセンス表示装置およびタッチパネル
KR20200096554A (ko) * 2017-12-11 2020-08-12 닛산 가가쿠 가부시키가이샤 질소함유환을 포함하는 실란 화합물을 포함하는 코팅 조성물
WO2019139167A1 (ja) * 2018-01-15 2019-07-18 日産化学株式会社 ハイブリッド樹脂組成物
CN109734917A (zh) * 2018-12-20 2019-05-10 上海东大化学有限公司 一种硅醇型硅酮树脂及其制备方法
TW202104380A (zh) * 2019-03-08 2021-02-01 德商馬克專利公司 用於製備介電材料的可交聯矽氧烷化合物
CN111825884B (zh) * 2020-03-17 2022-04-22 波米科技有限公司 一类具有脲基和酰亚胺结构的硅烷偶联剂及其制备方法和应用
CN111393857B (zh) * 2020-04-26 2022-06-07 湖北回天新材料股份有限公司 邻苯二甲酰亚胺改性室温硫化防火硅橡胶及其制备方法
CN112812750B (zh) * 2021-01-26 2021-12-14 山西万家暖节能科技有限公司 硅烷偶联剂在储能新材料和太阳能新能源供热***中的用途
CN112778980B (zh) * 2021-01-26 2021-12-14 山西万家暖节能科技有限公司 一种提高传热传质效率的储能新材料
CN114456205B (zh) * 2021-09-28 2022-10-28 波米科技有限公司 一种三氮唑基硅烷偶联剂及其制备方法、应用
CN114755883B (zh) * 2021-11-24 2022-11-29 波米科技有限公司 感光性树脂组合物及其制备方法和应用
CN114958199A (zh) * 2022-04-25 2022-08-30 开封夸克新材料有限公司 一种环保型超耐侯预涂板材涂料及其制备方法
CN115466393B (zh) * 2022-10-19 2023-08-08 开封大学 一种不燃轻质复合材料及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252487A (ja) * 1984-04-27 1985-12-13 ゼネラル・エレクトリツク・カンパニイ シロキサンイミドジオ−ルおよびこれから得られるシロキサンイミド有機ブロツクポリマ−
JPH02501834A (ja) * 1988-03-22 1990-06-21 ラッキー,リミティド イミド基を含有するポリシロキサン及びその製造方法
JPH04211427A (ja) * 1984-02-27 1992-08-03 General Electric Co <Ge> エポキシ樹脂硬化剤
JPH051078A (ja) * 1990-11-15 1993-01-08 Kanegafuchi Chem Ind Co Ltd 反応性ケイ素基含有イミド化合物の製法
WO2002102812A1 (en) * 2001-06-13 2002-12-27 Konishi Co., Ltd. Unsaturated organic compounds having hydrolyzable silicon-containing groups, process for producing the same, silicon-containing polymers and emulsions thereof
JP2003043688A (ja) 2001-05-21 2003-02-13 Tokyo Ohka Kogyo Co Ltd 厚膜用ネガ型ホトレジスト組成物、ホトレジスト膜およびこれを用いたバンプ形成方法
JP2005049691A (ja) 2003-07-30 2005-02-24 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの製造方法
JP2005283786A (ja) 2004-03-29 2005-10-13 Jsr Corp マイクロレンズ反射防止膜用硬化性組成物及びこれを用いたマイクロレンズ用反射防止積層体
JP2006251794A (ja) * 2005-02-24 2006-09-21 Internatl Business Mach Corp <Ibm> フォトリソグラフィ・プロセス用のフォトレジスト・トップコート
JP2007031321A (ja) * 2005-07-25 2007-02-08 Shin Etsu Chem Co Ltd オルガノシロキサンが結合したイミドの製造方法、及びオルガノシロキサンが結合したアミド酸トリオルガノシリルエステルとその製造方法
JP2007119744A (ja) 2005-09-28 2007-05-17 Toray Ind Inc 熱硬化性樹脂組成物
JP2007163720A (ja) * 2005-12-13 2007-06-28 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007246877A (ja) 2005-10-03 2007-09-27 Toray Ind Inc シロキサン系樹脂組成物、光学物品およびシロキサン系樹脂組成物の製造方法
WO2008065944A1 (fr) * 2006-11-30 2008-06-05 Toray Industries, Inc. Composition de siloxane photosensible, film durci formé à partir de celle-ci et dispositif ayant le film durci

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213914A (en) * 1974-10-01 1980-07-22 Rhone-Poulenc Industries Ethylenic silicon compounds and thermoplastic elastomers obtained therefrom
US4582886A (en) 1984-02-27 1986-04-15 General Electric Company Heat curable epoxy resin compositions and epoxy resin curing agents
DE3715313A1 (de) * 1986-09-02 1988-03-10 Gen Electric Imidopolysiloxane und verfahren zu ihrer herstellung
DE3631125A1 (de) * 1986-09-12 1988-03-24 Wacker Chemie Gmbh Verfahren zur herstellung von organopolysiloxanelastomeren und neue organosiliciumverbindungen

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211427A (ja) * 1984-02-27 1992-08-03 General Electric Co <Ge> エポキシ樹脂硬化剤
JPS60252487A (ja) * 1984-04-27 1985-12-13 ゼネラル・エレクトリツク・カンパニイ シロキサンイミドジオ−ルおよびこれから得られるシロキサンイミド有機ブロツクポリマ−
JPH02501834A (ja) * 1988-03-22 1990-06-21 ラッキー,リミティド イミド基を含有するポリシロキサン及びその製造方法
JPH051078A (ja) * 1990-11-15 1993-01-08 Kanegafuchi Chem Ind Co Ltd 反応性ケイ素基含有イミド化合物の製法
JP2003043688A (ja) 2001-05-21 2003-02-13 Tokyo Ohka Kogyo Co Ltd 厚膜用ネガ型ホトレジスト組成物、ホトレジスト膜およびこれを用いたバンプ形成方法
WO2002102812A1 (en) * 2001-06-13 2002-12-27 Konishi Co., Ltd. Unsaturated organic compounds having hydrolyzable silicon-containing groups, process for producing the same, silicon-containing polymers and emulsions thereof
JP2005049691A (ja) 2003-07-30 2005-02-24 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの製造方法
JP2005283786A (ja) 2004-03-29 2005-10-13 Jsr Corp マイクロレンズ反射防止膜用硬化性組成物及びこれを用いたマイクロレンズ用反射防止積層体
JP2006251794A (ja) * 2005-02-24 2006-09-21 Internatl Business Mach Corp <Ibm> フォトリソグラフィ・プロセス用のフォトレジスト・トップコート
JP2007031321A (ja) * 2005-07-25 2007-02-08 Shin Etsu Chem Co Ltd オルガノシロキサンが結合したイミドの製造方法、及びオルガノシロキサンが結合したアミド酸トリオルガノシリルエステルとその製造方法
JP2007119744A (ja) 2005-09-28 2007-05-17 Toray Ind Inc 熱硬化性樹脂組成物
JP2007246877A (ja) 2005-10-03 2007-09-27 Toray Ind Inc シロキサン系樹脂組成物、光学物品およびシロキサン系樹脂組成物の製造方法
JP2007163720A (ja) * 2005-12-13 2007-06-28 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
WO2008065944A1 (fr) * 2006-11-30 2008-06-05 Toray Industries, Inc. Composition de siloxane photosensible, film durci formé à partir de celle-ci et dispositif ayant le film durci

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2239301A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039023A (ja) * 2008-08-01 2010-02-18 Jsr Corp 感放射線性組成物、その製造方法、ならびにパターン形成方法
WO2011114995A1 (ja) * 2010-03-17 2011-09-22 東レ株式会社 シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
CN102803274A (zh) * 2010-03-17 2012-11-28 东丽株式会社 硅烷偶联剂、负型感光性树脂组合物、固化膜、及触控面板用构件
JP5459315B2 (ja) * 2010-03-17 2014-04-02 東レ株式会社 シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
CN102803274B (zh) * 2010-03-17 2015-07-29 东丽株式会社 硅烷偶联剂、负型感光性树脂组合物、固化膜、及触控面板用构件
KR101839397B1 (ko) 2010-03-17 2018-03-16 도레이 카부시키가이샤 실란커플링제, 네거티브형 감광성 수지 조성물, 경화막, 및 터치 패널용 부재
JP2012107094A (ja) * 2010-11-16 2012-06-07 Jnc Corp 新規物質及び熱硬化性組成物
JP2013014680A (ja) * 2011-07-04 2013-01-24 Toray Ind Inc シロキサン系樹脂組成物およびその製造方法、それを硬化してなる硬化膜ならびにそれを有する光学物品および固体撮像素子
WO2013146130A1 (ja) * 2012-03-30 2013-10-03 東レ株式会社 シランカップリング剤、感光性樹脂組成物、硬化膜及びタッチパネル部材
JP2014125430A (ja) * 2012-12-25 2014-07-07 Dow Corning Toray Co Ltd イミド基含有有機ケイ素化合物の製造方法
JP2015021029A (ja) * 2013-07-17 2015-02-02 東レ株式会社 組成物、これを用いた反射防止層およびその形成方法、ならびにそれを有するガラスおよび太陽電池モジュール
US9221849B2 (en) 2014-01-24 2015-12-29 Shin-Etsu Chemical Co., Ltd. Silane coupling agent, making method, primer composition, and coating composition
JP2015137271A (ja) * 2014-01-24 2015-07-30 信越化学工業株式会社 シランカップリング剤及びその製造方法、プライマー組成物並びに塗料組成物
KR20150088733A (ko) 2014-01-24 2015-08-03 신에쓰 가가꾸 고교 가부시끼가이샤 실란 커플링제 및 그의 제조 방법, 프라이머 조성물 및 도료 조성물
US11525044B2 (en) 2015-12-25 2022-12-13 Nikon-Essilor Co., Ltd. Hard-coat-layer-forming composition and optical member
WO2017110522A1 (ja) * 2015-12-25 2017-06-29 株式会社ニコン・エシロール ハードコート層形成用組成物、および、光学部材
JPWO2017110522A1 (ja) * 2015-12-25 2018-11-22 株式会社ニコン・エシロール ハードコート層形成用組成物、および、光学部材
WO2018193979A1 (ja) * 2017-04-17 2018-10-25 株式会社ダイセル フッ素含有エポキシ変性シルセスキオキサン、及びそれを含む硬化性組成物
JP2018178003A (ja) * 2017-04-17 2018-11-15 株式会社ダイセル フッ素含有エポキシ変性シルセスキオキサン、及びそれを含む硬化性組成物
WO2019107196A1 (ja) * 2017-11-30 2019-06-06 ダウ・東レ株式会社 硬化性シリコーンゴム組成物
JPWO2019107196A1 (ja) * 2017-11-30 2020-11-26 ダウ・東レ株式会社 硬化性シリコーンゴム組成物
JP7116085B2 (ja) 2017-11-30 2022-08-09 ダウ・東レ株式会社 硬化性シリコーンゴム組成物
US11505703B2 (en) 2017-11-30 2022-11-22 Dow Toray Co., Ltd. Curable silicone rubber composition
JPWO2020066127A1 (ja) * 2018-09-27 2021-09-24 Jsr株式会社 固体撮像素子
WO2020066127A1 (ja) * 2018-09-27 2020-04-02 Jsr株式会社 固体撮像素子
JP7230924B2 (ja) 2018-09-27 2023-03-01 Jsr株式会社 固体撮像素子
JP7376347B2 (ja) 2019-12-25 2023-11-08 東京応化工業株式会社 樹脂組成物、硬化物、及びシロキサン変性(メタ)アクリル樹脂

Also Published As

Publication number Publication date
EP2239301A1 (en) 2010-10-13
TWI437029B (zh) 2014-05-11
EP2239301B1 (en) 2016-04-27
US20100316953A1 (en) 2010-12-16
CN101910318A (zh) 2010-12-08
KR101471234B1 (ko) 2014-12-09
EP2239301A4 (en) 2013-11-06
JP5375094B2 (ja) 2013-12-25
TW200932791A (en) 2009-08-01
CN101910318B (zh) 2012-10-24
KR20100117581A (ko) 2010-11-03
US8389649B2 (en) 2013-03-05
JPWO2009096050A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5375094B2 (ja) シロキサン系樹脂組成物
JP4973093B2 (ja) シロキサン系樹脂組成物、光学物品およびシロキサン系樹脂組成物の製造方法
JP5907235B2 (ja) シロキサン樹脂組成物およびその製造方法
JP5509675B2 (ja) シロキサン系樹脂組成物およびこれを用いた光学デバイス
JP6201280B2 (ja) シロキサン系樹脂組成物の製造方法、それを用いた硬化膜、光学物品および固体撮像素子の製造方法
JP7027886B2 (ja) 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
JP2015232122A (ja) 熱硬化性組成物
JP2008248239A (ja) シロキサン樹脂組成物、それを用いた硬化膜および光学デバイス
JP5418617B2 (ja) シロキサン系樹脂組成物、硬化膜および光学物品
JP2011173738A (ja) 透明焼成体
JP5353011B2 (ja) シロキサン系樹脂組成物、これを用いた光学デバイスおよびシロキサン系樹脂組成物の製造方法
JP2010026360A (ja) ネガ型感光性シロキサン樹脂組成物
JP6489288B1 (ja) 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板
JP7127194B2 (ja) シロキサン樹脂組成物、これを用いたマイクロレンズ若しくは透明画素、固体撮像素子
JP2013014680A (ja) シロキサン系樹脂組成物およびその製造方法、それを硬化してなる硬化膜ならびにそれを有する光学物品および固体撮像素子
JP2020100819A (ja) 樹脂組成物、硬化膜およびその製造方法
JP2021063144A (ja) 着色樹脂組成物、着色被膜および着色樹脂被覆ガラス基板
JP2010222431A (ja) シロキサン系樹脂組成物
JP2017178985A (ja) シロキサン系樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124628.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008527243

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008764722

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107016789

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12864832

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE