WO2009017136A1 - Method of recovering catalyst metals - Google Patents

Method of recovering catalyst metals Download PDF

Info

Publication number
WO2009017136A1
WO2009017136A1 PCT/JP2008/063616 JP2008063616W WO2009017136A1 WO 2009017136 A1 WO2009017136 A1 WO 2009017136A1 JP 2008063616 W JP2008063616 W JP 2008063616W WO 2009017136 A1 WO2009017136 A1 WO 2009017136A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chalcogen element
metal
component
recovering
Prior art date
Application number
PCT/JP2008/063616
Other languages
French (fr)
Japanese (ja)
Inventor
Yukiyoshi Ueno
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009017136A1 publication Critical patent/WO2009017136A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • C22B11/026Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering catalytic metal from a chalcogen element-containing catalyst such as a fuel cell electrode catalyst.
  • the present invention relates to a catalytic metal recovery method that does not generate a toxic gas such as SOX from an electrode catalyst for a fuel cell, which is an alternative to a platinum catalyst and is composed of at least one transition metal element and at least one chalcogen element. .
  • an expensive noble metal such as platinum is generally used as an electrode catalyst. Therefore, recycling of precious metals and other catalytic metals is being considered.
  • an ion exchange membrane Z electrode assembly for a fuel cell is dissolved in a solvent that dissolves the fluorine-containing polymer, and the fluorine-containing polymer solution and the catalyst metal are contained.
  • a method is disclosed in which a fluorine-containing polymer separated into an insoluble part and recovered is reused as an ion exchange membrane or an electrocatalyst coating agent.
  • a method for recovering the catalyst metal it is disclosed to subject the insoluble part including the conductive support carrying the catalyst metal to combustion or aqua regia treatment.
  • the present applicants disclosed in Japanese Patent Application Laid-Open Nos. 2004-171921, 2005-235511, and 2005-289001 that sulfonic acid, which is also an expensive and useful material, from spent fuel cells to catalytic metals.
  • Invented a method for recovering a fluoropolymer having a group but in any case, specific methods for recovering a catalytic metal remove a carrier such as carbon by burning an insoluble part including a conductive carrier supporting the catalytic metal.
  • the catalyst metal is recovered by removing the carrier such as carbon by applying aqua regia treatment to the force or the insoluble matter.
  • the catalytic metals disclosed in the above-mentioned patent documents are all directed to platinum and platinum alloys, and do not relate to a method for recovering catalytic metal from a chalcogen element-containing catalyst (chalcogenide-based catalyst).
  • chalcogen element-containing catalyst chalcogenai
  • oxides chalcogen element such as S Ox is C_ ⁇ 2 simultaneously toxic gas during recovery there is a problem that occurs.
  • platinum or a platinum alloy catalyst is mainly used as the anode catalyst of the polymer electrolyte fuel cell.
  • a catalyst in which a noble metal including platinum is supported on carbon black has been used.
  • material costs One way to solve this is to reduce the amount of platinum.
  • JP 2001-502467 A discloses an electrocatalyst composed of at least one transition metal and chalcogen as a platinum substitute catalyst, and Ru as the transition metal and S or S as the chalcogen.
  • An electrocatalyst comprising e is disclosed.
  • the molar ratio of Ru: 36 is in the range of 0.5 to 2 and that the stoichiometric number n of (Ru) nSe is 1.5 to 2.
  • JP 2004-532734 A discloses a fuel cell having a transition metal selected from Fe or Ru, a nitrogen-containing organometallic transition complex, and a chalcogen component such as S as an alternative catalyst for Pt. Catalyst materials for use are disclosed.
  • J. Chem. Soc., Faraday Trans., 1996, 92 (21), 431 1-4319 include the two elements Ru—S, Mo_S, and Mo_Ru—S. And three-way electrocatalysts and methods for their synthesis are disclosed.
  • the present invention aims to efficiently reuse rare and expensive catalyst metals by recovering the catalyst metal, which is a component of the chalcogen element-containing catalyst, from the used chalcogen element-containing catalyst in a pollution-free manner. Objective.
  • the present inventor solved the above problem by a method of first removing the chalcogen element component from the spent catalyst, which is a new method replacing the conventional method of directly removing the carbon component from the spent catalyst using hot aqua regia.
  • the present invention has been reached.
  • the present invention is an invention of a method for recovering a catalytic metal from a chalcogen element-containing catalyst, wherein the electrocatalyst is heated in a hydrogen-containing inert gas to remove the force rucogen element in the electrocatalyst. Including a chalcogen element component removing step.
  • the catalytic metal recovery method of the present invention the chalcogen element contained in the chalcogen element-containing catalyst can be easily and safely removed without generating chalcogen element oxides such as Sx.
  • the chalcogen element component removing step it is preferable to include a carbon component removing step of removing the carbon component by immersing the electrode catalyst in hot aqua regia.
  • a carbon component removing step of removing the carbon component by immersing the electrode catalyst in hot aqua regia By continuing the chalcogen element component removal step and the carbon component removal step, the chalcogen element contained in the chalcogen element-containing catalyst and the carbon component contained in the chalcogen element-containing catalyst can be removed in the subsequent process. Recovery of useful metal components is facilitated.
  • the recovery of the metal component is preferably performed after the carbon component removal step by recovering the metal component dissolved in the aqua regia and recovering other metal components from the precipitate not dissolved in the aqua regia.
  • Aqua regia is a liquid in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a volume ratio of 3: 1. Especially, heated aqua regia has strong acidity and Insoluble transition metals can also be dissolved.
  • a method of adsorbing a metal component to an adsorbent such as is preferably exemplified.
  • the catalytic metal recovery method of the present invention can be used widely for used chalcogen element-containing catalysts.
  • the chalcogen element-containing catalyst an electrode catalyst for a chalcogen element-containing fuel cell that is attracting attention as a platinum substitute catalyst for a polymer electrolyte fuel cell is suitable.
  • the chalcogen element-containing fuel cell electrode catalyst is for a fuel cell in which at least one transition metal element (M) and at least one chalcogen element (X) are supported on a conductive support such as carbon black.
  • An electrode catalyst is mentioned.
  • Transition metal elements include ruthenium (Ru), molybdenum (Mo), osmium (O s), cobalt (Co), rhodium (Rh), iridium (I r), iron (F e), nickel
  • Ru ruthenium
  • Mo molybdenum
  • Mo molybdenum
  • Mo molybdenum
  • O s osmium
  • Co cobalt
  • Co rhodium
  • I r iridium
  • iron Fe
  • nickel nickel
  • chalcogen element include io (S), selenium (S e), and One or more types selected from pi tellurium (Te) are preferably exemplified.
  • Mo—S / C is preferably exemplified.
  • FIG. 1 shows a flow chart of metal recovery in this example.
  • Fig. 1 shows a flow chart of metal recovery in this example.
  • RuMo S / C catalyst As a chalcogen element-containing catalyst, RuMo S / C catalyst was used. Ketjen B lack (trade name) is used as a carbon support. Heated noretenium carboninole, molybdenum carbonyl, and io in a / legon at 140 ° C, cooled, washed with acetone and filtered. do. RuMo o SZC as a filtrate was calcined at 350 ° C for 2 hours to prepare a RuMo S / C catalyst.
  • RuMo S / C catalyst In order to separate the used RuMo S / C catalyst from MEA, for example, it is dissolved using heated methanol and separated by centrifugation or the like. At this time, the fluorine-containing polymer used as a polymer electrolyte or a reinforcing material is separated.
  • RuMo S / C is heated to, for example, 400 ° C. in a mixed gas of H 2 gas and inert gas such as N 2 to remove the S component to RuMo / C (force Lucogen element component removal step).
  • chalcogen elements contained in the chalcogen element-containing catalyst can be easily and safely removed without generating chalcogen element acids such as S Ox.
  • the removed S component can be captured with a filter.
  • RuMo S / C is immersed in a hot water and aqua regia to remove the carbon component (carbon component removing step).
  • carbon component removing step By continuing the chalcogen element component removal step and the carbon component removal step, it is possible to remove the chalcogen element contained in the chalcogen element-containing catalyst and the carbon component contained in the chalcogen element-containing catalyst as well.
  • the generated S is decomposed and recovered with a photocatalyst.
  • a step of recovering the Ruc 1 3 is a precipitate or we other metal components which do not dissolve in aqua regia.
  • Mo salt which is a metal component dissolved in aqua regia, is recovered (metal component recovery step).
  • preferable recovery is appropriately used depending on the metal species contained in the target catalyst.
  • RuC l 3 precipitated as an insoluble deciduous salt is alkali-melted with NaHSO 4 or the like and leached with H 2 O to obtain a Ru aqueous solution.
  • excess in Ru aqueous solution The N a OH is removed, and Cl 2 gas is blown into (NH 4 ) 2 Ru C 16 to volatilize and separate. From volatile components (NH 4) to precipitate the salt containing 2 RuC 1 6, recovered.
  • (NH 4 ) 2 RuC 1 6 is reduced from volatile components with H 2 gas and recovered as Ru alone. The recovery rate was almost 100%.
  • the catalyst metal which is a component of the chalcogen element-containing catalyst, is recovered from the used chalcogen element-containing catalyst in a non-polluting manner, contributing to environmental conservation and efficiently reusing rare and expensive catalyst metals.
  • the recycling of valuable transition metals, etc. is promoted, and the cost reduction of fuel cells contributes to their practical application and spread. .

Abstract

A method of recovering catalyst metals from a catalyst containing a chalcogen element. The method includes: a chalcogen element ingredient removal step in which the electrode catalyst is heated in a hydrogen-containing inert gas to remove the chalcogen element from the electrode catalyst; and a carbon ingredient removal step in which the electrode catalyst is then immersed in hot aqua regia to remove a carbon ingredient therefrom. A metal ingredient which has dissolved in the aqua regia is recovered, and another metal ingredient is recovered from the sediment remaining undissolved in the aqua regia. Thus, the catalyst metals which are components of a spent catalyst containing a chalcogen element are recovered from the chalcogen-element-containing catalyst in a pollution-free manner. Furthermore, the catalyst metals, which are scarce and expensive, are efficiently reutilized.

Description

触媒金属回収方法 技術分野 Catalytic metal recovery method Technical field
本発明は、 燃料電池用電極触媒などのカルコゲン元素含有触媒からの触媒金属 回収方法に関する。 特に、 白金触媒の代替となる、 少なくとも 1種の遷移金属元 素と少なくとも 1種のカルコゲン元明素からなる燃料電池用電極触媒から S O Xな どの有毒ガスを発生させることの無い触媒金属回収方法に関する。  The present invention relates to a method for recovering catalytic metal from a chalcogen element-containing catalyst such as a fuel cell electrode catalyst. In particular, the present invention relates to a catalytic metal recovery method that does not generate a toxic gas such as SOX from an electrode catalyst for a fuel cell, which is an alternative to a platinum catalyst and is composed of at least one transition metal element and at least one chalcogen element. .
 book
背景技術 Background art
固体高分子型燃料電池には電極触媒として、 一般に白金等の高価な貴金属類が 用いられている。 そこで、 貴金属等の触媒金属をリサイクルすることが考えられ ている。 例えば、 特開平 1 1— 288732号公報には、 含フッ素ポリマーを溶 解する溶媒中で、 燃料電池用イオン交換膜 Z電極接合体の溶解処理を行い、 該含 フッ素ポリマー溶液と触媒金属を含む不溶物部分とに分離し、 回収された含フッ 素ポリマーを、 イオン交換膜おょぴ zまたは電極触媒被覆剤として再利用する方 法が開示されている。 又、 触媒金属の回収方法として、 触媒金属を担持した導電 性担体を含む不溶物部分に、 燃焼または王水処理を施すことが開示されている。 本出願人は、 特開 2004— 171921号公報、 特開 2005— 23551 1号公報及び特開 2005— 289001号公報に、 使用済み燃料電池から触媒 金属と、 同じく高価で有用な材料であるスルホン酸基を有する含フッ素ポリマー を回収する方法を発明したが、 いずれも触媒金属の具体的回収方法は、 触媒金属 を担持した導電性担体を含む不溶物部分を燃焼させてカーボンなどの担体を除去 する力 \ 又は該不溶物部分に王水処理を施すことによりカーボンなどの担体を酸 ィ匕 ·除去して、 触媒金属を回収するものである。  In the polymer electrolyte fuel cell, an expensive noble metal such as platinum is generally used as an electrode catalyst. Therefore, recycling of precious metals and other catalytic metals is being considered. For example, in Japanese Patent Application Laid-Open No. 11-288732, an ion exchange membrane Z electrode assembly for a fuel cell is dissolved in a solvent that dissolves the fluorine-containing polymer, and the fluorine-containing polymer solution and the catalyst metal are contained. A method is disclosed in which a fluorine-containing polymer separated into an insoluble part and recovered is reused as an ion exchange membrane or an electrocatalyst coating agent. In addition, as a method for recovering the catalyst metal, it is disclosed to subject the insoluble part including the conductive support carrying the catalyst metal to combustion or aqua regia treatment. The present applicants disclosed in Japanese Patent Application Laid-Open Nos. 2004-171921, 2005-235511, and 2005-289001 that sulfonic acid, which is also an expensive and useful material, from spent fuel cells to catalytic metals. Invented a method for recovering a fluoropolymer having a group, but in any case, specific methods for recovering a catalytic metal remove a carrier such as carbon by burning an insoluble part including a conductive carrier supporting the catalytic metal. The catalyst metal is recovered by removing the carrier such as carbon by applying aqua regia treatment to the force or the insoluble matter.
上記特許文献に開示された触媒金属は、 いずれも白金や白金合金を対象とする ものであり、 カルコゲン元素含有触媒 (カルコゲナイド系触媒) 力 らの触媒金属 回収方法に関するものではない。 仮に、 カルコゲン元素含有触媒 (カルコゲナイ ド系触媒) 力 らの触媒金属回収に、 上記のような、 触媒金属を担持した導電性担 体を含む不溶物部分を燃焼させるか、 又は該不溶物部分に王水処理を施したとす ると、 回収時に C〇2と同時に有毒ガスである S Oxなどのカルコゲン元素の酸 化物が発生するという問題がある。 The catalytic metals disclosed in the above-mentioned patent documents are all directed to platinum and platinum alloys, and do not relate to a method for recovering catalytic metal from a chalcogen element-containing catalyst (chalcogenide-based catalyst). Suppose chalcogen element-containing catalyst (chalcogenai For example, it is assumed that the insoluble matter portion containing the conductive carrier supporting the catalyst metal is burned or the aqua regia treatment is applied to the insoluble matter portion for recovery of the catalytic metal from the force. that when, oxides chalcogen element such as S Ox is C_〇 2 simultaneously toxic gas during recovery there is a problem that occurs.
ところで、 高分子電解質型燃料電池のアノード用触媒としては主として白金や 白金合金系触媒が用いられることは上述の通りである。 具体的には、 白金を含む 貴金属をカーボンブラックに担持した触媒が用いられてきた。 高分子電解質型燃 料電池を実用化する上での課題の一つは、 材料コストである。 これを解決する手 段の一つが白金量の低減である。  By the way, as described above, platinum or a platinum alloy catalyst is mainly used as the anode catalyst of the polymer electrolyte fuel cell. Specifically, a catalyst in which a noble metal including platinum is supported on carbon black has been used. One of the challenges in putting polymer electrolyte fuel cells into practical use is material costs. One way to solve this is to reduce the amount of platinum.
一方、 酸素 (o2) を電解還元すると、 1電子還元ではスーパーォキシドが生 成し、 2電子還元では過酸化水素が生成し、 4電子還元では水が生成することが 知られている。電極として白金や白金系触媒を用いた燃料電池セルスタックでは、 何らかの原因で電圧低下が生じると、 4電子還元性が低下し、 2電子還元性とな つてしまう。このため、過酸化水素を発生し、 ME Aの劣化の原因となっていた。 最近、 酸素を 4電子還元して水を生成させる反応により、 高価な白金触媒を必 要としない低コスト型の燃料電池触媒の開発が行われている。 E 1 e c t r o c h im i c a Ac t a, v o l . 39, No. 1 1/12, p p. 1647- 1653, 1994には、 カルコゲン元素を有する触媒が 4電子還元性に優れて いることが開示され、 燃料電池への適用も示唆されている。 On the other hand, it is known that when oxygen (o 2 ) is electrolytically reduced, superoxide is produced by 1-electron reduction, hydrogen peroxide is produced by 2-electron reduction, and water is produced by 4-electron reduction. In a fuel cell stack using platinum or a platinum-based catalyst as an electrode, if the voltage drops for any reason, the 4-electron reducibility will be reduced, and the 2-electron reducibility will become. For this reason, hydrogen peroxide was generated, causing deterioration of ME A. Recently, a low-cost fuel cell catalyst that does not require an expensive platinum catalyst has been developed by a reaction in which oxygen is reduced by four electrons to produce water. E 1 ectroch im ica Ac ta, vol. 39, No. 1 1/12, pp. 1647-1653, 1994 discloses that a catalyst having a chalcogen element is excellent in 4-electron reductive properties. Application to batteries has also been suggested.
同様に、 特表 2001-502467号公報には、 白金代替触媒として、 少な くとも 1種の遷移金属及ぴカルコゲンからなる電極触媒であって、 該遷移金属と して Ru、 カルコゲンとして S又は S eからなる電極触媒が開示されている。 こ こで、 Ru: 36のモル比が0. 5〜2の範囲であり、 且つ (Ru) nS eの化 学量論数 nが 1. 5〜 2である旨が開示されている。  Similarly, JP 2001-502467 A discloses an electrocatalyst composed of at least one transition metal and chalcogen as a platinum substitute catalyst, and Ru as the transition metal and S or S as the chalcogen. An electrocatalyst comprising e is disclosed. Here, it is disclosed that the molar ratio of Ru: 36 is in the range of 0.5 to 2 and that the stoichiometric number n of (Ru) nSe is 1.5 to 2.
また、 特表 2004— 532734号公報には、 P t代替触媒として、 F e又 は Ruから選択される遷移金属と、 窒素含有有機金属遷移錯体、 及ぴ S等のカル コゲン成分を有する燃料電池用触媒材料が開示されてレ、る。  In addition, JP 2004-532734 A discloses a fuel cell having a transition metal selected from Fe or Ru, a nitrogen-containing organometallic transition complex, and a chalcogen component such as S as an alternative catalyst for Pt. Catalyst materials for use are disclosed.
更に、 J. Ch em. S o c.、 F a r a d a y Tr a n s., 1996, 92 (21), 431 1-4319には、 Ru— S、 Mo_S、 Mo_Ru— Sの二元 系及び三元系電極触媒、 及びその合成方法が開示されている。 In addition, J. Chem. Soc., Faraday Trans., 1996, 92 (21), 431 1-4319 include the two elements Ru—S, Mo_S, and Mo_Ru—S. And three-way electrocatalysts and methods for their synthesis are disclosed.
更に、 E l e c t r o c h im i c a Ac t a, v o l . 45, p p. 42 37-4250, 2000には、 Ru— Mo— S、 R u— M o— S eの三元系力 ルコゲナイド電極触媒が開示されている。 発明の開示  Furthermore, E lectroch im ica Acta, vol. 45, p p. 42 37-4250, 2000 discloses Ru—Mo—S, Ru—Mo—Se e ternary force rucogenide electrocatalysts. ing. Disclosure of the invention
本発明は、 使用済みのカルコゲン元素含有触媒から、 カルコゲン元素含有触媒 の構成成分である触媒金属を無公害的に回収することで、 稀少且つ高価な触媒金 属を効率的に再利用することを目的とする。  The present invention aims to efficiently reuse rare and expensive catalyst metals by recovering the catalyst metal, which is a component of the chalcogen element-containing catalyst, from the used chalcogen element-containing catalyst in a pollution-free manner. Objective.
本発明者は、 従来の熱い王水を用いて使用済み触媒から直接炭素成分を除去す る方法に代わる新たな方法で、 使用済み触媒から先ずカルコゲン元素成分を除去 する方法によって上記課題が解決されることを見出し、 本発明に到達した。  The present inventor solved the above problem by a method of first removing the chalcogen element component from the spent catalyst, which is a new method replacing the conventional method of directly removing the carbon component from the spent catalyst using hot aqua regia. The present invention has been reached.
即ち、 第 1に、 本発明は、 カルコゲン元素含有触媒からの触媒金属回収方法の 発明であって、 該電極触媒を水素含有不活性ガス中で加熱して該電極触媒中の力 ルコゲン元素を除去するカルコゲン元素成分除去工程を含むことを特徴とする。 本発明の触媒金属回収方法を採用することにより、 S〇xなどのカルコゲン元 素酸化物が発生しないで、 カルコゲン元素含有触媒に含まれるカルコゲン元素を 容易に且つ安全に除去することができる。  That is, first, the present invention is an invention of a method for recovering a catalytic metal from a chalcogen element-containing catalyst, wherein the electrocatalyst is heated in a hydrogen-containing inert gas to remove the force rucogen element in the electrocatalyst. Including a chalcogen element component removing step. By employing the catalytic metal recovery method of the present invention, the chalcogen element contained in the chalcogen element-containing catalyst can be easily and safely removed without generating chalcogen element oxides such as Sx.
本発明では、 前記カルコゲン元素成分除去工程の後に、 該電極触媒を熱い王水 に浸漬して炭素成分を除去する炭素成分除去工程を含むことが好ましい。 カルコ ゲン元素成分除去工程と炭素成分除去工程を連続させることで、 カルコゲン元素 含有触媒に含まれるカルコゲン元素と、 同様にカルコゲン元素含有触媒に含まれ る炭素成分を除去することができ、後工程で有用な金属成分の回収が容易になる。 金属成分の回収は、 前記炭素成分除去工程の後に、 該王水に溶解した金属成分 を回収するとともに、 該王水に溶解しない沈殿物から他の金属成分を回収するェ 程を行うことが好ましい。 なお、王水(おうすい) とは、濃塩酸と濃硝酸とを 3 : 1の体積比で混合した液体であり、 特に熱した王水は、 酸ィ匕力が強く、 通常の酸 には溶けない遷移金属も溶解できる。  In the present invention, after the chalcogen element component removing step, it is preferable to include a carbon component removing step of removing the carbon component by immersing the electrode catalyst in hot aqua regia. By continuing the chalcogen element component removal step and the carbon component removal step, the chalcogen element contained in the chalcogen element-containing catalyst and the carbon component contained in the chalcogen element-containing catalyst can be removed in the subsequent process. Recovery of useful metal components is facilitated. The recovery of the metal component is preferably performed after the carbon component removal step by recovering the metal component dissolved in the aqua regia and recovering other metal components from the precipitate not dissolved in the aqua regia. . Aqua regia is a liquid in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a volume ratio of 3: 1. Especially, heated aqua regia has strong acidity and Insoluble transition metals can also be dissolved.
具体的な、 前記王水に溶解した金属成分を回収する工程としては、 ゼォライト などの吸着剤に金属成分を吸着させる方法が好ましく例示される。 Specifically, as a step of recovering the metal component dissolved in the aqua regia, A method of adsorbing a metal component to an adsorbent such as is preferably exemplified.
本発明の触媒金属回収方法は、 使用済みのカルコゲン元素含有触媒を広く対象 とすることができる。 この中で、 カルコゲン元素含有触媒として、 固体高分子型 燃料電池用に白金代替触媒として注目されている、 カルコゲン元素含有燃料電池 用電極触媒が好適である。  The catalytic metal recovery method of the present invention can be used widely for used chalcogen element-containing catalysts. Among these, as the chalcogen element-containing catalyst, an electrode catalyst for a chalcogen element-containing fuel cell that is attracting attention as a platinum substitute catalyst for a polymer electrolyte fuel cell is suitable.
前記カルコゲン元素含有燃料電池用電極触媒としては、 カーボンブラックなど の導電性担体に、 少なくとも 1種の遷移金属元素 (M) と少なくとも 1種のカル コゲン元素 (X) とが担持された燃料電池用電極触媒が挙げられる。  The chalcogen element-containing fuel cell electrode catalyst is for a fuel cell in which at least one transition metal element (M) and at least one chalcogen element (X) are supported on a conductive support such as carbon black. An electrode catalyst is mentioned.
遷移金属元素 (M) としては、 ルテニウム (Ru)、 モリブデン (Mo), ォス ニゥム (O s)、 コバルト (Co)、 ロジウム (Rh)、ィリジゥム (I r)、鉄(F e)、 ニッケル (N i )、 チタン (T i)、及ぴタングステン (W) から選択される 1種以上が好ましく例示され、 カルコゲン元素 (X) としては、 ィォゥ (S)、 セ レン(S e)、及ぴテルル(T e)から選択される 1種以上が好ましく例示される。 これらの中で、 遷移金属元素 (M) がルテニウム (Ru) 及ぴモリプデン (M o) であり、 カルコゲン元素 (X) がィォゥ (S) である触媒金属がカーボン材 料に担持された Ru— Mo— S/Cが好ましく例示される。  Transition metal elements (M) include ruthenium (Ru), molybdenum (Mo), osmium (O s), cobalt (Co), rhodium (Rh), iridium (I r), iron (F e), nickel One or more types selected from (N i), titanium (T i), and tungsten (W) are preferably exemplified, and examples of the chalcogen element (X) include io (S), selenium (S e), and One or more types selected from pi tellurium (Te) are preferably exemplified. Among these, the ruthenium (Ru) and molypden (M o) transition metal elements (M), and the catalytic metal whose chalcogen element (X) is io (S) is supported on a carbon material. Mo—S / C is preferably exemplified.
使用済みのカルコゲン元素含有触媒から、 カルコゲン元素含有触媒の構成成分 である触媒金属を無公害的に回収することで、 稀少且つ高価な触媒金属を効率的 に再利用することが可能となる。 特に、 白金触媒の代替となりうるカルコゲン元 素含有燃料電池用電極触媒に適用することで、 貴重な遷移金属等のリサイクルが 促進される。 図面の簡単な説明  By recovering the catalytic metal, which is a component of the chalcogen element-containing catalyst, from the used chalcogen element-containing catalyst in a non-polluting manner, it is possible to efficiently reuse the rare and expensive catalyst metal. In particular, by applying it to chalcogen element-containing fuel cell electrode catalysts that can replace platinum catalysts, recycling of precious transition metals and the like is promoted. Brief Description of Drawings
図 1は、 本実施例の金属回収のフロー図を示す。 発明を実施するための最良の形態  FIG. 1 shows a flow chart of metal recovery in this example. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例によって本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail by way of examples.
図 1に、 本実施例の金属回収のフロー図を示す。  Fig. 1 shows a flow chart of metal recovery in this example.
カルコゲン元素含有触媒として、 白金代替触媒として注目される RuMo S/ C触媒を用いた。 カーボン担体として Ke t j e n B l a c k (商標名) を用 い、 ノレテニゥムカルボ二ノレ、 モリブデンカルボニル、 ィォゥをァ /レゴン中で 14 0°Cで加熱し、 冷却の後、 アセトンで洗浄し、 ろ過をする。 ろ過物である RuM o SZCを 350°Cで 2時間焼成して RuMo S/C触媒を調整した。 As a chalcogen element-containing catalyst, RuMo S / C catalyst was used. Ketjen B lack (trade name) is used as a carbon support. Heated noretenium carboninole, molybdenum carbonyl, and io in a / legon at 140 ° C, cooled, washed with acetone and filtered. do. RuMo o SZC as a filtrate was calcined at 350 ° C for 2 hours to prepare a RuMo S / C catalyst.
なお、 使用済みの RuMo S/C触媒を MEAから分離するには、 例えば、 加 熱メタノールを用いて溶解し、 遠心分離などで分離する。 この際、 高分子電解質 や補強材料として用いられていた含フッ素ポリマーは分離する。  In order to separate the used RuMo S / C catalyst from MEA, for example, it is dissolved using heated methanol and separated by centrifugation or the like. At this time, the fluorine-containing polymer used as a polymer electrolyte or a reinforcing material is separated.
従来技術のように、 RuMo SZCに対して直接熱い王水によって炭素成分の 除去を図ると C02とともに有害な SO Xが発生して好ましくない。 又、 RuM o S Z Cに対して燃料電池処理を行うと揮発性の R u酸化物が飛散するという問 題もある。 As in the prior art, undesirable harmful SO X is generated with the C0 2 promote the removal of carbon components by directly hot aqua regia against RuMo SZC. There is also a problem that volatile Ru oxides are scattered when the fuel cell treatment is applied to RuMo SZC.
そこで、 本実施例では、 RuMo S/Cを H2ガスと N2などの不活性ガスの混 合ガス中で例えば 400°Cに加熱して S成分を除去して RuMo/Cとする (力 ルコゲン元素成分除去工程)。 これにより、 S Oxなどのカルコゲン元素酸ィヒ物が 発生しないで、 カルコゲン元素含有触媒に含まれるカルコゲン元素を容易に且つ 安全に除去することができる。 なお、 除去された S成分はフィルターなどで捕捉 出来る。 Therefore, in this example, RuMo S / C is heated to, for example, 400 ° C. in a mixed gas of H 2 gas and inert gas such as N 2 to remove the S component to RuMo / C (force Lucogen element component removal step). As a result, chalcogen elements contained in the chalcogen element-containing catalyst can be easily and safely removed without generating chalcogen element acids such as S Ox. The removed S component can be captured with a filter.
次に、 カルコゲン元素成分除去工程の後に、 RuMo S/Cを熱レ、王水に浸溃 して炭素成分を除去する (炭素成分除去工程)。カルコゲン元素成分除去工程と炭 素成分除去工程を連続させることで、 カルコゲン元素含有触媒に含まれるカルコ ゲン元素と、 同様にカルコゲン元素含有触媒に含まれる炭素成分を除去すること ができる。 なお、 発生した S分は、 光触媒などで分解.回収する。  Next, after the chalcogen element component removing step, RuMo S / C is immersed in a hot water and aqua regia to remove the carbon component (carbon component removing step). By continuing the chalcogen element component removal step and the carbon component removal step, it is possible to remove the chalcogen element contained in the chalcogen element-containing catalyst and the carbon component contained in the chalcogen element-containing catalyst as well. The generated S is decomposed and recovered with a photocatalyst.
金属成分の回収は、 前記炭素成分除去工程の後に、 王水に溶解しない沈殿物か ら他の金属成分である RuC 13を回収する工程を行う。 又、 王水に溶解した金 属成分である Mo塩ィ匕物を回収する (金属成分回収工程)。 なお、 これらの金属回 収方法としては、 対象とする触媒に含まれる金属種によって適宜好ましい回収が 用いられる。 Recovery of metal components, after said carbon component removing step, a step of recovering the Ruc 1 3 is a precipitate or we other metal components which do not dissolve in aqua regia. In addition, Mo salt, which is a metal component dissolved in aqua regia, is recovered (metal component recovery step). As these metal recovery methods, preferable recovery is appropriately used depending on the metal species contained in the target catalyst.
本実施例では、 不溶十生塩として沈殿した R uC l 3を、 NaHSO 4等によりァ ルカリ溶融し、 H2〇浸出させて、 Ru水溶液とする。 次に、 Ru水溶液に過剰 の N a OHをカロえ、 C l 2ガスを吹き込んで (NH4) 2R u C 16を揮発'分離す る。揮発成分から (NH4) 2RuC 16を含む塩を沈殿させ、 回収する。最後に、 揮発成分から(NH4) 2RuC 16を H2ガスで還元して Ru単体として回収する。 回収率はほぼ 100 %であった。 In this example, RuC l 3 precipitated as an insoluble deciduous salt is alkali-melted with NaHSO 4 or the like and leached with H 2 O to obtain a Ru aqueous solution. Next, excess in Ru aqueous solution The N a OH is removed, and Cl 2 gas is blown into (NH 4 ) 2 Ru C 16 to volatilize and separate. From volatile components (NH 4) to precipitate the salt containing 2 RuC 1 6, recovered. Finally, (NH 4 ) 2 RuC 1 6 is reduced from volatile components with H 2 gas and recovered as Ru alone. The recovery rate was almost 100%.
又、 王水に溶解した Mo C 15はゼォライト等の吸着剤に吸着させ、 Mo C 15 として分離して回収する。 Further, Mo C 1 5 dissolved in aqua regia adsorbed to adsorbent such as Zeoraito, separated and recovered as Mo C 1 5.
本実施例により、 RuMo SZC触媒から有害な SO Xを発生させること無く 貴重な遷移金属である R uと M oを分離 ·回収できた。 産業状の利用可能性  According to this example, it was possible to separate and recover precious transition metals Ru and Mo without generating harmful SO X from the RuMo SZC catalyst. Industrial applicability
使用済みのカルコゲン元素含有触媒から、 カルコゲン元素含有触媒の構成成分 である触媒金属を無公害的に回収すること環境保全に貢献するとともに、 稀少且 つ高価な触媒金属を効率的に再利用する。 特に、 白金触媒の代替となりうるカル コゲン元素含有燃料電池用電極触媒に適用することで、 貴重な遷移金属等のリサ イタルが促進され、燃料電池のコスト低減により、その実用化と普及に貢献する。  The catalyst metal, which is a component of the chalcogen element-containing catalyst, is recovered from the used chalcogen element-containing catalyst in a non-polluting manner, contributing to environmental conservation and efficiently reusing rare and expensive catalyst metals. In particular, by applying it to chalcogen element-containing fuel cell electrode catalysts that can replace platinum catalysts, the recycling of valuable transition metals, etc. is promoted, and the cost reduction of fuel cells contributes to their practical application and spread. .

Claims

靖 求 の 範 囲 Scope of request
カルコゲン元素含有触媒からの触媒金属回収方法であって、 該電極触媒を水素 含有不活性ガス中で加熱して該電極触媒中のカルコゲン元素を除去するカルコゲ ン元素成分除去工程を含むことを特徴とする触媒金属回収方法。 A method for recovering catalytic metal from a chalcogen element-containing catalyst, comprising a chalcogen element component removing step of heating the electrode catalyst in a hydrogen-containing inert gas to remove the chalcogen element in the electrode catalyst. To recover catalytic metal.
2 . 2.
前記カルコゲン元素成分除去工程の後に、 該電極触媒を熱い王水に浸漬して炭 素成分を除去する炭素成分除去工程を含むことを特徴とする請求の範囲第 1項に 記載の触媒金属回収方法。  The catalytic metal recovery method according to claim 1, further comprising a carbon component removal step of removing the carbon component by immersing the electrode catalyst in hot aqua regia after the chalcogen element component removal step. .
3 . 3.
前記炭素成分除去工程の後に、該王水に溶解した金属成分を回収するとともに、 該王水に溶解しない沈殿物から他の金属成分を回収する工程を含むことを特徴と する請求の範囲第 1又は 2項に記載の触媒金属回収方法。  The step of recovering a metal component dissolved in the aqua regia after the carbon component removing step and recovering another metal component from a precipitate that does not dissolve in the aqua regia is provided. Or the catalytic metal recovery method according to item 2.
4 . Four .
前記王水に溶解した金属成分を回収する工程が、 吸着剤に金属成分を吸着させ るものであることを特徴とする請求の範囲第 3項に記載の触媒金属回収方法。  4. The catalytic metal recovery method according to claim 3, wherein the step of recovering the metal component dissolved in the aqua regia is to adsorb the metal component to the adsorbent.
5 . Five .
前記カルコゲン元素含有触媒が、 カルコゲン元素含有燃料電池用電極触媒であ ることを特徴とする請求の範囲第 1乃至 4項のいずれかに記載の燃料電池用電極 触媒からの触媒金属回収方法。  5. The method for recovering a catalytic metal from a fuel cell electrode catalyst according to any one of claims 1 to 4, wherein the chalcogen element-containing catalyst is a chalcogen element-containing fuel cell electrode catalyst.
6 . 6.
前記カルコゲン元素含有燃料電池用電極触媒が、 導電性担体に、 少なくとも 1 種の遷移金属元素 (M) と少なくとも 1種のカルコゲン元素 (X) とが担持され た燃料電池用電極触媒であることを特徴とする請求の範囲第 5項に記載の触媒金 属回収方法。  The chalcogen element-containing fuel cell electrode catalyst is a fuel cell electrode catalyst in which at least one transition metal element (M) and at least one chalcogen element (X) are supported on a conductive support. 6. The catalytic metal recovery method according to claim 5, characterized in that it is characterized in that
7 . 7.
前記遷移金属元素 (M) 、 ルテニウム (R u)、 モリプデン (M o )、 ォスニ ゥム (O s )、 コノルト (C o )、 ロジウム (R h )、 イリジウム (I r )、 鉄 (F e)、 ニッケノレ (N i)、 チタン (T i)、 及ぴタングステン (W) 力、ら選択される 1種以上であり、 前記カルコゲン元素 (X) が、 ィォゥ (S)、 セレン (S e)、 及びテルル (Te) 力 ら選択される 1種以'上であることを特徴とする請求の範囲 第 6項に記載の触媒金属回収方法。 Transition metal elements (M), ruthenium (R u), molypden (M o), osmium (O s), connort (C o), rhodium (R h), iridium (I r), iron (F e), Nikkenore (N i), Titanium (T i), and Tungsten (W) forces, and the chalcogen element (X) is io (S), selenium (S e ), And at least one selected from tellurium (Te) force. The catalytic metal recovery method according to claim 6,
8. 8.
前記遷移金属元素(M) がルテニウム (Ru)及びモリブデン(Mo)であり、 前記カルコゲン元素 (X) がィォゥ (S) であることを特徴とする請求の範囲第 6項に記載の触媒金属回収方法。  7. The catalytic metal recovery according to claim 6, wherein the transition metal element (M) is ruthenium (Ru) and molybdenum (Mo), and the chalcogen element (X) is io (S). Method.
PCT/JP2008/063616 2007-07-27 2008-07-23 Method of recovering catalyst metals WO2009017136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-195673 2007-07-27
JP2007195673A JP4957432B2 (en) 2007-07-27 2007-07-27 Catalytic metal recovery method

Publications (1)

Publication Number Publication Date
WO2009017136A1 true WO2009017136A1 (en) 2009-02-05

Family

ID=40304366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063616 WO2009017136A1 (en) 2007-07-27 2008-07-23 Method of recovering catalyst metals

Country Status (2)

Country Link
JP (1) JP4957432B2 (en)
WO (1) WO2009017136A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143566B1 (en) * 2009-09-22 2012-05-09 리컴 주식회사 Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339283A (en) * 1976-09-22 1978-04-11 Mitsui Toatsu Chem Inc Reactivating method for catalyst
JPS63161129A (en) * 1986-12-23 1988-07-04 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell electrode
JPS63210246A (en) * 1987-02-25 1988-08-31 Tokuriki Honten Co Ltd Method for recovering noble metal from fuel cell electrode waste material and the like
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2005235504A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Method for reutilizing fluorine-containing polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339283A (en) * 1976-09-22 1978-04-11 Mitsui Toatsu Chem Inc Reactivating method for catalyst
JPS63161129A (en) * 1986-12-23 1988-07-04 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell electrode
JPS63210246A (en) * 1987-02-25 1988-08-31 Tokuriki Honten Co Ltd Method for recovering noble metal from fuel cell electrode waste material and the like
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2005235504A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Method for reutilizing fluorine-containing polymers

Also Published As

Publication number Publication date
JP2009028653A (en) 2009-02-12
JP4957432B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Kasian et al. Electrochemical on‐line ICP‐MS in electrocatalysis research
JP6554266B2 (en) Fuel cell electrode catalyst and method for activating the catalyst
RU2393942C2 (en) Method of producing metal-coated particles of palladium or palladium alloy
JP5329405B2 (en) catalyst
US9680160B2 (en) Extended two dimensional metal nanotubes and nanowires useful as fuel cell catalysts and fuel cells containing the same
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
KR101735132B1 (en) Platinum and palladium alloys suitable as fuel cell electrodes
TW200938637A (en) Method for recovery of noble metals
Yue et al. Mechanisms of Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction on High-Index Platinum n (111)–(111) Surfaces
KR20150044407A (en) Fabrication of nano porous metal formed by osmium or rhenium dissolution and the nano porous metal thereof
JP4530003B2 (en) Fuel cell electrode catalyst and solid polymer fuel cell using the same
Sharma et al. Recovery of Pt and Ru from spent low-temperature polymer electrolyte membrane fuel cell electrodes and recycling of Pt by direct redeposition of the dissolved precursor on carbon
WO2005103337A1 (en) Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
Alia et al. Platinum nickel nanowires as methanol oxidation electrocatalysts
JP4649574B2 (en) Anode catalyst for polymer electrolyte fuel cell
US7851399B2 (en) Method of making chalcogen catalysts for polymer electrolyte fuel cells
EP3574122B1 (en) Process for the recovery of platinum and cobalt from fuel cells
JP6438890B2 (en) Method for producing non-platinum group metal (PGM) catalyst material
JP4957432B2 (en) Catalytic metal recovery method
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
CN105247720B (en) Metal alloy catalyst for anode of fuel cell
JP7224632B2 (en) Method for leaching and individual recovery of platinum group metals from fuel cell catalysts
JP2002159866A (en) Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell
CN114068966B (en) Core-shell catalyst post-treatment method and system
US20230349057A1 (en) Hydrogen evolution reaction catalysts, electrodes and electrolyzers based thereon and methods of fabrication thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08791849

Country of ref document: EP

Kind code of ref document: A1