JP2002248350A - Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell - Google Patents

Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell

Info

Publication number
JP2002248350A
JP2002248350A JP2001047691A JP2001047691A JP2002248350A JP 2002248350 A JP2002248350 A JP 2002248350A JP 2001047691 A JP2001047691 A JP 2001047691A JP 2001047691 A JP2001047691 A JP 2001047691A JP 2002248350 A JP2002248350 A JP 2002248350A
Authority
JP
Japan
Prior art keywords
alloy
solution
reducing
metal oxide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001047691A
Other languages
Japanese (ja)
Inventor
Masanao Yonemura
将直 米村
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Satoru Watanabe
渡辺  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001047691A priority Critical patent/JP2002248350A/en
Publication of JP2002248350A publication Critical patent/JP2002248350A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an alloy catalyst, in which the alloying degree of an activated metal is made high, the alloy is micronized particle and high activity is attained even in the small quantity of the metal, and a method for manufacturing a solid high polymer type fuel cell having excellent CO poisoning resistance and exhibiting high activation reaction. SOLUTION: The method of preparing the alloy catalyst has a process of forming a colloidal metal oxide by adding >=2 kinds of metallic salts and an oxidizing agent into a solution and a process of supporting an alloy colloid particle on a support by reducing the colloidal metal oxide with a reducing agent or a reducing gas. The method for manufacturing the solid high polymer type fuel cell uses the alloy catalyst prepared by the method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合金触媒の調製方
法、特に固体高分子型燃料電池用の電極触媒の調製方法
と、固体高分子型燃料電池の製造方法とに関する。
The present invention relates to a method for preparing an alloy catalyst, and more particularly to a method for preparing an electrode catalyst for a polymer electrolyte fuel cell and a method for manufacturing a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】合金触媒は、活性金属として単一金属を
用いる触媒では得られない特異な触媒活性を示し、石油
化学、石油精製の化学プロセスあるいは種々の排ガス処
理用触媒に適用されている。最近では、固体高分子型燃
料電池用の電極触媒に使用されつつある。
2. Description of the Related Art Alloy catalysts exhibit a unique catalytic activity that cannot be obtained with a catalyst using a single metal as an active metal, and have been applied to petrochemical and petroleum refining chemical processes or various exhaust gas treatment catalysts. Recently, it is being used as an electrode catalyst for polymer electrolyte fuel cells.

【0003】合金触媒は、高温で2成分以上の金属を溶
融して合金化(高温還元溶融法)する方法、スパッタリ
ング等の物理的手法にて金属固溶させる方法、あるいは
コロイドを作製する方法により調製される。しかし、こ
れらの方法によると、金属を溶融させて合金化している
ために合金粒子の粒径が大きくなって合金粒子の比表面
積が増加したり、あるいは合金化複合が高いものが作れ
ず、高い触媒活性が得られないという問題点がある。こ
のような問題点を燃料電池用の電極触媒を例にして具体
的に説明する。
[0003] Alloy catalysts are prepared by melting two or more metals at a high temperature to form an alloy (high-temperature reduction melting method), a method of forming a solid solution with a physical method such as sputtering, or a method of producing a colloid. Prepared. However, according to these methods, since the metal is melted and alloyed, the particle size of the alloy particles is increased and the specific surface area of the alloy particles is increased, or a high alloyed composite cannot be produced, and the high There is a problem that catalyst activity cannot be obtained. Such a problem will be specifically described with an example of an electrode catalyst for a fuel cell.

【0004】固体高分子型燃料電池はコンパクトで、か
つ高い電流密度を取り出せることから電気自動車や宇宙
船用の電源として注目されている。このような燃料電池
用アノード電極触媒として、カーボンからなる担体にP
tからなる活性金属を担持させたものが用いられてい
る。しかし、この活性金属としてPtを含む触媒は、水
素を含む燃料ガス中に混入しやすいCOにより被毒され
るため、電池性能の低下を招くという問題点がある。
A polymer electrolyte fuel cell has attracted attention as a power source for electric vehicles and spacecraft because it is compact and can extract a high current density. As such an anode electrode catalyst for a fuel cell, a carrier made of carbon is composed of P
What carries the active metal consisting of t is used. However, since the catalyst containing Pt as an active metal is poisoned by CO which is easily mixed into a fuel gas containing hydrogen, there is a problem that the performance of the battery is lowered.

【0005】このようなことから、PtとRu等の第2
成分とからなる合金をアノード電極触媒の活性金属とし
て適用することにより、COによる被毒を抑制すること
が行われている。COによる被毒を抑制するには、白金
と添加第2成分との合金化度合いを高くする必要があ
る。このため、Pt含有合金からなる活性金属は、前述
した高温還元溶融法、スパッタリング法、あるいはコロ
イド法で作製される。
[0005] From such a fact, the second Pt and Ru etc.
It has been practiced to suppress the poisoning by CO by applying an alloy comprising the components as an active metal of the anode electrode catalyst. In order to suppress poisoning by CO, it is necessary to increase the degree of alloying of platinum with the added second component. Therefore, an active metal made of a Pt-containing alloy is produced by the high-temperature reduction melting method, the sputtering method, or the colloid method described above.

【0006】しかしながら、高温還元溶融法またはスパ
ッタリング法でPt含有合金を形成すると、合金の粒径
が大きくなるため、高い触媒活性が得られなかった。ま
た、コロイド法で作製すると、合金化度の高い触媒が得
られず、燃料電池の性能を向上させることができなかっ
た。
However, when a Pt-containing alloy is formed by a high-temperature reduction melting method or a sputtering method, a high catalytic activity cannot be obtained because the particle size of the alloy becomes large. In addition, when produced by the colloid method, a catalyst having a high degree of alloying was not obtained, and the performance of the fuel cell could not be improved.

【0007】[0007]

【発明が解決しようとする課題】本発明は、活性金属の
合金化度合いが高く、合金の微粒子化が可能で、かつ低
金属量であっても高活性な合金触媒の調製方法を提供す
ることを目的とする。また、本発明は、耐CO被毒性に
優れ、かつ高い活性反応を有する固体高分子型燃料電池
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing an alloy catalyst having a high degree of alloying of an active metal, enabling the alloy to be finely divided, and having a high activity even with a low metal content. With the goal. Another object of the present invention is to provide a method for producing a polymer electrolyte fuel cell having excellent resistance to CO poisoning and having a high activity reaction.

【0008】[0008]

【課題を解決するための手段】本発明の合金触媒の調製
方法は、2種類以上の金属塩と酸化剤を溶液に添加して
コロイド状金属酸化物を形成させる工程と、還元剤又は
還元ガスにより上記コロイド状金属酸化物を還元して合
金コロイド粒子を担体に担持させる工程とを具備するこ
とを特徴とする。
According to the present invention, there is provided a method for preparing an alloy catalyst, comprising the steps of adding two or more metal salts and an oxidizing agent to a solution to form a colloidal metal oxide; And reducing the colloidal metal oxide to support the alloy colloid particles on a carrier.

【0009】また、本発明の合金触媒の調製方法は、2
種類以上の金属塩が溶解している溶液中に酸化剤を添加
してコロイド状金属酸化物を形成させる工程と、還元剤
又は還元ガスにより上記コロイド状金属酸化物を還元し
て合金コロイド粒子を担体に担持させる工程とを具備す
ることを特徴とする。
Further, the method for preparing the alloy catalyst of the present invention comprises the steps of:
Adding an oxidizing agent to a solution in which at least one kind of metal salt is dissolved to form a colloidal metal oxide, and reducing the colloidal metal oxide with a reducing agent or a reducing gas to form alloy colloid particles. And supporting the carrier on a carrier.

【0010】さらに、本発明の合金触媒の調製方法は、
1種類の金属塩が溶解している溶液中に酸化剤を添加し
た後に他の1種類以上の金属塩を添加してコロイド状金
属酸化物を形成させる工程と、還元剤又は還元ガスによ
って上記コロイド状金属酸化物を還元して合金コロイド
を得る工程と、上記合金コロイド溶液中の合金コロイド
粒子を担体に担持させる工程とを具備することを特徴と
する。
Further, the method for preparing the alloy catalyst of the present invention comprises:
A step of adding an oxidizing agent to a solution in which one kind of metal salt is dissolved, and then adding one or more other kinds of metal salts to form a colloidal metal oxide; A step of reducing the metal oxide to obtain an alloy colloid; and a step of supporting the alloy colloid particles in the alloy colloid solution on a carrier.

【0011】さらにまた、本発明の合金触媒の調製方法
は、2種類以上の金属塩が溶解している溶液中に酸化剤
を添加してコロイド状金属酸化物を形成させる工程と、
還元剤又は還元ガスによって上記コロイド状金属酸化物
を還元して合金コロイドを得る工程と、上記合金コロイ
ド溶液中の合金コロイド粒子を担体に担持させる工程と
を具備することを特徴とする。
Further, the method for preparing an alloy catalyst of the present invention comprises the steps of adding an oxidizing agent to a solution in which two or more metal salts are dissolved to form a colloidal metal oxide;
The method includes a step of obtaining the alloy colloid by reducing the colloidal metal oxide with a reducing agent or a reducing gas, and a step of supporting the alloy colloid particles in the alloy colloid solution on a carrier.

【0012】上記金属塩のうちの1種類はPt化合物に
することが好ましい。
One of the above metal salts is preferably a Pt compound.

【0013】また、本発明の固体高分子型燃料電池の製
造方法は、上記方法によって調製された合金触媒を用い
ることを特徴とする。
Further, a method of manufacturing a polymer electrolyte fuel cell according to the present invention is characterized by using the alloy catalyst prepared by the above method.

【0014】[0014]

【発明の実施の形態】以下、本発明の合金触媒の調製方
法を詳細に説明する。本発明の合金触媒の調製方法は、
まず、2種類以上の金属塩と酸化剤を溶液に添加してコ
ロイド状金属酸化物を形成させる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for preparing an alloy catalyst of the present invention will be described in detail. The method for preparing the alloy catalyst of the present invention comprises:
First, two or more metal salts and an oxidizing agent are added to a solution to form a colloidal metal oxide.

【0015】上記2種類以上の金属塩は、特に限定され
ず、目的とする触媒の組成に応じたものにする。固体高
分子型燃料電池用の電極触媒を調製する際には、一方は
Ptとし、他方はRu、Au、Pd、Rh、Ir、C
o、Cr、Ni、Cu、Fe及びSnから選ばれる少な
くとも1種類の元素とすることが好ましい。更に好まし
い組合せは、PtとRuである。Pt化合物は塩化白金
酸が、Ru化合物は塩化ルテニウムが、Au化合物は塩
化金酸が、Pd化合物は塩化パラジウムが、Rh化合物
は塩化ロジウムが、Ir化合物は塩化イリジウムが、C
o化合物は塩化コバルトが、Cr化合物は塩化クロム
が、Ni化合物は塩化ニッケルが、Cu化合物は塩化銅
が、Fe化合物は塩化鉄が、Sn化合物は塩化スズが好
ましいが、特に限定されるものではない。
[0015] The two or more metal salts are not particularly limited, and may be selected according to the composition of the desired catalyst. When preparing an electrode catalyst for a polymer electrolyte fuel cell, one is Pt and the other is Ru, Au, Pd, Rh, Ir, C
It is preferable to use at least one element selected from o, Cr, Ni, Cu, Fe and Sn. A more preferred combination is Pt and Ru. Pt compound is chloroplatinic acid, Ru compound is ruthenium chloride, Au compound is chloroauric acid, Pd compound is palladium chloride, Rh compound is rhodium chloride, Ir compound is iridium chloride, C
The o compound is preferably cobalt chloride, the Cr compound is chromium chloride, the Ni compound is nickel chloride, the Cu compound is copper chloride, the Fe compound is iron chloride, and the Sn compound is tin chloride, but is not particularly limited. Absent.

【0016】酸化剤の添加方法としては、例えば、2種
類以上の金属塩が溶解している水溶液に酸化剤を添加す
る方法、または1種類の金属塩が溶解している水溶液に
酸化剤を添加した後に他の1種類以上の金属種を添加す
る方法などが挙げられる。添加条件は、添加速度を2c
c/min程度にすることが好ましいが、特に限定され
るものではない。
The oxidizing agent may be added, for example, by adding the oxidizing agent to an aqueous solution in which two or more metal salts are dissolved, or by adding the oxidizing agent to an aqueous solution in which one kind of metal salt is dissolved. And then adding one or more other metal species. The addition conditions are as follows:
It is preferably about c / min, but is not particularly limited.

【0017】上記酸化剤は、特に限定されないが、過酸
化水素水、オゾン、フッ素ガス、塩素ガス、硝酸などが
好ましく挙げられ、特に過酸化水素水が好ましい。この
ように酸化剤を添加することにより、複合酸化物を形成
し、その構成金属原子は互いに隣接し合い、コロイド状
金属酸化物を形成させることができる。
The oxidizing agent is not particularly restricted but preferably includes aqueous hydrogen peroxide, ozone, fluorine gas, chlorine gas, nitric acid and the like, and particularly preferably aqueous hydrogen peroxide. By adding the oxidizing agent in this manner, a composite oxide is formed, and its constituent metal atoms are adjacent to each other, so that a colloidal metal oxide can be formed.

【0018】次に、本発明の合金触媒の調製方法は、還
元剤又は還元ガスにより上記コロイド状金属酸化物を還
元して、合金コロイド粒子を担体に担持させる。
Next, in the method for preparing an alloy catalyst according to the present invention, the colloidal metal oxide is reduced with a reducing agent or a reducing gas, and the alloy colloid particles are supported on a carrier.

【0019】上記還元剤は、有機酸が好ましく、アルコ
ール類(例えば、メタノール、エタノール、イソプロパ
ノール、ブタノール)、クエン酸類(例えば、クエン酸
ナトリウム、クエン酸カリウム、クエン酸アンモニウ
ム)、ケトン類(例えば、アセトン、ヒドロキノン、メ
チルエチルケトン)、カルボン酸類(例えば、酢酸、ぎ
酸、フマル酸、りんご酸、アスパラギン酸、こはく酸)
及びエステル類(例えば、ぎ酸メチル)から選ばれる少
なくとも1種類の有機酸からなることが好ましい。上記
還元ガスは、水素ガス、一酸化炭素ガスなどが好まし
く、特に水素ガスが好ましい。
The reducing agent is preferably an organic acid, such as alcohols (eg, methanol, ethanol, isopropanol, butanol), citric acids (eg, sodium citrate, potassium citrate, ammonium citrate), ketones (eg, Acetone, hydroquinone, methyl ethyl ketone), carboxylic acids (eg, acetic acid, formic acid, fumaric acid, malic acid, aspartic acid, succinic acid)
And at least one organic acid selected from esters and esters (for example, methyl formate). The reducing gas is preferably a hydrogen gas, a carbon monoxide gas, or the like, and particularly preferably a hydrogen gas.

【0020】上記有機酸を添加する場合は、温度を室温
から約110℃で還元処理することが好ましく、特に、
100℃沸騰下で処理することが好ましい。但し、温度
が低いと反応に時間を要したり、還元処理が十分に進行
しないため、適当なコロイド溶液が得られないことがあ
る。また、還元処理時間は特に限定されないが、約0.5
分から約24時間が好ましく、約1時間程度が特に好ま
しい。
When the above-mentioned organic acid is added, it is preferable to carry out a reduction treatment at a temperature from room temperature to about 110 ° C.
It is preferable to carry out the treatment under boiling at 100 ° C. However, if the temperature is low, a long time is required for the reaction or the reduction treatment does not proceed sufficiently, so that an appropriate colloid solution may not be obtained. Further, the reduction treatment time is not particularly limited, but is about 0.5
Minutes to about 24 hours are preferred, with about 1 hour being particularly preferred.

【0021】上記担体は、特に限定されず、目的とする
触媒組成に応じたものが使用される。上記担体として
は、例えば、多孔質物質(例えば、アルミナ、シリカ)
粉末、炭素系粉末などを挙げることができる。上記炭素
系粉末としては、例えば、黒鉛、カーボンブラック、電
気導電性を有する活性炭等の粉末を挙げることができ
る。特に、固体高分子型燃料電池用の電極触媒には、上
記活性炭粉末が好ましい。
The above-mentioned carrier is not particularly limited, and a carrier corresponding to a desired catalyst composition is used. As the carrier, for example, a porous substance (eg, alumina, silica)
Powder, carbon-based powder and the like. Examples of the carbon-based powder include powders of graphite, carbon black, and activated carbon having electrical conductivity. In particular, the above activated carbon powder is preferable for an electrode catalyst for a polymer electrolyte fuel cell.

【0022】合金コロイド粒子を担体に担持させる方法
としては、例えば、コロイド状金属酸化物に担体粉末を
添加して分散させた後、還元剤又は還元ガスを添加して
担体に合金コロイド粒子を担持させる方法、またはコロ
イド状金属酸化物に還元剤又は還元ガスを添加して合金
コロイドを調製した後、合金コロイド溶液に担体粉末を
分散して担持させる方法となどがある。
As a method of supporting the alloy colloidal particles on the carrier, for example, after adding the carrier powder to the colloidal metal oxide and dispersing it, a reducing agent or a reducing gas is added to support the alloy colloidal particles on the carrier. Or a method in which a reducing agent or a reducing gas is added to a colloidal metal oxide to prepare an alloy colloid, and a carrier powder is dispersed and supported in the alloy colloid solution.

【0023】合金コロイド溶液中には還元剤との反応に
よって生成した余剰イオンが存在する場合がある。この
ような場合、担体粉末への担持を行う前に、合金コロイ
ド溶液をイオン交換樹脂に通して余剰イオンである陽イ
オン及び陰イオンを除去することが好ましい。
In some cases, excess ions generated by the reaction with the reducing agent are present in the alloy colloid solution. In such a case, it is preferable to pass the alloy colloid solution through an ion exchange resin to remove excess ions, that is, cations and anions, before carrying the particles on the carrier powder.

【0024】このようして調製された合金触媒は、合金
を微粒子にすることができ、活性金属の合金化度合いを
著しく向上させることができ、反応活性が高い触媒を得
ることができる。
The alloy catalyst thus prepared can make the alloy into fine particles, can significantly improve the degree of alloying of the active metal, and can provide a catalyst having high reaction activity.

【0025】次いで、本発明に係る固体高分子型燃料電
池の製造方法を詳細に説明する。
Next, a method for manufacturing a polymer electrolyte fuel cell according to the present invention will be described in detail.

【0026】まず、前述した方法により調製された合金
触媒(Pt含有合金を活性金属とする)と固体高分子電
解質溶液とをエタノール等の溶剤に添加し、これらを攪
拌することによりアノード極用スラリーを調製する。一
方、前述した方法により調製された合金触媒(Pt含有
合金を活性金属とする)もしくはPtを活性金属とする
触媒と固体高分子電解質溶液とをエタノール等の溶剤に
添加し、これらを攪拌することによりカソード極用スラ
リーを調製する。
First, the alloy catalyst (a Pt-containing alloy is used as an active metal) prepared by the above-described method and a solid polymer electrolyte solution are added to a solvent such as ethanol, and these are stirred to form a slurry for an anode. Is prepared. On the other hand, the alloy catalyst prepared by the above-described method (Pt-containing alloy is used as an active metal) or a catalyst using Pt as an active metal and a solid polymer electrolyte solution are added to a solvent such as ethanol, and these are stirred. To prepare a cathode electrode slurry.

【0027】固体高分子膜の一方の面に上記アノード極
用スラリーを塗布し、他方の面に上記カソード極用スラ
リーを塗布することにより電極セルを作製する。この電
極セルの両面にカーボンペーパーのような集電体を貼り
付け、各集電体にセパレータを積層することにより単セ
ル固体高分子燃料電池が得られる。前記カソード電極及
び前記アノード電極の組成は、燃料に水素を用いる場合
には同一にすることができる。
An electrode cell is manufactured by applying the slurry for the anode electrode to one surface of the solid polymer membrane and applying the slurry for the cathode electrode to the other surface. A current collector such as carbon paper is attached to both sides of the electrode cell, and a separator is laminated on each current collector, thereby obtaining a single-cell solid polymer fuel cell. The composition of the cathode electrode and the anode electrode can be the same when hydrogen is used as fuel.

【0028】[0028]

【実施例】本発明に係る合金触媒の調製方法の具体例
を、以下の実施例および参考例に挙げる。
EXAMPLES Specific examples of the method for preparing an alloy catalyst according to the present invention will be described in the following Examples and Reference Examples.

【0029】参考例1 (コロイド調製)先ず、水200ml中に塩化白金酸
(Pt=2mmol)を溶解させた溶液に亜硫酸水素ナ
トリウムを4g添加して、30分室温で攪拌混合させ
た。その後、過酸化水素水を50ml添加して30分攪
拌する事によりPt酸化物コロイドを得た。それに塩化
ルテニウム(Ru=2mmol)を添加して、溶液中に
残存している過酸化水素水によりRuも酸化させ、合金
コロイド1を調製した。
Reference Example 1 (Preparation of colloid) First, 4 g of sodium bisulfite was added to a solution of chloroplatinic acid (Pt = 2 mmol) dissolved in 200 ml of water, and the mixture was stirred and mixed at room temperature for 30 minutes. Thereafter, 50 ml of aqueous hydrogen peroxide was added and stirred for 30 minutes to obtain a Pt oxide colloid. Ruthenium chloride (Ru = 2 mmol) was added thereto, and Ru was also oxidized by the hydrogen peroxide solution remaining in the solution to prepare alloy colloid 1.

【0030】(コロイドを担体へ担持)上記Pt−Ru
酸化物コロイド中へケッチェンカーボンを0.4g添加
し10分攪拌後、30分超音波をかけて溶液中にケッチ
ェンカーボンを均一に分散させた。そして、その溶液中
に200cc/minの水素で30分バブリングさせた
後、窒素パージする還元処理を行い、ろ過、洗浄、乾燥
を行う事により合金コロイド担持カーボン1を得た。
(Supporting Colloid on Carrier) Pt-Ru
0.4 g of Ketjen carbon was added to the oxide colloid, and after stirring for 10 minutes, ultrasonic waves were applied for 30 minutes to uniformly disperse Ketjen carbon in the solution. Then, after bubbling the solution with hydrogen at 200 cc / min for 30 minutes, a reduction treatment was performed by purging with nitrogen, and filtration, washing and drying were performed to obtain alloy colloid-supporting carbon 1.

【0031】参考例2 参考例1の合金コロイド調製において、塩化ルテニウム
の代わりに塩化金酸、塩化パラジウム、塩化ロジウム、
塩化イリジウム、塩化コバルト、塩化クロム、塩化ニッ
ケル、塩化銅、塩化鉄及び塩化スズを用いる事以外は参
考例1と同様にして合金コロイド2〜11を得た。この
合金コロイド2〜11を参考例1と同操作にてケッチェ
ンカーボンに担持し、合金コロイド担持カーボン2〜1
1を得た。
Reference Example 2 In the preparation of the alloy colloid of Reference Example 1, instead of ruthenium chloride, chloroauric acid, palladium chloride, rhodium chloride,
Alloy colloids 2 to 11 were obtained in the same manner as in Reference Example 1 except that iridium chloride, cobalt chloride, chromium chloride, nickel chloride, copper chloride, iron chloride and tin chloride were used. The alloy colloids 2 to 11 were supported on Ketjen carbon by the same operation as in Reference example 1,
1 was obtained.

【0032】実施例1 参考例1の合金コロイド調製において、塩化ルテニウム
を塩化白金酸と同時期に添加する事以外は参考例1と同
様にして合金コロイド12を得た。この合金コロイド1
2を参考例1と同操作にてケッチェンカーボンに担持
し、合金コロイド担持カーボン12を得た。
Example 1 An alloy colloid 12 was obtained in the same manner as in Reference Example 1, except that ruthenium chloride and chloroplatinic acid were added at the same time in the preparation of the alloy colloid of Reference Example 1. This alloy colloid 1
2 was carried on Ketjen carbon in the same manner as in Reference example 1 to obtain alloy colloid-carrying carbon 12.

【0033】実施例2 実施例1の合金コロイド調製において、塩化ルテニウム
の代わりに塩化金酸、塩化パラジウム、塩化ロジウム、
塩化イリジウム、塩化コバルト、塩化クロム、塩化ニッ
ケル、塩化銅、塩化鉄及び塩化スズを用いる事以外は実
施例1と同様にして合金コロイド13〜22を得た。こ
の合金コロイド13〜22を実施例1と同操作にてケッ
チェンカーボンに担持し、合金コロイド担持カーボン1
3〜22を得た。
Example 2 In the preparation of the alloy colloid of Example 1, instead of ruthenium chloride, chloroauric acid, palladium chloride, rhodium chloride,
Alloy colloids 13 to 22 were obtained in the same manner as in Example 1 except that iridium chloride, cobalt chloride, chromium chloride, nickel chloride, copper chloride, iron chloride and tin chloride were used. The alloy colloids 13 to 22 were supported on Ketjen carbon by the same operation as in Example 1,
3-22 were obtained.

【0034】実施例3 実施例1、参考例1の担体への担持方法の還元処理にお
いて、ケッチェンカーボンは還元前に添加せず、合金コ
ロイド1、12にクエン酸ナトリウムを20mmol添
加し、100℃沸騰下で1時間還元処理を行った後、室
温に急冷した。得られたコロイド溶液をイオン交換樹脂
に流通させ陽イオン及び陰イオンを除去した後、ケッチ
ェンカーボンを0.4g添加し、超音波分散させ、均一
に分散させた溶液を90℃に保持し、攪拌しながら溶液
を蒸発させる事により合金コロイド担持カーボン23、
24を得た。
Example 3 In the reduction treatment of the method of loading onto a carrier in Example 1 and Reference Example 1, Ketjen carbon was not added before reduction, but 20 mmol of sodium citrate was added to alloy colloids 1 and 12, and After a reduction treatment for 1 hour under boiling at ℃, the mixture was rapidly cooled to room temperature. After the obtained colloid solution was passed through an ion exchange resin to remove cations and anions, 0.4 g of Ketjen carbon was added, ultrasonically dispersed, and the uniformly dispersed solution was kept at 90 ° C. By evaporating the solution with stirring, the alloy colloid-supporting carbon 23,
24 was obtained.

【0035】実施例4 実施例3のクエン酸ナトリウムの代わりに、エタノー
ル、メタノール、イソプロパノール、ブタノール、酢
酸、ぎ酸、アセトン、ヒドロキノン、メチルエチルケト
ンまたはぎ酸メチルを用いる事以外は、前述に記載した
実施例3と同様にして合金コロイド担持カーボン25〜
44を得た。
Example 4 The procedure described in Example 3 was repeated, except that sodium citrate was replaced with ethanol, methanol, isopropanol, butanol, acetic acid, formic acid, acetone, hydroquinone, methyl ethyl ketone or methyl formate. In the same manner as in Example 3, alloy colloid-supported carbon 25 to
44 was obtained.

【0036】比較例1 ケッチェンカーボンに塩化白金酸溶液(Pt=0.2m
mol)と塩化ルテニウム溶液(Ru=0.2mmo
l)を添加し、蒸発乾固後、400℃で3時間焼成を行
った。その後、200℃で2時間水素還元を行う事によ
り比較粉末触媒1を得た。
Comparative Example 1 A solution of chloroplatinic acid (Pt = 0.2 m) was added to Ketjen carbon.
mol) and ruthenium chloride solution (Ru = 0.2mmo)
After l) was added and evaporated to dryness, baking was performed at 400 ° C. for 3 hours. Thereafter, hydrogen reduction was performed at 200 ° C. for 2 hours to obtain Comparative Powder Catalyst 1.

【0037】比較例2 比較例1において、塩化ルテニウム溶液を添加せず、塩
化白金酸溶液のみを添加する事以外は比較例2と同様に
して比較粉末触媒2を得た。
Comparative Example 2 Comparative powder catalyst 2 was obtained in the same manner as in Comparative Example 1, except that the ruthenium chloride solution was not added and only the chloroplatinic acid solution was added.

【0038】(平均粒径の測定)得られた粉末触媒1〜
44及び比較粉末触媒1、2について、物性評価として
透過型電子顕微鏡にて活性金属の平均粒径を測定した。
また、X線回折法によるPtの格子定数の変化により合
金度合を評価した。結果は表1及び表2に示した通り、
粉末触媒1〜44は2〜4nmの微粒子で活性金属が担
持可能であり、なおかつ活性金属の合金化が進行してい
る事が分かった。そして、比較粉末触媒1については活
性金属の合金化は進行しているものの、活性金属の平均
粒径が粗大化している事が分かった。
(Measurement of average particle size)
For 44 and Comparative Powder Catalysts 1 and 2, the average particle size of the active metal was measured with a transmission electron microscope as a property evaluation.
Further, the degree of alloy was evaluated based on the change in the lattice constant of Pt by X-ray diffraction. The results are shown in Tables 1 and 2,
It was found that the powder catalysts 1-44 can support the active metal with fine particles of 2 to 4 nm, and that the alloying of the active metal is progressing. Then, it was found that although the alloying of the active metal was progressing in the comparative powder catalyst 1, the average particle size of the active metal was coarsened.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】実施例5 前記粉末触媒1、12、23、24と比較粉末触媒1、
2を用いて、固体高分子型燃料電池を製造し、アノード
極に供給される燃焼ガスにCOが共存されている場合の
発電特性を評価した。
Example 5 The above-mentioned powder catalysts 1, 12, 23, 24 and comparative powder catalyst 1,
2 was used to produce a polymer electrolyte fuel cell, and the power generation characteristics in the case where CO was present in the combustion gas supplied to the anode electrode were evaluated.

【0042】(電池セルの調製)粉末触媒1に水/エタ
ノール混合液並びに高分子電解質溶液としてナフィオン
溶液を添加して超音波攪拌にてスラリーを調製した。得
られたスラリーをテフロン(登録商標)シートに塗布し
て膜圧50μmの固体高分子膜(デュポン社製、商品名
ナフィオン膜)の両面に転写し、アノード極を形成し
た。アノード極中のPt量は0.5mg/cm2で、R
u量は0.25mg/cm2で、ナフィオン膜は0.5
mg/cm2であった。一方、比較触媒3に水/エタノ
ール混合液並びに高分子電解質溶液としてナフィオン溶
液を添加して超音波攪拌にてスラリーを調製した。得ら
れたスラリーをテフロンシートに塗布して膜圧50μm
の固体高分子膜(デュポン社製、商品名ナフィオン膜)
の両面に転写し、カソード極を形成した。カソード極中
のPt量は0.5mg/cm2で、ナフィオン膜は0.
5mg/cm2であった。
(Preparation of Battery Cell) A water / ethanol mixed solution and a Nafion solution as a polymer electrolyte solution were added to the powder catalyst 1, and a slurry was prepared by ultrasonic stirring. The obtained slurry was applied to a Teflon (registered trademark) sheet, and transferred to both surfaces of a solid polymer membrane (trade name: Nafion membrane, manufactured by DuPont) having a film pressure of 50 μm to form an anode electrode. The amount of Pt in the anode was 0.5 mg / cm 2 ,
u amount is 0.25 mg / cm 2 , and Nafion membrane is 0.5
mg / cm 2 . On the other hand, a water / ethanol mixed solution and a Nafion solution as a polymer electrolyte solution were added to Comparative Catalyst 3, and a slurry was prepared by ultrasonic stirring. The obtained slurry was applied to a Teflon sheet, and the film pressure was 50 μm.
Solid polymer membrane (made by DuPont, trade name: Nafion membrane)
Was transferred to both sides to form a cathode electrode. The amount of Pt in the cathode was 0.5 mg / cm 2 , and the Nafion film was 0.1 mg / cm 2 .
It was 5 mg / cm 2 .

【0043】アノード極及びカソード極それぞれにカー
ボンペーパーを貼り付けた後、これらを一対のセパレー
タで挟み、5cm四方の電極セル1を調製した。また、
アノード極中に含まれる触媒として粉末触媒1の代わり
に粉末触媒12、23、24及び比較粉末触媒1、2を
用いる事以外は前述した電極セル1で説明したのと同様
に電極セル12、23、24及び比較電極セル1、2を
調製した。尚、各電極セル12、23、24及び比較電
極セル1、2において使用されるカソード電極は、前述
した電極セル1で用いられているものと同一のものとす
る。
After attaching carbon paper to each of the anode electrode and the cathode electrode, these were sandwiched by a pair of separators to prepare a 5 cm square electrode cell 1. Also,
The electrode cells 12, 23 and 23 are the same as those described for the electrode cell 1 except that the powder catalysts 12, 23 and 24 and the comparative powder catalysts 1 and 2 are used instead of the powder catalyst 1 as the catalyst contained in the anode electrode. , 24 and comparative electrode cells 1 and 2 were prepared. The cathode electrodes used in each of the electrode cells 12, 23, 24 and the comparative electrode cells 1, 2 are the same as those used in the above-described electrode cell 1.

【0044】(発電特性評価)得られた電極セル1、1
2、23、24及び比較電極セル1、2について、アノ
ード側はH2:60%、CO2:20%、N2:20%、
CO:10ppm、3ata、温度60℃、水素利用率
50%、カソード側はAir:100%、3ata、温
度60℃、水素利用率50%の各試験条件で発電試験を
実施した。その結果は表3に示した通り、試作粉末触媒
1、12、23、24を含む電極セル1、12、23、
24は、比較粉末触媒1、2を含む比較電極セル1、2
に比べて高電圧を得られる事が分かった。
(Evaluation of Power Generation Characteristics)
2,23,24 and Comparative electrode cell 1, the anode side H 2: 60%, CO 2 : 20%, N 2: 20%,
A power generation test was performed under the following test conditions: CO: 10 ppm, 3 data, temperature 60 ° C., hydrogen utilization 50%, and air: 100%, 3 data, temperature 60 ° C., hydrogen utilization 50% on the cathode side. As shown in Table 3, the results were as follows: Electrode cells 1, 12, 23, including prototype powder catalysts 1, 12, 23, 24;
Reference numeral 24 denotes comparative electrode cells 1 and 2 containing comparative powder catalysts 1 and 2.
It was found that higher voltage could be obtained compared to.

【0045】[0045]

【表3】 [Table 3]

【0046】このように、本発明の合金触媒の調製方法
によれば、合金を微粒子化することができ、活性金属の
合金化度合いを著しく向上させることができ、反応活性
が高い合金触媒を得ることができた。また、本発明に係
る合金触媒の調製方法によって調製された合金触媒、特
にPt含有合金触媒を用いることによって、耐CO被毒
性に優れ、かつ高い活性反応を有する固体高分子型燃料
電池を製造することができた。
As described above, according to the method for preparing an alloy catalyst of the present invention, the alloy can be made finer, the degree of alloying of the active metal can be significantly improved, and an alloy catalyst having high reaction activity can be obtained. I was able to. Further, by using an alloy catalyst prepared by the method for preparing an alloy catalyst according to the present invention, in particular, a Pt-containing alloy catalyst, a polymer electrolyte fuel cell having excellent CO poisoning resistance and a high activity reaction is produced. I was able to.

【0047】[0047]

【発明の効果】上述したように、本発明によれば、活性
金属の合金化度合いが高く、合金の微粒子化が可能で、
かつ低金属量であっても高活性な合金触媒の調製方法を
提供することができる。また、本発明によれば、耐CO
被毒性に優れ、かつ高い活性反応を有する固体高分子型
燃料電池の製造方法を提供することができる。
As described above, according to the present invention, the alloying degree of the active metal is high, and the alloy can be finely divided.
In addition, it is possible to provide a method for preparing a highly active alloy catalyst even with a low metal content. Further, according to the present invention, CO-resistant
It is possible to provide a method for producing a polymer electrolyte fuel cell which is highly toxic and has a high activity reaction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/62 B01J 23/62 M 23/652 23/68 23/68 23/89 M 23/89 37/12 37/12 37/16 37/16 37/34 37/34 H01M 4/92 H01M 4/92 8/10 8/10 B01J 23/64 103M (72)発明者 安武 聡信 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 渡辺 悟 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G069 AA03 AA08 BA01A BA02A BA08A BA08B BB02A BB02B BC22A BC22B BC31A BC31B BC33A BC33B BC58A BC58B BC66A BC66B BC67A BC67B BC68A BC68B BC70A BC70B BC71A BC71B BC72A BC72B BC74A BC74B BC75A BC75B CC32 DA05 EA01Y EB18Y EB19 FA01 FA02 FB08 FB15 FB16 FB18 FB39 FB43 FB58 5H018 AA06 AS01 BB01 BB06 BB08 BB12 BB17 EE02 EE03 EE08 EE10 5H026 AA06 BB10 CX05 EE08 EE18──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/62 B01J 23/62 M23 / 652 23/68 23/68 23/89 M23 / 89 37 / 12 37/12 37/16 37/16 37/34 37/34 H01M 4/92 H01M 4/92 8/10 8/10 B01J 23/64 103M 6-22, Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Satoru Watanabe 4-62, Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory F-term (reference) 4G069 AA03 AA08 BA01A BA02A BA08A BA08B BB02A BB02B BC22A BC22B BC31A BC31B BC33A BC33B BC58A BC58B BC66A BC66B BC67A BC67B BC68A BC68B BC70A BC70B BC71A BC71B BC72A BC72B BC74A BC74B BC75A BC75B CC32 DA05 EB01 FB18 FB19 FB18 FB18 FB18 FB18 FB18 FB18 FB18 FB18 FB18 FB18 FB18 FB18 18 AA06 AS01 BB01 BB06 BB08 BB12 BB17 EE02 EE03 EE08 EE10 5H026 AA06 BB10 CX05 EE08 EE18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 2種類以上の金属塩と酸化剤を溶液に添
加してコロイド状金属酸化物を形成させる工程と、還元
剤又は還元ガスにより上記コロイド状金属酸化物を還元
して合金コロイド粒子を担体に担持させる工程とを具備
することを特徴とする合金触媒の調製方法。
1. A step of adding two or more kinds of metal salts and an oxidizing agent to a solution to form a colloidal metal oxide, and reducing the colloidal metal oxide with a reducing agent or a reducing gas to produce alloy colloid particles. And a step of supporting the carrier on a carrier.
【請求項2】 2種類以上の金属塩が溶解している溶液
中に酸化剤を添加してコロイド状金属酸化物を形成させ
る工程と、還元剤又は還元ガスにより上記コロイド状金
属酸化物を還元して合金コロイド粒子を担体に担持させ
る工程とを具備することを特徴とする合金触媒の調製方
法。
2. A step of adding an oxidizing agent to a solution in which two or more metal salts are dissolved to form a colloidal metal oxide, and reducing the colloidal metal oxide with a reducing agent or a reducing gas. And supporting the alloy colloidal particles on a carrier.
【請求項3】 1種類の金属塩が溶解している溶液中に
酸化剤を添加した後に他の1種類以上の金属塩を添加し
てコロイド状金属酸化物を形成させる工程と、還元剤又
は還元ガスによって上記コロイド状金属酸化物を還元し
て合金コロイドを得る工程と、上記合金コロイド溶液中
の合金コロイド粒子を担体に担持させる工程とを具備す
ることを特徴とする合金触媒の調製方法。
3. A step of adding an oxidizing agent to a solution in which one kind of metal salt is dissolved, and then adding another one or more kinds of metal salts to form a colloidal metal oxide; A method for preparing an alloy catalyst, comprising: a step of reducing the colloidal metal oxide with a reducing gas to obtain an alloy colloid; and a step of supporting alloy colloid particles in the alloy colloid solution on a carrier.
【請求項4】 2種類以上の金属塩が溶解している溶液
中に酸化剤を添加してコロイド状金属酸化物を形成させ
る工程と、還元剤又は還元ガスによって上記コロイド状
金属酸化物を還元して合金コロイドを得る工程と、上記
合金コロイド溶液中の合金コロイド粒子を担体に担持さ
せる工程とを具備することを特徴とする合金触媒の調製
方法。
4. A step of adding an oxidizing agent to a solution in which two or more metal salts are dissolved to form a colloidal metal oxide, and reducing the colloidal metal oxide with a reducing agent or a reducing gas. A step of obtaining an alloy colloid by carrying out the method, and a step of supporting the alloy colloid particles in the alloy colloid solution on a carrier.
【請求項5】 上記金属塩のうちの1種類はPt化合物
であることを特徴とする請求項1〜4のいずれか記載の
合金触媒の調製方法。
5. The method according to claim 1, wherein one of the metal salts is a Pt compound.
【請求項6】 請求項1〜5のいずれか記載の方法によ
って調製された合金触媒を用いることを特徴とする固体
高分子型燃料電池の製造方法。
6. A method for producing a polymer electrolyte fuel cell, comprising using the alloy catalyst prepared by the method according to claim 1. Description:
JP2001047691A 2001-02-23 2001-02-23 Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell Withdrawn JP2002248350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001047691A JP2002248350A (en) 2001-02-23 2001-02-23 Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001047691A JP2002248350A (en) 2001-02-23 2001-02-23 Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell

Publications (1)

Publication Number Publication Date
JP2002248350A true JP2002248350A (en) 2002-09-03

Family

ID=18909066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001047691A Withdrawn JP2002248350A (en) 2001-02-23 2001-02-23 Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell

Country Status (1)

Country Link
JP (1) JP2002248350A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169334A (en) * 2003-12-15 2005-06-30 Nippon Sheet Glass Co Ltd Manufacturing method for metal carrier and metal carrier
JP2005317546A (en) * 2004-04-27 2005-11-10 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell and fuel cell system including the same
JP2006507637A (en) * 2002-11-26 2006-03-02 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Metal alloy for electrochemical oxidation reaction and its production method
WO2007114525A1 (en) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode catalyst for fuel cell
JP2008506513A (en) * 2004-07-16 2008-03-06 ペメアス ゲゼルシャフト ミット ベシュレンクテル ハフツング Metal alloy for electrochemical oxidation reaction and method for producing the same
JP2008135380A (en) * 2006-10-26 2008-06-12 Univ Waseda Cathode catalyst for fuel cell, its manufacturing method and fixation method, and fuel cell
JP2008171659A (en) * 2007-01-11 2008-07-24 Nippon Steel Corp Catalyst for solid-polymer fuel cell electrodes
JP2009009924A (en) * 2007-06-26 2009-01-15 Hyundai Motor Co Ltd Manufacturing method for mixed electrode-catalyst material of solid electrolyte fuel cell
JP2010192172A (en) * 2009-02-16 2010-09-02 Noritake Co Ltd Method of manufacturing alloy catalyst electrode for fuel cell
JP2014101240A (en) * 2012-11-19 2014-06-05 Hitachi-Ge Nuclear Energy Ltd Platinum oxide colloid solution and manufacturing method and manufacturing apparatus of the same
US10504628B2 (en) 2012-11-19 2019-12-10 Hitachi-Ge Nuclear Energy, Ltd. Platinum oxide colloidal solution, manufacturing method therefor, manufacture apparatus thereof, and method of injection noble metal of boiling water nuclear power plant

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507637A (en) * 2002-11-26 2006-03-02 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Metal alloy for electrochemical oxidation reaction and its production method
JP4647906B2 (en) * 2003-12-15 2011-03-09 日本板硝子株式会社 Method for producing metal carrier and metal carrier.
JP2005169334A (en) * 2003-12-15 2005-06-30 Nippon Sheet Glass Co Ltd Manufacturing method for metal carrier and metal carrier
JP2005317546A (en) * 2004-04-27 2005-11-10 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell and fuel cell system including the same
US7629072B2 (en) 2004-04-27 2009-12-08 Samsung Sdi Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell system comprising the same
JP2008506513A (en) * 2004-07-16 2008-03-06 ペメアス ゲゼルシャフト ミット ベシュレンクテル ハフツング Metal alloy for electrochemical oxidation reaction and method for producing the same
WO2007114525A1 (en) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode catalyst for fuel cell
US7910512B2 (en) 2006-03-31 2011-03-22 Cataler Corporation Production process of electrode catalyst for fuel cell
JP2008135380A (en) * 2006-10-26 2008-06-12 Univ Waseda Cathode catalyst for fuel cell, its manufacturing method and fixation method, and fuel cell
JP2008171659A (en) * 2007-01-11 2008-07-24 Nippon Steel Corp Catalyst for solid-polymer fuel cell electrodes
JP2009009924A (en) * 2007-06-26 2009-01-15 Hyundai Motor Co Ltd Manufacturing method for mixed electrode-catalyst material of solid electrolyte fuel cell
JP2010192172A (en) * 2009-02-16 2010-09-02 Noritake Co Ltd Method of manufacturing alloy catalyst electrode for fuel cell
JP2014101240A (en) * 2012-11-19 2014-06-05 Hitachi-Ge Nuclear Energy Ltd Platinum oxide colloid solution and manufacturing method and manufacturing apparatus of the same
US10504628B2 (en) 2012-11-19 2019-12-10 Hitachi-Ge Nuclear Energy, Ltd. Platinum oxide colloidal solution, manufacturing method therefor, manufacture apparatus thereof, and method of injection noble metal of boiling water nuclear power plant

Similar Documents

Publication Publication Date Title
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
JP5329405B2 (en) catalyst
JP6554266B2 (en) Fuel cell electrode catalyst and method for activating the catalyst
JP4575268B2 (en) Catalyst, electrode for fuel cell fuel electrode, and fuel cell
JP5270468B2 (en) ELECTRODE CATALYST FOR FUEL CELL, ITS MANUFACTURING METHOD, AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
JP2001325964A (en) Electrode catalyst for solid polymer electrolyte fuel cell
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
Cruz-Martínez et al. Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells
JP2003142112A (en) Catalyst for air electrode of high polymer solid electrolyte type fuel cell and its manufacturing method
WO2006092910A1 (en) Liquid containing dispersion stabilized catalytic nanoparticles
JP2012500720A (en) Continuous production method of catalyst
JP5015489B2 (en) Fuel cell electrode catalyst and fuel cell
JP5489740B2 (en) Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
JP2001224969A (en) Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
JP2001224968A (en) Method for preparing deposited metallic catalyst and method for manufacturing solid high-polymer type fuel battery
JP4875266B2 (en) Cathode electrode catalyst for fuel cell and production method thereof
JP2003320249A (en) Metal-carrying catalyst and production of the same and solid polymer electrolyte type fuel cell using the same
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JP2002159866A (en) Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513