JP2009028653A - Method of recovering catalytic metal - Google Patents

Method of recovering catalytic metal Download PDF

Info

Publication number
JP2009028653A
JP2009028653A JP2007195673A JP2007195673A JP2009028653A JP 2009028653 A JP2009028653 A JP 2009028653A JP 2007195673 A JP2007195673 A JP 2007195673A JP 2007195673 A JP2007195673 A JP 2007195673A JP 2009028653 A JP2009028653 A JP 2009028653A
Authority
JP
Japan
Prior art keywords
catalyst
chalcogen element
metal
recovering
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007195673A
Other languages
Japanese (ja)
Other versions
JP4957432B2 (en
Inventor
Yukiyoshi Ueno
幸義 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007195673A priority Critical patent/JP4957432B2/en
Priority to PCT/JP2008/063616 priority patent/WO2009017136A1/en
Publication of JP2009028653A publication Critical patent/JP2009028653A/en
Application granted granted Critical
Publication of JP4957432B2 publication Critical patent/JP4957432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • C22B11/026Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To recover a catalytic metal which is a structural component of a chalcogen element-containing catalyst, from the used chalcogen element-containing catalyst nonpollutingly, and at the same time, to reuse efficiently the rare and expensive catalytic metal. <P>SOLUTION: The method of recovering the catalytic metal from the chalcogen element-containing catalyst is provided. The method comprises the removing process of a chalcogen element component by heating the electrode catalyst in a hydrogen-containing inactive gas to remove the chalcogen element in the electrode catalyst, the carbon component removing process of immersing the electrode catalyst in hot aqua regia to remove the carbon component, and the process of recovering the metal component solved in the aqua regia and at the same time, recovering other metal components from the deposit not solving in the aqua regia. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池用電極触媒などのカルコゲン元素含有触媒からの触媒金属回収方法に関する。特に、白金触媒の代替となる、少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素からなる燃料電池用電極触媒からSOxなどの有毒ガスを発生させることの無い触媒金属回収方法に関する。   The present invention relates to a method for recovering catalytic metal from a chalcogen element-containing catalyst such as a fuel cell electrode catalyst. In particular, the present invention relates to a catalytic metal recovery method that does not generate a toxic gas such as SOx from an electrode catalyst for a fuel cell, which is an alternative to a platinum catalyst and includes at least one transition metal element and at least one chalcogen element.

固体高分子型燃料電池には電極触媒として、一般に白金等の高価な貴金属類が用いられている。そこで、貴金属等の触媒金属をリサイクルすることが考えられている。例えば、下記特許文献1には、含フッ素ポリマーを溶解する溶媒中で、燃料電池用イオン交換膜/電極接合体の溶解処理を行い、該含フッ素ポリマー溶液と触媒金属を含む不溶物部分とに分離し、回収された含フッ素ポリマーを、イオン交換膜および/または電極触媒被覆剤として再利用する方法が開示されている。又、触媒金属の回収方法として、触媒金属を担持した導電性担体を含む不溶物部分に、燃焼または王水処理を施すことが開示されている。   In the polymer electrolyte fuel cell, an expensive noble metal such as platinum is generally used as an electrode catalyst. Therefore, it is considered to recycle catalyst metals such as noble metals. For example, in Patent Document 1 below, the ion-exchange membrane / electrode assembly for a fuel cell is dissolved in a solvent that dissolves the fluorine-containing polymer, and the fluorine-containing polymer solution and the insoluble part containing the catalyst metal are separated. A method of recycling the separated and recovered fluorine-containing polymer as an ion exchange membrane and / or an electrocatalyst coating agent is disclosed. In addition, as a method for recovering a catalyst metal, it is disclosed that an insoluble part including a conductive carrier carrying a catalyst metal is subjected to combustion or aqua regia treatment.

本出願人は、下記特許文献2〜4に、使用済み燃料電池から触媒金属と、同じく高価で有用な材料であるスルホン酸基を有する含フッ素ポリマーを回収する方法を発明したが、いずれも触媒金属の具体的回収方法は、触媒金属を担持した導電性担体を含む不溶物部分を燃焼させてカーボンなどの担体を除去するか、又は該不溶物部分に王水処理を施すことによりカーボンなどの担体を酸化・除去して、触媒金属を回収するものである。   The present applicants invented a method for recovering a catalyst metal and a fluorine-containing polymer having a sulfonic acid group, which is also an expensive and useful material, from spent fuel cells in Patent Documents 2 to 4 below. A specific method for recovering a metal is to remove a carrier such as carbon by burning an insoluble part including a conductive carrier carrying a catalyst metal, or by applying aqua regia treatment to the insoluble part. The catalyst is recovered by oxidizing and removing the support.

下記特許文献1〜4に開示された触媒金属は、いずれも白金や白金合金を対象とするものであり、カルコゲン元素含有触媒(カルコゲナイド系触媒)からの触媒金属回収方法に関するものではない。仮に、カルコゲン元素含有触媒(カルコゲナイド系触媒)からの触媒金属回収に、上記のような、触媒金属を担持した導電性担体を含む不溶物部分を燃焼させるか、又は該不溶物部分に王水処理を施したとすると、回収時にCOと同時に有毒ガスであるSOxなどのカルコゲン元素の酸化物が発生するという問題がある。 The catalyst metals disclosed in the following Patent Documents 1 to 4 are all directed to platinum and platinum alloys, and are not related to a method for recovering a catalyst metal from a chalcogen element-containing catalyst (chalcogenide catalyst). Temporarily, in the recovery of the catalytic metal from the chalcogen element-containing catalyst (chalcogenide-based catalyst), the insoluble matter portion containing the conductive carrier supporting the catalytic metal as described above is burned, or the insoluble matter portion is treated with aqua regia. When subjected to, oxides of chalcogen elements such as SOx is CO 2 at the same time toxic gases is a problem that occurs during recovery.

ところで、高分子電解質型燃料電池のアノード用触媒としては主として白金や白金合金系触媒が用いられることは上述の通りである。具体的には、白金を含む貴金属をカーボンブラックに担持した触媒が用いられてきた。高分子電解質型燃料電池を実用化する上での課題の一つは、材料コストである。これを解決する手段の一つが白金量の低減である。   By the way, as described above, platinum or a platinum alloy-based catalyst is mainly used as the anode catalyst of the polymer electrolyte fuel cell. Specifically, a catalyst in which a noble metal including platinum is supported on carbon black has been used. One of the problems in putting a polymer electrolyte fuel cell into practical use is material cost. One means for solving this is to reduce the amount of platinum.

一方、酸素(O)を電解還元すると、1電子還元ではスーパーオキシドが生成し、2電子還元では過酸化水素が生成し、4電子還元では水が生成することが知られている。電極として白金や白金系触媒を用いた燃料電池セルスタックでは、何らかの原因で電圧低下が生じると、4電子還元性が低下し、2電子還元性となってしまう。このため、過酸化水素を発生し、MEAの劣化の原因となっていた。 On the other hand, it is known that when oxygen (O 2 ) is electrolytically reduced, superoxide is generated by one-electron reduction, hydrogen peroxide is generated by two-electron reduction, and water is generated by four-electron reduction. In a fuel cell stack using platinum or a platinum-based catalyst as an electrode, if a voltage drop occurs for some reason, the 4-electron reducibility is reduced and the 2-electron reducibility is obtained. For this reason, hydrogen peroxide is generated, which causes deterioration of MEA.

最近、酸素を4電子還元して水を生成させる反応により、高価な白金触媒を必要としない低コスト型の燃料電池触媒の開発が行われている。下記非特許文献1には、カルコゲン元素を有する触媒が4電子還元性に優れていることが開示され、燃料電池への適用も示唆されている。   Recently, a low-cost fuel cell catalyst that does not require an expensive platinum catalyst has been developed by a reaction in which oxygen is reduced by four electrons to generate water. Non-Patent Document 1 below discloses that a catalyst having a chalcogen element is excellent in 4-electron reducibility and suggests application to a fuel cell.

同様に、下記特許文献5には、白金代替触媒として、少なくとも1種の遷移金属及びカルコゲンからなる電極触媒であって、該遷移金属としてRu、カルコゲンとしてS又はSeからなる電極触媒が開示されている。ここで、Ru:Seのモル比が0.5〜2の範囲であり、且つ(Ru)nSeの化学量論数nが1.5〜2である旨が開示されている。   Similarly, Patent Document 5 below discloses an electrode catalyst composed of at least one transition metal and a chalcogen as a platinum substitute catalyst, wherein Ru is used as the transition metal, and S or Se is used as the chalcogen. Yes. Here, it is disclosed that the Ru: Se molar ratio is in the range of 0.5 to 2 and the stoichiometric number n of (Ru) nSe is 1.5 to 2.

また、下記特許文献6には、Pt代替触媒として、Fe又はRuから選択される遷移金属と、窒素含有有機金属遷移錯体、及びS等のカルコゲン成分を有する燃料電池用触媒材料が開示されている。   Patent Document 6 below discloses a fuel cell catalyst material having a transition metal selected from Fe or Ru, a nitrogen-containing organometallic transition complex, and a chalcogen component such as S as a Pt substitute catalyst. .

また、下記非特許文献1には、Mo−Ru−Se三元系電極触媒、及びその合成方法が開示されている。   Non-Patent Document 1 below discloses a Mo—Ru—Se ternary electrode catalyst and a synthesis method thereof.

更に、下記非特許文献2には、Ru−S、Mo−S、Mo−Ru−Sの二元系及び三元系電極触媒、及びその合成方法が開示されている。   Furthermore, Non-Patent Document 2 below discloses Ru-S, Mo-S, Mo-Ru-S binary and ternary electrode catalysts, and a synthesis method thereof.

更に、下記非特許文献3には、Ru−Mo−S、Ru−Mo−Seの三元系カルコゲナイド電極触媒が開示されている。   Further, Non-Patent Document 3 below discloses Ru—Mo—S and Ru—Mo—Se ternary chalcogenide electrode catalysts.

特開平11−288732号公報JP-A-11-288732 特開2004−171921号公報JP 2004-171921 A 特開2005−235511号公報JP 2005-235511 A 特開2005−289001号公報JP 2005-289001 A 特表2001−502467号公報JP-T-2001-502467 特表2004−532734号公報JP-T-2004-532734 Electrochimica Acta,vol.39,No.11/12,pp.1647−1653,1994Electrochimica Acta, vol. 39, no. 11/12, pp. 1647-1653, 1994 J.Chem.Soc.、Faraday Trans.,1996,92(21),4311−4319J. et al. Chem. Soc. Faraday Trans. , 1996, 92 (21), 4311-4319. Electrochimica Acta,vol.45,pp.4237−4250,2000Electrochimica Acta, vol. 45, pp. 4237-4250, 2000

本発明は、使用済みのカルコゲン元素含有触媒から、カルコゲン元素含有触媒の構成成分である触媒金属を無公害的に回収することで、稀少且つ高価な触媒金属を効率的に再利用することを目的とする。   An object of the present invention is to efficiently recycle rare and expensive catalyst metals by recovering the catalyst metals, which are constituent components of the chalcogen element-containing catalyst, from the used chalcogen element-containing catalyst in a pollution-free manner. And

本発明者は、従来の熱い王水を用いて使用済み触媒から直接炭素成分を除去する方法に代わる新たな方法で、使用済み触媒から先ずカルコゲン元素成分を除去する方法によって上記課題が解決されることを見出し、本発明に到達した。   The present inventor solves the above-mentioned problems by a method of first removing a chalcogen element component from a used catalyst, which is a new method instead of a conventional method of directly removing a carbon component from a used catalyst using hot aqua regia. The present invention has been found.

即ち、第1に、本発明は、カルコゲン元素含有触媒からの触媒金属回収方法の発明であって、該電極触媒を水素含有不活性ガス中で加熱して該電極触媒中のカルコゲン元素を除去するカルコゲン元素成分除去工程を含むことを特徴とする。   That is, first, the present invention is an invention of a method for recovering a catalytic metal from a chalcogen element-containing catalyst, wherein the electrode catalyst is heated in a hydrogen-containing inert gas to remove the chalcogen element in the electrode catalyst. It includes a chalcogen element component removing step.

本発明の触媒金属回収方法を採用することにより、SOxなどのカルコゲン元素酸化物が発生しないで、カルコゲン元素含有触媒に含まれるカルコゲン元素を容易に且つ安全に除去することができる。   By employing the catalytic metal recovery method of the present invention, chalcogen elements contained in the chalcogen element-containing catalyst can be easily and safely removed without generating chalcogen element oxides such as SOx.

本発明では、前記カルコゲン元素成分除去工程の後に、該電極触媒を熱い王水に浸漬して炭素成分を除去する炭素成分除去工程を含むことが好ましい。カルコゲン元素成分除去工程と炭素成分除去工程を連続させることで、カルコゲン元素含有触媒に含まれるカルコゲン元素と、同様にカルコゲン元素含有触媒に含まれる炭素成分を除去することができ、後工程で有用な金属成分の回収が容易になる。   In the present invention, it is preferable to include a carbon component removal step of removing the carbon component by immersing the electrode catalyst in hot aqua regia after the chalcogen element component removal step. By continuing the chalcogen element component removal step and the carbon component removal step, the chalcogen element contained in the chalcogen element-containing catalyst and the carbon component contained in the chalcogen element-containing catalyst can be removed, which is useful in subsequent steps. Recovery of metal components is facilitated.

金属成分の回収は、前記炭素成分除去工程の後に、該王水に溶解した金属成分を回収するとともに、該王水に溶解しない沈殿物から他の金属成分を回収する工程を行うことが好ましい。なお、王水(おうすい)とは、濃塩酸と濃硝酸とを3:1の体積比で混合した液体であり、特に熱した王水は、酸化力が強く、通常の酸には溶けない遷移金属も溶解できる。   The metal component is preferably recovered after the carbon component removing step by recovering the metal component dissolved in the aqua regia and recovering another metal component from the precipitate not dissolved in the aqua regia. In addition, aqua regia is a liquid in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a volume ratio of 3: 1. Particularly, heated aqua regia has strong oxidizing power and does not dissolve in ordinary acids. Transition metals can also be dissolved.

具体的な、前記王水に溶解した金属成分を回収する工程としては、ゼオライトなどの吸着剤に金属成分を吸着させる方法が好ましく例示される。   A specific example of the step of recovering the metal component dissolved in the aqua regia is preferably a method of adsorbing the metal component on an adsorbent such as zeolite.

本発明の触媒金属回収方法は、使用済みのカルコゲン元素含有触媒を広く対象とすることができる。この中で、カルコゲン元素含有触媒として、固体高分子型燃料電池用に白金代替触媒として注目されている、カルコゲン元素含有燃料電池用電極触媒が好適である。   The catalytic metal recovery method of the present invention can be used widely for used chalcogen element-containing catalysts. Among these, as the chalcogen element-containing catalyst, an electrode catalyst for a chalcogen element-containing fuel cell that is attracting attention as a platinum substitute catalyst for a polymer electrolyte fuel cell is suitable.

前記カルコゲン元素含有燃料電池用電極触媒としては、カーボンブラックなどの導電性担体に、少なくとも1種の遷移金属元素(M)と少なくとも1種のカルコゲン元素(X)とが担持された燃料電池用電極触媒が挙げられる。   As the electrode catalyst for a chalcogen element-containing fuel cell, an electrode for a fuel cell in which at least one transition metal element (M) and at least one chalcogen element (X) are supported on a conductive carrier such as carbon black. A catalyst is mentioned.

遷移金属元素(M)としては、ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、及びタングステン(W)から選択される1種以上が好ましく例示され、カルコゲン元素(X)としては、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上が好ましく例示される。   Examples of transition metal elements (M) include ruthenium (Ru), molybdenum (Mo), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), nickel (Ni), and titanium. One or more selected from (Ti) and tungsten (W) are preferably exemplified, and the chalcogen element (X) is selected from sulfur (S), selenium (Se), and tellurium (Te). The above is preferably exemplified.

これらの中で、遷移金属元素(M)がルテニウム(Ru)及びモリブデン(Mo)であり、カルコゲン元素(X)がイオウ(S)である触媒金属がカーボン材料に担持されたRu−Mo−S/Cが好ましく例示される。   Among these, the transition metal element (M) is ruthenium (Ru) and molybdenum (Mo), and the catalytic metal whose chalcogen element (X) is sulfur (S) is supported on a carbon material. / C is preferably exemplified.

使用済みのカルコゲン元素含有触媒から、カルコゲン元素含有触媒の構成成分である触媒金属を無公害的に回収することで、稀少且つ高価な触媒金属を効率的に再利用することが可能となる。特に、白金触媒の代替となりうるカルコゲン元素含有燃料電池用電極触媒に適用することで、貴重な遷移金属等のリサイクルが促進される。   By recovering the catalytic metal, which is a component of the chalcogen element-containing catalyst, from the used chalcogen element-containing catalyst in a non-polluting manner, it is possible to efficiently reuse a rare and expensive catalytic metal. In particular, when applied to an electrode catalyst for a chalcogen element-containing fuel cell that can be used as a substitute for a platinum catalyst, recycling of a valuable transition metal or the like is promoted.

以下、実施例によって本発明をさらに詳細に説明する。
図1に、本実施例の金属回収のフロー図を示す。
カルコゲン元素含有触媒として、白金代替触媒として注目されるRuMoS/C触媒を用いた。カーボン担体としてKetjen Black(商標名)を用い、ルテニウムカルボニル、モリブデンカルボニル、イオウをアルゴン中で140℃で加熱し、冷却の後、アセトンで洗浄し、ろ過をする。ろ過物であるRuMoS/Cを350℃で2時間焼成してRuMoS/C触媒を調整した。
Hereinafter, the present invention will be described in more detail with reference to examples.
FIG. 1 shows a flow chart of metal recovery of this example.
As the chalcogen element-containing catalyst, a RuMoS / C catalyst which is attracting attention as a platinum substitute catalyst was used. Using Ketjen Black (trade name) as a carbon support, ruthenium carbonyl, molybdenum carbonyl, and sulfur are heated in argon at 140 ° C., cooled, washed with acetone, and filtered. RuMoS / C as a filtrate was calcined at 350 ° C. for 2 hours to prepare a RuMoS / C catalyst.

なお、使用済みのRuMoS/C触媒をMEAから分離するには、例えば、加熱メタノールを用いて溶解し、遠心分離などで分離する。この際、高分子電解質や補強材料として用いられていた含フッ素ポリマーは分離する。   In order to separate the used RuMoS / C catalyst from the MEA, for example, it is dissolved using heated methanol and separated by centrifugation or the like. At this time, the fluorine-containing polymer used as a polymer electrolyte or a reinforcing material is separated.

従来技術のように、RuMoS/Cに対して直接熱い王水によって炭素成分の除去を図るとCOとともに有害なSOxが発生して好ましくない。又、RuMoS/Cに対して燃料電池処理を行うと揮発性のRu酸化物が飛散するという問題もある。 If the carbon component is removed by aqua regia directly hot against RuMoS / C as in the prior art, harmful SOx is generated together with CO 2 , which is not preferable. Further, when a fuel cell process is performed on RuMoS / C, there is a problem that volatile Ru oxides are scattered.

そこで、本実施例では、RuMoS/CをHガスとNなどの不活性ガスの混合ガス中で例えば400℃に加熱してS成分を除去してRuMo/Cとする(カルコゲン元素成分除去工程)。これにより、SOxなどのカルコゲン元素酸化物が発生しないで、カルコゲン元素含有触媒に含まれるカルコゲン元素を容易に且つ安全に除去することができる。なお、除去されたS成分はフィルターなどで捕捉出来る。 Therefore, in this embodiment, RuMoS / C is heated to, for example, 400 ° C. in a mixed gas of H 2 gas and inert gas such as N 2 to remove S component to RuMo / C (removal of chalcogen element component) Process). Thereby, the chalcogen element contained in the chalcogen element-containing catalyst can be easily and safely removed without generating a chalcogen element oxide such as SOx. The removed S component can be captured by a filter or the like.

次に、カルコゲン元素成分除去工程の後に、RuMoS/Cを熱い王水に浸漬して炭素成分を除去する(炭素成分除去工程)。カルコゲン元素成分除去工程と炭素成分除去工程を連続させることで、カルコゲン元素含有触媒に含まれるカルコゲン元素と、同様にカルコゲン元素含有触媒に含まれる炭素成分を除去することができる。なお、発生したS分は、光触媒などで分解・回収する。   Next, after the chalcogen element component removal step, RuMoS / C is immersed in hot aqua regia to remove the carbon component (carbon component removal step). By continuing the chalcogen element component removal step and the carbon component removal step, the chalcogen element contained in the chalcogen element-containing catalyst and the carbon component contained in the chalcogen element-containing catalyst similarly can be removed. The generated S component is decomposed and collected by a photocatalyst or the like.

金属成分の回収は、前記炭素成分除去工程の後に、王水に溶解しない沈殿物から他の金属成分であるRuClを回収する工程を行う。又、王水に溶解した金属成分であるMo塩化物を回収する(金属成分回収工程)。なお、これらの金属回収方法としては、対象とする触媒に含まれる金属種によって適宜好ましい回収が用いられる。 In the recovery of the metal component, after the carbon component removal step, a step of recovering RuCl 3 which is another metal component from a precipitate that does not dissolve in aqua regia is performed. Further, Mo chloride which is a metal component dissolved in aqua regia is recovered (metal component recovery step). In addition, as these metal collection | recovery methods, preferable collection | recovery is suitably used according to the metal seed | species contained in the target catalyst.

本実施例では、不溶性塩として沈殿したRuClを、NaHSO等によりアルカリ溶融し、HO浸出させて、Ru水溶液とする。次に、Ru水溶液に過剰のNaOHを加え、Clガスを吹き込んで(NHRuClを揮発・分離する。揮発成分から(NHRuClを含む塩を沈殿させ、回収する。最後に、揮発成分から(NHRuClをHガスで還元してRu単体として回収する。回収率はほぼ100%であった。 In this example, RuCl 3 precipitated as an insoluble salt is alkali-melted with NaHSO 4 or the like and leached with H 2 O to obtain a Ru aqueous solution. Then, an excess of NaOH was added to Ru solution is blown with Cl 2 gas (NH 4) a 2 RuCl 6 volatilized and separated. A salt containing (NH 4 ) 2 RuCl 6 is precipitated from the volatile components and recovered. Finally, (NH 4 ) 2 RuCl 6 is reduced from the volatile components with H 2 gas and recovered as Ru alone. The recovery rate was almost 100%.

又、王水に溶解したMoClはゼオライト等の吸着剤に吸着させ、MoClとして分離して回収する。 Further, MoCl 5 dissolved in aqua regia is adsorbed by an adsorbent such as zeolite and separated and recovered as MoCl 5 .

本実施例により、RuMoS/C触媒から有害なSOxを発生させること無く貴重な遷移金属であるRuとMoを分離・回収できた。   According to this example, it was possible to separate and recover the valuable transition metals Ru and Mo without generating harmful SOx from the RuMoS / C catalyst.

使用済みのカルコゲン元素含有触媒から、カルコゲン元素含有触媒の構成成分である触媒金属を無公害的に回収すること環境保全に貢献するとともに、稀少且つ高価な触媒金属を効率的に再利用する。特に、白金触媒の代替となりうるカルコゲン元素含有燃料電池用電極触媒に適用することで、貴重な遷移金属等のリサイクルが促進され、燃料電池のコスト低減により、その実用化と普及に貢献する。   The catalyst metal, which is a constituent component of the chalcogen element-containing catalyst, is recovered from the used chalcogen element-containing catalyst in a pollution-free manner, contributing to environmental conservation and efficiently reusing the rare and expensive catalyst metal. In particular, when applied to a chalcogen element-containing fuel cell electrode catalyst that can be used as a substitute for a platinum catalyst, recycling of precious transition metals and the like is promoted, and the cost reduction of the fuel cell contributes to its practical use and spread.

本実施例の金属回収のフロー図を示す。The flow chart of metal recovery of this example is shown.

Claims (8)

カルコゲン元素含有触媒からの触媒金属回収方法であって、該電極触媒を水素含有不活性ガス中で加熱して該電極触媒中のカルコゲン元素を除去するカルコゲン元素成分除去工程を含むことを特徴とする触媒金属回収方法。   A method for recovering catalytic metal from a chalcogen element-containing catalyst, comprising: a chalcogen element component removing step of heating the electrode catalyst in a hydrogen-containing inert gas to remove the chalcogen element in the electrode catalyst. Catalytic metal recovery method. 前記カルコゲン元素成分除去工程の後に、該電極触媒を熱い王水に浸漬して炭素成分を除去する炭素成分除去工程を含むことを特徴とする請求項1に記載の触媒金属回収方法。   2. The catalytic metal recovery method according to claim 1, further comprising a carbon component removing step of removing the carbon component by immersing the electrode catalyst in hot aqua regia after the chalcogen element component removing step. 前記炭素成分除去工程の後に、該王水に溶解した金属成分を回収するとともに、該王水に溶解しない沈殿物から他の金属成分を回収する工程を含むことを特徴とする請求項1又は2に記載の触媒金属回収方法。   3. The step of recovering a metal component dissolved in the aqua regia and recovering another metal component from a precipitate not dissolved in the aqua regia after the carbon component removing step is recovered. The method for recovering catalytic metal according to 1. 前記王水に溶解した金属成分を回収する工程が、吸着剤に金属成分を吸着させるものであることを特徴とする請求項3に記載の触媒金属回収方法。   The method for recovering a catalytic metal according to claim 3, wherein the step of recovering the metal component dissolved in the aqua regia is to adsorb the metal component to the adsorbent. 前記カルコゲン元素含有触媒が、カルコゲン元素含有燃料電池用電極触媒であることを特徴とする請求項1乃至4のいずれかに記載の燃料電池用電極触媒からの触媒金属回収方法。   The method for recovering catalytic metal from an electrode catalyst for a fuel cell according to any one of claims 1 to 4, wherein the chalcogen element-containing catalyst is an electrode catalyst for a chalcogen element-containing fuel cell. 前記カルコゲン元素含有燃料電池用電極触媒が、導電性担体に、少なくとも1種の遷移金属元素(M)と少なくとも1種のカルコゲン元素(X)とが担持された燃料電池用電極触媒であることを特徴とする請求項5に記載の触媒金属回収方法。   The chalcogen element-containing fuel cell electrode catalyst is a fuel cell electrode catalyst in which at least one transition metal element (M) and at least one chalcogen element (X) are supported on a conductive carrier. 6. The catalytic metal recovery method according to claim 5, wherein 前記遷移金属元素(M)が、ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、及びタングステン(W)から選択される1種以上であり、前記カルコゲン元素(X)が、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上であることを特徴とする請求項6に記載の触媒金属回収方法。   The transition metal element (M) is ruthenium (Ru), molybdenum (Mo), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), nickel (Ni), titanium. (Ti) and at least one selected from tungsten (W), and the chalcogen element (X) is at least one selected from sulfur (S), selenium (Se), and tellurium (Te). The catalytic metal recovery method according to claim 6, wherein the catalyst metal recovery method is provided. 前記遷移金属元素(M)がルテニウム(Ru)及びモリブデン(Mo)であり、前記カルコゲン元素(X)がイオウ(S)であることを特徴とする請求項6に記載の触媒金属回収方法。   The catalyst metal recovery method according to claim 6, wherein the transition metal element (M) is ruthenium (Ru) and molybdenum (Mo), and the chalcogen element (X) is sulfur (S).
JP2007195673A 2007-07-27 2007-07-27 Catalytic metal recovery method Expired - Fee Related JP4957432B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007195673A JP4957432B2 (en) 2007-07-27 2007-07-27 Catalytic metal recovery method
PCT/JP2008/063616 WO2009017136A1 (en) 2007-07-27 2008-07-23 Method of recovering catalyst metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195673A JP4957432B2 (en) 2007-07-27 2007-07-27 Catalytic metal recovery method

Publications (2)

Publication Number Publication Date
JP2009028653A true JP2009028653A (en) 2009-02-12
JP4957432B2 JP4957432B2 (en) 2012-06-20

Family

ID=40304366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195673A Expired - Fee Related JP4957432B2 (en) 2007-07-27 2007-07-27 Catalytic metal recovery method

Country Status (2)

Country Link
JP (1) JP4957432B2 (en)
WO (1) WO2009017136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143566B1 (en) * 2009-09-22 2012-05-09 리컴 주식회사 Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339283A (en) * 1976-09-22 1978-04-11 Mitsui Toatsu Chem Inc Reactivating method for catalyst
JPS63161129A (en) * 1986-12-23 1988-07-04 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell electrode
JPS63210246A (en) * 1987-02-25 1988-08-31 Tokuriki Honten Co Ltd Method for recovering noble metal from fuel cell electrode waste material and the like
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2005235504A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Method for reutilizing fluorine-containing polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339283A (en) * 1976-09-22 1978-04-11 Mitsui Toatsu Chem Inc Reactivating method for catalyst
JPS63161129A (en) * 1986-12-23 1988-07-04 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell electrode
JPS63210246A (en) * 1987-02-25 1988-08-31 Tokuriki Honten Co Ltd Method for recovering noble metal from fuel cell electrode waste material and the like
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2005235504A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Method for reutilizing fluorine-containing polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143566B1 (en) * 2009-09-22 2012-05-09 리컴 주식회사 Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia

Also Published As

Publication number Publication date
JP4957432B2 (en) 2012-06-20
WO2009017136A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
Abdelhafiz et al. Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction
JP6554266B2 (en) Fuel cell electrode catalyst and method for activating the catalyst
Wan et al. Exploring durable single-atom catalysts for proton exchange membrane fuel cells
JP5329405B2 (en) catalyst
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
KR101735132B1 (en) Platinum and palladium alloys suitable as fuel cell electrodes
TW200938637A (en) Method for recovery of noble metals
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
KR20150044407A (en) Fabrication of nano porous metal formed by osmium or rhenium dissolution and the nano porous metal thereof
JP4530003B2 (en) Fuel cell electrode catalyst and solid polymer fuel cell using the same
Sharma et al. Recovery of Pt and Ru from spent low-temperature polymer electrolyte membrane fuel cell electrodes and recycling of Pt by direct redeposition of the dissolved precursor on carbon
JP4649574B2 (en) Anode catalyst for polymer electrolyte fuel cell
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
JP2011090916A (en) Anode catalyst for fuel cell, method of manufacturing the same, and membrane electrode assembly
JP6438890B2 (en) Method for producing non-platinum group metal (PGM) catalyst material
JP4957432B2 (en) Catalytic metal recovery method
Awoke et al. The synergistic effect Pt1-W dual sites as a highly active and durable catalyst for electrochemical methanol oxidation
JP5328888B2 (en) Method for preparing electrode catalyst for fuel cell
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
Gao et al. High-efficiency recovery of palladium and platinum using black phosphorus for in-situ synthesis of long-term stable hydrogen evolution catalysts
Venkataraman et al. Enhancement of CO tolerance of platinum catalysts using metal macrocycle complexes
JP2002159866A (en) Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell
JP2014185366A (en) Method and apparatus for platinum recovery
CN114068966B (en) Core-shell catalyst post-treatment method and system
KR20140106153A (en) Method of preparing catalysts, leaching agent for the same and catalysts thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4957432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees