JP2002159866A - Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell - Google Patents

Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell

Info

Publication number
JP2002159866A
JP2002159866A JP2000362198A JP2000362198A JP2002159866A JP 2002159866 A JP2002159866 A JP 2002159866A JP 2000362198 A JP2000362198 A JP 2000362198A JP 2000362198 A JP2000362198 A JP 2000362198A JP 2002159866 A JP2002159866 A JP 2002159866A
Authority
JP
Japan
Prior art keywords
metal
catalyst
alloy catalyst
mixing
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000362198A
Other languages
Japanese (ja)
Inventor
Masanao Yonemura
将直 米村
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Satoru Watanabe
渡辺  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000362198A priority Critical patent/JP2002159866A/en
Publication of JP2002159866A publication Critical patent/JP2002159866A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an alloy catalyst of which the degree of alloying of an active metal is high and the active metal can be converted into fine particles and which has a high activity even when its metal content is low; and to provide a method for producing a solid polymer-type fuel cell exhibiting an excellent resistance to CO poison and a high active reaction. SOLUTION: The method for preparing an alloy catalyst comprises the step of mixing at least two metal complexes into a carrier or of mixing at least one metal complex into a metal-carrying carrier carrying at least one metal, the step of reducing the metal with a reducing agent or a reducing gas after the mixing step, and the step of oxidizing the metal after the reducing step.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合金触媒の調製方
法、特に固体高分子型燃料電池用の電極触媒の調製方法
と、固体高分子型燃料電池の製造方法とに関する。
The present invention relates to a method for preparing an alloy catalyst, and more particularly to a method for preparing an electrode catalyst for a polymer electrolyte fuel cell and a method for manufacturing a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】合金触媒は、活性金属として単一金属を
用いる触媒では得られない特異な触媒活性を示し、石油
化学、石油精製の化学プロセスあるいは種々の排ガス処
理用触媒に適用されている。最近では、固体高分子型燃
料電池用の電極触媒に使用されつつある。
2. Description of the Related Art Alloy catalysts exhibit a unique catalytic activity that cannot be obtained with a catalyst using a single metal as an active metal, and have been applied to petrochemical and petroleum refining chemical processes or various exhaust gas treatment catalysts. Recently, it is being used as an electrode catalyst for polymer electrolyte fuel cells.

【0003】合金触媒は、高温で2成分以上の金属を溶
融して合金化(高温還元溶融法)する方法、スパッタリ
ング等の物理的手法にて金属固溶させる方法、あるいは
コロイドを作製する方法により調製される。しかし、こ
れらの方法によると、金属を溶融させて合金化している
ために合金粒子の粒径が大きくなって合金粒子の比表面
積が増加したり、あるいは合金化複合が高いものが作れ
ず、高い触媒活性が得られないという問題点がある。こ
のような問題点を燃料電池用の電極触媒を例にして具体
的に説明する。
[0003] Alloy catalysts are prepared by melting two or more metals at a high temperature to form an alloy (high-temperature reduction melting method), a method of forming a solid solution with a physical method such as sputtering, or a method of producing a colloid. Prepared. However, according to these methods, since the metal is melted and alloyed, the particle size of the alloy particles is increased and the specific surface area of the alloy particles is increased, or a high alloyed composite cannot be produced, and the high There is a problem that catalyst activity cannot be obtained. Such a problem will be specifically described with an example of an electrode catalyst for a fuel cell.

【0004】固体高分子型燃料電池はコンパクトで、か
つ高い電流密度を取り出せることから電気自動車や宇宙
船用の電源として注目されている。このような燃料電池
用アノード電極触媒として、カーボンからなる担体にP
tからなる活性金属を担持させたものが用いられてい
る。しかし、この活性金属としてPtを含む触媒は、水
素を含む燃料ガス中に混入しやすいCOにより被毒され
るため、電池性能の低下を招くという問題点がある。
A polymer electrolyte fuel cell has attracted attention as a power source for electric vehicles and spacecraft because it is compact and can extract a high current density. As such an anode electrode catalyst for a fuel cell, a carrier made of carbon is composed of P
What carries the active metal consisting of t is used. However, since the catalyst containing Pt as an active metal is poisoned by CO which is easily mixed into a fuel gas containing hydrogen, there is a problem that the performance of the battery is lowered.

【0005】このようなことから、PtとRu等の第2
成分とからなる合金をアノード電極触媒の活性金属とし
て適用することにより、COによる被毒を抑制すること
が行われている。COによる被毒を抑制するには、白金
と添加第2成分との合金化度合いを高くする必要があ
る。このため、Pt含有合金からなる活性金属は、前述
した高温還元溶融法、スパッタリング法、あるいはコロ
イド法で作製される。
[0005] From such a fact, the second Pt and Ru etc.
It has been practiced to suppress the poisoning by CO by applying an alloy comprising the components as an active metal of the anode electrode catalyst. In order to suppress poisoning by CO, it is necessary to increase the degree of alloying of platinum with the added second component. Therefore, an active metal made of a Pt-containing alloy is produced by the high-temperature reduction melting method, the sputtering method, or the colloid method described above.

【0006】しかしながら、高温還元溶融法またはスパ
ッタリング法でPt含有合金を形成すると、合金の粒径
が大きくなるため、高い触媒活性が得られなかった。ま
た、コロイド法で作製すると、合金化度の高い触媒が得
られず、燃料電池の性能を向上させることができなかっ
た。
However, when a Pt-containing alloy is formed by a high-temperature reduction melting method or a sputtering method, a high catalytic activity cannot be obtained because the particle size of the alloy becomes large. In addition, when produced by the colloid method, a catalyst having a high degree of alloying could not be obtained, and the performance of the fuel cell could not be improved.

【0007】[0007]

【発明が解決しようとする課題】本発明は、活性金属の
合金化度合いが高く、合金の微粒子化が可能で、かつ低
金属量であっても高活性な合金触媒の調製方法を提供す
ることを目的とする。また、本発明は、耐CO被毒性に
優れ、かつ高い活性反応を有する固体高分子型燃料電池
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing an alloy catalyst having a high degree of alloying of an active metal, enabling the alloy to be finely divided, and having a high activity even with a low metal content. With the goal. Another object of the present invention is to provide a method for producing a polymer electrolyte fuel cell having excellent resistance to CO poisoning and having a high activity reaction.

【0008】[0008]

【課題を解決するための手段】本発明の合金触媒の調製
方法は、担体に2種類以上の金属錯体を混合させる工程
と、上記混合後に還元剤または還元ガスにより上記金属
を還元させる工程と、上記還元後に上記金属を酸化処理
させる工程とを具備することを特徴とする。
According to the present invention, there is provided a method for preparing an alloy catalyst, comprising the steps of mixing two or more metal complexes with a carrier, reducing the metal with a reducing agent or a reducing gas after the mixing, Oxidizing the metal after the reduction.

【0009】また、本発明の合金触媒の調製方法は、1
種類以上の金属が担持されている金属担持担体に1種類
以上の金属錯体を混合させる工程と、上記混合後に還元
剤または還元ガスにより上記金属を還元させる工程と、
上記還元後に上記金属を酸化処理させる工程とを具備す
ることを特徴とする。
The method for preparing the alloy catalyst of the present invention comprises the steps of:
Mixing one or more metal complexes with a metal-carrying support on which more than one metal is supported, and reducing the metals with a reducing agent or reducing gas after the mixing;
Oxidizing the metal after the reduction.

【0010】上記酸化処理は、酸素ガスまたはスチーム
により、金属表面に酸素を付与することが好ましい。ま
た、上記金属のうちの1種類はPtであることが好まし
い。
In the above-mentioned oxidation treatment, it is preferable to add oxygen to the metal surface by using oxygen gas or steam. Preferably, one of the metals is Pt.

【0011】また、本発明は、上記のいずれかの方法に
よって調製された合金触媒である。さらにまた、本発明
の固体高分子型燃料電池の製造方法は、上記のいずれか
の方法によって調製された合金触媒を用いることを特徴
とする。
Further, the present invention is an alloy catalyst prepared by any of the above methods. Furthermore, a method for producing a polymer electrolyte fuel cell of the present invention is characterized by using an alloy catalyst prepared by any of the above methods.

【0012】[0012]

【発明の実施の形態】以下、本発明の合金触媒の調製方
法を詳細に説明する。本発明の合金触媒の調製方法は、
まず、担体に2種類以上の金属錯体を混合させる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for preparing an alloy catalyst of the present invention will be described in detail. The method for preparing the alloy catalyst of the present invention comprises:
First, two or more kinds of metal complexes are mixed with the carrier.

【0013】上記担体は、特に限定されず、目的とする
触媒組成に応じたものが使用される。上記担体として
は、例えば、多孔質物質(例えば、アルミナ、シリカ)
粉末、炭素系粉末などを挙げることができる。上記炭素
系粉末としては、例えば、黒鉛、カーボンブラック、電
気導電性を有する活性炭等の粉末を挙げることができ
る。特に、固体高分子型燃料電池用の電極触媒には、上
記活性炭粉末が好ましい。
The above-mentioned carrier is not particularly limited, and a carrier corresponding to a desired catalyst composition is used. As the carrier, for example, a porous substance (eg, alumina, silica)
Powder, carbon-based powder and the like. Examples of the carbon-based powder include powders of graphite, carbon black, and activated carbon having electrical conductivity. In particular, the above activated carbon powder is preferable for an electrode catalyst for a polymer electrolyte fuel cell.

【0014】上記2種類以上の金属錯体は、特に限定さ
れず、目的とする触媒の組成に応じたものにする。上記
金属としては、例えば、Pt、Ru、Pd、Rh、I
r、Co、Cr、Ni、Cu、Fe、Snを挙げること
ができる。固体高分子型燃料電池用の電極触媒を調製す
る際には、Ptを含む2種類以上の金属を担持させるこ
とが好ましい。更に好ましい組合せは、PtとRuであ
る。また、化合物の形態としては錯体が好ましく、Pt
化合物としてはビスアリル白金(II)を、Ru化合物と
してはルテノセン、ドデカカルボニル三ルテニウム若し
くは塩化ルテニウムを、Pd化合物としてはビスアリル
パラジウム若しくは塩化パラジウムを、Ir化合物とし
てはドデカカルボニル四イリジウム若しくは塩化イリジ
ウムを、Rh化合物としてはドデカカルボニル四ロジウ
ム若しくは塩化ロジウムを、Co化合物としては塩化コ
バルトを、Cr化合物としては塩化クロムを、Ni化合
物としては塩化ニッケルを、Cu化合物としては塩化銅
を、Fe化合物としては塩化鉄を、またはSn化合物と
しては塩化スズを用いることが好ましいが、特に限定さ
れるものではない。
The above-mentioned two or more metal complexes are not particularly limited, and are determined according to the composition of the target catalyst. Examples of the metal include Pt, Ru, Pd, Rh, and I.
r, Co, Cr, Ni, Cu, Fe, and Sn can be exemplified. When preparing an electrode catalyst for a polymer electrolyte fuel cell, it is preferable to carry two or more metals including Pt. A more preferred combination is Pt and Ru. The compound is preferably in the form of a complex,
The compound is bisallylplatinum (II), the Ru compound is ruthenocene, dodecacarbonyl triruthenium or ruthenium chloride, the Pd compound is bisallylpalladium or palladium chloride, the Ir compound is dodecacarbonyltetrairidium or iridium chloride, Dodecacarbonyltetrarhodium or rhodium chloride is used as the Rh compound, cobalt chloride is used as the Co compound, chromium chloride is used as the Cr compound, nickel chloride is used as the Ni compound, copper chloride is used as the Cu compound, and chloride is used as the Fe compound. It is preferable to use iron or tin chloride as the Sn compound, but there is no particular limitation.

【0015】上記担体に上記金属錯体を混合させる方法
としては、特に限定されないが、粉末混合(固相混合)
若しくは液相混合が好ましい。上記粉末混合としては、
例えば、室温において、N2等の不活性ガス雰囲気中で
連続的に約10分間以上攪拌、混合させることが好まし
い。
The method of mixing the metal complex with the carrier is not particularly limited, but powder mixing (solid phase mixing)
Alternatively, liquid phase mixing is preferred. As the powder mixture,
For example, it is preferable to continuously stir and mix at room temperature for about 10 minutes or more in an inert gas atmosphere such as N 2 .

【0016】上記のように担体に2種類以上の金属錯体
を混合させる方法の他に、本発明の合金触媒の調製方法
は、1種類以上の金属が担持されている金属担持担体
に、1種類以上の金属錯体を混合させることもできる。
上記1種類以上の金属が担持されている金属担持担体
は、上記と同様に、特に限定されないが、上記の金属錯
体で例示した金属が担持されていることが好ましい。固
体高分子型燃料電池用の電極触媒を調製する際には、P
tを担持させた担体が好ましい。また、上記担体も同様
に特に限定されないが、固体高分子型燃料電池用の電極
触媒には、上記活性炭粉末が好ましい。よって、上記金
属担持担体としては、Pt担持カーボンが好ましい。
In addition to the method of mixing two or more types of metal complexes on the support as described above, the method for preparing an alloy catalyst of the present invention is based on the method of preparing one type of metal support on a metal support having one or more types of metals supported thereon. The above metal complexes can be mixed.
The metal-carrying support on which the one or more kinds of metals are supported is not particularly limited, as described above, but it is preferable that the metal exemplified by the above-described metal complex is supported. When preparing an electrode catalyst for a polymer electrolyte fuel cell, P
Carriers carrying t are preferred. Similarly, the above-mentioned carrier is not particularly limited, but the above-mentioned activated carbon powder is preferable for an electrode catalyst for a polymer electrolyte fuel cell. Therefore, Pt-supported carbon is preferable as the metal-supported carrier.

【0017】金属を担持させる方法は、特に限定されな
いが、微粒子化されて担持されているものが好ましい。
具体的には、例えばコロイド法の他、共沈法、CVD法、
蒸発乾固法、含浸法などの方法によって、担体に金属を
担持させることができる。金属担持担体に金属錯体を混
合させる方法については、上記と同様に特に限定されな
いが、粉末混合(固相混合)もしくは液相混合によって
混合させる。
The method for supporting the metal is not particularly limited, but it is preferable that the metal is supported in the form of fine particles.
Specifically, for example, in addition to the colloid method, a coprecipitation method, a CVD method,
The metal can be supported on the carrier by a method such as evaporation to dryness or impregnation. The method of mixing the metal complex with the metal support is not particularly limited as in the above, but the mixing is performed by powder mixing (solid phase mixing) or liquid phase mixing.

【0018】次に、本発明の合金触媒の調製方法は、上
記混合させた後、還元剤または還元ガスによって上記金
属を還元させる。上記粉末混合の場合は還元ガスが好ま
しく、上記液相混合の場合は還元剤または還元ガスが好
ましい。
Next, in the method for preparing an alloy catalyst according to the present invention, after mixing, the metal is reduced with a reducing agent or a reducing gas. In the case of the powder mixing, a reducing gas is preferable, and in the case of the liquid phase mixing, a reducing agent or a reducing gas is preferable.

【0019】上記還元ガスは、水素ガスや一酸化炭素(C
O)などが好ましく、特に水素ガスが好ましい。水素ガス
の濃度は1〜100vol%が好ましい。還元条件とし
ては、特に限定されないが、室温〜約500℃で約10
分間以上還元ガスを通過させるのが好ましく、約150
〜200℃で約1〜2時間還元ガスを通過させるのが更
に好ましい。
The reducing gas is hydrogen gas or carbon monoxide (C
O) and the like are preferable, and hydrogen gas is particularly preferable. The concentration of hydrogen gas is preferably 1 to 100 vol%. The reduction conditions are not particularly limited, but may be room temperature to about 500 ° C. for about 10 hours.
It is preferable to pass the reducing gas for more than
More preferably, the reducing gas is passed at a temperature of -200 ° C for about 1-2 hours.

【0020】上記還元剤は、有機酸が好ましく、アルコ
ール類(例えば、メタノール、エタノール、イソプロパ
ノール、ブタノール)、クエン酸類(例えば、クエン酸
ナトリウム、クエン酸カリウム、クエン酸アンモニウ
ム)、ケトン類(例えば、アセトン、ヒドロキノン、メ
チルエチルケトン)、カルボン酸類(例えば、酢酸、ぎ
酸、フマル酸、りんご酸、アスパラギン酸、こはく酸)
及びエステル類(例えば、ぎ酸メチル)から選ばれる少
なくとも1種類の有機酸からなることが好ましい。
The reducing agent is preferably an organic acid, such as alcohols (eg, methanol, ethanol, isopropanol, butanol), citric acids (eg, sodium citrate, potassium citrate, ammonium citrate), ketones (eg, Acetone, hydroquinone, methyl ethyl ketone), carboxylic acids (eg, acetic acid, formic acid, fumaric acid, malic acid, aspartic acid, succinic acid)
And at least one organic acid selected from esters and esters (for example, methyl formate).

【0021】そして、本発明の合金触媒の調製方法は、
上記金属を酸化処理させる。上記酸化処理としては、酸
素ガスまたはスチーム(水蒸気)により、金属表面に酸
素を付与することが好ましい。酸化の条件は特に限定さ
れないが、酸素ガス、スチームガス共に、濃度は約0.1
〜5vol%の範囲で約1〜60分流通させるのが好ましい。酸
素及びスチーム処理でさらに好ましい条件としては、例
えば0.1、0.3、0.5、1.0、5.0vol%と徐々に酸化ガス濃
度を上げていき、各濃度1〜60分で処理する方法が挙げ
られる。このようにマイルドな酸化処理をすることによ
り、合金触媒を大気中に取出した際の急激な酸化を防
ぎ、微粒子の状態で合金触媒を得ることができる。酸化
処理をせずに大気中に取出した場合、急激に合金触媒が
酸化され、担体のカーボンが燃焼する。この燃焼により
活性金属が焼結することによって、金属粒径が粗大化し
てしまう。
The method for preparing the alloy catalyst of the present invention is as follows.
The metal is oxidized. In the oxidation treatment, it is preferable to provide oxygen to the metal surface with oxygen gas or steam (steam). The oxidation conditions are not particularly limited, but the concentration of both oxygen gas and steam gas is about 0.1.
It is preferable to flow in the range of 55 vol% for about 1 to 60 minutes. More preferable conditions for the oxygen and steam treatment include a method in which the concentration of the oxidizing gas is gradually increased to, for example, 0.1, 0.3, 0.5, 1.0, and 5.0 vol%, and the treatment is performed at each concentration of 1 to 60 minutes. By performing the mild oxidation treatment in this manner, rapid oxidation when the alloy catalyst is taken out to the atmosphere can be prevented, and the alloy catalyst can be obtained in the form of fine particles. When the alloy catalyst is taken out to the atmosphere without performing the oxidation treatment, the alloy catalyst is rapidly oxidized, and the carbon of the carrier burns. By sintering the active metal by this combustion, the metal particle size becomes coarse.

【0022】このような工程を経て調製された合金触媒
は、少なくとも2種類以上の金属が高い合金化度合いを
示し、なおかつ微粒子化した活性金属を含む合金触媒を
得ることができる。
In the alloy catalyst prepared through such a process, at least two or more metals exhibit a high degree of alloying, and an alloy catalyst containing finely divided active metal can be obtained.

【0023】次いで、本発明に係る固体高分子型燃料電
池の製造方法を詳細に説明する。
Next, a method for manufacturing a polymer electrolyte fuel cell according to the present invention will be described in detail.

【0024】まず、前述した方法により調製された合金
触媒(Pt含有合金を活性金属とする)と固体高分子電
解質溶液とをエタノール等の溶剤に添加し、これらを攪
拌することによりアノード極用スラリーを調製する。一
方、前述した方法により調製された合金触媒(Pt含有
合金を活性金属とする)もしくはPtを活性金属とする
触媒と固体高分子電解質溶液とをエタノール等の溶剤に
添加し、これらを攪拌することによりカソード極用スラ
リーを調製する。
First, an alloy catalyst (a Pt-containing alloy is used as an active metal) and a solid polymer electrolyte solution prepared by the above-described method are added to a solvent such as ethanol, and these are stirred to form a slurry for an anode. Is prepared. On the other hand, the alloy catalyst prepared by the above-described method (Pt-containing alloy is used as an active metal) or a catalyst using Pt as an active metal and a solid polymer electrolyte solution are added to a solvent such as ethanol, and these are stirred. To prepare a cathode electrode slurry.

【0025】固体高分子膜の一方の面に上記アノード極
用スラリーを塗布し、他方の面に上記カソード極用スラ
リーを塗布することにより電極セルを作製する。この電
極セルの両面にカーボンペーパーのような集電体を貼り
付け、各集電体にセパレータを積層することにより単セ
ル固体高分子燃料電池が得られる。前記カソード電極及
び前記アノード電極の組成は、燃料に水素を用いる場合
には同一にすることができる。
An electrode cell is produced by applying the slurry for the anode electrode on one surface of the solid polymer membrane and applying the slurry for the cathode electrode on the other surface. A current collector such as carbon paper is attached to both sides of the electrode cell, and a separator is laminated on each current collector, thereby obtaining a single-cell solid polymer fuel cell. The composition of the cathode electrode and the anode electrode can be the same when hydrogen is used as fuel.

【0026】[0026]

【実施例】本発明に係る合金触媒の調製方法の実施例を
以下に挙げる。
EXAMPLES Examples of the method for preparing an alloy catalyst according to the present invention will be described below.

【0027】実施例1 あらかじめPtが40wt%微粒子化担持されているケ
ッチェンカーボン0.8gに、ルテノセンを0.457
g添加した後、室温にて、N2流通下で10分攪拌し粉
末混合した。次に、N2流通下のまま混合粉末中の温度
を150℃まで昇温した後、N2からH2流通下へ変更
し、そのまま2時間攪拌保持した。そして、再度N2
通下へ変更し室温まで冷却後、O2を0.1vol%の
割合で混合流通させ、そのまま30分攪拌保持した。そ
の後、O2濃度を0.3、0.5、1.0、5.0vo
l%と徐々に上げていき、各O2濃度においての攪拌保
持時間を30分として触媒粉末を十分にO2と接触させ
た後、大気中へ取出す事により粉末触媒1を得た。
Example 1 Ruthenocene was added to 0.8 g of Ketjen carbon in which 40 wt% of Pt was previously supported as fine particles, and 0.457 g of ruthenocene was added.
After the addition of g, the mixture was stirred at room temperature for 10 minutes under N 2 flow and mixed with powder. Next, after the temperature in the mixed powder was raised to 150 ° C. while N 2 was flowing, the mixture was changed from N 2 to H 2 flowing, and stirred and maintained for 2 hours. Then, the atmosphere was changed again to the flow of N 2 , and after cooling to room temperature, O 2 was mixed and flowed at a rate of 0.1 vol%, and the mixture was stirred and maintained for 30 minutes. Thereafter, the O 2 concentration was increased to 0.3, 0.5, 1.0, 5.0 vo.
The catalyst powder was gradually increased to 1%, and the stirring and holding time at each O 2 concentration was set to 30 minutes. After sufficiently bringing the catalyst powder into contact with O 2 , the catalyst was taken out to the atmosphere to obtain a powder catalyst 1.

【0028】実施例2 実施例1のルテノセンの代わりにドデカカルボニル三ル
テニウム、塩化ルテニウム、ビスアリルパラジウム、塩
化パラジウム、ドデカカルボニル四イリジウム、塩化イ
リジウム、ドデカカルボニル四ロジウム、塩化ロジウ
ム、塩化コバルト、塩化クロム、塩化ニッケル、塩化
銅、塩化鉄または塩化スズを用いること以外は前述した
実施例1と同様にして粉末触媒2〜15を得た。尚、粉
末触媒2〜15のケッチェンカーボンへの担持量は実施
例1と同様にした。
Example 2 In place of ruthenocene in Example 1, dodecacarbonyl triruthenium, ruthenium chloride, bisallylpalladium, palladium chloride, dodecacarbonyltetrairidium, iridium chloride, dodecacarbonyltetrarhodium, rhodium chloride, cobalt chloride, chromium chloride Powdered catalysts 2 to 15 were obtained in the same manner as in Example 1 except that nickel chloride, copper chloride, iron chloride or tin chloride was used. The amount of powder catalysts 2 to 15 supported on Ketjen carbon was the same as in Example 1.

【0029】実施例3 実施例1、2について、N2流通化へ変更した後、酸化
処理の代わりに10vol%の水を添加して150℃で
一晩攪拌スチーム処理を施した事以外は実施例1、2と
同様にして粉末触媒16〜30を得た。
Example 3 The procedure of Examples 1 and 2 was repeated except that, after changing to N 2 circulation, 10 vol% of water was added instead of the oxidation treatment, and the mixture was subjected to stirring steam treatment at 150 ° C. overnight. Powdered catalysts 16 to 30 were obtained in the same manner as in Examples 1 and 2.

【0030】実施例4 実施例1において、ケッチェンカーボン0.4gにビス
アリル白金(II)0.4gとルテノセン0.457gを
添加した後、室温、N2流通下で10分攪拌混合した後
は前述した実施例1と同様にして粉末触媒31を得た。
尚、粉末触媒31のケッチェンカーボンへの担持量は実
施例1と同様にした。
Example 4 In Example 1, 0.4 g of bisallylplatinum (II) and 0.457 g of ruthenocene were added to 0.4 g of Ketjen carbon, followed by stirring and mixing at room temperature for 10 minutes under N 2 flow. A powder catalyst 31 was obtained in the same manner as in Example 1 described above.
The amount of the powder catalyst 31 carried on Ketjen carbon was the same as in Example 1.

【0031】実施例5 実施例4のルテノセンの代わりにドデカカルボニル三ル
テニウム、塩化ルテニウム、ビスアリルパラジウム、塩
化パラジウム、ドデカカルボニル四イリジウム、塩化イ
リジウム、ドデカカルボニル四ロジウム、塩化ロジウ
ム、塩化コバルト、塩化クロム、塩化ニッケル、塩化
銅、塩化鉄または塩化スズを用いる事以外は前述した実
施例4と同様にして粉末触媒32〜45を得た。
Example 5 In place of ruthenocene in Example 4, dodecacarbonyl triruthenium, ruthenium chloride, bisallylpalladium, palladium chloride, dodecacarbonyltetrairidium, iridium chloride, dodecacarbonyltetrarhodium, rhodium chloride, cobalt chloride, chromium chloride Powdered catalysts 32 to 45 were obtained in the same manner as in Example 4 except that nickel chloride, copper chloride, iron chloride or tin chloride was used.

【0032】実施例6 実施例4、5について、N2流通化へ変更した後、酸化
処理の代わりに10vol%の水を添加して150℃で
一晩攪拌スチーム処理を施した事以外は実施例4、5と
同様にして粉末触媒46〜60を得た。
Example 6 The procedure of Examples 4 and 5 was repeated except that, after changing to N 2 circulation, 10 vol% of water was added instead of the oxidizing treatment, followed by stirring and steaming at 150 ° C. overnight. Powder catalysts 46 to 60 were obtained in the same manner as in Examples 4 and 5.

【0033】比較例1 水素流通化で2時間攪拌保持するまでは実施例1と同様
の操作を実施した後、大気中へ取出す事により比較粉末
触媒1を得た。
Comparative Example 1 The same operation as in Example 1 was carried out until the mixture was stirred and maintained for 2 hours in hydrogen circulation, and then taken out into the atmosphere to obtain Comparative Powder Catalyst 1.

【0034】比較例2 ケッチェンカーボン0.4gに塩化白金酸溶液(Pt=
2mmol)と塩化ルテニウム溶液(Ru=2mmo
l)を添加し、蒸発乾固後、400℃で3時間焼成を行
う。その後、200℃で2時間水素還元後、実施例1と
同様の酸化処理を行う事により比較粉末触媒2を得た。
Comparative Example 2 0.4 g of Ketjen carbon was added to a chloroplatinic acid solution (Pt =
2 mmol) and a ruthenium chloride solution (Ru = 2 mmo)
1) is added, and after evaporation to dryness, baking is performed at 400 ° C. for 3 hours. Then, after hydrogen reduction at 200 ° C. for 2 hours, the same oxidation treatment as in Example 1 was performed to obtain Comparative Powder Catalyst 2.

【0035】比較例3 比較例2において、塩化ルテニウム溶液を添加せず、塩
化白金酸溶液のみを添加する事以外は比較例2と同様に
して比較粉末触媒3を得た。
Comparative Example 3 A comparative powder catalyst 3 was obtained in the same manner as in Comparative Example 2, except that the ruthenium chloride solution was not added and only the chloroplatinic acid solution was added.

【0036】(合金触媒の評価)得られた粉末触媒1〜
60及び比較粉末触媒1、2について、物性評価として
透過型電子顕微鏡にて活性金属の平均粒径を測定した。
また、X線回折法によるPtの格子定数の変化により合
金度合を評価した。結果は表1及び表2に示した通り、
粉末触媒1〜60は2〜4nmの微粒子で活性金属が担
持可能であり、なおかつ活性金属の合金化が進行してい
る事が分かった。そして、比較粉末触媒1については合
金化は進行しているものの、還元後、大気中に取出した
際に急激に粉末が酸化され、ケッチェンカーボンが燃焼
し消失した。また、この燃焼により活性金属が焼結した
ことにより金属粒径が粗大化する結果となり、比較粉末
触媒2についても、活性金属の合金化は進行しているも
のの、粉末触媒1〜60と比較して合金粒子は粗大化し
ている事が分かった。
(Evaluation of alloy catalyst)
The average particle size of the active metal was measured with a transmission electron microscope as a physical property evaluation for 60 and Comparative Powder Catalysts 1 and 2.
Further, the degree of alloy was evaluated based on the change in the lattice constant of Pt by the X-ray diffraction method. The results are shown in Tables 1 and 2,
It was found that the powdered catalysts 1 to 60 can support the active metal with fine particles of 2 to 4 nm, and that the alloying of the active metal is progressing. Although the alloying of the comparative powder catalyst 1 was progressing, the powder was rapidly oxidized when it was taken out into the air after reduction, and Ketjen carbon was burned and disappeared. In addition, the sintering of the active metal by this combustion resulted in a coarsening of the metal particle size. As for the comparative powder catalyst 2, although the alloying of the active metal was progressing, it was compared with the powder catalysts 1 to 60. It was found that the alloy particles were coarse.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】実施例7 前記粉末触媒1、2、16、17と比較粉末触媒1〜3
を用いて、固体高分子型燃料電池を製造し、アノード極
に供給される燃焼ガスにCOが共存されている場合の発
電特性を評価した。 (電池セルの調製)粉末触媒1に水/エタノール混合液
並びに高分子電解質溶液としてナフィオン溶液を添加し
て超音波攪拌にてスラリーを調製した。得られたスラリ
ーをテフロン(登録商標)シートに塗布して膜圧50μ
mの固体高分子膜(デュポン社製、商品名ナフィオン
膜)の両面に転写し、アノード極を形成した。アノード
極中のPt量は0.5mg/cm2で、Ru量は0.2
5mg/cm2で、ナフィオン膜は0.5mg/cm2
あった。一方、比較触媒3に水/エタノール混合液並び
に高分子電解質溶液としてナフィオン溶液を添加して超
音波攪拌にてスラリーを調製した。得られたスラリーを
テフロンシートに塗布して膜圧50μmの固体高分子膜
(デュポン社製、商品名ナフィオン膜)の両面に転写
し、カソード極を形成した。カソード極中のPt量は0.
5mg/cm2で、ナフィオン膜は0.5mg/cm2
あった。アノード極及びカソード極それぞれにカーボン
ペーパーを貼り付けた後、これらを一対のセパレータで
挟み、5cm四方の電極セル1を調製した。また、アノ
ード極中に含まれる触媒として粉末触媒1の代わりに粉
末触媒2、16、17及び比較粉末触媒1〜3を用いる
事以外は前述した電極セル1で説明したのと同様に電極
セル2、16、17及び比較電極セル1〜3を調製し
た。尚、各電極セル2、16、17及び比較電極セル1
〜3において使用されるカソード電極は、前述した電極
セル1で用いられているものと同一のものとする。
Example 7 The above-mentioned powder catalysts 1, 2, 16, and 17 and comparative powder catalysts 1 to 3
Was used to produce a polymer electrolyte fuel cell, and the power generation characteristics in the case where CO was present in the combustion gas supplied to the anode electrode were evaluated. (Preparation of Battery Cell) A water / ethanol mixed solution and a Nafion solution as a polymer electrolyte solution were added to the powder catalyst 1, and a slurry was prepared by ultrasonic stirring. The obtained slurry was applied to a Teflon (registered trademark) sheet and the film pressure was 50 μm.
m was transferred to both sides of a solid polymer membrane (manufactured by DuPont, trade name: Nafion membrane) to form an anode electrode. The amount of Pt in the anode was 0.5 mg / cm 2 , and the amount of Ru was 0.2 mg / cm 2.
At 5 mg / cm 2 , the Nafion membrane was 0.5 mg / cm 2 . On the other hand, a water / ethanol mixed solution and a Nafion solution as a polymer electrolyte solution were added to the comparative catalyst 3, and a slurry was prepared by ultrasonic stirring. The obtained slurry was applied to a Teflon sheet and transferred to both surfaces of a solid polymer film (Napion film, trade name, manufactured by DuPont) having a film pressure of 50 μm to form a cathode electrode. The amount of Pt in the cathode is 0.
At 5 mg / cm 2 , the Nafion membrane was 0.5 mg / cm 2 . After attaching carbon paper to each of the anode electrode and the cathode electrode, these were sandwiched between a pair of separators to prepare a 5 cm square electrode cell 1. In addition, except that the powder catalysts 2, 16, and 17 and the comparative powder catalysts 1 to 3 are used instead of the powder catalyst 1 as the catalyst contained in the anode electrode, the electrode cell 2 , 16, 17 and comparative electrode cells 1 to 3 were prepared. In addition, each electrode cell 2, 16, 17 and the comparative electrode cell 1
The cathode electrodes used in (3) to (3) are the same as those used in the electrode cell 1 described above.

【0040】(発電特性評価)得られた電極セル1、2、
16、17及び比較電極セル1〜3について、アノード
側はH260%、CO220%、N220%、CO10p
pm、3ata、温度60℃、水素利用率50%、カソ
ード側はAir100%、3ata、温度60℃、水素
利用率50%の各試験条件で発電試験を実施した。その
結果は表3に示した通り、試作粉末触媒1、2、16、
17を含む電極セル1、2、16、17は、比較粉末触
媒1〜3を含む比較電極セル1〜3に比べて高電圧を得
られることが分かった。
(Evaluation of power generation characteristics) The obtained electrode cells 1, 2,
For 16, 17 and comparative electrode cell 1-3, the anode side H 2 60%, CO 2 20 %, N 2 20%, CO10p
The power generation test was performed under the following test conditions: pm, 3 data, a temperature of 60 ° C., a hydrogen utilization rate of 50%, and a cathode side having Air 100%, 3 data, a temperature of 60 ° C., and a hydrogen utilization rate of 50%. As shown in Table 3, the results were as follows: Prototype powder catalysts 1, 2, 16,
It was found that the electrode cells 1, 2, 16 and 17 containing No. 17 can obtain a higher voltage than the comparative electrode cells 1 to 3 containing the comparative powder catalysts 1 to 3.

【0041】[0041]

【表3】 [Table 3]

【0042】このように、本発明の合金触媒の調製方法
によれば、合金を微粒子化することができ、活性金属の
合金化度合いを著しく向上させることができ、反応活性
が高い合金触媒を得ることができた。また、本発明に係
る合金触媒の調製方法によって調製された合金触媒、特
にPt含有合金触媒を用いることによって、耐CO被毒
性に優れ、かつ高い活性反応を有する固体高分子型燃料
電池を製造することができた。
As described above, according to the method for preparing the alloy catalyst of the present invention, the alloy can be made finer, the degree of alloying of the active metal can be significantly improved, and an alloy catalyst having high reaction activity can be obtained. I was able to. Further, by using an alloy catalyst prepared by the method for preparing an alloy catalyst according to the present invention, in particular, a Pt-containing alloy catalyst, a polymer electrolyte fuel cell having excellent CO poisoning resistance and a high activity reaction is produced. I was able to.

【0043】[0043]

【発明の効果】上述したように、本発明によれば、活性
金属の合金化度合いが高く、合金の微粒子化が可能で、
かつ低金属量であっても高活性な合金触媒の調製方法を
提供することができる。また、本発明によれば、耐CO
被毒性に優れ、かつ高い活性反応を有する固体高分子型
燃料電池の製造方法を提供することができる。
As described above, according to the present invention, the alloying degree of the active metal is high, and the alloy can be finely divided.
In addition, it is possible to provide a method for preparing a highly active alloy catalyst even with a low metal content. Further, according to the present invention, CO-resistant
It is possible to provide a method for producing a polymer electrolyte fuel cell which is highly toxic and has a high activity reaction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/62 B01J 23/62 M 23/652 23/89 M 23/89 37/16 37/16 H01M 4/88 K H01M 4/88 4/92 4/92 8/10 8/10 B01J 23/64 103M (72)発明者 安武 聡信 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 渡辺 悟 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G069 AA03 AA08 BA08B BA27C BB02A BB02B BC22B BC31B BC58B BC66B BC67B BC68B BC70B BC71B BC72B BC74B BC75A BC75B BD01C BD02C CC32 DA05 EA01Y FA02 FB40 FB44 FB46 FB78 FC02 FC04 5H018 AA06 AS01 BB01 BB07 BB12 BB17 DD08 EE02 EE03 EE04 EE05 EE06 EE07 EE08 EE10 EE12 EE19 5H026 AA06 BB01 BB04 BB08 BB10 CX04 EE02 EE05 EE06 EE08 EE12 EE19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/62 B01J 23/62 M 23/652 23/89 M 23/89 37/16 37/16 H01M 4 / 88 K H01M 4/88 4/92 4/92 8/10 8/10 B01J 23/64 103M (72) Inventor: Toshinobu Yasutake 4-6-22 Kanonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Research by Mitsubishi Heavy Industries, Ltd. Hiroshima Office (72) Inventor Satoru Watanabe 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd.Hiroshima Research Laboratory F-term (reference) BC75A BC75B BD01C BD02C CC32 DA05 EA01Y FA02 FB40 FB44 FB46 FB78 FC02 FC04 5H018 AA06 AS01 BB01 BB07 BB12 BB17 DD08 EE02 EE03 EE04 EE05 EE06 EE07 EE08 EE10 EE12 EE19 5H026 AA06 BB04 B10 CX04 EE02 EE05 EE06 EE08 EE12 EE19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 担体に2種類以上の金属錯体を混合させ
る工程と、上記混合後に還元剤または還元ガスにより上
記金属を還元させる工程と、上記還元後に上記金属を酸
化処理させる工程とを具備することを特徴とする合金触
媒の調製方法。
1. A method comprising the steps of mixing two or more kinds of metal complexes in a carrier, reducing the metal with a reducing agent or a reducing gas after the mixing, and oxidizing the metal after the reduction. A method for preparing an alloy catalyst, comprising:
【請求項2】 1種類以上の金属が担持されている金属
担持担体に1種類以上の金属錯体を混合させる工程と、
上記混合後に還元剤または還元ガスにより上記金属を還
元させる工程と、上記還元後に上記金属を酸化処理させ
る工程とを具備することを特徴とする合金触媒の調製方
法。
2. A step of mixing one or more metal complexes with a metal-carrying carrier on which one or more metals are supported;
A method for preparing an alloy catalyst, comprising: a step of reducing the metal with a reducing agent or a reducing gas after the mixing; and a step of oxidizing the metal after the reduction.
【請求項3】 上記酸化処理は、酸素ガスまたはスチー
ムにより、金属表面に酸素を付与することを特徴とする
請求項1または2に記載の合金触媒の調製方法。
3. The method for preparing an alloy catalyst according to claim 1, wherein in the oxidation treatment, oxygen is provided to the metal surface by oxygen gas or steam.
【請求項4】 上記金属のうちの1種類はPtであるこ
とを特徴とする請求項1〜3のいずれか記載の合金触媒
の調製方法。
4. The method according to claim 1, wherein one of the metals is Pt.
【請求項5】 請求項1〜4のいずれか記載の方法によ
って調製された合金触媒。
5. An alloy catalyst prepared by the method according to claim 1.
【請求項6】 請求項1〜4のいずれか記載の方法によ
って調製された合金触媒を用いることを特徴とする固体
高分子型燃料電池の製造方法。
6. A method for producing a polymer electrolyte fuel cell, comprising using the alloy catalyst prepared by the method according to claim 1. Description:
JP2000362198A 2000-11-29 2000-11-29 Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell Withdrawn JP2002159866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362198A JP2002159866A (en) 2000-11-29 2000-11-29 Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362198A JP2002159866A (en) 2000-11-29 2000-11-29 Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell

Publications (1)

Publication Number Publication Date
JP2002159866A true JP2002159866A (en) 2002-06-04

Family

ID=18833516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362198A Withdrawn JP2002159866A (en) 2000-11-29 2000-11-29 Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell

Country Status (1)

Country Link
JP (1) JP2002159866A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507637A (en) * 2002-11-26 2006-03-02 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Metal alloy for electrochemical oxidation reaction and its production method
WO2006114942A1 (en) * 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2007273340A (en) * 2006-03-31 2007-10-18 Cataler Corp High-durability electrode catalyst for fuel cell, and fuel cell using the same
JP2008123810A (en) * 2006-11-10 2008-05-29 Hitachi Ltd Electrode catalyst for fuel cell, its manufacturing method, and fuel cell
US8435916B2 (en) 2005-03-28 2013-05-07 Stella Chemifa Corporation Catalyst comprising platinum black and fluorine
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507637A (en) * 2002-11-26 2006-03-02 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Metal alloy for electrochemical oxidation reaction and its production method
US8435916B2 (en) 2005-03-28 2013-05-07 Stella Chemifa Corporation Catalyst comprising platinum black and fluorine
WO2006114942A1 (en) * 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
GB2439690A (en) * 2005-04-21 2008-01-02 Hitachi Maxell Particle containing carbon particle platinum and ruthenium oxide and method for producing same
GB2439690B (en) * 2005-04-21 2009-12-16 Hitachi Maxell Particles comprising carbon particles, platinum and ruthenium oxide, and method for producing the same
JP2007273340A (en) * 2006-03-31 2007-10-18 Cataler Corp High-durability electrode catalyst for fuel cell, and fuel cell using the same
JP2008123810A (en) * 2006-11-10 2008-05-29 Hitachi Ltd Electrode catalyst for fuel cell, its manufacturing method, and fuel cell
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same

Similar Documents

Publication Publication Date Title
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
US7208439B2 (en) Gold-based alloy nanoparticles for use in fuel cell catalysts
JP5329405B2 (en) catalyst
US8293675B2 (en) Process for producing a catalyst and use of the catalyst
CN105377428B (en) Electrode catalyst for fuel cell and method for activating catalyst
JP4575268B2 (en) Catalyst, electrode for fuel cell fuel electrode, and fuel cell
JP5270468B2 (en) ELECTRODE CATALYST FOR FUEL CELL, ITS MANUFACTURING METHOD, AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
CN101926034B (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
Cruz-Martínez et al. Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells
KR101649384B1 (en) Process for the continuous production of a catalyst
JP2010536548A (en) Catalyst, method for producing the same, and method for using the same
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
EP1825543A1 (en) Electrode catalyst for fuel cell and fuel cell
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
RU2395339C2 (en) Catalyst for fuel cell cathode and method of preparing said catalyst
JP2007112696A (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cell
JP2007294332A (en) Electrode catalyst for fuel cell, and fuel cell
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
JP2001224969A (en) Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery
JP4875266B2 (en) Cathode electrode catalyst for fuel cell and production method thereof
WO2018047188A1 (en) A bimetallic catalyst and fuel for use in a direct dimethyl ether fuel cell
JP2002159866A (en) Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell
JPH11111305A (en) Fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205