WO2009004741A1 - Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same - Google Patents

Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same Download PDF

Info

Publication number
WO2009004741A1
WO2009004741A1 PCT/JP2007/070209 JP2007070209W WO2009004741A1 WO 2009004741 A1 WO2009004741 A1 WO 2009004741A1 JP 2007070209 W JP2007070209 W JP 2007070209W WO 2009004741 A1 WO2009004741 A1 WO 2009004741A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
pipe
temperature
martensitic stainless
composition
Prior art date
Application number
PCT/JP2007/070209
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Miyata
Mitsuo Kimura
Masahito Tanaka
Ken Shimamoto
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to US12/665,097 priority Critical patent/US20100193087A1/en
Priority to CN2007800007846A priority patent/CN101437973B/en
Priority to EP07829943.5A priority patent/EP2172573B1/en
Publication of WO2009004741A1 publication Critical patent/WO2009004741A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys

Definitions

  • the present invention relates to a martensitic stainless steel seamless pipe for oil well pipes, and in particular, a seamless steel pipe for oil well pipes having a high yield strength YS of llOksi (758MPa) or more and excellent low temperature toughness and its manufacture. Regarding the method. Background art
  • Patent Document 1 includes C: 0.01 to 0.1%, Cr: 9 to 15%, N: 0.1% or less, even though it has a relatively high C content and high strength.
  • a martensitic stainless steel that has high toughness and is suitable for oil well pipes has been proposed.
  • the amount of carbide existing in the prior austenite grain boundaries is reduced to 0.5 volume% or less, and the maximum minor axis length of carbide is 10 to 200 nm.
  • the technique described in Patent Document 1 uses the power of air cooling after hot working (cooling) and air cooling after solution treatment.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-363708 Disclosure of Invention
  • the desired yield strength is llOksi class in the case of air cooling (cooling) after hot rolling or air cooling (cooling) after solution forming.
  • the object of the present invention is to solve the problems of the prior art, and to propose a seamless steel pipe for oil well pipes having a high yield strength of llOksi class and excellent low temperature toughness, and a stable manufacturing method thereof.
  • excellent low temperature toughness refers to the case where the fracture surface transition temperature vTrs force S-60 ° C or less in the Charbee impact test.
  • the present inventors diligently studied the influence of the component composition and heat treatment conditions on the change in toughness accompanying the increase in strength of a 13Cr martensitic stainless steel pipe.
  • the C content is limited to less than 0.001%
  • the Cr content is set to a relatively low content of about ll% Cr
  • the Ni content is also set to a relatively low Ni content of 4.0% or less.
  • the seamless steel pipe having a composition the balance Fe, after subjected to quenching treatment (810 ° CX 15min), heating to a temperature of 425 ⁇ 5 7 5 ° C Then, it was tempered to cool. In addition, correction treatment was performed during cooling of the tempering treatment.
  • the obtained seamless steel pipe was subjected to tensile test and Charpy impact test, and tensile properties
  • the composition further contains, in mass%, one or two selected from Cu: 2.0% or less, Mo: 2.0% or less A martensitic stainless steel seamless pipe for oil well pipes, characterized by (3)
  • V 0.10% or less
  • Nb 0.10% or less
  • Ti 0.10% or less A martensitic stainless steel seamless steel pipe for oil country tubular goods characterized by having a composition containing at least seeds.
  • the tempering treatment is performed by heating and cooling to a tempering temperature exceeding 450 ° C and 550 ° C or less, and yield strength characterized by applying llOksi-class high strength and excellent low-temperature toughness Of martensitic stainless steel seamless pipe for oil well pipes.
  • the composition further contains one or two kinds selected from mass%, Cu: 2.0% or less, Mo: 2.0% or less.
  • a seamless steel pipe for oil well pipes that has both high yield strength llOksi class strength and excellent low temperature toughness of fracture surface transition temperature vTrs force S-60 ° C or less can be easily and stably produced. It can be manufactured and has a remarkable industrial effect.
  • Figure 1 is a graph showing the relationship between yield strength YS, tensile strength TS, fracture surface transition temperature vTrs, and tempering temperature.
  • the manufacturing method of the seamless steel pipe for oil country tubular goods of this invention is demonstrated.
  • the starting material is mass%, C: less than 0.001%, Si: 1.0% or less, Mn: 0.1 to 2.0%, P: 0.020% or less, S: 0 010% or less, A1: 0. 10% or less, Cr: 10-14%, Ni: 0.1-0%, N: 0.05% or less, the remainder consisting of Fe and inevitable impurities
  • ma SS % is simply expressed as%.
  • C is an important element related to the strength of martensitic stainless steel. To ensure the desired strength, C is preferably contained in an amount of 0.003% or more. , Toughness and corrosion resistance are likely to decrease. Therefore, in this effort, C is limited to less than 0.001%. Preferably, it is in the range of 0.003 to 0.008% from the viewpoint of ensuring the stability of strength and toughness.
  • Si is an element that acts as a deoxidizing agent in the normal steelmaking process.
  • it is desirable to contain 0.1% or more, but if it exceeds 1.0%, the toughness decreases, and further, Hot workability also decreases. For this reason, Si is limited to 1.0% or less.
  • the content is preferably 0.1 to 0.3%.
  • Mn is an element that increases the strength. In this invention, it is necessary to contain 0.1% or more in order to ensure the strength required for steel pipes for oil well pipes, but it must contain more than 2.0 ° / o. Adversely affects toughness. For this reason, Mn was limited to the range of 0.1 to 2.0%. Preferably, the content is 0.5 to 1.5%.
  • P is an element that deteriorates corrosion resistance such as carbon dioxide gas corrosion resistance. In this invention, it is desirable to reduce it as much as possible, but extreme reduction leads to an increase in manufacturing cost. P is limited to 0.020% or less as a range that can be implemented industrially at a relatively low cost and does not deteriorate the corrosion resistance such as carbon dioxide corrosion resistance. The content is preferably 0.015% or less.
  • S is an element that significantly degrades the hot workability in the pipe manufacturing process, and it is desirable that it be as small as possible. , S is limited to 0.010% or less. In addition, Preferably it is 0.003% or less.
  • A1 is an element having a strong deoxidizing action, and in order to obtain such an effect, it is desirable to contain 0.001% or more. However, if it exceeds 0.10%, the toughness is adversely affected. . For this reason, A1 is limited to 0.10% or less. It is preferably 0.05% or less. '
  • Cr is an element that improves the corrosion resistance by forming a protective film.
  • Cr is an element that effectively contributes to the improvement of carbon dioxide corrosion resistance and carbon dioxide stress corrosion cracking resistance. If it contains 10% or more, the required corrosion resistance for oil well pipes can be secured, so in this effort 10% was made the lower limit.
  • a large content exceeding 14% facilitates the formation of ferrite and requires the addition of a large amount of expensive austenite-generating elements in order to ensure the stability of the martensite phase or prevent the hot workability from being deteriorated. Economic disadvantage. For this reason, Cr was limited to the range of 10-14%. In addition, it is preferably 10.5-11. 5% from the viewpoint of securing a more stable structure and hot workability.
  • Ni is an element that has a function of strengthening the protective film and enhances corrosion resistance such as carbon dioxide corrosion resistance. In order to obtain such an effect, a content of 0.1% or more is required. On the other hand, if it exceeds 4.0%, the improvement effect will be saturated and the production cost will only rise. For this reason, Ni was limited to the range of 0.1 to 4.0%. In addition, Preferably it is 1.5 to 3.0%.
  • N is an element that remarkably improves the pitting corrosion resistance. Such an effect becomes remarkable when the content is 0.003% or more. -On the other hand, a content exceeding 0.05% reduces the toughness by forming various nitrides. Therefore, N is limited to 0.05% or less. In addition, Preferably it is 0.01 to 0.02%.
  • the above components are basic components of the starting material.
  • Cu is not more than 2.0% and Mo is not more than 2.0%.
  • Z or V 0.10% or less
  • Nb 0.10% or less
  • Ti 0.10% or less selected from 1 or 2 or more types may be contained .
  • Both Cu and Mo are elements that have the effect of improving corrosion resistance, and can be selected and contained as necessary.
  • Cu is an element having an action of strengthening the protective film and improving the pitting corrosion resistance. In order to obtain such an effect, it is desirable to contain 0.2% or more. On the other hand, if the content exceeds 2.0%, a part of it precipitates and the toughness decreases. Therefore, if contained, Cu is preferably limited to 2.0% or less. More preferably, the content is 0.2 to 1.0%.
  • Mo is an element having an action of increasing resistance to pitting corrosion caused by C1, and in order to obtain such an effect, it is desirable to contain 0.2% or more. On the other hand, if the content exceeds 2.0%, the strength decreases and the material cost increases. Make it. For this reason, Mo is preferably limited to 2.0% or less. More preferably, it is 0.2 to 1.0%. '
  • V 0.1% or less
  • b 0.1% or less
  • Ti 0.1% or less selected from 10% or less
  • V, Nb, and Ti are all elements that increase the strength, and can be selected according to need and contained in one or more kinds.
  • V 0.02% or more
  • Nb 0.01% or more
  • Ti 0.02% or more
  • the toughness decreases.
  • V 0.1% or less if it is contained, it is preferable to limit to V 0.1% or less, Nb: 0.1% or less, and Ti: 0.1% or less. More preferably, V: 0.02 to 0.05%, Nb: 0.01 to 0.05%, Ti: 0.02 to 0.05%.
  • the balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, O: 0.000% or less is acceptable.
  • the method for producing the starting material having the above-described composition is not particularly limited.
  • the molten steel having the above-described composition can be produced by a generally known melting method such as a converter, an electric furnace, or a vacuum melting furnace.
  • a steel pipe material such as a billet by a usual method such as melting, continuous forging method, ingot lump rolling method or the like.
  • these steel pipe materials are heated and hot-processed and piped using the usual Mannesmann-one plug mill method or Mannesmann-Mandler Minore manufacturing process to produce seamless steel pipes of the desired dimensions, which are used as starting materials.
  • a seamless steel pipe may be manufactured by hot extrusion using a press method.
  • the seamless steel pipe is cooled to room temperature at a cooling rate higher than that of air cooling.
  • the starting material (seamless steel pipe) is first quenched.
  • the quenching treatment in the present invention is a treatment of reheating to a quenching temperature not lower than the Ac 3 transformation point and then cooling from the quenching temperature to a temperature range of 100 ° C. or lower at a cooling rate higher than air cooling. As a result, a fine martensite structure can be obtained. Quenching heating If the temperature is lower than the Ac 3 transformation point, the austenite single-phase region cannot be heated, and a sufficient martensite structure cannot be obtained by subsequent cooling, so that the desired strength cannot be ensured. For this reason, the heating temperature of the quenching treatment was limited to the Ac 3 transformation point or higher. In addition, Preferably it is 950 degrees C or less.
  • Cooling from the quenching heating temperature is performed to a temperature range of 100 ° C or less at an air cooling rate or higher. Since the starting material in the present invention has high hardenability, a sufficient quenched structure (martensitic structure) can be obtained by cooling to a temperature range of 100 ° C. or lower at a cooling rate of about air cooling. Also, the holding time at the quenching temperature is preferably lOmin or more from the viewpoint of soaking.
  • Tempered seamless steel pipes will continue to be tempered.
  • the tempering process is an important process for securing excellent low temperature toughness.
  • the tempering treatment in the present invention is performed by heating to a tempering temperature in the range of 450 ° C. to 550 ° C., preferably after holding at 3 Omin or higher, preferably at a cooling rate of air cooling or higher, preferably to room temperature. Cooling is performed at This results in a seamless steel pipe with high strength over YSllOksi and excellent low temperature toughness with vTrs below -60 ° C.
  • the tempering temperature is 450 ° C or lower, the tempering is insufficient and the toughness decreases, and it is impossible to combine high strength and high toughness.
  • the tempering temperature is preferably 500 ° C or higher and 550 ° C or lower.
  • the holding time at the tempering temperature is preferably 30 min or more from the viewpoint of ensuring the stability of the material. Cooling from the tempering temperature is preferably air cooling or higher.
  • a correction treatment can be performed to correct defects in the steel pipe shape during cooling during the tempering treatment.
  • the straightening treatment is preferably performed in a temperature range of 400 ° C or higher. If the temperature of the straightening treatment is less than 400 ° C, Processing strain is added locally, and variations in mechanical properties are likely to occur. For this reason, it was decided to perform the correction process in a temperature range of 400 ° C or higher.
  • the seamless steel pipe manufactured by the above manufacturing method has the above composition, yield strength llOksi class high strength and fracture surface transition temperature of Charpy impact test vTrs -60 ° C or less excellent low temperature toughness And martensitic stainless steel seamless pipe.
  • This martensitic stainless steel seamless pipe has a structure mainly composed of a tempered martensite phase. As a result, the steel pipe has a desired high strength and a desired high toughness and also has sufficient corrosion resistance as an oil well pipe.
  • the slab was made into a slab by a continuous forging method, and the slab was re-heated and billet (size: 207 ⁇ ) obtained by billet rolling was used as the steel pipe material.
  • billet size: 207 ⁇
  • These steel pipe materials were heated, hot-processed using the Mannesmann manufacturing process, piped, and then air-cooled to obtain seamless steel pipes (outer diameter 177.8 mm ⁇ X wall thickness 12.7 mm).
  • the obtained seamless steel pipe was subjected to quenching treatment, tempering treatment, or further straightening treatment under the conditions shown in Table 2.
  • API arc-shaped tensile test specimens are collected from the quenched and tempered seamless steel pipes and subjected to tensile tests to determine the tensile properties (yield strength YS, tensile strength TS). It was.
  • V-notch specimens (10 mm thick) were sampled from seamless steel pipes that had been quenched, tempered, or further straightened in accordance with JIS Z 2242 and subjected to Charpy impact testing. Conducted fracture surface transition temperature vTrs, and absorbed energy vE_6 at -60 ° C. And toughness was evaluated.
  • specimens were collected from 12 locations around the circumference, and subjected to a Charpy impact test at -60 ° C. Absorbed energy V E- 6 . The variation was evaluated by the average value (ave) and the minimum value (rain).
  • a corrosion test specimen with a thickness of 3 mm, a width of 25 mm, and a length of 50 mm was produced from the steel pipe by machining, and a corrosion test was conducted.
  • Each of the inventive examples has sufficient corrosion resistance as an oil well pipe, and YS has a high strength of llOksi class and has excellent low temperature toughness with vTrs of -60 ° C or less. It has become.
  • the comparative examples which are out of the scope of the present invention cannot secure the desired high strength and high toughness because the strength is insufficient or the low temperature toughness is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A seamless steel pipe for oil well pipes which combines a high yield strength of a 110-ksi class with excellent low-temperature toughness; and a process for producing the seamless steel pipe. A stainless-steel seamless pipe having a composition containing, in terms of mass%, less than 0.010% carbon, up to 1.0% silicon, 0.1-2.0% manganese, up to 0.020% phosphorus, up to 0.010% sulfur, up to 0.10% aluminum, 10-14% chromium, 0.1-4.0% nickel, and up to 0.05% nitrogen, the remainder being iron and incidental impurities, is subjected to a quenching treatment in which the pipe is heated to a hardening temperature not lower than transformation point Ac3 and then cooled to a temperature of 100°C of lower at a cooling rate higher than in air cooling. Subsequently to the quenching treatment, the pipe is subjected to a tempering treatment in which it is heated to a tempering temperature of 450-550°C, excluding 450°C, and then cooled. Thus, a martensitic stainless-steel seamless pipe for oil well pipes is obtained which combines a high yield strength of a 110-ksi class with excellent low-temperature toughness, i.e., a vTrs of -60°C or lower. The composition may further contain one or more members selected among copper, molybdenum, vanadium, niobium, and titanium.

Description

明細書 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 技術分野  TECHNICAL FIELD Martensitic stainless steel seamless pipe for oil well pipe and manufacturing method thereof
本発明は、 油井管用マルテンサイト系ステンレス継目無鋼管に係り、 とくに、 降伏強さ YSが llOksi (758MPa) 以上の高強度と、 かつ優れた低温靭性とを兼備 する油井管用継目無鋼管およびその製造方法に関する。 背景技術  The present invention relates to a martensitic stainless steel seamless pipe for oil well pipes, and in particular, a seamless steel pipe for oil well pipes having a high yield strength YS of llOksi (758MPa) or more and excellent low temperature toughness and its manufacture. Regarding the method. Background art
近年、 原油価格の高騰や、 近い将来に予想される石油資源の枯渴という観点か ら、 従来、 省みられなかったような深い油田や、 炭酸ガス、 塩素イオン等を含む 厳しい腐食環境の油田やガス田、 さらには寒冷地や海底といった掘削環境が厳し い油田等の開発が盛んになつている。 このような環境下で使用される油井用鋼管 には、 高強度で、 かつ優れた耐食性、 さらには優れた靭性を兼ね備えた材質を有 することが要求される。  In recent years, from the viewpoint of soaring crude oil prices and the expected depletion of petroleum resources in the near future, deep oil fields that have not been previously excluded, and oil fields with severe corrosive environments that contain carbon dioxide, chlorine ions, etc. The development of oil fields, etc., where drilling environments are severe, such as cold regions and the seabed, has become active. The oil well steel pipe used in such an environment is required to have a material having high strength, excellent corrosion resistance, and excellent toughness.
従来から、 炭酸ガス co2、 塩素イオン Cl_等を含む環境の油田、 ガス田では、 採掘に使用する油井管として 13。/0Crマルテンサイト系ステンレス鋼管が多く使 用されている。 Conventionally, in oil and gas fields that contain carbon dioxide co 2 , chlorine ions Cl_, etc., oil well pipes used for mining13. / 0 Cr martensitic stainless steel pipe is often used.
例えば、 特許文献 1には、 C : 0. 01〜0. 1%、 Cr : 9〜15%、 N: 0. 1%以下を 含み、 比較的高い C含有量で高強度であるにも拘わらず、 高い靭性を有し、 油井 管などに好適な、 マルテンサイト系ステンレス鋼が提案されている。 特許文献 1 に記載された技術では、 旧オーステナイト結晶粒界に存在する炭化物量を 0. 5体 積%以下に低減する、 炭化物の最大短径長さを 10〜200nmとする、 炭化物中の平 均 Cr濃度と平均 Fe濃度の比を 0. 4以下とする、 M2 3C6型の炭化物の析出を抑制 し、 M3C型の炭化物を積極的に析出させることにより、 靭性を大幅に改善できる としている。 このような炭化物の構造と組成を所望の範囲に調整するために、 特 許文献 1に記載された技術では、 熱間加工後空冷 (放冷) する力 溶体化後空冷For example, Patent Document 1 includes C: 0.01 to 0.1%, Cr: 9 to 15%, N: 0.1% or less, even though it has a relatively high C content and high strength. A martensitic stainless steel that has high toughness and is suitable for oil well pipes has been proposed. In the technique described in Patent Document 1, the amount of carbide existing in the prior austenite grain boundaries is reduced to 0.5 volume% or less, and the maximum minor axis length of carbide is 10 to 200 nm. the ratio of the average Cr concentration to the average Fe concentration and 0.4 or less, and suppress the precipitation of M 2 3 C 6 type carbide, by actively precipitating the M 3 C type carbide, significant toughness Can improve It is said. In order to adjust the structure and composition of such carbides to a desired range, the technique described in Patent Document 1 uses the power of air cooling after hot working (cooling) and air cooling after solution treatment.
(放冷) ままとするか、 あるいは溶体化後空冷 (放冷) し、 450°C以下の低温で 焼戻するとしている。 It is supposed to be left as it is (cooled) or air cooled after solution (cooled) and tempered at a low temperature of 450 ° C or less.
特許文献 1 : 特開 2002— 363708号公報 発明の開示  Patent Document 1: Japanese Patent Laid-Open No. 2002-363708 Disclosure of Invention
しかしながら、 特許文献 1に記載された技術では、 熱間圧延後空冷 (放冷) の まま、 あるいは、 溶体化後空冷 (放冷)ままの場合は、 所望の降伏強さ llOksi級 However, in the technique described in Patent Document 1, the desired yield strength is llOksi class in the case of air cooling (cooling) after hot rolling or air cooling (cooling) after solution forming.
(758〜862MPa) の強度と優れた低温靭性を兼備できないという問題があつた。 また、 特許文献 1に記載された技術で降伏強さ llOksi級の強度を確保するため には、 C含有量を 0. 01mass%以上とする必要が'ある。 し力 し、 C含有量を 0. 01mass%以上とすると低温靭性が低下し、 破面遷移温度 vTrsが- 60°C以下の優 れた低温靭性を確保できなくなるという問題があった。 また、 特許文献 1に記載 された技術を鋼管に適用し 450°C以下の低温焼戻しを行った場合、 焼戻し処理の 加熱終了直後の矯正で加工歪が導入され、 鋼管特性のばらつきが多くなるという 問題があった。 There was a problem that the strength of (758 to 862 MPa) and the excellent low temperature toughness could not be combined. Further, in order to ensure the yield strength of llOksi class with the technique described in Patent Document 1, it is necessary to set the C content to 0.01 mass% or more. However, when the C content is 0.01 mass% or more, the low temperature toughness is lowered, and it is impossible to secure an excellent low temperature toughness with a fracture surface transition temperature vTrs of -60 ° C or lower. In addition, when the technique described in Patent Document 1 is applied to a steel pipe and tempering at a low temperature of 450 ° C or lower, processing distortion is introduced by correction immediately after the end of heating in the tempering process, resulting in increased variation in steel pipe characteristics. There was a problem.
本発明は、 力かる従来技術の問題を解決し、 降伏強さ llOksi級の高強度と優 れた低温靭性とを兼備する油井管用継目無鋼管およびその安定した製造方法を提 案することを目的とする。 なお、 ここでいう 「優れた低温靭性」 とは、 シャルビ ー衝搫試験の破面遷移温度 vTrs力 S - 60°C以下である場合をいう。  The object of the present invention is to solve the problems of the prior art, and to propose a seamless steel pipe for oil well pipes having a high yield strength of llOksi class and excellent low temperature toughness, and a stable manufacturing method thereof. And The term “excellent low temperature toughness” as used herein refers to the case where the fracture surface transition temperature vTrs force S-60 ° C or less in the Charbee impact test.
本発明者らは、 上記した目的を達成するために、 13Cr系マルテンサイト系ス テンレス鋼管の高強度化に伴う靱性の変化に及ぼす、 成分組成、 熱処理条件の影 響について、 鋭意研究した。 その結果、 C含有量を 0. 010%未満に制限し、 Cr含 有量を ll%Cr程度の比較的低い含有量とし、 さらに 4. 0%以下の比較的低い Ni 含有量とした成分系で、 焼入れ処理後、 450°C超え 550°C以下の焼戻温度に加熱 し冷却する適正な焼戻処理を施すことにより、 Mo無添加でも、 降伏強さ llOksi 級の高強度を確保し、 かつ vTrsが- 60°C以下の高靭性を得ることができること を知見した。 まず、 本発明者らが行った基礎的実験結果を説明する。 In order to achieve the above-mentioned object, the present inventors diligently studied the influence of the component composition and heat treatment conditions on the change in toughness accompanying the increase in strength of a 13Cr martensitic stainless steel pipe. As a result, the C content is limited to less than 0.001%, the Cr content is set to a relatively low content of about ll% Cr, and the Ni content is also set to a relatively low Ni content of 4.0% or less. After quenching, heat to tempering temperature above 450 ° C and below 550 ° C It was found that by applying an appropriate tempering treatment that cools and cools, high strength of yield strength llOksi class can be secured and high toughness of vTrs of -60 ° C or less can be obtained even without addition of Mo. First, the results of basic experiments conducted by the present inventors will be described.
mass%で、 0. 008% C、 0. 12%Si、 1. 14%Μη、 0· 019% Ρ、 0. 001% S、 0. 04% Al、 10. 9%Cr、 2. 3%Ni、 0. 5%Cu、 0. 01%N、 残部 Feからなる組成の継目無鋼 管に、 焼入れ処理 (810°C X 15min) を施したのち、 425〜575°Cの温度に加熱し放 冷する焼戻処理を施した。 なお、 焼戻処理の冷却途中で矯正処理を施した。 得ら れた継目無鋼管について、 引張試験、 シャルピー衝撃試験を実施し、 引張特性mass%, 0.008% C, 0.12% Si, 1.14% Μη, 0 · 019%, 0.001% S, 0.04% Al, 10.9% Cr, 2.3% Ni, 0. 5% Cu, 0. 01% N, the seamless steel pipe having a composition the balance Fe, after subjected to quenching treatment (810 ° CX 15min), heating to a temperature of 425~ 5 7 5 ° C Then, it was tempered to cool. In addition, correction treatment was performed during cooling of the tempering treatment. The obtained seamless steel pipe was subjected to tensile test and Charpy impact test, and tensile properties
(降伏強さ YS、 引張強さ TS) およ.ぴ低温靭性 (破面遷移温度 vTrs) を求めた。 得られた結果を図 1に示す。 図 1から、 この成分系では、 焼入れ処理後、 450°C超え 550°C以下の温度に焼戻することにより、 高靭性と高強度を兼備させ ることができることがわかる。 すなわち、 ll%Cr— 2%Ni系の糸且成としても、 焼 入れ処理後、 450°C超え 550°C以下の温度に焼戻しすることにより、 vTrsが- 60°C以下の高靭性と、 YSllOksi級の高強度とを安定して確保できることがわか る。 本発明は、 上記した知見に基づき、 さらに検討を重ねて完成されたもので ある。 すなわち、 本発明の要旨は次のとおりである。 (Yield strength YS, tensile strength TS) and low temperature toughness (fracture surface transition temperature vTrs) were determined. Figure 1 shows the results obtained. From Fig. 1, it is clear that this component system can combine high toughness and high strength by tempering to a temperature of 450 ° C to 550 ° C after quenching. In other words, even when ll% Cr-2% Ni-based yarns are formed, by tempering them to a temperature of 450 ° C or higher and 550 ° C or lower after quenching, high toughness with vTrs of -60 ° C or lower, It can be seen that the high strength of YSllOksi class can be secured stably. The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
( 1 ) . mass%で、 C : 0. 010%未満、 Si: 1. 0%以下、 Mn: 0. 1〜2. 0%、 P : 0. 020%以下、 S : 0. 010%以下、 A1: 0. 10%以下、 Cr: 10〜14%、 Ni : 0. 1〜 4. 0%、 N: 0. 05%以下を含み、 残部 Feおよぴ不可避的不純物からなる組成を有 し、 降伏強さ llOksi級の高強度とシャルピー衝撃試験の破面遷移温度 vTrsが- 60°C以下の優れた低温靭性とを兼備することを特徴とする油井管用マルテンサイ ト系ステンレス継目無鋼管。  (1) .mass%, C: less than 0.001%, Si: 1.0% or less, Mn: 0.1 to 2.0%, P: 0.020% or less, S: 0.010% or less A1: 0.1% or less, Cr: 10-14%, Ni: 0.1-4.0%, N: 0.05% or less, with the balance consisting of Fe and inevitable impurities Yield strength Martensitic stainless steel seamless pipe for oil well pipes, which has both high strength of llOksi class and fracture surface transition temperature of Charpy impact test, excellent vTs low temperature toughness of -60 ° C or less.
( 2 ) ( 1 ) において、 前記組成に加えてさらに、 mass%で、 Cu: 2. 0%以下、 Mo: 2. 0%以下のうちから選ばれた 1種または 2種を含有する組成とすることを 特徴とする油井管用マルテンサイト系ステンレス継目無鋼管。 (3) (1) または (2) において、 前記組成に加えてさらに、 mass%で、 V: 0.10%以下、 Nb: 0.10%以下、 Ti: 0.10%以下のうちから選ばれた 1種または 2 種以上を含有する組成とすることを特徴とする油井管用マルテンサイト系ステン レス継目無鋼管。 (2) In (1), in addition to the above composition, the composition further contains, in mass%, one or two selected from Cu: 2.0% or less, Mo: 2.0% or less A martensitic stainless steel seamless pipe for oil well pipes, characterized by (3) In (1) or (2), in addition to the above composition, in addition to mass%, V: 0.10% or less, Nb: 0.10% or less, Ti: 0.10% or less A martensitic stainless steel seamless steel pipe for oil country tubular goods characterized by having a composition containing at least seeds.
(4) mass%で、 C: 0.010%未満、 Si: 1.0%以下、 Mn: 0.:!〜 2.0%、 P : 0.020%以下、 S : 0.010%以下、 A1: 0.10%以下、 Cr: 10〜14%、 Νί: 0.1〜 4.0%、 Ν: 0.05%以下を含み、 残部 Feおよび不可避的不純物からなる組成を有 するステンレス継目無鋼管に、 Ac3変態点以上の焼入れ温度に加熱したのち、 該 焼入れ温度から空冷以上の冷却速度で 100°C以下の温度域まで冷却する焼入れ処 理と、 該焼入れ処理に引続き、 450°C超え 550°C以下の焼戻温度に加熱し、 冷却 する焼戻処理と、 を施すことを特徴とする降伏強さ llOksi級の高強度と優れた 低温靭性とを兼備する油井管用マルテンサイト系ステンレス継目無鋼管の製造方 法。 (4) At mass%, C: less than 0.010%, Si: 1.0% or less, Mn: 0 :! ~ 2.0%, P: 0.020% or less, S: 0.010% or less, A1: 0.10% or less, Cr: 10-14%, Νί: 0.1-4.0%, Ν: 0.05% or less, balance Fe and inevitable impurities A stainless steel seamless steel pipe having a composition consisting of the following: a quenching treatment in which the steel is heated to a quenching temperature not lower than the Ac 3 transformation point, and then cooled to a temperature range of 100 ° C. or lower from the quenching temperature at a cooling rate higher than air cooling; Subsequent to the quenching treatment, the tempering treatment is performed by heating and cooling to a tempering temperature exceeding 450 ° C and 550 ° C or less, and yield strength characterized by applying llOksi-class high strength and excellent low-temperature toughness Of martensitic stainless steel seamless pipe for oil well pipes.
(5) (4) において、 前記組成に加えてさらに、 mass%で、 Cu: 2.0%以下、 Mo: 2.0%以下のうちから選ばれた 1種または 2種を含有する組成とすることを 特徴とする油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。  (5) In (4), in addition to the above composition, the composition further contains one or two kinds selected from mass%, Cu: 2.0% or less, Mo: 2.0% or less. A method for producing a martensitic stainless steel seamless pipe for oil country tubular goods.
(6) (4) または (5) において、 前記組成に加えてさらに、 mass%で、 V: 0.10%以下、 Nb: 0.10%以下、 Ti: 0.10%以下のうちから選ばれた 1種または 2 種以上を含有する組成とすることを特徴とする油井管用マルテンサイト系ステン レス継目無鋼管の製造方法。  (6) In (4) or (5), in addition to the above composition, in addition to mass%, one or two selected from V: 0.10% or less, Nb: 0.10% or less, Ti: 0.10% or less The manufacturing method of the martensitic stainless steel seamless steel pipe for oil country tubular goods characterized by setting it as the composition containing seed | species or more.
(7) (4) ないし (6) のいずれかにおいて、 前記焼戻処理における冷却途中 に、 '矯正処理を 400°C以上の温度域で行うことを特徴とする油井管用マルテンサ ィト系ステンレス継目無鋼管の製造方法。  (7) In any of (4) to (6), during the cooling in the tempering process, a straightening process is performed in a temperature range of 400 ° C or higher, and the martensite stainless steel joint for oil well pipes is characterized in that Manufacturing method of steelless pipe.
本発明によれば、 降伏強さ llOksi級の高強度と、 破面遷移温度 vTrs力 S-60°C 以下の優れた低温靭性とを兼備する油井管用継目無鋼管を、 容易にしかも安定し て製造でき、 産業上格段の効果を奏する。 図面の簡単な説明 According to the present invention, a seamless steel pipe for oil well pipes that has both high yield strength llOksi class strength and excellent low temperature toughness of fracture surface transition temperature vTrs force S-60 ° C or less can be easily and stably produced. It can be manufactured and has a remarkable industrial effect. Brief Description of Drawings
図 1は、 降伏強さ YS、 引張強さ TS、 破面遷移温度 vTrsと焼戻温度との関係を示 すグラフである。 発明を実施するための最良の形態 Figure 1 is a graph showing the relationship between yield strength YS, tensile strength TS, fracture surface transition temperature vTrs, and tempering temperature. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 本発明の油井管用継目無鋼管の製造方法について説明する。 本発明では、 出発素材は、 mass%で、 C: 0. 010%未満、 Si: 1. 0%以下、 Mn: 0. 1〜2. 0%、 P : 0. 020%以下、 S : 0. 010%以下、 A1: 0. 10%以下、 Cr: 10〜14%、 Ni: 0. 1 〜 0%、 N: 0. 05%以下を含み、 残部 Feおよび不可避的不純物からなる糸且成を 有するステンレ 継目無鋼管とする。 なお、 以下、 maSS%は単に%で記す。 まず、 出発素材の組成限定理由について説明する。 First, the manufacturing method of the seamless steel pipe for oil country tubular goods of this invention is demonstrated. In the present invention, the starting material is mass%, C: less than 0.001%, Si: 1.0% or less, Mn: 0.1 to 2.0%, P: 0.020% or less, S: 0 010% or less, A1: 0. 10% or less, Cr: 10-14%, Ni: 0.1-0%, N: 0.05% or less, the remainder consisting of Fe and inevitable impurities Stainless steel seamless steel pipe with In the following, ma SS % is simply expressed as%. First, the reasons for limiting the composition of the starting material will be explained.
C: 0. 010%未満  C: Less than 0.010%
Cは、 マルテンサイト系ステンレス鋼の強度に関係する重要な元素であり、 所 望の強度を確保するためには、 0. 003%以上含有することが望ましいが、 0. 010% 以上の含有は、 靭性、 さらには耐食性が低下しやすくなる。 このため、 本努明で は、 Cは 0. 010%未満に限定した。 なお、 好ましくは、 強度と靭性の安定確保と いう観点から 0. 003〜0. 008%の範囲である。  C is an important element related to the strength of martensitic stainless steel. To ensure the desired strength, C is preferably contained in an amount of 0.003% or more. , Toughness and corrosion resistance are likely to decrease. Therefore, in this effort, C is limited to less than 0.001%. Preferably, it is in the range of 0.003 to 0.008% from the viewpoint of ensuring the stability of strength and toughness.
Si: 1. 0%以下  Si: 1.0% or less
Siは、 通常の製鋼過程において脱酸剤として作用する元素であり、 この発明 では、 0. 1%以上含有させることが望ましいが、 1. 0%を超えて含有すると、 靭性 が低下し、 さらに熱間加工性も低下する。 このために、 Siは 1. 0%以下に限定し た。 なお、 好ましくは 0. 1〜0. 3%である。  Si is an element that acts as a deoxidizing agent in the normal steelmaking process. In this invention, it is desirable to contain 0.1% or more, but if it exceeds 1.0%, the toughness decreases, and further, Hot workability also decreases. For this reason, Si is limited to 1.0% or less. The content is preferably 0.1 to 0.3%.
Mn: 0. 1〜2. 0%  Mn: 0.1-2.0%
Mnは、 強度を増加させる元素であり、 この発明では油井管用鋼管として必要 な強度を確保するために 0. 1%以上の含有を必要とするが、 2. 0°/oを超える含有 は、 靭性に悪影響を及ぼす。 このため、 Mnは 0. 1〜2. 0%の範囲に限定した。 な お、 好ましくは 0. 5〜1. 5%である。 Mn is an element that increases the strength. In this invention, it is necessary to contain 0.1% or more in order to ensure the strength required for steel pipes for oil well pipes, but it must contain more than 2.0 ° / o. Adversely affects toughness. For this reason, Mn was limited to the range of 0.1 to 2.0%. Preferably, the content is 0.5 to 1.5%.
P: 0. 020%以下  P: 0.020% or less
Pは、 耐炭酸ガス腐食性等の耐食性を劣化させる元素であり、 この発明では可 及的に低減することが望ましいが、 極端な低減は製造コストの上昇を招く。 工業 的に比較的安価に実施可能でかつ耐炭酸ガス腐食性等の耐食性を劣化させない範 囲として、 Pは 0. 020%以下に限定した。 なお、 好ましくは 0. 015%以下である。  P is an element that deteriorates corrosion resistance such as carbon dioxide gas corrosion resistance. In this invention, it is desirable to reduce it as much as possible, but extreme reduction leads to an increase in manufacturing cost. P is limited to 0.020% or less as a range that can be implemented industrially at a relatively low cost and does not deteriorate the corrosion resistance such as carbon dioxide corrosion resistance. The content is preferably 0.015% or less.
S : 0. 010%以下  S: 0.010% or less
Sは、 パイプ製造過程において熱間加工性を著しく劣化させる元素であり、 可 及的に少ないことが望ましいが、 0. 010%以下に低減すれば通常工程でのパイプ 製造が可能となることから、 Sは 0. 010%以下に限定した。 なお、 好ましくは 0. 003%以下である。  S is an element that significantly degrades the hot workability in the pipe manufacturing process, and it is desirable that it be as small as possible. , S is limited to 0.010% or less. In addition, Preferably it is 0.003% or less.
A1: 0. 10%以下  A1: 0. 10% or less
A1 は、 強力な脱酸作用を有する元素であり、 このような効果を得るためには、 0. 001%以上含有することが望ましいが、 0. 10%を超える含有は、 靱性に悪影響 を及ぼす。 こ ため、 A1は 0. 10%以下に限定した。 なお、 好ましくは 0. 05%以 下である。 '  A1 is an element having a strong deoxidizing action, and in order to obtain such an effect, it is desirable to contain 0.001% or more. However, if it exceeds 0.10%, the toughness is adversely affected. . For this reason, A1 is limited to 0.10% or less. It is preferably 0.05% or less. '
Cr: 10〜14%  Cr: 10-14%
Crは、 保護被膜を形成して耐食性を向上させる元素で、 とくに耐炭酸ガス腐 食性、 耐炭酸ガス応力腐食割れ性の向上に有効に寄与する元素である。 10%以上 含有すれば、 油井管用として必要な耐食性を確保できることから、 本努明では 1 0%を下限とした。 一方、 14%を超える多量の含有は、 フェライトの生成が容易 となり、 マルテンサイト相の安定確保または熱間加工性の低下防止のために、 多 量の高価なオーステナイト生成元素の添加を必要とし、 経済的に不利となる。 こ のため、 Crは 10〜14%の範囲に限定した。 なお、 好ましくはより安定的な組織 や熱間加工性の確保の観点から 10. 5-11. 5%である。 Ni: 0. 1〜 0% Cr is an element that improves the corrosion resistance by forming a protective film. In particular, Cr is an element that effectively contributes to the improvement of carbon dioxide corrosion resistance and carbon dioxide stress corrosion cracking resistance. If it contains 10% or more, the required corrosion resistance for oil well pipes can be secured, so in this effort 10% was made the lower limit. On the other hand, a large content exceeding 14% facilitates the formation of ferrite and requires the addition of a large amount of expensive austenite-generating elements in order to ensure the stability of the martensite phase or prevent the hot workability from being deteriorated. Economic disadvantage. For this reason, Cr was limited to the range of 10-14%. In addition, it is preferably 10.5-11. 5% from the viewpoint of securing a more stable structure and hot workability. Ni: 0.1 to 0%
Niは、 保護被膜を強固にする作用を有し、 耐炭酸ガス腐食性等の耐食性を高 める元素である。 このような効果を得るためには、 0. 1%以上の含有を必要とす る。 一方、 4. 0%を超える含有は、 改善効果が飽和し、 製造コストの高騰を招く だけとなる。 このため、 Niは 0. 1〜4. 0%の範囲に限定した。 なお、 好ましくは 1. 5〜3. 0%である。  Ni is an element that has a function of strengthening the protective film and enhances corrosion resistance such as carbon dioxide corrosion resistance. In order to obtain such an effect, a content of 0.1% or more is required. On the other hand, if it exceeds 4.0%, the improvement effect will be saturated and the production cost will only rise. For this reason, Ni was limited to the range of 0.1 to 4.0%. In addition, Preferably it is 1.5 to 3.0%.
N: 0. 05%以下  N: 0.05% or less
Nは、 耐孔食性を著しく向上させる元素であり、 このような効果は、 0. 003% 以上の含有で顕著となる。 —方、 0. 05%を超える含有は、 種々の窒化物を形成し て靭性を低下させる。 このため、 Nは 0. 05%以下に限定した。 なお、 好ましく は 0. 01〜0. 02%である。  N is an element that remarkably improves the pitting corrosion resistance. Such an effect becomes remarkable when the content is 0.003% or more. -On the other hand, a content exceeding 0.05% reduces the toughness by forming various nitrides. Therefore, N is limited to 0.05% or less. In addition, Preferably it is 0.01 to 0.02%.
上記した成分が出発素材の基本の成分であるが、 本発明ではこれら基本の成分 に加えてさらに、 Cu: 2. 0%以下、 Mo: .2. 0%以下のうちから選ばれた 1種または 2種、 および Zまたは、 V: 0. 10%以下、 Nb: 0. 10%以下、 Ti: 0. 10%以下のう ちから選ばれた 1種または 2種以上、 を含有してもよい。  The above components are basic components of the starting material. In the present invention, in addition to these basic components, Cu is not more than 2.0% and Mo is not more than 2.0%. Or 2 or more, and Z or V: 0.10% or less, Nb: 0.10% or less, Ti: 0.10% or less selected from 1 or 2 or more types may be contained .
Cu: 2. 0%以下、 Mo: 2. 0%以下のうちから選ばれた 1種または 2種  Cu: 2.0% or less, Mo: 2.0% or less
Cu、 Moはいずれも、 耐食性を向上させる作用を有する元素であり、 必要に応 じて選択して含有できる。  Both Cu and Mo are elements that have the effect of improving corrosion resistance, and can be selected and contained as necessary.
Cu は、 保護皮膜を強固にして耐孔食性を向上させる作用を有する元素であり、 このような効果を得るためには、 0. 2%以上含有することが望ましい。 一方、 2. 0%を超える含有は、 一部が析出して靱性が低下する。 このため、 含有する場合 には、 Cuは、 2. 0%以下に限定することが好ましい。 なお、 より好ましくは 0. 2 〜1. 0%である。  Cu is an element having an action of strengthening the protective film and improving the pitting corrosion resistance. In order to obtain such an effect, it is desirable to contain 0.2% or more. On the other hand, if the content exceeds 2.0%, a part of it precipitates and the toughness decreases. Therefore, if contained, Cu is preferably limited to 2.0% or less. More preferably, the content is 0.2 to 1.0%.
' また、 Moは、 C1一による孔食に対する抵抗性を増加させる作用を有する元素で あり、 このような効果を得るためには、 0. 2%以上含有することが望ましい。 一 方、 2. 0%を超えて含有すると、 強度が低下するとともに、 材料コストを高騰さ せる。 このため、 Moは 2. 0%以下に限定することが好ましい。 なお、 より好まし くは 0. 2〜1. 0%である。 ' In addition, Mo is an element having an action of increasing resistance to pitting corrosion caused by C1, and in order to obtain such an effect, it is desirable to contain 0.2% or more. On the other hand, if the content exceeds 2.0%, the strength decreases and the material cost increases. Make it. For this reason, Mo is preferably limited to 2.0% or less. More preferably, it is 0.2 to 1.0%. '
V: 0. 10%以下、 b: 0. 10%以下、 Ti: 0. 10%以下のうちから選ばれた 1種ま たは 2種以上  V: 0.1% or less, b: 0.1% or less, Ti: 0.1% or less selected from 10% or less
V、 Nb、 Tiはいずれも、 強度を増加させる元素であり、 必要に応じて選択し て 1種以上、 含有することができる。  V, Nb, and Ti are all elements that increase the strength, and can be selected according to need and contained in one or more kinds.
このような効果を得るためには、 V: 0. 02%以上、 Nb: 0. 01%以上、 Ti: 0. 0 2%以上、 含有することが望ましい。 一方、 V: 0. 10%、 Nb: 0. 10%、 Ti: 0. 1 0%を超えて含有すると、 靱性が低下する。 このため、 含有する場合には、 V 0. 10%以下、 Nb: 0. 10%以下、 Ti: 0. 10%以下に限定することが好ましい。 なお、 より好ましくは V: 0. 02〜0. 05%、 Nb: 0. 01〜0. 05%、 Ti: 0. 02〜0. 05%である。 上記した成分以外の残部は、 Feおよび不可避的不純物である。 なお、 不可避 的不純物としては、 O: 0. 010%以下が許容できる。  In order to obtain such effects, it is desirable to contain V: 0.02% or more, Nb: 0.01% or more, Ti: 0.02% or more. On the other hand, if the content exceeds V: 0.10%, Nb: 0.10%, Ti: 0.1%, the toughness decreases. For this reason, when it is contained, it is preferable to limit to V 0.1% or less, Nb: 0.1% or less, and Ti: 0.1% or less. More preferably, V: 0.02 to 0.05%, Nb: 0.01 to 0.05%, Ti: 0.02 to 0.05%. The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, O: 0.000% or less is acceptable.
本発明では、 上記した組成を有する出発素材の製造方法はとくに限定する必要 はないが、 上記した組成を有する溶鋼を、 転炉、 電気炉、 真空溶解炉等の通常公 知の溶製方法で溶製し、 連続铸造法、 造塊一分塊圧延法等、 通常の方法でビレツ ト等の鋼管素材とすることが好ましい。 ついで、 これら鋼管素材を加熱し、 通常 のマンネスマン一プラグミル方式、 あるいはマンネスマン一マンドレルミノレ方式 の製造工程を用いて熱間加工し造管して、 所望寸法の継目無鋼管とし、 出発素材 とすることが好ましい。 なお、 プレス方式による熱間押出で継目無鋼管を製造し てもよい。 また、 造管後、 継目無鋼管は、 空冷以上の冷却速度で室温まで冷却す ることが好ましい。  In the present invention, the method for producing the starting material having the above-described composition is not particularly limited. However, the molten steel having the above-described composition can be produced by a generally known melting method such as a converter, an electric furnace, or a vacuum melting furnace. It is preferable to produce a steel pipe material such as a billet by a usual method such as melting, continuous forging method, ingot lump rolling method or the like. Next, these steel pipe materials are heated and hot-processed and piped using the usual Mannesmann-one plug mill method or Mannesmann-Mandler Minore manufacturing process to produce seamless steel pipes of the desired dimensions, which are used as starting materials. Is preferred. A seamless steel pipe may be manufactured by hot extrusion using a press method. In addition, after the pipe making, it is preferable that the seamless steel pipe is cooled to room temperature at a cooling rate higher than that of air cooling.
出発素材 (継目無鋼管) は、 まず、 焼入れ処理を施される。  The starting material (seamless steel pipe) is first quenched.
本発明における焼入れ処理は、 Ac3変態点以上の焼入れ温度に再加熱したのち、 該焼入れ温度から空冷以上の冷却速度で 100°C以下の温度域まで冷却する処理と する。 これにより、 微細なマルテンサイト組織とすることができる。 焼入れ加熱 温度が、 Ac3変態点未満では、 オーステナイト単相域に加熱することができず、 その後の冷却で十分なマルテンサイト組織とすることができないため、 所望の強 度を確保できなくなる。 このため、 焼入れ処理の加熱温度は Ac3変態点以上に限 定した。 なお、 好ましくは 950°C以下である。 焼入れ加熱温度からの冷却は、 空 冷またはそれ以上の冷却速度で 100°C以下の温度域まで行う。 本発明における出 発素材は焼入れ性が高いため、 空冷程度の冷却速度で 100°C以下の温度域まで冷 却すれば、 十分な焼入れ組織 (マルテンサイト組織) を得ることができる。 また、 焼入れ温度における保持時間は、 lOmin以上とすることが均熱の観点から好まし レ、。 The quenching treatment in the present invention is a treatment of reheating to a quenching temperature not lower than the Ac 3 transformation point and then cooling from the quenching temperature to a temperature range of 100 ° C. or lower at a cooling rate higher than air cooling. As a result, a fine martensite structure can be obtained. Quenching heating If the temperature is lower than the Ac 3 transformation point, the austenite single-phase region cannot be heated, and a sufficient martensite structure cannot be obtained by subsequent cooling, so that the desired strength cannot be ensured. For this reason, the heating temperature of the quenching treatment was limited to the Ac 3 transformation point or higher. In addition, Preferably it is 950 degrees C or less. Cooling from the quenching heating temperature is performed to a temperature range of 100 ° C or less at an air cooling rate or higher. Since the starting material in the present invention has high hardenability, a sufficient quenched structure (martensitic structure) can be obtained by cooling to a temperature range of 100 ° C. or lower at a cooling rate of about air cooling. Also, the holding time at the quenching temperature is preferably lOmin or more from the viewpoint of soaking.
焼入れ処理を施された継目無鋼管は、 引続き、 焼戻処理を施される。 本 明で は焼戻処理は、 優れた低温靭性を確保するうえで重要な処理である。 本発明にお ける焼戻処理は、 450°C超え 550°C以下の範囲の焼戻温度に加熱し、 好ましくは 3 Omin以上保持したのち、 好ましくは空冷以上の冷却速度で、 好ましくは室温ま で冷却する処理とする。 これにより、 YSllOksi以上の高強度と vTrsが- 60°C以 下の優れた低温靭性を兼備した継目無鋼管となる。 焼戻温度が 450°C以下では焼 戻が不十分で靭性が低下し、 高強度と高靭性とを兼備させることができない。 一 方、 550°C超えでは、 強度が低下するうえ、 粒界が脆弱化し、 粒界破壌が生じや すく、 靱性も低下し、 高強度と高靭性とを兼備させることができない。 なお、 焼 戻温度は、 好ましくは 500°C以上 550°C以下である。 また、 焼戻温度における保 · 持時間は、 30min以上とすることが材質の安定確保という観点から好ましい。 ま た、 焼戻温度からの冷却は、 空冷またはそれ以上の冷却速度とすることが好まし レ、。  Tempered seamless steel pipes will continue to be tempered. In the present invention, the tempering process is an important process for securing excellent low temperature toughness. The tempering treatment in the present invention is performed by heating to a tempering temperature in the range of 450 ° C. to 550 ° C., preferably after holding at 3 Omin or higher, preferably at a cooling rate of air cooling or higher, preferably to room temperature. Cooling is performed at This results in a seamless steel pipe with high strength over YSllOksi and excellent low temperature toughness with vTrs below -60 ° C. When the tempering temperature is 450 ° C or lower, the tempering is insufficient and the toughness decreases, and it is impossible to combine high strength and high toughness. On the other hand, when the temperature exceeds 550 ° C, the strength decreases, the grain boundary becomes brittle, the grain boundary breakage easily occurs, the toughness also decreases, and high strength and high toughness cannot be combined. The tempering temperature is preferably 500 ° C or higher and 550 ° C or lower. In addition, the holding time at the tempering temperature is preferably 30 min or more from the viewpoint of ensuring the stability of the material. Cooling from the tempering temperature is preferably air cooling or higher.
また、 本発明では、 必要に応じて、 焼戻処理における冷却途中に、 鋼管形状の 不良を矯正するため矯正処理を施しても良レヽ。 矯正処理は、 400°C以上の温度域 で行うことが好ましい。 矯正処理の温度が 400°C未満では、 矯正処理時に鋼管に 局所的に加工歪が付加され、 機械的特性のばらつきが生じやすい。 このため、 矯 正処理を行う場合には、 400°C以上の温度域で行うこととした。 In the present invention, if necessary, a correction treatment can be performed to correct defects in the steel pipe shape during cooling during the tempering treatment. The straightening treatment is preferably performed in a temperature range of 400 ° C or higher. If the temperature of the straightening treatment is less than 400 ° C, Processing strain is added locally, and variations in mechanical properties are likely to occur. For this reason, it was decided to perform the correction process in a temperature range of 400 ° C or higher.
上記した製造方法で製造される、 継目無鋼管は、 上記した組成を有し、 降伏強 さ llOksi級の高強度とシャルピー衝撃試験の破面遷移温度 vTrsが- 60°C以下の 優れた低温靭性とを兼備するマルテンサイト系ステンレス継目無鋼管となる。 な お、 このマルテンサイト系ステンレス継目無鋼管は、 焼戻マルテンサイト相を主 体とする組織を有する。 これにより、 所望の高強度と所望の高靭性とを有し、 さ らに油井管として十分な耐食性をも兼備する鋼管となる。 実施例  The seamless steel pipe manufactured by the above manufacturing method has the above composition, yield strength llOksi class high strength and fracture surface transition temperature of Charpy impact test vTrs -60 ° C or less excellent low temperature toughness And martensitic stainless steel seamless pipe. This martensitic stainless steel seamless pipe has a structure mainly composed of a tempered martensite phase. As a result, the steel pipe has a desired high strength and a desired high toughness and also has sufficient corrosion resistance as an oil well pipe. Example
表 1に示す組成の溶鋼を脱ガス後、 連続鎵造法でスラブとし、 該スラブを再カロ 熱しビレツト圧延により得たビレツト (大きさ : 207膽 φ ) を鋼管素材とした。 これら鋼管素材を加熱し、 マンネスマン方式の製造工程を用いて熱間加工し造管 したのち、 空冷して、 継目無鋼管 (外径 177. 8mm φ X肉厚 12. 7mm) とした。  After degassing the molten steel having the composition shown in Table 1, the slab was made into a slab by a continuous forging method, and the slab was re-heated and billet (size: 207 φ) obtained by billet rolling was used as the steel pipe material. These steel pipe materials were heated, hot-processed using the Mannesmann manufacturing process, piped, and then air-cooled to obtain seamless steel pipes (outer diameter 177.8 mm φ X wall thickness 12.7 mm).
得られた継目無鋼管に表 2に示す条件で焼入れ処理、 焼戻処理、 あるいはさら に矯正処理を施した。  The obtained seamless steel pipe was subjected to quenching treatment, tempering treatment, or further straightening treatment under the conditions shown in Table 2.
焼入れ処理およぴ焼戻処理あるいはさらに矯正処理を施された継目無鋼管から、 API弧状引張試験片を採取し、 引張試験を実施し引張特性 (降伏強さ YS、 引張強 さ TS) を求めた。  API arc-shaped tensile test specimens are collected from the quenched and tempered seamless steel pipes and subjected to tensile tests to determine the tensile properties (yield strength YS, tensile strength TS). It was.
また、 焼入れ処理およぴ焼戻処理あるいはさらに矯正処理を施された継目無鋼 管から、 JIS Z 2242の規定に準拠して、 Vノッチ試験片 (10mm厚) を採取し、 シャルピー衝撃試験を実施し、 破面遷移温度 vTrs、 および、 - 60°Cにおける吸収 エネルギー vE_6。を求め、 靭性を評価した。 なお、 矯正処理を施した鋼管につい ては、 円周 12個所から試験片を採取し、 -60°Cでシャルピー衝撃試験を実施し、 吸収エネルギー VE— 6。の平均値 (ave) と最低値 (rain)とでばらつきを評価した。 また、 鋼管から、 厚さ 3 mmX幅 25mmX長さ 50mmの腐食試験片を機械加工によ つて作製し、 腐食試験を実施した。 In addition, V-notch specimens (10 mm thick) were sampled from seamless steel pipes that had been quenched, tempered, or further straightened in accordance with JIS Z 2242 and subjected to Charpy impact testing. Conducted fracture surface transition temperature vTrs, and absorbed energy vE_6 at -60 ° C. And toughness was evaluated. For steel pipes that have undergone straightening treatment, specimens were collected from 12 locations around the circumference, and subjected to a Charpy impact test at -60 ° C. Absorbed energy V E- 6 . The variation was evaluated by the average value (ave) and the minimum value (rain). In addition, a corrosion test specimen with a thickness of 3 mm, a width of 25 mm, and a length of 50 mm was produced from the steel pipe by machining, and a corrosion test was conducted.
腐食試験は、 オートクレープ中に保持された試験液: 20%NaCl水溶液 (液 温: 80°C、 30気圧の C02ガス雰囲気) 中に、 腐食試験片を浸漬し、 浸漬期間を 1 週間 (168 h ) として実施した。 腐食試験後の試験片について、 重量を測定し、 腐食試験前後の重量減から計算した腐食速度を求めた。 また、 試験後の腐食試験 片について倍率: 10倍のルーペを用いて試験片表面の孔食発生の有無を観察し た。 なお孔食が、 1個以上観察された場合を孔食発生有りとし、 それ以外を孔食 無しとした。 得られた結果を表 3に示す。 Corrosion test, the test solution retained in the autoclave: 20% NaCl aqueous solution: during (liquid temperature 80 ° C, C0 2 gas atmosphere at 30 atm), a corrosion test piece was immersed for one week immersion period ( 168 h). The specimens after the corrosion test were weighed and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. In addition, the corrosion specimen after the test was observed for the occurrence of pitting corrosion on the specimen surface using a magnifying glass with a magnification of 10 times. When one or more pitting corrosion was observed, pitting corrosion was considered to occur, and other cases were regarded as no pitting corrosion. The results obtained are shown in Table 3.
本発明例はいずれも、 油井管として十分な耐食性を有し、 さらに YSが llOksi 級の高強度と vTrsが- 60°C以下の優れた低温靭性とを兼備するマルテンサイト系 ステンレス継目無鋼管となっている。 一方、 本発明の範囲から外れる比較例は、 強度が不足するか、 低温靭性が低下するかして、 所望の高強度、 高靭性を確保で きていない。 Each of the inventive examples has sufficient corrosion resistance as an oil well pipe, and YS has a high strength of llOksi class and has excellent low temperature toughness with vTrs of -60 ° C or less. It has become. On the other hand, the comparative examples which are out of the scope of the present invention cannot secure the desired high strength and high toughness because the strength is insufficient or the low temperature toughness is lowered.
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0002
Figure imgf000015_0001
Figure imgf000015_0001
表 3 Table 3
Figure imgf000016_0001
Figure imgf000016_0001

Claims

請求の範囲 The scope of the claims
1 . mass %で、 1.Mass%
C: 0. 010%未満、 Si: 1. 0%以下、  C: Less than 0.001%, Si: 1.0% or less,
Mn: 0. 1〜2. 0%、 P : 0. 020%以下、  Mn: 0.1 to 2.0%, P: 0.020% or less,
S : 0. 010%以下、 A1: 0. 10%以下、  S: 0.010% or less, A1: 0.1% or less,
Cr: 10〜14%、 Ni: 0. 1〜4. 0%、  Cr: 10 to 14%, Ni: 0.1 to 4.0%,
N: 0. 05%以下  N: 0.05% or less
を含み、 残部 Feおよび不可避的不純物からなる組成を有し、 降伏強さ llOksi級 の高強度とシャルピー衝撃試験の破面遷移温度 vTrsが- 60°C以下の優れた低温靭 性とを兼備することを特徴とする油井管用マルテンサイト系ステンレス継目無鋼 管。 ' With a balance of Fe and inevitable impurities, yield strength llOksi-class high strength and fracture surface transition temperature in Charpy impact test vTrs -60 ° C or less and excellent low-temperature toughness A martensitic stainless steel seamless pipe for oil well pipes. '
2 . 前記糸且成に加えてさらに、 mass%で、 Cu: 2. 0%以下、 Mo: 2. 0%以下のう ちから選ばれた 1種または 2種を含有する組成とすることを特徴とする請求項 1 に記載の油井管用マルテンサイト系ステンレス継目無鋼管。 2. In addition to the above-mentioned yarn formation, the composition further comprises one or two kinds selected from the following: mass%, Cu: 2.0% or less, Mo: 2.0% or less. The martensitic stainless steel seamless pipe for oil country tubular goods according to claim 1.
3 . 前記組成に加えてさらに、 mass%で、 V: 0. 10%以下、 b: 0. 10%以下、 Ti: 0. 10%以下のうちから選ばれた 1種または 2種以上を含有する組成とするこ とを特徴とする請求項 1または 2に記載の油井管用マルテンサイト系ステンレス 継目無鋼管。 3. In addition to the above composition, the composition further contains, in mass%, one or more selected from V: 0.1% or less, b: 0.1% or less, Ti: 0.1% or less The martensitic stainless steel seamless pipe for oil country tubular goods according to claim 1 or 2, characterized in that:
4 . mass% 'で、 4.mass% '
C: 0. 010%未満、 Si: 1. 0%以下、  C: Less than 0.001%, Si: 1.0% or less,
Mn: 0. 1〜2. 0%、 P : 0. 020%以下、  Mn: 0.1 to 2.0%, P: 0.020% or less,
S : 0. 010%以下、 A1: 0. 10%以下、 €r: 10〜: 14%、 Ni: 0.:!〜 4. 0%、 S: 0.010% or less, A1: 0.1% or less, € r: 10 ~: 14%, Ni: 0.:!~4.0%,
N : 0. 05%以下  N: 0.05% or less
を含み、 残部 Feおよび不可避的不純物からなる組成を有するステンレス継目無 鋼管に、 Ac3変態点以上の焼入れ温度に加熱したのち、 該焼入れ温度から空冷以 上の冷却速度で 100°C以下の温度域まで冷却する焼入れ処理と、 該焼入れ処理に 引続き、 450°C超え 550°C以下の焼戻温度に加熱し、 冷却する焼戻処理と、 を施 すことを特徴とする降伏強さ llOksi級の高強度と優れた低温靭性とを有する油 井管用マルテンサイト系ステンレス継目無鋼管'の製造方法。 Wherein the stainless seamless steel pipe having a composition the balance being Fe and unavoidable impurities, Ac 3 After heating above the transformation point of the quenching temperature, the temperature below 100 ° C at a cooling rate on the air than the該焼insertion temperature Yield strength llOksi grade, characterized by the following: quenching treatment that cools to the region, and subsequent to the quenching treatment, heating to a tempering temperature of over 450 ° C to 550 ° C and cooling, and cooling Of martensitic stainless steel seamless pipe for oil well pipes having high strength and excellent low temperature toughness.
5 . 前記組成に加えてさらに、 mass%で、 Cu: 2. 0%以下、 Mo: 2. 0%以下のう ちから選ばれた 1種または 2種を含有する組成とすることを特徴とする請求項 4 に記載の油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。 5. In addition to the above-described composition, the composition may further contain, in mass%, one or two selected from Cu: 2.0% or less and Mo: 2.0% or less. The manufacturing method of the martensitic stainless steel seamless pipe for oil well pipes of Claim 4.
6 . 前記組成に加えてさらに、 mass%で、 V : 0. 10%以下、 Nb: 0. 10%以下、 Ti: 0. 10%以下のうちから選ばれた 1種または 2種以上を含有する組成とするこ とを特徴とする請求項 4または 5に記載の油井管用マルテンサイト系ステンレス 継目無鋼管の製造方法。 6. In addition to the above composition, the composition further contains one or more selected from mass%, V: 0.1% or less, Nb: 0.1% or less, Ti: 0.1% or less. The method for producing a martensitic stainless steel seamless pipe for oil country tubular goods according to claim 4 or 5, characterized in that the composition is as follows.
7 . 前記焼戻処理における冷却途中に、 矯正処理を 400°C以上の温度域で行 うことを特徴とする請求項 4ないし 6のいずれかに記載の油井管用マルテンサイ ト系ステンレス継目無鋼管の製造方法。 7. During the cooling in the tempering process, the straightening process is performed in a temperature range of 400 ° C. or higher. The martensitic stainless steel seamless pipe for an oil well pipe according to any one of claims 4 to 6, Production method.
PCT/JP2007/070209 2007-06-29 2007-10-10 Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same WO2009004741A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/665,097 US20100193087A1 (en) 2007-06-29 2007-10-10 Martensitic stainless steel seamless pipe for oil country tubular goods and method for manufacturing the same
CN2007800007846A CN101437973B (en) 2007-06-29 2007-10-10 Martensitic stainless seamless steel pipe for oil well pipe, and method for producing the same
EP07829943.5A EP2172573B1 (en) 2007-06-29 2007-10-10 Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007172560A JP5145793B2 (en) 2007-06-29 2007-06-29 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2007-172560 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009004741A1 true WO2009004741A1 (en) 2009-01-08

Family

ID=40225809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070209 WO2009004741A1 (en) 2007-06-29 2007-10-10 Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same

Country Status (6)

Country Link
US (1) US20100193087A1 (en)
EP (1) EP2172573B1 (en)
JP (1) JP5145793B2 (en)
CN (1) CN101437973B (en)
RU (1) RU2431693C1 (en)
WO (1) WO2009004741A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2322679A4 (en) * 2008-09-04 2016-11-30 Jfe Steel Corp Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same
CN108603259A (en) * 2016-02-19 2018-09-28 新日铁住金株式会社 Steel

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191433A (en) * 2010-03-17 2011-09-21 “沃斯托克-阿齐亚”有限责任公司 Seamless pipe for conveying oil field medium
CN101956146A (en) * 2010-10-12 2011-01-26 西安建筑科技大学 High strength super-martensitic stainless steel for oil and gas pipelines and preparation method thereof
US9468967B2 (en) 2011-02-15 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Pipe end correction method of seamless pipe made of high CR stainless steel
CN102839331B (en) * 2011-06-24 2014-10-01 宝山钢铁股份有限公司 High-toughness corrosion-resistant steel and manufacturing method thereof
KR101355464B1 (en) 2011-12-20 2014-01-28 주식회사 포스코 Rolling method of carbon steels
JP5807630B2 (en) * 2012-12-12 2015-11-10 Jfeスチール株式会社 Heat treatment equipment row of seamless steel pipe and method for producing high strength stainless steel pipe
RU2537981C1 (en) * 2013-08-21 2015-01-10 Открытое акционерное общество "Завод им. В.А. Дегтярева" Method of straightening of steel thin-walled piped combined with tempering
CN103740900A (en) * 2013-11-30 2014-04-23 常熟市东鑫钢管有限公司 Heat treatment technology for seamless steel pipes
US20150275340A1 (en) * 2014-04-01 2015-10-01 Ati Properties, Inc. Dual-phase stainless steel
WO2016038809A1 (en) * 2014-09-08 2016-03-17 Jfeスチール株式会社 High strength seamless steel pipe for use in oil wells and manufacturing method thereof
RU2570964C1 (en) * 2014-12-12 2015-12-20 Открытое акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" (ОАО ОКБ "ГИДРОПРЕСС") Heating medium header of steam generator with u-shape pipes of horizontal heat exchange bunch, and method of its producing
CN104988403B (en) * 2015-07-09 2017-03-08 山西太钢不锈钢股份有限公司 A kind of oil-gas mining martensitic stainless steel seamless steel pipe and its manufacture method
CN106119732B (en) * 2016-06-24 2017-11-10 张家港海锅重型锻件有限公司 A kind of deep-sea oil extracting ship F60 two phase stainless steels pipe joint forging feedstock production process
CN107099756B (en) * 2017-05-10 2018-09-21 西宁特殊钢股份有限公司 A kind of high-strength corrosion-resisting steel for sucker rod and its production method
US20210198764A1 (en) * 2018-05-25 2021-07-01 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
CN113584407A (en) * 2020-04-30 2021-11-02 宝山钢铁股份有限公司 High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
RU2751069C1 (en) * 2020-09-30 2021-07-07 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") Method for production of 13cr type martensitic stainless steel seamless pipes
CN115369313A (en) * 2021-05-17 2022-11-22 宝山钢铁股份有限公司 High-toughness corrosion-resistant martensitic stainless steel oil casing pipe and manufacturing method thereof
CN115572907B (en) * 2022-10-25 2023-11-17 中广核工程有限公司 Martensitic stainless steel and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641638A (en) * 1992-07-23 1994-02-15 Nippon Steel Corp Production of martensitic stainless steel seamless pipe excellent in toughness and stress corrosion cracking resistance
JPH09287028A (en) * 1996-04-19 1997-11-04 Sumitomo Metal Ind Ltd Production of seamless steel pipe and producing equipment
JP2001098348A (en) * 1999-09-24 2001-04-10 Kawasaki Steel Corp High strength martensitic stainless steel oil well pipe
JP2002309349A (en) * 2001-04-09 2002-10-23 Sumitomo Metal Ind Ltd Martensitic stainless steel with excellent strength stability

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672430B2 (en) * 1992-02-18 1997-11-05 新日本製鐵株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2672437B2 (en) * 1992-09-07 1997-11-05 新日本製鐵株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3328967B2 (en) * 1992-09-24 2002-09-30 住友金属工業株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH07179943A (en) * 1993-12-22 1995-07-18 Nippon Steel Corp Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3814836B2 (en) * 1994-08-23 2006-08-30 住友金属工業株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH08109444A (en) * 1994-10-07 1996-04-30 Nippon Steel Corp Production of seamless martensitic stainless steel tube for oil well use, excellent in crushing pressure
MY120831A (en) * 1998-12-08 2005-11-30 Sumitomo Metal Ind Martensitic stainless steel products.
JP3744254B2 (en) * 1999-04-27 2006-02-08 住友金属工業株式会社 Martensitic stainless steel seamless steel pipe with excellent surface quality
JP3485034B2 (en) * 1999-07-19 2004-01-13 Jfeスチール株式会社 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same
JP2001152249A (en) * 1999-09-08 2001-06-05 Nkk Corp Method for producing martensitic stainless steel
JP4240189B2 (en) * 2001-06-01 2009-03-18 住友金属工業株式会社 Martensitic stainless steel
AR042494A1 (en) * 2002-12-20 2005-06-22 Sumitomo Chemical Co HIGH RESISTANCE MARTENSITIC STAINLESS STEEL WITH EXCELLENT PROPERTIES OF CORROSION RESISTANCE BY CARBON DIOXIDE AND CORROSION RESISTANCE BY FISURES BY SULFIDE VOLTAGES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641638A (en) * 1992-07-23 1994-02-15 Nippon Steel Corp Production of martensitic stainless steel seamless pipe excellent in toughness and stress corrosion cracking resistance
JPH09287028A (en) * 1996-04-19 1997-11-04 Sumitomo Metal Ind Ltd Production of seamless steel pipe and producing equipment
JP2001098348A (en) * 1999-09-24 2001-04-10 Kawasaki Steel Corp High strength martensitic stainless steel oil well pipe
JP2002309349A (en) * 2001-04-09 2002-10-23 Sumitomo Metal Ind Ltd Martensitic stainless steel with excellent strength stability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2172573A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2322679A4 (en) * 2008-09-04 2016-11-30 Jfe Steel Corp Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same
CN108603259A (en) * 2016-02-19 2018-09-28 新日铁住金株式会社 Steel

Also Published As

Publication number Publication date
EP2172573B1 (en) 2014-12-10
CN101437973A (en) 2009-05-20
JP2009007658A (en) 2009-01-15
RU2010102917A (en) 2011-08-10
EP2172573A4 (en) 2011-05-18
EP2172573A1 (en) 2010-04-07
RU2431693C1 (en) 2011-10-20
JP5145793B2 (en) 2013-02-20
US20100193087A1 (en) 2010-08-05
CN101437973B (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4305681B2 (en) Seamless steel pipe manufacturing method
JP6460229B2 (en) High strength stainless steel seamless steel pipe for oil well
JP5487689B2 (en) Manufacturing method of martensitic stainless steel seamless pipe for oil well pipe
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP5092204B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP6315159B1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
JP5640762B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
WO2019035329A1 (en) High strength stainless seamless steel pipe for oil wells, and method for producing same
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
WO2006109664A1 (en) Ferritic heat-resistant steel
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
WO2019065115A1 (en) Oil well pipe martensitic stainless seamless steel pipe and production method for same
JP5088455B2 (en) Duplex stainless steel
US20220074009A1 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP6859921B2 (en) Stainless steel materials and stainless steel pipes
JP5162820B2 (en) Stainless steel pipe for oil well pipes with excellent pipe expandability
JP2000017389A (en) Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL
WO2006117926A1 (en) Stainless steel pipe for oil well excellent in enlarging characteristics
JP2019163499A (en) Steel
CN115135786A (en) Stainless seamless steel pipe for oil well pipe and method for producing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000784.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12665097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007829943

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010102917

Country of ref document: RU