US20100193087A1 - Martensitic stainless steel seamless pipe for oil country tubular goods and method for manufacturing the same - Google Patents

Martensitic stainless steel seamless pipe for oil country tubular goods and method for manufacturing the same Download PDF

Info

Publication number
US20100193087A1
US20100193087A1 US12/665,097 US66509707A US2010193087A1 US 20100193087 A1 US20100193087 A1 US 20100193087A1 US 66509707 A US66509707 A US 66509707A US 2010193087 A1 US2010193087 A1 US 2010193087A1
Authority
US
United States
Prior art keywords
less
cooling
stainless steel
treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/665,097
Inventor
Yukio Miyata
Mitsuo Kimura
Masahito Tanaka
Ken Shimamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Assigned to JFE STEEL CORPORATION reassignment JFE STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIMURA, MITSUO, MIYATA, YUKIO, SHIMAMOTO, KEN, TANAKA, MASAHITO
Publication of US20100193087A1 publication Critical patent/US20100193087A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys

Definitions

  • This disclosure relates to a martensitic stainless steel seamless pipe for oil country tubular goods, more particularly to a seamless steel pipe for oil country tubular goods which has a high strength, such as a yield strength of 110 ksi (758 MPa) or more, and a superior low temperature toughness and to a method for manufacturing the martensitic stainless steel seamless pipe.
  • Oil country tubular goods used in the environments as described above are required to include a material which simultaneously has a high strength, a superior corrosion resistance, and also a superior toughness.
  • martensitic stainless steel suitably used for oil country tubular goods which contains 0.01% to 0.1% of C, 9% to 15% of Cr, and 0.1% or less of N, and which has a high toughness even though having a relatively high C content and a high strength. According to a technique disclosed in Japanese Unexamined Patent Application Publication No. 2002-363708, martensitic stainless steel suitably used for oil country tubular goods has been proposed which contains 0.01% to 0.1% of C, 9% to 15% of Cr, and 0.1% or less of N, and which has a high toughness even though having a relatively high C content and a high strength. According to a technique disclosed in Japanese Unexamined Patent Application Publication No.
  • air cooling is performed after hot working
  • air cooling is performed after a solution treatment
  • tempering is performed at a low temperature of 450° C. or less.
  • a seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of ⁇ 60° C. or less can be easily and also stably manufactured, and significant industrial advantages can be obtained.
  • FIG. 1 is a graph showing the relationship of the tempering temperature with the yield strength YS, tensile strength TS, and fracture transition temperature vTrs.
  • “Superior low temperature toughness” indicates the case in which the fracture transition temperature vTrs in a Charpy impact test is ⁇ 60° C. or less.
  • the Cr content is set to a relatively low content, such as approximately 11% of Cr, and the Ni content is also set to a relatively low content, such as 4.0% or less, after a quenching treatment is performed, when an appropriate tempering treatment is performed in which heating is performed to a tempering temperature in the range of more than 450° C.
  • a tempering treatment was then performed in such a way that heating was performed to a temperature in the range of 425° C. to 575° C., and spontaneous cooling was then performed. In addition, in the cooling of the tempering treatment, a correctional treatment was performed.
  • a method for manufacturing a seamless steel pipe for oil country tubular goods will be described.
  • a stainless steel seamless pipe is used which has a composition containing less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities.
  • “mass percent” is simply represented by “%.”
  • the content is an important element relating to the strength of martensitic stainless steel and, to ensure a desired strength, the content is preferably 0.003% or more; however, when the content is 0.010% or more, the toughness and also the corrosion resistance are liable to be degraded. Hence, the C content is limited to less than 0.010%. In addition, to stably ensure the strength and the toughness, the content is preferably in the range of 0.003% to 0.008%.
  • Si is an element functioning as a deoxidizing agent in a normal steelmaking process
  • the content is preferably 0.1% or more; however, when the content is more than 1.0%, the toughness is degraded, and hot workability is also degraded. Hence, the Si content is limited to 1.0% or less. In addition, the content is preferably in the range of 0.1% to 0.3%.
  • Mn is an element to increase the strength and, to ensure a strength necessary as a steel pipe for oil country tubular goods, the content must be 0.1% or more. However, when the content is more than 2.0%, the toughness is adversely influenced. Hence, the Mn content is limited in the range of 0.1% to 2.0%. In addition, the content is preferably in the range of 0.5% to 1.5%.
  • the P is an element to degrade the corrosion resistance, such as CO 2 corrosion resistance, and is preferably decreased as much as possible. However, an excessive decrease may cause an increase in cost.
  • the P content is limited to 0.020% or less. In addition, the content is preferably 0.015% or less.
  • the content is an element having a strong deoxidizing function and, to obtain this effect, the content is preferably 0.001% or more. However, when the content is more than 0.10%, the toughness is adversely influenced. Hence the Al content is limited to 0.10% or less. In addition, the content is preferably 0.05% or less.
  • Cr is an element to improve the corrosion resistance by forming a passivation film and is also an element to particularly contribute to an effective improvement in CO 2 corrosion resistance and resistance to CO 2 stress corrosion cracking.
  • the content is 10% or more, corrosion resistance required for oil country tubular goods can be ensured, and hence the lower limit is set to 10%.
  • the content is large, such as more than 14%, since ferrite is easily generated, a large amount of an expensive austenite generation element must be added to stably ensure a martensitic phase or to prevent degradation of the hot workability, so that economical problems may arise.
  • the Cr content is limited in the range of 10% to 14%.
  • the content is preferably in the range of 10.5% to 11.5%.
  • Ni has a function to strengthen a passivation film and is an element to improve the corrosion resistance, such as CO 2 corrosion resistance.
  • the content must be 0.1% or more.
  • the improvement effect is saturated and, as a result, a manufacturing cost is inevitably increased.
  • the Ni content is limited in the range of 0.1% to 4.0%.
  • the content is preferably in the range of 1.5% to 3.0%.
  • N is an element to significantly improve pitting resistance and, when the content is 0.003% or more, the effect described above becomes significant.
  • the content when the content is more than 0.05%, various nitrides are formed and, as a result, the toughness is degraded.
  • the N content is limited to 0.05% or less.
  • the content is preferably in the range of 0.01% to 0.02%.
  • the components described above are basic components of the starting material, besides those basic components described above, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo and/or at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti may also be contained.
  • Cu and Mo are elements each having a function to improve the corrosion resistance and, whenever necessary, at least one of them may be selected and contained.
  • Cu is an element having a function to improve the pitting resistance by strengthening a passivation film, and to obtain the effect as described above, the content is preferably 0.2% or more.
  • the content is more than 2.0%, Cu is partly precipitated and, as a result, the toughness is degraded.
  • the content thereof is preferably limited to 2.0% or less.
  • the content is in the range of 0.2% to 1.0%.
  • Mo is an element having a function to increase the resistance against pitting caused by Cl ⁇ and, to obtain the above effect, the content is preferably 0.2% or more.
  • the content is more than 2.0%, the strength is not only decreased, but material cost is also increased.
  • the Mo content is preferably limited to 2.0% or less.
  • the content is in the range of 0.2% to 1.0%.
  • V, Nb, and Ti are components to increase the strength and, whenever necessary, at least one of them may be selected and contained.
  • At least one of 0.02% or more of V, 0.01% or more of Nb, and 0.02% or more of Ti is preferably contained.
  • the toughness is degraded.
  • the contents of V, Nb, and Ti are each preferably limited to 0.10% or less.
  • the V content is 0.02% to 0.05%
  • the Nb content is 0.01% to 0.05%
  • the Ti content is 0.02% to 0.05%.
  • the balance other than those components described above contains Fe and inevitable impurities.
  • the inevitable impurities 0.010% or less of O may be contained.
  • a method for manufacturing a starting material having the above composition is not particularly limited, it is preferable that after molten steel having the above composition is formed by a commonly known steelmaking method, for example, using a converter, an electrical furnace, a vacuum melting furnace, and the like, a steel pipe material, such as a billet, be formed by a common method, such as a continuous casting method, or an ingot-making and blooming method. Subsequently, the steel pipe material is heated and is processed by hot working using a common Mannesmann-plug mill type or Mannesmann-mandrel mill type manufacturing process to form a seamless steel pipe having a desired dimension, and this seamless steel pipe is preferably used as the starting material.
  • a seamless steel pipe may also be manufactured by press type hot extrusion.
  • the seamless steel pipe is preferably cooled to room temperature at a cooling rate equivalent to or more than that of air cooling.
  • the starting material (seamless steel pipe) is first processed by a quenching treatment.
  • the quenching treatment is a treatment in which after re-heating is performed to a heating temperature for quenching equivalent to or more than the Ac 3 transformation point, cooling is performed from the heating temperature for quenching to a temperature range of 100° C. or less at a cooling rate equivalent to or more than that of air cooling.
  • a fine martensitic microstructure can be obtained.
  • a heating temperature for quenching is less than the Ac 3 transformation point, since heating cannot be performed to the austenite single phase region, and a sufficient martensitic microstructure cannot be obtained by subsequent cooling, a desired strength cannot be ensured.
  • the heating temperature for quenching of the quenching treatment is limited to be equivalent to or more than the Ac 3 transformation point.
  • the heating temperature is preferably 950° C. or less.
  • the cooling from the quenching heating temperature is performed to a temperature range of 100° C. or less at a cooling rate equivalent to or more than that of air cooling. Since the starting material has high hardenability, when the cooling is performed to a temperature range of 100° C. or less at a cooling rate approximately equivalent to that of air cooling, a sufficiently quenched microstructure (martensitic microstructure) can be obtained.
  • a holding time at the heating temperature for quenching is preferably set to 10 minutes or more in view of uniform heating.
  • the seamless steel pipe processed by the quenching treatment is subsequently processed by a tempering treatment.
  • the tempering treatment is an important treatment to ensure a superior low temperature toughness.
  • the tempering treatment is defined as a treatment in which after heating is performed to a tempering temperature in the range of more than 450° C. to 550° C. and is maintained preferably for 30 minutes or more, cooling is performed preferably to room temperature preferably at a cooling rate equivalent to or more than that of air cooling.
  • a seamless steel pipe which, simultaneously has a high strength of YS 110 ksi or more and a superior low temperature toughness having a vTrs of ⁇ 60° C. or less can be obtained.
  • the tempering temperature is 450° C.
  • the tempering temperature is preferably in the range of 500° C. to 550° C.
  • the holding time at the tempering temperature is preferably set to 30 minutes or more.
  • the cooling from the tempering temperature is preferably performed at a cooling rate equivalent to or more than that of air cooling.
  • a correction treatment for correcting defect in pipe shape may be performed in the cooling of the tempering treatment.
  • the correction treatment is preferably performed in a temperature range of 400° C. or more.
  • the temperature of the correction treatment is less than 400° C., a working strain is locally applied to the steel pipe when the correction treatment is performed. Hence, variation in mechanical characteristics is liable to be generated.
  • the correction treatment is performed in a temperature range of 400° C. or, more.
  • a seamless steel pipe manufactured by the above-described manufacturing method is a martensitic stainless steel seamless pipe which has the composition described above and which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of ⁇ 60° C. or less in a Charpy impact test.
  • this martensitic stainless steel seamless pipe has a microstructure including a tempered martensitic phase as a primary phase.
  • the seamless steel pipes thus obtained were subjected to a quenching treatment and a tempering treatment, and were further subjected to a correction treatment whenever necessary.
  • V-notch test pieces (10 mm thick) in accordance with JIS Z 2242 standard were obtained from the seamless steel pipes which were subjected to the quenching treatment and the tempering treatment and were further subjected to the correction treatment whenever necessary, a Charpy impact test was carried out to obtain the fracture transition temperature vTrs and absorption energy vE ⁇ 60 at a temperature of ⁇ 60° C., so that the toughness was evaluated.
  • a Charpy impact test was performed at a temperature of ⁇ 60° C., and the variation was evaluated from the average value (ave) and the minimum value (min) of the absorption energy vE ⁇ 60 .
  • corrosion test pieces having a thickness of 3 mm, a width of 25 mm, and a length of 50 mm were formed from the steel pipes by machining, and a corrosion test was performed.
  • the corrosion test was performed in such a way that the corrosion test pieces were immersed for one week (168 hours) in a test solution, a 20%-NaCl aqueous solution (solution temperature: 80° C., and a CO 2 gas environment at 30 bar pressure), which was placed in an autoclave.
  • the weights of the test pieces subjected to the corrosion test were measured, and corrosion rates were obtained by calculating the weight loss before and after the corrosion test.
  • the surfaces of the test pieces subjected to the corrosion test were observed with a loupe having a magnification of 10 to confirm the pitting generation.
  • the pitting in the case in which at least one pit was observed, it was regarded that pitting occurred, and in the other cases, it was regarded that no pitting occurred.
  • the obtained results are shown in Table 3.
  • a martensitic stainless steel seamless pipe could be obtained which had a sufficient corrosion resistance as oil country tubular goods and which simultaneously had a high strength of a 110 ksi grade of YS and a superior low temperature toughness having a vTrs of ⁇ 60° C. or less.
  • a superior low temperature toughness having a vTrs of ⁇ 60° C. or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness and a method for manufacturing the same are provided. A quenching treatment is performed on a stainless steel seamless pipe having a composition which contains on a mass percent basis, less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities in which after heating is performed to a heating temperature for quenching equivalent to or more than the Ac3 transformation point, cooling is performed to a temperature range of 100° C. or less at a cooling rate equivalent to or more than that of air cooling; and following the quenching treatment, a tempering treatment is performed in which heating is performed to a tempering temperature in the range of more than 450° C. to 550° C., and cooling is then performed.

Description

    RELATED APPLICATIONS
  • This is a §371 of International Application No. PCT/JP2007/070209, with an international filing date of Oct. 10, 2007 (WO 2009/004741 A1, published Jan. 8, 2009), which is based on Japanese Patent Application No. 2007-172560, filed Jun. 29, 2007, the subject matter of which is incorporated by reference.
  • TECHNICAL FIELD
  • This disclosure relates to a martensitic stainless steel seamless pipe for oil country tubular goods, more particularly to a seamless steel pipe for oil country tubular goods which has a high strength, such as a yield strength of 110 ksi (758 MPa) or more, and a superior low temperature toughness and to a method for manufacturing the martensitic stainless steel seamless pipe.
  • BACKGROUND
  • In consideration of a steep rise in crude oil prices and depletion of petroleum resources to be expected in near future, in recent years, for example, deep oil wells; oil wells and gas wells with a severe corrosive environment containing carbon dioxide, chlorine ions, and the like; and oil wells with a severe drilling environment, such as in a cold district or on a sea bed, to which attention has not been paid in the past, have been aggressively developed. Oil country tubular goods used in the environments as described above are required to include a material which simultaneously has a high strength, a superior corrosion resistance, and also a superior toughness.
  • Heretofore, in oil wells and gas wells with an environment containing carbon dioxide CO2, chlorine ions Cl, and the like, as oil country tubular goods used for drilling operation, a 13% Cr martensitic stainless steel pipe has been frequently used.
  • For example, in Japanese Unexamined Patent Application Publication No. 2002-363708, martensitic stainless steel suitably used for oil country tubular goods has been proposed which contains 0.01% to 0.1% of C, 9% to 15% of Cr, and 0.1% or less of N, and which has a high toughness even though having a relatively high C content and a high strength. According to a technique disclosed in Japanese Unexamined Patent Application Publication No. 2002-363708, when the amount of carbides present in prior-austenite grain boundaries is decreased to 0.5 volume percent or less, the maximum minor axis of the carbides is set to 10 and 200 nm, the ratio between an average Cr concentration and an average Fe concentration in the carbides is set to 0.4 or less, a M23C6 type carbide is suppressed from being precipitated, and a M3C type carbide is positively precipitated, the toughness can be significantly improved. To control the structure and the composition of the carbides described above in a desired range, according to the technique disclosed in Japanese Unexamined Patent Application Publication No. 2002-363708, air cooling (spontaneous cooling) is performed after hot working, air cooling (spontaneous cooling) is performed after a solution treatment, or following air cooling (spontaneous cooling) performed after a solution treatment, tempering is performed at a low temperature of 450° C. or less.
  • However, according to the technique disclosed in Japanese Unexamined Patent Application Publication No. 2002-363708, when only air cooling (spontaneous cooling) is performed after hot rolling, or when only air cooling (spontaneous cooling) is performed after a solution treatment, there has been a problem in that a desired strength of a 110 ksi grade of yield strength (758˜862 MPa), and a superior low temperature toughness cannot be simultaneously obtained. In addition, to ensure a strength of a 110 ksi grade of yield strength by the technique disclosed in Japanese Unexamined Patent Application Publication No. 2002-363708, the C content must be set to 0.01 mass percent or more. However, when the C content is set to 0.01 mass percent or more, the low temperature toughness is degraded, and a superior low temperature toughness having a fracture transition temperature of −60° C. or less cannot be disadvantageously ensured. In addition, when the technique disclosed in Japanese Unexamined Patent Application Publication No. 2002-363708 is applied to a steel pipe to perform low temperature tempering at 450° C. or less, a working stress is generated by correction performed immediately after the finish of heating of the tempering treatment, and there has been a problem in that variation of steel pipe characteristics is increased.
  • It could therefore be helpful to provide a seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness and a stable method for manufacturing the seamless steel pipe.
  • SUMMARY
  • We thus provide:
      • (1) A martensitic stainless steel seamless pipe for oil country tubular, goods comprises: a composition which contains on a mass percent basis, less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities. The martensitic stainless steel seamless pipe simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of −60° C. or less in a Charpy impact test.
      • (2) In the martensitic stainless steel seamless pipe for oil country tubular goods according to the above (1), the composition further contains on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
      • (3) In the martensitic stainless steel seamless pipe for oil country tubular goods according to the above (1) or (2), the composition further contains on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
      • (4) A method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness, comprises: performing a quenching treatment on a stainless steel seamless pipe having a composition which contains on a mass percent basis, less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities in which after heating is performed to a heating temperature for quenching equivalent to or more than the Ac3 transformation point, cooling is performed from the heating temperature for quenching to a temperature range of 100° C. or less at a cooling rate equivalent to or more than that of air cooling; and performing a tempering treatment in which following the quenching treatment, heating is performed to a tempering temperature in the range of more than 450° C. to 550° C., and cooling is then performed.
      • (5) In the method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to the above (4), the composition further contains on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
      • (6) In the method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to the above (4) or (5), the composition further contains on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
      • (7) In the method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to one of the above (4) to (6), in the cooling of the tempering treatment, a correctional treatment is performed in a temperature range of 400° C. or more.
  • A seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of −60° C. or less can be easily and also stably manufactured, and significant industrial advantages can be obtained.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a graph showing the relationship of the tempering temperature with the yield strength YS, tensile strength TS, and fracture transition temperature vTrs.
  • DETAILED DESCRIPTION
  • “Superior low temperature toughness” indicates the case in which the fracture transition temperature vTrs in a Charpy impact test is −60° C. or less.
  • We carried out intensive research on the influence of component compositions and heat treatment conditions upon the change in toughness with an increase in strength of a 13 Cr martensitic stainless steel pipe. As a result, we discovered that, in a component system in which the C content is controlled to be less than 0.010 mass percent, the Cr content is set to a relatively low content, such as approximately 11% of Cr, and the Ni content is also set to a relatively low content, such as 4.0% or less, after a quenching treatment is performed, when an appropriate tempering treatment is performed in which heating is performed to a tempering temperature in the range of more than 450° C. to 550° C., and cooling is then performed, even if Mo is not added, a high strength of a 110 ksi grade of yield strength can be ensured, and a high toughness having a vTrs of −60° C. or less can also be obtained. First, the results of fundamental experiments performed us will be described.
  • After a quenching treatment (810° C.×15 minutes) was performed on a seamless steel pipe having a composition containing on a mass percent basis, 0.008% of C, 0.12% of Si, 1.14% of Mn, 0.019% of P, 0.001% of S, 0.04% of Al, 10.9% of Cr, 2.3% of Ni, 0.5% of Cu, 0.01% of N, and the balance being Fe, a tempering treatment was then performed in such a way that heating was performed to a temperature in the range of 425° C. to 575° C., and spontaneous cooling was then performed. In addition, in the cooling of the tempering treatment, a correctional treatment was performed. A tensile test and a Charpy impact test were performed on the obtained seamless steel pipe, so that tensile characteristics (yield strength YS, and tensile strength TS) and the low temperature toughness (fracture transition temperature vTrs) were measured. The obtained results are shown in FIG. 1. From FIG. 1, according to this component system, it was found that, when tempering is performed at a temperature in the range of more than 450° C. to 550° C. after a quenching treatment, a high toughness and a high strength can be simultaneously obtained. That is, it was found that even if a 11% Cr-2% Ni composition is used, when tempering is performed at a temperature in the range of more than 450° C. to 550° C. after a quenching treatment, a high toughness having a vTrs of −60° C. or less and a high strength of a YS 110 ksi grade can be stably ensured. These findings then caused us to discover our processes as described below.
  • First, a method for manufacturing a seamless steel pipe for oil country tubular goods will be described. As a starring material, a stainless steel seamless pipe is used which has a composition containing less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities. In addition, hereinafter, “mass percent” is simply represented by “%.” First, the reasons for limiting the composition of the starting material will be described.
  • C: Less than 0.010%
  • C is an important element relating to the strength of martensitic stainless steel and, to ensure a desired strength, the content is preferably 0.003% or more; however, when the content is 0.010% or more, the toughness and also the corrosion resistance are liable to be degraded. Hence, the C content is limited to less than 0.010%. In addition, to stably ensure the strength and the toughness, the content is preferably in the range of 0.003% to 0.008%.
  • Si: 1.0% or Less
  • Si is an element functioning as a deoxidizing agent in a normal steelmaking process, and the content is preferably 0.1% or more; however, when the content is more than 1.0%, the toughness is degraded, and hot workability is also degraded. Hence, the Si content is limited to 1.0% or less. In addition, the content is preferably in the range of 0.1% to 0.3%.
  • Mn: 0.1% to 2.0%
  • Mn is an element to increase the strength and, to ensure a strength necessary as a steel pipe for oil country tubular goods, the content must be 0.1% or more. However, when the content is more than 2.0%, the toughness is adversely influenced. Hence, the Mn content is limited in the range of 0.1% to 2.0%. In addition, the content is preferably in the range of 0.5% to 1.5%.
  • P: 0.020% or Less
  • P is an element to degrade the corrosion resistance, such as CO2 corrosion resistance, and is preferably decreased as much as possible. However, an excessive decrease may cause an increase in cost. As the range in which the corrosion resistance, such as CO2 corrosion resistance, is not degraded and in which the decrease can be industrially performed at a relatively low cost, the P content is limited to 0.020% or less. In addition, the content is preferably 0.015% or less.
  • S: 0.010% or Less
      • S is an element to considerably degrade the hot workability in a pipe manufacturing process and is preferably decreased as much as possible. However, when the content is decreased to 0.010% or less, pipe manufacturing can be performed by a normal process, and hence the S content is limited to 0.010% or less. In addition, the content is preferably 0.003% or less.
    Al: 0.10% or Less
  • Al is an element having a strong deoxidizing function and, to obtain this effect, the content is preferably 0.001% or more. However, when the content is more than 0.10%, the toughness is adversely influenced. Hence the Al content is limited to 0.10% or less. In addition, the content is preferably 0.05% or less.
  • Cr: 10% to 14%
  • Cr is an element to improve the corrosion resistance by forming a passivation film and is also an element to particularly contribute to an effective improvement in CO2 corrosion resistance and resistance to CO2 stress corrosion cracking. When the content is 10% or more, corrosion resistance required for oil country tubular goods can be ensured, and hence the lower limit is set to 10%. On the other hand, when the content is large, such as more than 14%, since ferrite is easily generated, a large amount of an expensive austenite generation element must be added to stably ensure a martensitic phase or to prevent degradation of the hot workability, so that economical problems may arise. Hence, the Cr content is limited in the range of 10% to 14%. In addition, to ensure more stable microstructure and hot workability, the content is preferably in the range of 10.5% to 11.5%.
  • Ni: 0.1% to 4.0%
  • Ni has a function to strengthen a passivation film and is an element to improve the corrosion resistance, such as CO2 corrosion resistance. To obtain the effect as described above, the content must be 0.1% or more. On the other hand, when the content is more than 4.0%, the improvement effect is saturated and, as a result, a manufacturing cost is inevitably increased. Hence, the Ni content is limited in the range of 0.1% to 4.0%. In addition, the content is preferably in the range of 1.5% to 3.0%.
  • N: 0.05% or Less
  • N is an element to significantly improve pitting resistance and, when the content is 0.003% or more, the effect described above becomes significant. On the other hand, when the content is more than 0.05%, various nitrides are formed and, as a result, the toughness is degraded. Hence, the N content is limited to 0.05% or less. In addition, the content is preferably in the range of 0.01% to 0.02%.
  • Although the components described above are basic components of the starting material, besides those basic components described above, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo and/or at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti may also be contained.
  • At least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo
  • Cu and Mo are elements each having a function to improve the corrosion resistance and, whenever necessary, at least one of them may be selected and contained.
  • Cu is an element having a function to improve the pitting resistance by strengthening a passivation film, and to obtain the effect as described above, the content is preferably 0.2% or more. On the other hand, when the content is more than 2.0%, Cu is partly precipitated and, as a result, the toughness is degraded. Hence, when Cu is contained, the content thereof is preferably limited to 2.0% or less. In addition, more preferably, the content is in the range of 0.2% to 1.0%.
  • In addition, Mo is an element having a function to increase the resistance against pitting caused by Cl and, to obtain the above effect, the content is preferably 0.2% or more. On the other hand, when the content is more than 2.0%, the strength is not only decreased, but material cost is also increased. Hence, the Mo content is preferably limited to 2.0% or less. In addition, more preferably, the content is in the range of 0.2% to 1.0%.
  • At Least One Selected from the Group Consisting of V: 0.10% or Less, Nb: 0.10% or Less, and Ti: 0.10% or Less
  • V, Nb, and Ti are components to increase the strength and, whenever necessary, at least one of them may be selected and contained.
  • To obtain the effect as described above, at least one of 0.02% or more of V, 0.01% or more of Nb, and 0.02% or more of Ti is preferably contained. On the other hand, when at least one of more than 0.10% of V, more than 0.10% of Nb, and more than 0.10% of Ti is contained, the toughness is degraded. Hence, when being contained, the contents of V, Nb, and Ti are each preferably limited to 0.10% or less. In addition, more preferably, the V content is 0.02% to 0.05%, the Nb content is 0.01% to 0.05%, and the Ti content is 0.02% to 0.05%.
  • The balance other than those components described above contains Fe and inevitable impurities. In addition, as the inevitable impurities, 0.010% or less of O may be contained.
  • Although a method for manufacturing a starting material having the above composition is not particularly limited, it is preferable that after molten steel having the above composition is formed by a commonly known steelmaking method, for example, using a converter, an electrical furnace, a vacuum melting furnace, and the like, a steel pipe material, such as a billet, be formed by a common method, such as a continuous casting method, or an ingot-making and blooming method. Subsequently, the steel pipe material is heated and is processed by hot working using a common Mannesmann-plug mill type or Mannesmann-mandrel mill type manufacturing process to form a seamless steel pipe having a desired dimension, and this seamless steel pipe is preferably used as the starting material. In addition, a seamless steel pipe may also be manufactured by press type hot extrusion. In addition, after the pipe is formed, the seamless steel pipe is preferably cooled to room temperature at a cooling rate equivalent to or more than that of air cooling.
  • The starting material (seamless steel pipe) is first processed by a quenching treatment.
  • The quenching treatment is a treatment in which after re-heating is performed to a heating temperature for quenching equivalent to or more than the Ac3 transformation point, cooling is performed from the heating temperature for quenching to a temperature range of 100° C. or less at a cooling rate equivalent to or more than that of air cooling. As a result, a fine martensitic microstructure can be obtained. When a heating temperature for quenching is less than the Ac3 transformation point, since heating cannot be performed to the austenite single phase region, and a sufficient martensitic microstructure cannot be obtained by subsequent cooling, a desired strength cannot be ensured. Hence, the heating temperature for quenching of the quenching treatment is limited to be equivalent to or more than the Ac3 transformation point. In addition, the heating temperature is preferably 950° C. or less. The cooling from the quenching heating temperature is performed to a temperature range of 100° C. or less at a cooling rate equivalent to or more than that of air cooling. Since the starting material has high hardenability, when the cooling is performed to a temperature range of 100° C. or less at a cooling rate approximately equivalent to that of air cooling, a sufficiently quenched microstructure (martensitic microstructure) can be obtained. In addition, a holding time at the heating temperature for quenching is preferably set to 10 minutes or more in view of uniform heating.
  • The seamless steel pipe processed by the quenching treatment is subsequently processed by a tempering treatment. The tempering treatment is an important treatment to ensure a superior low temperature toughness. The tempering treatment is defined as a treatment in which after heating is performed to a tempering temperature in the range of more than 450° C. to 550° C. and is maintained preferably for 30 minutes or more, cooling is performed preferably to room temperature preferably at a cooling rate equivalent to or more than that of air cooling. As a result, a seamless steel pipe which, simultaneously has a high strength of YS 110 ksi or more and a superior low temperature toughness having a vTrs of −60° C. or less can be obtained. When the tempering temperature is 450° C. or less, since the tempering is insufficient, the toughness is degraded, and as a result, a high strength and a high toughness cannot be simultaneously obtained. On the other hand, when the tempering temperature is more than 550° C., besides a decrease in strength, since the grain boundaries become brittle, the intergranular fracture is liable to occur, and the toughness is also degraded. Hence, a high strength and a high toughness cannot be simultaneously obtained. The tempering temperature is preferably in the range of 500° C. to 550° C. In addition, to stably maintain the properties, the holding time at the tempering temperature is preferably set to 30 minutes or more. In addition, the cooling from the tempering temperature is preferably performed at a cooling rate equivalent to or more than that of air cooling.
  • Whenever necessary, a correction treatment for correcting defect in pipe shape may be performed in the cooling of the tempering treatment. The correction treatment is preferably performed in a temperature range of 400° C. or more. When the temperature of the correction treatment is less than 400° C., a working strain is locally applied to the steel pipe when the correction treatment is performed. Hence, variation in mechanical characteristics is liable to be generated. Thus, the correction treatment is performed in a temperature range of 400° C. or, more.
  • A seamless steel pipe manufactured by the above-described manufacturing method is a martensitic stainless steel seamless pipe which has the composition described above and which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of −60° C. or less in a Charpy impact test. In addition, this martensitic stainless steel seamless pipe has a microstructure including a tempered martensitic phase as a primary phase. Hence, a steel pipe can be obtained which simultaneously has a desired high strength and a desired high toughness and which also has a sufficient corrosion resistance as oil country tubular goods.
  • Examples
  • After various types of molten steel having the compositions shown in Table 1 were degassed, slabs were formed by a continuous casting method, and billets (size: 207 mm in diameter) were obtained by billet rolling of the slabs processed by re-heating, so that steel-pipe materials were prepared. After the steel pipe materials were heated and formed into pipes by hot working using a Mannesmann-type manufacturing process, cooling was performed, so that seamless steel pipes (outside diameter: 177.8 mm, and wall thickness: 12.7 mm) were obtained.
  • The seamless steel pipes thus obtained were subjected to a quenching treatment and a tempering treatment, and were further subjected to a correction treatment whenever necessary.
  • After API strip tensile specimens were obtained from the seamless steel pipes which were subjected to the quenching treatment and the tempering treatment and were further subjected to the correction treatment whenever necessary, a tensile test was performed, so that the tensile characteristics (yield strength YS, and tensile strength TS) were obtained.
  • In addition, V-notch test pieces (10 mm thick) in accordance with JIS Z 2242 standard were obtained from the seamless steel pipes which were subjected to the quenching treatment and the tempering treatment and were further subjected to the correction treatment whenever necessary, a Charpy impact test was carried out to obtain the fracture transition temperature vTrs and absorption energy vE−60 at a temperature of −60° C., so that the toughness was evaluated. In addition, after test pieces were obtained from 12 points along the circumference of each steel pipe subjected to the correction treatment, a Charpy impact test was performed at a temperature of −60° C., and the variation was evaluated from the average value (ave) and the minimum value (min) of the absorption energy vE−60.
  • In addition, corrosion test pieces having a thickness of 3 mm, a width of 25 mm, and a length of 50 mm were formed from the steel pipes by machining, and a corrosion test was performed.
  • The corrosion test was performed in such a way that the corrosion test pieces were immersed for one week (168 hours) in a test solution, a 20%-NaCl aqueous solution (solution temperature: 80° C., and a CO2 gas environment at 30 bar pressure), which was placed in an autoclave. The weights of the test pieces subjected to the corrosion test were measured, and corrosion rates were obtained by calculating the weight loss before and after the corrosion test. In addition, the surfaces of the test pieces subjected to the corrosion test were observed with a loupe having a magnification of 10 to confirm the pitting generation. As for the pitting, in the case in which at least one pit was observed, it was regarded that pitting occurred, and in the other cases, it was regarded that no pitting occurred. The obtained results are shown in Table 3.
  • According to our examples, a martensitic stainless steel seamless pipe could be obtained which had a sufficient corrosion resistance as oil country tubular goods and which simultaneously had a high strength of a 110 ksi grade of YS and a superior low temperature toughness having a vTrs of −60° C. or less. On the other hand, according to comparative examples out of our range, since the strength was not sufficient, or the low temperature toughness was degraded, desired high strength and high toughness could not be ensured.
  • TABLE 1
    STEEL CHEMICAL COMPOSITION (mass %)
    No. C Si Mn P S Al Cr Ni N Cu, Mo V, Ti, Mb REMARKS
    A 0.008 0.16 1.25 0.015 0.001 0.02 11.0 2.8 0.01 INVENTION EXAMPLE
    B 0.008 0.12 1.14 0.019 0.001 0.04 10.9 2.3 0.01 Cu: 0.5 INVENTION EXAMPLE
    C 0.008 0.15 1.31 0.018 0.001 0.03 11.1 2.8 0.03 Mo: 0.6 INVENTION EXAMPLE
    D 0.007 0.13 1.28 0.016 0.001 0.02 11.1 2.4 0.01 V: 0.03 INVENTION EXAMPLE
    E 0.008 0.24 0.87 0.016 0.001 0.02 11.0 1.3 0.01 Nb: 0.03 INVENTION EXAMPLE
    F 0.008 0.15 1.72 0.015 0.001 0.03 13.2 3.5 0.01 Ti: 0.03 INVENTION EXAMPLE
    G 0.008 0.19 1.55 0.015 0.001 0.02 11.1 2.3 0.01 Cu: 0.4 V: 0.02, INVENTION EXAMPLE
    Nb: 0.02
    H 0.012 0.16 1.33 0.014 0.001 0.03 11.4 2.0 0.01 COMPARATIVE EXAMPLE
    I 0.012 0.24 1.05 0.014 0.001 0.03 11.4 2.6 0.01 V: 0.03 COMPARATIVE EXAMPLE
    J 0.008 0.21 0.84 0.015 0.001 0.02 9.4 2.3 0.01 COMPARATIVE EXAMPLE
    K 0.008 0.18 1.21 0.015 0.001 0.03 14.5 3.5 0.01 Cu: 0.5 COMPARATIVE EXAMPLE
  • TABLE 2
    QUENCHING TREATMENT
    HEATING COOLING STOP
    STEEL COOLING AFTER TEMPERATURE TEMPERATURE
    PIPE No. STEEL No. PIPE FORMATION (° C.) COOLING (° C.)
    1 A AIR COOLING 850 AIR COOLING 25
    2 B AIR COOLING 810 AIR COOLING 25
    3 B AIR COOLING 810 AIR COOLING 25
    4 B AIR COOLING 810 AIR COOLING 25
    5 B AIR COOLING 810 AIR COOLING 25
    6 B AIR COOLING 810 AIR COOLING 25
    7 B AIR COOLING 810 AIR COOLING 25
    8 B AIR COOLING 810 AIR COOLING 25
    9 C AIR COOLING 840 AIR COOLING 25
    10 D AIR COOLING 820 AIR COOLING 25
    11 E AIR COOLING 820 AIR COOLING 25
    12 F AIR COOLING 810 AIR COOLING 25
    13 G AIR COOLING 810 AIR COOLING 25
    14 H AIR COOLING 830 AIR COOLING 25
    15 H AIR COOLING 830 AIR COOLING 25
    16 I AIR COOLING 830 AIR COOLING 25
    17 I AIR COOLING 830 AIR COOLING 25
    18 J AIR COOLING 850 AIR COOLING 25
    19 K AIR COOLING 850 AIR COOLING 25
    TEMPERING TREATMENT CORRECTION
    TEMPERING COOLING STOP TREATMENT
    STEEL TEMPERATURE TEMPERATURE CORRECTION
    PIPE No. (° C.) COOLING (° C.) TEMPERATURE REMARKS
    1 510 AIR COOLING 25 INVENTION
    EXAMPLE
    2 425 AIR COOLING 25 385 COMPARATIVE
    EXAMPLE
    3 450 AIR COOLING 25 410 INVENTION
    EXAMPLE
    4 475 AIR COOLING 25 435 INVENTION
    EXAMPLE
    5 500 AIR COOLING 25 460 INVENTION
    EXAMPLE
    6 525 AIR COOLING 25 485 INVENTION
    EXAMPLE
    7 550 AIR COOLING 25 510 INVENTION
    EXAMPLE
    8 575 AIR COOLING 25 535 COMPARATIVE
    EXAMPLE
    9 500 AIR COOLING 25 INVENTION
    EXAMPLE
    10 500 AIR COOLING 25 INVENTION
    EXAMPLE
    11 500 AIR COOLING 25 INVENTION
    EXAMPLE
    12 500 AIR COOLING 25 INVENTION
    EXAMPLE
    13 500 AIR COOLING 25 INVENTION
    EXAMPLE
    14 450 AIR COOLING 25 COMPARATIVE
    EXAMPLE
    15 550 AIR COOLING 25 COMPARATIVE
    EXAMPLE
    16 450 AIR COOLING 25 COMPARATIVE
    EXAMPLE
    17 550 AIR COOLING 25 COMPARATIVE
    EXAMPLE
    18 500 AIR COOLING 25 COMPARATIVE
    EXAMPLE
    19 500 AIR COOLING 25 COMPARATIVE
    EXAMPLE
  • TABLE 3
    TENSILE
    STEEL CHARACTERISTICS TOUGHNESS CORROSION RESISTANCE
    PIPE STEEL YS TS vTrs vE.60 (J) CORROSION GENERATION
    No. No. (MPa) (MPa) (° C.) ave min RATE (mm/y) OF PITTING REMARKS
    1 A 768 921 −70 210 205 0.06 NO INVENTION EXAMPLE
    2 B 789 950 −50 185 52 0.03 NO COMPARATIVE EXAMPLE
    3 B 810 945 −60 215 200 0.03 NO INVENTION EXAMPLE
    4 B 814 939 −70 223 216 0.04 NO INVENTION EXAMPLE
    5 B 815 919 −85 302 281 0.04 NO INVENTION EXAMPLE
    6 B 796 870 −90 305 294 0.04 NO INVENTION EXAMPLE
    7 B 763 839 −65 211 203 0.04 NO INVENTION EXAMPLE
    8 B 703 785 −30 28 25 0.05 NO COMPARATIVE EXAMPLE
    9 C 810 942 −65 217 205 0.02 NO INVENTION EXAMPLE
    10 D 822 938 −70 261 255 0.04 NO INVENTION EXAMPLE
    11 E 843 978 −70 273 267 0.04 NO INVENTION EXAMPLE
    12 F 805 934 −65 261 254 0.04 NO INVENTION EXAMPLE
    13 G 842 963 −70 282 278 0.03 NO INVENTION EXAMPLE
    14 H 889 1050 −55 201 184 0.05 NO COMPARATIVE EXAMPLE
    15 H 784 934 −40 31 28 0.05 NO COMPARATIVE EXAMPLE
    16 I 902 1079 −50 181 176 0.05 NO COMPARATIVE EXAMPLE
    17 I 776 974 −35 24 22 0.05 NO COMPARATIVE EXAMPLE
    18 J 687 821 −30 28 25 0.26 YES COMPARATIVE EXAMPLE
    19 K 706 852 −25 25 22 0.02 NO COMPARATIVE EXAMPLE

Claims (11)

1. A martensitic stainless steel seamless pipe for oil country tubular goods comprising:
a composition which contains on a mass percent basis,
less than 0.010% of C, 1.0% or less of Si,
0.1% to 2.0% of Mn, 0.020% or less of P,
0.010% or less of S, 0.10% or less of Al,
10% to 14% of Cr, 0.1% to 4.0% of Ni,
0.05% or less of N, and
the balance being Fe and inevitable impurities,
and has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of −60° C. or less in a Charpy impact test.
2. The martensitic stainless steel seamless pipe according to claim 1, wherein the composition further comprises on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
3. The martensitic stainless steel seamless pipe according to claim 1, wherein the composition further comprises on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
4. A method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness, the method comprising:
performing a quenching treatment on a stainless steel seamless pipe having a composition which contains on a mass percent basis,
less than 0.010% of C, 1.0% or less of Si,
0.1% to 2.0% of Mn, 0.020% or less of P,
0.010% or less of S, 0.10% or less of Al,
10% to 14% of Cr, 0.1% to 4.0% of Ni,
0.05% or less of N, and
the balance being Fe and inevitable impurities
the stainless steel pipe to a heating temperature for quenching equivalent to or more than the Ac3 transformation point,
cooling the stainless steel pipe from the heating temperature for quenching to a temperature range of 100° C. or less at a cooling rate equivalent to or more than that of air cooling; and
performing a tempering treatment in which following quenching treatment, heating is performed to a tempering temperature in the range of more than 450° C. to 550° C., and cooling is then performed.
5. The method according to claim 4, wherein the composition further contains on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
6. The method according to claim 4, wherein the composition further comprises on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
7. The method according to claim 4, wherein in the cooling of the tempering treatment, a correctional treatment is performed in a temperature range of 400° C. or more.
8. The martensitic stainless steel seamless pipe according to claim 2, wherein the composition further comprises on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
9. The method according to claim 5, wherein the composition further comprises on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
10. The method according to claim 5, wherein in the cooling of the tempering treatment, a correctional treatment is performed in a temperature range of 400° C. or more.
11. The method according to claim 6, wherein in the cooling of the tempering treatment, a correctional treatment is performed in a temperature range of 400° C. or more.
US12/665,097 2007-06-29 2007-10-10 Martensitic stainless steel seamless pipe for oil country tubular goods and method for manufacturing the same Abandoned US20100193087A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007172560A JP5145793B2 (en) 2007-06-29 2007-06-29 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2007-172560 2007-06-29
PCT/JP2007/070209 WO2009004741A1 (en) 2007-06-29 2007-10-10 Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same

Publications (1)

Publication Number Publication Date
US20100193087A1 true US20100193087A1 (en) 2010-08-05

Family

ID=40225809

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/665,097 Abandoned US20100193087A1 (en) 2007-06-29 2007-10-10 Martensitic stainless steel seamless pipe for oil country tubular goods and method for manufacturing the same

Country Status (6)

Country Link
US (1) US20100193087A1 (en)
EP (1) EP2172573B1 (en)
JP (1) JP5145793B2 (en)
CN (1) CN101437973B (en)
RU (1) RU2431693C1 (en)
WO (1) WO2009004741A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132501A1 (en) * 2008-09-04 2011-06-09 Jfe Steel Corporation Martensitic stainless steel seamless tube for oil country tubular goods and manufacturing method thereof
CN103740900A (en) * 2013-11-30 2014-04-23 常熟市东鑫钢管有限公司 Heat treatment technology for seamless steel pipes
CN106119732A (en) * 2016-06-24 2016-11-16 张家港海锅重型锻件有限公司 A kind of deep-sea oil extracting ship F60 two phase stainless steel pipe joint forging feedstock production process
US10023930B2 (en) 2012-12-12 2018-07-17 Jfe Steel Corporation Method of manufacturing high strength stainless steel tube or pipe

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191433A (en) * 2010-03-17 2011-09-21 “沃斯托克-阿齐亚”有限责任公司 Seamless pipe for conveying oil field medium
CN101956146A (en) * 2010-10-12 2011-01-26 西安建筑科技大学 High strength super-martensitic stainless steel for oil and gas pipelines and preparation method thereof
JP5035489B1 (en) * 2011-02-15 2012-09-26 住友金属工業株式会社 Pipe end straightening method for seamless pipe made of high Cr stainless steel
CN102839331B (en) * 2011-06-24 2014-10-01 宝山钢铁股份有限公司 High-toughness corrosion-resistant steel and manufacturing method thereof
KR101355464B1 (en) 2011-12-20 2014-01-28 주식회사 포스코 Rolling method of carbon steels
RU2537981C1 (en) * 2013-08-21 2015-01-10 Открытое акционерное общество "Завод им. В.А. Дегтярева" Method of straightening of steel thin-walled piped combined with tempering
US20150275340A1 (en) * 2014-04-01 2015-10-01 Ati Properties, Inc. Dual-phase stainless steel
US10472690B2 (en) * 2014-09-08 2019-11-12 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
RU2570964C1 (en) * 2014-12-12 2015-12-20 Открытое акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" (ОАО ОКБ "ГИДРОПРЕСС") Heating medium header of steam generator with u-shape pipes of horizontal heat exchange bunch, and method of its producing
CN104988403B (en) * 2015-07-09 2017-03-08 山西太钢不锈钢股份有限公司 A kind of oil-gas mining martensitic stainless steel seamless steel pipe and its manufacture method
CN108603259B (en) * 2016-02-19 2020-11-06 日本制铁株式会社 Steel having high strength and excellent low-temperature toughness after quenching and tempering
CN107099756B (en) * 2017-05-10 2018-09-21 西宁特殊钢股份有限公司 A kind of high-strength corrosion-resisting steel for sucker rod and its production method
JP6680409B1 (en) * 2018-05-25 2020-04-15 Jfeスチール株式会社 Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
CN113584407A (en) * 2020-04-30 2021-11-02 宝山钢铁股份有限公司 High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
RU2751069C1 (en) * 2020-09-30 2021-07-07 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") Method for production of 13cr type martensitic stainless steel seamless pipes
CN115369313A (en) * 2021-05-17 2022-11-22 宝山钢铁股份有限公司 High-toughness corrosion-resistant martensitic stainless steel oil casing pipe and manufacturing method thereof
CN115572907B (en) * 2022-10-25 2023-11-17 中广核工程有限公司 Martensitic stainless steel and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024808A (en) * 1996-04-19 2000-02-15 Sumitomo Metal Industries, Ltd. Seamless steel pipe manufacturing method and equipment
US6440234B1 (en) * 1998-12-08 2002-08-27 Sumitomo Metal Industries, Ltd. Martensitic stainless steel products
US20050274436A1 (en) * 2001-06-01 2005-12-15 Kunio Kondo Martensitic stainless steel

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672430B2 (en) * 1992-02-18 1997-11-05 新日本製鐵株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3250263B2 (en) * 1992-07-23 2002-01-28 住友金属工業株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2672437B2 (en) * 1992-09-07 1997-11-05 新日本製鐵株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3328967B2 (en) * 1992-09-24 2002-09-30 住友金属工業株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH07179943A (en) * 1993-12-22 1995-07-18 Nippon Steel Corp Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3814836B2 (en) * 1994-08-23 2006-08-30 住友金属工業株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH08109444A (en) * 1994-10-07 1996-04-30 Nippon Steel Corp Production of seamless martensitic stainless steel tube for oil well use, excellent in crushing pressure
JP3744254B2 (en) * 1999-04-27 2006-02-08 住友金属工業株式会社 Martensitic stainless steel seamless steel pipe with excellent surface quality
JP3485034B2 (en) * 1999-07-19 2004-01-13 Jfeスチール株式会社 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same
JP2001152249A (en) * 1999-09-08 2001-06-05 Nkk Corp Method for producing martensitic stainless steel
JP3941298B2 (en) * 1999-09-24 2007-07-04 Jfeスチール株式会社 High strength martensitic stainless steel pipe for oil wells
JP3812360B2 (en) * 2001-04-09 2006-08-23 住友金属工業株式会社 Martensitic stainless steel with excellent strength stability
AR042494A1 (en) * 2002-12-20 2005-06-22 Sumitomo Chemical Co HIGH RESISTANCE MARTENSITIC STAINLESS STEEL WITH EXCELLENT PROPERTIES OF CORROSION RESISTANCE BY CARBON DIOXIDE AND CORROSION RESISTANCE BY FISURES BY SULFIDE VOLTAGES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024808A (en) * 1996-04-19 2000-02-15 Sumitomo Metal Industries, Ltd. Seamless steel pipe manufacturing method and equipment
US6440234B1 (en) * 1998-12-08 2002-08-27 Sumitomo Metal Industries, Ltd. Martensitic stainless steel products
US20050274436A1 (en) * 2001-06-01 2005-12-15 Kunio Kondo Martensitic stainless steel
US7361236B2 (en) * 2001-06-01 2008-04-22 Sumitomo Metal Industries, Ltd. Martensitic stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132501A1 (en) * 2008-09-04 2011-06-09 Jfe Steel Corporation Martensitic stainless steel seamless tube for oil country tubular goods and manufacturing method thereof
US10023930B2 (en) 2012-12-12 2018-07-17 Jfe Steel Corporation Method of manufacturing high strength stainless steel tube or pipe
CN103740900A (en) * 2013-11-30 2014-04-23 常熟市东鑫钢管有限公司 Heat treatment technology for seamless steel pipes
CN106119732A (en) * 2016-06-24 2016-11-16 张家港海锅重型锻件有限公司 A kind of deep-sea oil extracting ship F60 two phase stainless steel pipe joint forging feedstock production process

Also Published As

Publication number Publication date
EP2172573A4 (en) 2011-05-18
CN101437973A (en) 2009-05-20
RU2431693C1 (en) 2011-10-20
JP5145793B2 (en) 2013-02-20
RU2010102917A (en) 2011-08-10
EP2172573B1 (en) 2014-12-10
CN101437973B (en) 2012-09-05
EP2172573A1 (en) 2010-04-07
WO2009004741A1 (en) 2009-01-08
JP2009007658A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
US20100193087A1 (en) Martensitic stainless steel seamless pipe for oil country tubular goods and method for manufacturing the same
JP5487689B2 (en) Manufacturing method of martensitic stainless steel seamless pipe for oil well pipe
JP4390081B2 (en) Seamless steel pipe for oil well with excellent resistance to sulfide stress cracking and method for producing the same
US10240221B2 (en) Stainless steel seamless pipe for oil well use and method for manufacturing the same
US10151011B2 (en) High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
US6248187B1 (en) Corrosion resisting steel and corrosion resisting oil well pipe having high corrosion resistance to carbon dioxide gas
MX2008016193A (en) Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe.
US11827949B2 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
US20200270715A1 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
EP3845680B1 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
EP3269831A1 (en) High chromium martensitic heat-resistant steel with combined high creep rupture strength and oxidation resistance
US20110132501A1 (en) Martensitic stainless steel seamless tube for oil country tubular goods and manufacturing method thereof
US8168008B2 (en) Martensitic stainless steel pipe
EP1876253B1 (en) Stainless steel pipe for oil well excellent in enlarging characteristics
US20220074029A1 (en) Hot rolled steel and a method of manufacturing thereof
JP2006097051A (en) Method for producing martensitic stainless steel tube
JP2002105604A (en) HIGH-Cr MARTENSITIC STAINLESS STEEL PIPE FOR LINEPIPE HAVING EXCELLENT CORROSION RESISTANCE AND WELDABILITY, AND ITS PRODUCTION METHOD
US8747575B2 (en) 655 MPa grade martensitic stainless steel having high toughness and method for manufacturing the same
JPH09118919A (en) Manufacture of steel product excellent in seawater corrosion resistance
US20180363112A1 (en) Lean duplex stainless steel and method of manufacturing the same
JP4629059B2 (en) High chromium steel with high toughness
JP2004115890A (en) High-chromium steel having high toughness, and manufacturing method therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: JFE STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYATA, YUKIO;KIMURA, MITSUO;TANAKA, MASAHITO;AND OTHERS;REEL/FRAME:023667/0411

Effective date: 20091208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION