WO2008102899A1 - 缶用鋼板の製造方法 - Google Patents

缶用鋼板の製造方法 Download PDF

Info

Publication number
WO2008102899A1
WO2008102899A1 PCT/JP2008/053125 JP2008053125W WO2008102899A1 WO 2008102899 A1 WO2008102899 A1 WO 2008102899A1 JP 2008053125 W JP2008053125 W JP 2008053125W WO 2008102899 A1 WO2008102899 A1 WO 2008102899A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
annealing
less
steel
strength
Prior art date
Application number
PCT/JP2008/053125
Other languages
English (en)
French (fr)
Inventor
Yuka Nishihara
Katsumi Kojima
Hiroki Iwasa
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39710169&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008102899(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP08711889.9A priority Critical patent/EP2123780B1/en
Priority to CN200880001425.7A priority patent/CN101578381B/zh
Priority to KR1020097010592A priority patent/KR101128315B1/ko
Publication of WO2008102899A1 publication Critical patent/WO2008102899A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention is a beverage canning (canned beverage) and food container of canned (caniied food) and ⁇ can or container) "I 2-piece DR Di ⁇ r used, two- piece drawn and redrawn can) and 3 arsenide 1
  • the present invention relates to a method of manufacturing a tin steel plate for use in a three-piece welded can.
  • a steel plate with a thickness of 0.16 mm when a steel plate with a thickness of 0.16 mm is used, at least the body of weld cans has a mouth cwell hardness (HR30T) of about 73 to 77 (at least 73 to 76, preferably 74-77), it is necessary to use a high-strength material with a bow I tensile strength (TS: tensile strength) of about 550 MPa to 620 MPa.
  • DR method Double Reduce method
  • the steel sheet is manufactured through a process of hot rolling, cold rolling and annealing, and secondary cold rolling.
  • the steel sheet obtained by recrystallization annealing has low anisotropy and is suitable for drawn cans where earing should be suppressed as much as possible.
  • steel sheets that do not require a small amount of anisotropy do not necessarily require recrystallization annealing after cold rolling.
  • heat treatment at a low temperature is performed to relieve strain introduced in the cold rolling process and restore the ductility of the material to the minimum necessary range.
  • recovery annealing can be applied instead of recrystallization annealing.
  • Patent Document 3 the finishing temperature in hot rolling is set to the Ar3 transformation point or less, and the crystal grain size after hot rolling is reduced to 50 / X.
  • the technology described above is disclosed.
  • this technology after the above hot rolling, after cold rolling at a reduction rate of 85 to 90%, continuous annealing of 450 to 580 is performed. Steel plates for cans with E 1 (total elongation) force of 6-8% at 57kgf / mm 2 are obtained.
  • the material used is Capped 0.05% to 06% Capped steel.
  • Patent Document 4 After using copper containing REM as an essential component, the finishing temperature in hot rolling is below the Ar3 transformation point, and cold rolling is performed at a reduction rate of 85% or less.
  • the technology for obtaining steel plates for cans with a YS (yield strength) of 640 MPa or more by heat treatment for 10 minutes or more in the range of 200 to 500: is disclosed.
  • Japanese Patent Application Laid-Open No. 6-248338 discloses a stretchy yarn having a tempered grade of T 4 to T 6 by annealing at a recrystallization temperature of 400 or more after cold rolling.
  • a technique for making a steel plate for containers without a stretcher strain is disclosed.
  • a maximum of 72.9 is disclosed as the mouth-kwell hardness (HR30T) obtained with this technology.
  • Patent Document 6 copper having the same composition as that of Patent Document 5 (C: 0.03% by weight or less, N: 0.005% by weight or less, etc.) is used at a temperature below the Ar3 transformation point. High-rigidity is achieved by performing hot rolling at least 50% and cold rolling at a reduction rate of 50% or more and then annealing at a recrystallization temperature of 400 or more. The technology to obtain steel plates for containers of the same level as the above is disclosed.
  • the recrystallization temperature is defined as the temperature at which the recrystallization rate becomes a structure of less than 10%.
  • finish rolling is performed by setting the total reduction ratio below the Ar3 transformation point to 40% or more during hot rolling, and cold rolling is performed at a reduction ratio of 50% or more.
  • a technique for obtaining a steel having a YS of 54 to 70 kgf / mm 2 by performing low-temperature annealing at 350 to 6503 ⁇ 4 for a short time after rolling is disclosed. Disclosure of the invention
  • Patent Document 3 Patent Document 4, Patent Document 6, and Patent Document 7, it is necessary to perform finish rolling below the Ar3 transformation point during hot rolling.
  • the finish rolling is performed below the Ar3 transformation point, the ferrite grain size of the hot rolled steel sheet increases, and after hot rolling as shown in Fig. 3 of Patent Document 3.
  • the strength of the steel decreases. Therefore, it is effective as a method of reducing the strength of copper itself to the extent that sufficient workability is ensured.
  • finish rolling is performed below the Ar3 transformation point, the temperature in the finish rolling tends to be lower in the widthwise edge portion where the cooling rate is faster than the central portion in the width direction.
  • Patent Document 4 the strain is recovered by annealing at 200 to 500 after cold rolling for 10 minutes or more to recover the strain. However, if annealing is performed for 10 minutes or more in a continuous annealing furnace, the line speed is lowered. It must significantly reduce productivity.
  • Patent Document 5 and Patent Document 6 are characterized by annealing at 400 mm or more and below the recrystallization temperature, the Rockwell hardness of the obtained steel is less than 73.0, and the intended strength level in the present invention In order to obtain this copper, it is necessary to further lower the annealing temperature. As a result, the annealing temperature employed in the production of normal can materials will be removed, and a dedicated annealing cycle will need to be provided separately, reducing productivity.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to solve the above-described problems of the prior art and to propose a method for manufacturing a steel plate for cans with high strength. That is, the present invention is applied to a steel sheet for a can which is applied to a use where a small anisotropy is not required, such as a welded can, and which requires workability in addition to strength.
  • An object of the present invention is to propose a method for producing a steel sheet for cans with high strength while ensuring the ductility, for example, the minimum ductility necessary for the flange workability of a welded can.
  • Nb 0.001 ⁇ 0.05 ⁇ / ⁇
  • 0.0001 ⁇ 0.005 ⁇ / at least the o
  • the recrystallization start temperature is a temperature at which the rate of change in strength greatly changes with temperature, as shown in Fig. 1 (Example: conditions will be described later). It is defined as the temperature at which a structure in which the recrystallized structure occupies 5% is obtained.
  • FIG. 1 is a graph showing the relationship between annealing temperature (horizontal axis:), Ding S (vertical axis: MPa), and recrystallization start temperature in steel having the composition of the present invention.
  • FIG. 2 is a graph showing the relationship between annealing temperature (horizontal axis: in), T S (vertical axis: MPa), and recrystallization start temperature in steels of another composition of the present invention.
  • the steel plate for cans obtained by the method of the present invention can achieve a tensile strength of 550 to 650 MPa (see FIG. 1) and a total elongation of 5% or more.
  • a tensile strength of 550 to 700 MPa see FIG. 2 in the example: conditions are described later
  • a total elongation of 4% or more can be achieved.
  • hot rolling is performed at a finishing temperature equal to or higher than the A ⁇ 3 transformation point, and a temperature of (recrystallization start temperature 1 200 t) to (recrystallization start temperature 1 20). It is characterized by annealing within the range.
  • the component composition of the steel plate for cans of this invention is demonstrated.
  • the steel plate for cans proposed in the present invention is intended to increase the strength by strain introduced by cold rolling (primary cold rolling). Therefore, strengthening elements are unnecessary, and they are reduced as much as possible from the viewpoint of ensuring ductility. If C is contained in an amount exceeding 0.003%, the local ductility necessary for molding into a can cannot be obtained sufficiently. Also, the amount of residual solute carbon increases, and there is a risk of cracking during stretch-flange forming of the seeding part, which is the final process of can making. An increase in the amount of solute carbon further increases the amount of work hardening, which may cause wrinkles during neck forming and flange processing. Based on the above, the C content is 0.003% or less.
  • the C content is less than 0.0010%, the operability is lowered, for example, the annealing temperature for obtaining the target strength of the present invention is lowered, and the improvement in ductility is also reduced.
  • the content is preferably 0.0010% or more.
  • N 0.004% or less
  • N is an impurity element inevitably mixed in copper.
  • the N content increases, slab cracking tends to occur in the unbending zone during continuous casting. N forms precipitates and lowers the elongation, while if it remains in a solid solution, it hardens the steel.
  • the N content is 0.004% or less.
  • the N content is preferably 0.002% or less.
  • Si is a strengthening element that increases the strength of steel by solid solution strengthening. If it is contained in a large amount, corrosion resistance is significantly impaired. Therefore, the Si content is 0.02% or less.
  • Mn is a strengthening element that increases the strength of copper by solid solution strengthening. Mn is also an element that reduces the crystal grain size and increases the strength as it is further refined. In order not to cause the above effect, the upper limit of the Mn content is 0.5%. Preferably it is 0.3% or less.
  • the lower limit of Mn is 0.05%.
  • it is 0.10% or more.
  • the P content is large, the strength of the steel is remarkably increased by solid solution strengthening, and the corrosion resistance is also deteriorated. Therefore, the P content is 0.02% or less.
  • S exists as an inclusion in steel and is an element that is disadvantageous to the ductility and corrosion resistance of the steel sheet. Preferably it is 0.01% or less.
  • A1 improves the cleanliness in steel as a deoxidizer. Also, it combines with solute N to form A1N, and has the effect of reducing the amount of solute N. Therefore, it is preferable to make it contain to some extent in copper. Add about 0.005% or more as the condition It is desirable to do. On the other hand, when the A1 content exceeds 0.1%, the effect of improving the cleanliness is saturated. In addition, problems such as an increase in manufacturing costs and an increased tendency to generate surface defects also arise. Therefore, the A1 content is 0.1% or less.
  • Nb 0.001 to 0.05%
  • B 0.001% to 0.005% force
  • Nb is an element with high carbide-forming ability, and raises the recrystallization temperature of steel by pinning the grain boundary caused by the generated carbide. Therefore, the recrystallization temperature of steel can be changed by adding Nb or changing the amount of Nb added. In other words, the appropriate annealing temperature can be raised and lowered, and the target temperature can be adjusted as needed. As a result, it can be combined with other steel sheets for annealing, which is very efficient in terms of productivity.
  • Nb is contained in excess of 0.05%, the recrystallization temperature becomes too high and the processing capability in CAL (continuous annealing line) decreases. Also, it becomes higher than the target strength due to precipitation strengthening of carbides. Therefore, the Nb content is 0.05% or less.
  • Nb is preferably added from the viewpoint of annealing temperature, and if it is 0.05% or less, the Nb precipitation strengthening can be used by adjusting the addition amount.
  • Nb addition is effective in preventing a decrease in weld strength by suppressing recrystallization during welding.
  • a more preferable upper limit is 0.04%.
  • Nb addition amount is set as the lower limit. More preferably, 0.005% or more is added. More preferably, it is 0.01% or more.
  • B is an element that raises the recrystallization temperature. Therefore, B can be added for the same purpose as Nb. However, excessive addition inhibits recrystallization in the austenite region during hot rolling and increases the rolling load. Therefore, the B addition amount should be 0.005% or less. Preferably it is 0.002% or less. Also, since the effect of increasing the recrystallization temperature cannot be obtained at 0.0001% or less, when adding B for the purpose, 0.0001% is the lower limit. Preferably it is 0.0005% or more. More preferably, it is 0.0008% or more.
  • B like Nb, can be made to have the desired strength by precipitation strengthening of B within the above range. It is also effective in preventing the welding strength from decreasing by suppressing recrystallization during welding.
  • Nb and B may be added, or both may be added within the above ranges.
  • the balance is Fe and inevitable impurities. Thickness: 0.18mm or less
  • the plate thickness is an important factor. It is particularly meaningful to reduce the thickness to a tensile strength of 550 MPa or more in the range where the plate thickness is 0 ⁇ 18 mm or less.
  • the annealing temperature is set to a recrystallization start temperature of ⁇ 20 ⁇ or less (usually 700 ⁇ : less than or equal to: refer to the examples described later), so even a sheet thickness of 0.18 mm or less can be easily produced. .
  • the plate thickness is limited to 0.18 mm or less because the effect is large in the range of tensile strength of 550 MPa or more and the productivity improvement effect is remarkably exhibited by annealing in the low temperature region.
  • Tensile strength 550 ⁇ 700MPa
  • the steel plate for cans produced according to the present invention is one of the purposes that is currently applied to fields that use high-strength and ultra-thin steel plates such as DR materials, such as DRD cans and welded cans. It is said. In such a field, if the plate thickness of the steel sheet is 0.18 mm or less and the tensile strength is 550 MPa or less, the can body strength is insufficient, and there is a concern about the buckling of the can. To avoid this, the target tensile strength is 550 MPa or more. The On the other hand, when trying to obtain strength exceeding 700MPa (exceeding 650MPa when Nb and B are not used), it is necessary to add a large amount of strengthening elements, which may impair corrosion resistance.
  • the tensile strength is controlled to the target value mainly by adjusting the steel plate composition, cold rolling rate, and annealing temperature.
  • the cold rolling rate is set to 60% or more, and the tensile strength is controlled to 550 to 650 MPa by annealing at a soaking temperature: (at a recrystallization start temperature of 200 :) to (at a recrystallization start temperature of 20). ( Figure 1 ).
  • C 0.003% or less
  • N 0.004% or less
  • Mn 0.05% to 0.5%
  • P 0.02% or less
  • Si 0.02% or less
  • S 0.03% or less
  • A1 0.1% or less.
  • Nb 0.001% to 0.05%
  • B Add at least one of 0.0001% to 0.005% to make the cold rolling rate 60% or more
  • soaking temperature (Recrystallization start temperature 1 200) The tensile strength is controlled to 550-700MPa by annealing at a recrystallization start temperature of 20 (Fig. 2).
  • the Rockwell hardness (HR30T) is about 74 to 77 when Nb and B are not added, and about 74 to 80 when at least one of Nb and B is added.
  • the target for total growth is 4% or more. In order to improve the workability as much as possible, it is desirable to secure a total stretch of 5% or more.
  • the total elongation is controlled to the target value mainly by adjusting the copper plate composition and the cooling rate after finishing during hot rolling. Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.
  • Molten steel adjusted to the above-mentioned chemical composition is produced by a generally known steel making method using a converter or the like, and then used for ordinary purposes such as continuous forging.
  • Rolled material (steel ingots, especially slabs) is made by the forging method.
  • a hot-rolled sheet is obtained by hot rolling using the rolled material obtained as described above.
  • the rolled material Prior to hot rolling, the rolled material should be heated to 1250 or more. This is because the precipitates in the steel are completely dissolved to eliminate segregation and make the material homogeneous.
  • the finishing temperature should be higher than the A r3 transformation point.
  • scraping is performed at a scraping temperature of 600 to 750.
  • the scale covering the surface of the steel plate is usually removed by pickling. Then, after performing cold rolling at a rolling reduction of 60 to 95%, annealing is performed at a temperature of (recrystallization start temperature—ZOOt) to (recrystallization start temperature—20T:).
  • the hot rolling finishing temperature should be above the A r3 transformation point.
  • finish rolling below the A r3 transformation point has the advantage of reducing the strength of the steel during recovery annealing, but finishes so that the center in the width direction of the slab is below the A r3 transformation point.
  • the strain introduced in the finish rolling is less likely to be released by recrystallization or recovery in the widthwise wedge part, which has a faster cooling rate than the center part.
  • the edge portion becomes hard, the difference in strength between the central portion and the edge portion becomes large, and a hot-rolled sheet having a non-uniform structure is easily obtained. Therefore, in order to obtain a hot-rolled sheet having a uniform structure, the finishing temperature should be higher than the Ar3 transformation point.
  • the finishing temperature is more preferably set to Ar 3 transformation point + 5 or more.
  • the finishing temperature is preferably 9503 ⁇ 4 or less from the viewpoint of avoiding scale defects.
  • the Ar 3 transformation point is generally in the range of 840 to 910.
  • the total elongation of the steel can be ensured only by hot rolling above the Ar3 transformation point, for the following reason.
  • the ferrite grain size of the hot-rolled sheet is determined by hot rolling (which is a condition of the present invention). It is relatively small when raising temperature is higher than Ar3 transformation point, and is relatively large when hot rolling finish temperature is lower than Ar3 transformation point (which is a condition in the technology using conventional recovery annealing). . When both are cold-rolled, the strain energy accumulated in the cold-rolled sheet becomes higher when the ferrite grain size of the hot-rolled sheet is smaller.
  • the conditions of the present invention are conditions that promote the progress of the recovery phenomenon. Due to the recovery phenomenon, the cold-rolled steel sheet decreases the strength. However, since the condition of the present invention is a state of high strain energy, the target high strength can be maintained even after recovery. In addition, since the ductility is improved by the recovery phenomenon, the desired appropriate ductility can be ensured. From the above mechanism, it is preferable to avoid hot-rolling high-temperature finishing and high-purity composition in which the particle size tends to grow.
  • the cutting temperature In the hot rolling process, the cutting temperature must be 600 to 750. If it is less than 6003 ⁇ 4, the heat-retaining effect after scraping is not sufficient, and the ferritic grain size of the hot-rolled sheet becomes unnecessarily small, so that the strength tends to become excessively high. 7 This organization is not desirable because it is easy to make.
  • the rolling reduction is 60-95%. If the rolling reduction is less than 60%, the desired strength is not achieved after cold rolling and heat treatment (recovery annealing). In addition, there is a problem that is considered to be caused by non-uniformity of the material, especially the non-uniformity in the direction of plate grinding. On the other hand, when the rolling reduction exceeds 95%, it becomes difficult to avoid deterioration of local ductility.
  • a preferable rolling reduction is 80% or more.
  • Recrystallization start temperature 1 200 or more, Recrystallization start temperature 1 20 or less The heat treatment (annealing) is performed in a temperature range where the recrystallization start temperature is at least 200 ⁇ and the recrystallization start temperature is _20 or less. Since the recrystallization temperature is changed by the composition, for example, addition of Nb, B, etc., the temperature range (soaking temperature range) is based on the recrystallization start temperature of each steel as _2003 ⁇ 4 to 120 Yes.
  • the purpose of annealing (recovery annealing) in the present invention is to reduce the strength to the target strength by performing strain relief annealing from the state where the strength is increased by the strain introduced by cold rolling. If the recrystallization start temperature is less than 200, the strain is not sufficiently released, and the recrystallization start temperature is about 2003 ⁇ 4: as the lower limit because it is higher than the target strength and lower in ductility.
  • a more preferable lower limit temperature from the viewpoint of ensuring ductility is a recrystallization start temperature of 150.
  • Recrystallized grains and recovered grains can be distinguished by observation with an optical or electron microscope.
  • a more preferable upper limit temperature from the viewpoint of securing the strength is the recrystallization start temperature-30.
  • the recrystallization start temperature is generally in the range of 560 to 650: (Nb and B not added) or 620 to 780 (Nb and B added at least). .
  • the soaking time during annealing is preferably set to 10 s or more and 90 s or less.
  • a steel slab was obtained by melting copper containing the composition shown in Table 1 and the balance being inevitable impurities and Fe. After the obtained steel slab was reheated at each temperature shown in Table 2, hot rolling was started. The hot rolling was performed by changing the finish rolling temperature in the range of 800 to 950 and the cutting temperature in the range of 550 to 7003 ⁇ 4 (all shown in Table 2). Next, after pickling, cold rolling was performed at each reduction rate shown in Table 2 to produce a 0.15 mm thin steel plate (here, the thickness of the hot-rolled plate was adjusted according to the reduction rate).
  • a tensile test and a ⁇ value measurement were performed on the plated steel sheet obtained as described above.
  • the tensile test was performed using JIS5 size tensile test pieces (rolling direction), and the tensile strength and elongation (total elongation) were measured to evaluate the strength and ductility.
  • the average r value was obtained by the natural vibration method specified in JIS Z2254.
  • Table 3 shows that the inventive examples (steel plates 1 and 2 etc.) have a tensile strength of 550 to 600 MPa and a total elongation of 5% or more.
  • the annealing temperature is below the range of the present invention, and the ductility is lowered because the recovery of strain in the steel is small.
  • the comparative example (steel plate 4) is annealed. Since the temperature is higher than the range of the present invention and recrystallization starts locally, the strength is insufficient.
  • TS: 550 to 650 MPa is obtained at an annealing temperature between the recrystallization start temperature -20 and 200. Note that when recrystallization start temperature is reduced to 403 ⁇ 4 or less, TS: 600 to 650MPa force S is obtained. On the other hand, to obtain a steel plate of 550 to 600MPa, recrystallization start temperature is approximately It can be seen that it is preferable to anneal with ⁇ -403 ⁇ 4 :).
  • a steel slab was obtained by melting the steel containing the composition shown in Table 4 and the balance of inevitable impurities and Fe in an actual converter.
  • the obtained steel slab was reheated at 1 150 to 1250, and hot rolling was started.
  • the finishing rolling temperature was varied in the range of 880 to 900, and the milling temperature was 620 ⁇ .
  • the steel sheet was cold-rolled at a rolling reduction of 80 to 90% to produce a thin steel plate having a thickness of 0.15 to 0.18 mm.
  • the obtained thin steel sheet was annealed in a continuous annealing furnace at an annealing temperature of 300 700 and an annealing time of 30 s (recovery), and subjected to temper rolling so that the elongation was 1.5% or less.
  • Tin-free steel was obtained by continuous chrome plating. Detailed manufacturing conditions are shown in Table 5.
  • annealing temperature As a result of confirming the recrystallization behavior of steels 2-18, it was confirmed that recrystallization was completed at 620-720 as shown in Table 5.
  • Fig. 2 shows the results of confirming the recrystallization behavior of steel 5 in Table 4 (manufactured under the conditions of steel plate 13 in Table 5 except for the annealing temperature).
  • the tensile strength is 550 to 700 MPa and the total elongation is 4% or more.
  • the annealing temperature is lower than the range of the present invention and the recovery of strain in the steel is small, so the strength is high and the ductility is low.
  • the annealing temperature exceeds the range of the present invention and the recrystallization starts locally, so that the strength is insufficient.
  • TS: 550 to 700 MPa is obtained at an annealing temperature between the recrystallization start temperature of 20 to 1 200 ⁇ . Recrystallization start temperature When TS is annealed at _40 or less, TS: 650 to 700 MPa is obtained. On the other hand, to obtain a steel plate with 550 to 650 MPa, annealing at a recrystallization start temperature of ⁇ 20 to 1-50 (preferably to 1 to 40) It can be seen that it is preferable.
  • the strength is high and the ductility is lowered.
  • the recrystallization behavior changes depending on the amount of Nb and B added, so that the applicable annealing temperature can be changed.
  • the strength obtained can be changed by adding Nb and B. Therefore, the production method of the present invention can be annealed in the same cycle as other steel plates for cans, and can obtain a desired strength. .
  • a steel plate for cans having a tensile strength of 550 to 650 MPa and a total elongation of 5% or more is obtained. Even when the DR process and the recrystallization annealing process are omitted, when Nb and B are added, a tensile strength of 550 to 700 MPa and an elongation of 4% or more can be obtained.
  • a copper plate for high-strength cans can be manufactured and provided at a low cost without sacrificing corrosion resistance for cans that do not require small anisotropy. It becomes possible.
  • the manufacturing method of the present invention is annealed in a low temperature region as compared with a normal method for manufacturing steel sheets for cans, it is possible to reduce energy costs. Also, by adding Nb and B, it is possible to anneal in the same temperature range as a normal steel plate for cans. In this case, there is no need to provide a separate annealing opportunity. As a result, it is possible to produce a steel sheet of T S 550 to 700 MPa class without hindering productivity. On the other hand, in the present invention, as shown in FIGS. 1 and 2, it is possible to perform annealing in a temperature range where the change in strength is small depending on the annealing temperature. Therefore, even if the annealing temperature varies, it is uniform in the width direction. A steel plate with an appropriate strength level can be obtained.
  • the steel plate for cans produced by the production method of the present invention is a container for canned beverages and food cans. Most suitable as steel plate for cans, mainly 2-piece DRD cans and 3-piece welded cans.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高強度の缶用鋼板を製造するにあたり、Ar3変態点以上の仕上げ温度で熱間圧延を行い、冷間圧延後(再結晶開始温度−200℃)~(再結晶開始温度−20℃)にて回復焼鈍を行うことにより、引張強度:550MPa~650MPa、全伸び:5%以上を得る。さらにNb:0.001%~0.05%、B:0.0001%~0.005%の少なくともいずれかを添加することにより、通常の缶用鋼板と同じ温度域で焼鈍することを可能とした上で、引張強度:550MPa~700MPa、全伸び:4%以上を得る。

Description

明 細 書 缶用鋼板の製造方法 技術分野
本発明は、 飲料缶詰 (canned beverage) や食品缶詰 (caniied food) の容 器 {can or container) とし" I用いられる 2ピース D R Di±r 、 two- piece drawn and redrawn can) や 3 ヒ 1 ~ス溶接 f& (three— piece welded canノ ίこ用レヽられ る缶用鋼板(tin mill black plate)の製造方法に関するものである。 背景技術
近年、 缶用鋼板としてのスチール缶の需要を拡大するため、 製缶コス トの 低減が進められている。 製缶コス トの低減策としては、 素材の低コス ト化 が挙げられる。 すなわち、絞り加工(drawing)を行う 2ピース缶においても、 単純な円筒成形が主体の 3ピース缶においても、 極薄(extremely thin) の高 強度缶用鋼板が利用されるようになっている。
例えば、板厚 0. 16mmの鋼板を利用する場合には、少なく とも缶胴部(body of weld cans)には口ックゥエル硬さ(HR30T)で 73〜77程度(少なく とも 73〜76、 好ましくは 74〜77)、 弓 I張強度 (T S : tensile strength) で 550MPa~620MPa 程度の高強度材を用いる必要がある。 現在、極薄で硬質(hard)な缶用鋼板は、焼鈍後に二次冷延(secondary cold rolling) を施す Double Reduce法 (以下、 D R法と称す) で製造されている。 しかし、 DR法では、 鋼板は熱間圧延 (hot rolling) —冷間圧延一焼鈍—二次 冷延という工程を経て製造される。 すなわち、 焼鈍まで.で終了する通常の 工程に比べて 1工程多いので、 その分、 製造コストが高くなる。 従って、 この種の缶用鋼板においては、 コストダウンが要望されており、 各種強化元 素 (強度を増加する合金元素) を添加して焼鈍 .(ここでは再結晶焼鈍 (recrystallization annealing)) 工程までで (すなわち二次冷延すること なく) 製造する方法が提案されている。 ' 例えば、 特開 2001- 107186号公報 (特許文献 1 ) およぴ特開 2005- 336610号 公報 (特許文献 2 ) では、 再結晶焼鈍を施された高強度の缶用鋼板が開示さ れている。 このように再結晶焼鈍を施して得られる鋼板は異方性(in-plate plastic anisotropy) が小さく、 耳発生 (earing) をできるだけ抑制すべき 絞り缶等には適している。 ' しかし、 小さい異方性をそれほど必要としない鋼板については、 冷間圧延 後、必ずしも再結晶焼鈍を行う必要はない。 冷間圧延で強度を高めた後に、 低温での加熱処理を行うことにより.、 冷間圧延工程で導入され過ぎた歪を解 放したり、 材料の延性を必要最小限の範囲で回復させたりする方法 (回復焼 鈍(recovery annealing) と呼ばれる) が再結晶焼鈍に代わって適用できる。 この方法では、 再結晶焼鈍を行わなず、 再結晶に伴う著しい硬度低下がない ため、 析出強ィ匕能 (ability for precipitation hardening) や固溶強 ί匕能 (ability for solid solution hardening) のある元素を添カロする必要力 な レ、。 したカ つて、 こうした元素の耐食性 (corrosion resistance) への影 響を懸念する必要がない。 このように、 小さい異方性が要求されない鋼板 については、 回復焼鈍を行う方法が有効であり、 以下のような技術が提案さ れている。
特公昭 53-20445号公報 (特許文献 3 ) では、 熱間圧延における仕上げ温度 (finishing temperature) を Ar3変態点以下とし、 高温卷取り して、 熱間圧 延後の結晶粒径を 50/X以上とする技術が開示されている。 この技術では、 上記熱間圧延の後に 85~90%の圧下率 (reduction) で冷間圧延を行った後、 450〜580 の連続焼純 (continuous annealing) を行うこと Iこより、 T Sカ 53~57kgf/mm2で E 1 (全伸び) 力 6〜8%の缶用鋼板が得られている。 なお、 素材としては Cが 0.05〜0· 06%のキヤップド鋼を用いている。
特開平 8-269568公報 (特許文献 4 ) では、 REMを必須成分とする銅を用い、 熱間圧延における仕上げ温度を Ar3変態点以下とし、 85%以下の圧下率で冷 間圧延を行った後、 200 から 500 :の範囲で 10分間以上熱処理することで、 YS (降伏強度: yield strength) が 640MPa以上の缶用鋼板を得る技術を開示 している。 特開平 6-248338号公報 (特許文献 5 ) には、 冷間圧延をした後 400 以上 再結晶温度以下で焼鈍することで、 T 4〜T 6の調質度 (tempered grade) の、 ス トレッチヤース トレイン (stretcher strain) のない容器用鋼板を作 り分ける技術が開示されている。 当該技術で得られた口 ック ゥエル硬さ (HR30T) として最大で 72.9が開示されている。
特開平 6- 248339号公報 (特許文献 6 ) では、 特許文献 5と同じ組成 (C : 0.03重量%以下、 N : 0.005重量%以下などと規定) の銅を用い、 Ar3変態点 以下の温度で少なく とも 50%以上の熱間圧延を施し、 50%以上の圧下率で冷 間圧延を行った後、 400 以上再結晶温度以下で焼鈍することで、 高剛性 (口 ックゥエル硬ざは特許文献 5と同程度) の容器用鋼板を得る技術が開示され ている。なお、特許文献 5および 6においては再結晶温度を再結晶率が 1 0 % 未満の組織になる温度と定義している。
特開平 8-41549号公報 (特許文献 7 ) では、 熱間圧延時に Ar3変態点以下で の合計圧下率を 40%以上とするなどして仕上げ圧延を行い、 50%以上の圧下 率で冷間圧延を行った後、 350〜650¾:の短時間低温焼鈍を施すことで、 YSが 54〜70kgf/mm2の鋼を得る技術が開示されている。 発明の開示
〔発明が解決しょうとする課題〕
しかしながら、 上記の従来技術には下記に示す問題が挙げられる。
例えば、 特許文献 3、 特許文献 4、 特許文献 6および特許文献 7では、 熱 間圧延時に Ar3変態点以下で仕上げ圧延 (finish rolling) を行う必要があ る。 Ar3変態点以下で仕上げ圧延を行う と、 熱延板 (hot rolled steel sheet) のフヱライ ト粒径 (ferrite grain size) は大きくなり、 特許文献 3 の第 3図に示されるように熱間圧延後の鋼の強度は低下する。 したがって、 充分な加工性を確保する程度に銅自体の強度を低下させる方法として有効で ある。 しかし、 Ar3変態点以下で仕上げ圧延を行うと、 幅方向中央部より 冷却速度の速い幅方向エツジ部は、 仕上げ圧延時の温度が低くなる傾向があ る。 このため、 エッジ部では仕上げ圧延時に導入された歪が熱間圧延直後 の再結晶や回復で充分に開放されず、 強度が高くなる傾向がある。 その結 果、 中央部とエッジ部の強度差が大きくなり、 幅方向に均一な熱延板が得ら れにくいことから、現状の操業で均一なものを得ることは困難である。なお、 ここでは慣用に従い 「A r3変態点以下」 という表現を用いているが、 上記の 従来技術は A r3変態を開始しない温度で熱間圧延 (の少なく とも一部) を施 すという趣旨であるから、 厳密には 「A r3変態点未満」 と表現するのが正確 である。
特許文献 4では、 冷間圧延後 2 0 0〜 5 0 0でで 1 0分間以上焼鈍して歪 を回復させるとしているが、 連続焼鈍炉で 1 0分間以上焼鈍をするとなると ラインスピードを低速にしなければならず、 生産性を著しく低下させる。 特許文献 5や特許文献 6では 400Ό以上、 再結晶温度以下で焼鈍すること を特徴としているが、 得られる鋼のロック ウェル硬さは 73. 0に満たず、 本発 明で目的としている強度レベルの銅を得るためには焼鈍温度をさらに低下さ せる必要がある。 そのため、 通常の缶用材料の製造で採用されている焼鈍 温度を外れてしまうので、 専用の焼鈍サイクルを別途設ける必要があり、 生 産性が低下する。
本発明は、 かかる'事情に鑑み成されたもので、 上記した従来技術の問題を 解決し、 高強度な缶用鋼板を製造する方法を提案することを目的とする。 すなわち、 本発明は、 小さい異方性が要求されない用途、 例えば溶接缶等 に適用され、 強度の他に加工性が要求される缶用鋼板を対象とするものであ る。 そして本発明は延性、 例えば溶接缶のフランジ加工性に最低限必要な 延性を確保しつつ、 高強度の缶用鋼板を製造する方法を提案することを目的 とする。
〔課題を解決するための手段〕
本発明者らは、 上記課題を解決するために'鋭意研究を行った。 その結果、 以下の知見を得た。
回復焼鈍で強度を低下させて目的の強度および延性を得ることを前提に、 成分組成、 製造条件の適正化を検討した。 そして、 中でも、
• A r3変態点以上で仕上げ圧延を行うことで中央部とエツジ部で強度差が ない、 幅方向に均一な熱延鋼板を得ること、 そして、 -冷延後、 「再結晶開始温度— 200 」 以上 「再結晶開始温度— 20で」 以下 で焼鈍し、 回復段階で目的の強度レベルまで低下させること、
' この 2つを本発明の特徴とし、 主要な要件とすることで目的とする特性が 得られることを知見した。
更に、 Nb : 0.001〜0.05ο/ο、 Β: 0.0001〜0.005ο/οの少なく ともレヽずれカ を 加えることで、 上記製造条件で、 現在缶用鋼板の製造で採用されている焼鈍 温度と同じ温度域 ( 00〜700 ) での回復焼鈍を可能とし、 引張強度 550MPa 〜650MPa、 あるいは 550MPa〜700MPa力 S得られることも知見した。 本発明は、 以上の知見に基づきなされたもので、 その要旨は以下のとおり である。 ,
[ 1 ] 質量0 /oで、 C : 0.003%以下、 N : 0.004%以下、 Mn: 0.05%〜 0.5%、 P: 0.02%以下、 Si: 0.02%以下、 S: 0.03%以下、 A1: 0.1%以下を含有し、 残 部が鉄および不可避的不純物からなる鋼を、 A r 3変態点以上の仕上げ温度で 熱間圧延し、 600〜750¾の卷取り温度 (coiling temperature) でコイルに卷 取り、次いで、 60〜95%の圧下率で冷間圧延を行った後に、 (再結晶開始温度 _200で) 〜 (再結晶開始温度一 20 :) の温度で焼鈍を行うことを特徴とする 板厚 0.18mm以下である缶用鋼板の製造方法。
[ 2] 前記 [ 1 ] において、 前記鋼が質量%でさらに、 N b : 0.001%〜 0.05%および B :0.0001%〜0.005%の少なく ともいずれかを含有することを 特徴とする缶用鋼板の製造方法。 なお、 本明細書において、 鋼の成分を示す%は、 すべて質量%である。 ま た、 例えば 「Mn: 0.05%〜0.5%」 という表記は、 「Μη : 0.05%以上、 0.5%以 下」 すなわち 「0.05%≤Μη≤0.5%」 を意味するものとする。
また、 本発明において、 再結晶開始温度とは、 図 1 (実施例:条件は後述) に示すように、温度に伴い強度変化率が大きく変わる温度とし、具体的には、 全体の組織の中で再結晶組織が 5 %を占める組織が得られる温度と定義する。 図面の簡単な説明
図 1は、 本発明の組成の鋼における、 焼鈍温度 (横軸: ) と丁 S (縦軸: MPa) および再結晶開始温度との関係を示す図である。
図 2は、 本発明の別の組成の鋼における、 焼鈍温度 (横軸:で) と T S (縦 軸: MPa) および再結晶開始温度との関係を示す図である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明の方法により得られる缶用鋼板は、 引張強度 550〜650MPa (図 1参 照)、 全伸び 5 %以上を達成することができる。 もしくは、 Nb、 Bを添加す る場合は、 引張強度 550〜700MPa (実施例の図 2参照:条件は後述)、 全伸び 4 %以上を達成することができる。 本発明の缶用鋼板を製造するにあたつ ては、 A Γ 3変態点以上の仕上げ温度で熱間圧延を施し、 (再結晶開始温度一 200t ) 〜 (再結晶開始温度一 20 ) の温度範囲内で焼鈍を行うことを特徴と する。 次に、 本発明の缶用鋼板の成分組成について説明する。
C : 0. 003%以下
本発明で提案する缶用鋼板は、 冷間圧延 (一次冷延) で導入される歪で高 強度化を図るものである。 したがって、 強化元素は不要であり、 延性の確保 等の観点から極力低減する。 Cを 0. 003%を超えて含有させると、缶に成形す る際に必要な局部延性を十分に得ることができなくなる。 また、 残存固溶 炭素量が増加し、 製缶 (can making) の最終工程である卷き締め部 (seeming part) の伸びフランジ成形 (stretch- flange forming) に際して割れを生じ る恐れがある。 固溶炭素量の増大はさらに加工硬化 (work hardening) 量 も増大させるため、 ネック加工 (neck forming) やフランジ加工をする際に しわが発生する恐れもある。 以上より、 C含有量は 0. 003%以下とする。 一方、 C含有量が 0. 0010%を下回ると、 本発明の目標とする強度を得るた めの焼鈍温度が低温化するなど操業性が低下し、 また延性の改善も少なくな るので、 C含有量は 0. 0010%以上とすることが望ましい。 N :0.004%以下
Nは、 不可避的に銅中に混入する不純物元素である。 N量が増加すると 連続 造 (, continuous casting) 時、 痛正帯 (unbending zone) でスフブ割 れ (slab cracking) が生じやすくなる。 また、 Nは析出物を形成し伸びを 低下させる一方、 固溶状態で残存した場合は鋼を硬質化させる。 上記作用を 防止する条件として、 N含有量は 0.004%以下とする。 なお、 さらに加工性を 必要とする用途に鋼板を用いる場合は N含有量を 0.002%以下とすることが 好ましい。
Si:0.02%以下
Siは固溶強化により鋼の強度を増加させる強化元素であり、 多量に含有さ せると耐食性が著しく損なわれる。よって、 Siの含有量は 0.02%以下とする。
Mn:0.05%—0.5%
Mnは固溶強化により銅の強度を増加させる強化元素である。 Mnはまた結 晶粒径も小さく し、さらに微細化強化としても強度を増加させる元素である。 上記作用を生じさせないように、 Mn含有量の上限は 0.5%とする。好ましく は 0.3%以下である。
一方、 Mn含有量が 0.05%を下回ると、 S含有量を低下させた場合でも、 熱 間脆性 (hot shortness) を回避することが困難で、 熱間圧延時に表面割れ等 の問題を生じる。 よって、 Mnの下限は 0.05%とする。 好ましくは 0.10%以 上である。
P : 0.02%以下
P含有量が多いと、 固溶強化により鋼の強度を著しく増加させ、 また耐食 性も劣化させる。 したがって P含有量は 0.02%以下とする。
S : 0.03%以下
S'は鋼中で介在物として存在し、 鋼板の延性おょぴ耐食性にとつて不利に なる元素なので、 0.03%以下とする。 好ましくは 0.01%以下である。
A1:0.1%以下
A1は、 脱酸剤として鋼中の清浄度を向上させる。 また、 固溶 N (solute N) と結合して A1Nを形成し、 固溶 N量を低減する効果を有する。 ゆえに、 銅中に ある程度含有させることが好ましい。 その条件として概ね 0.005%以上添加 するのが望ましい。 一方、 A1含有量が 0.1%を超えると、 その清浄度改善効 果が飽和する。 また、 製造コス トの上昇、 表面欠陥発生傾向の増大などの 問題も生ずる。 よって、 A1含有量は 0.1%以下とする。
以上に加え、 Nb:0.001~0.05%および B : 0· 0001 %〜 0.005%力 らなる群 から選ばれる 1種または 2種をさらに含有させてもよい。
Nb:0.001〜0.05%
Nbは炭化物生成能の高い元素であり、生成された炭化物による粒界(grain boundary) のピン止め (pinning) によって、 鋼の再結晶温度を上昇させる。 従うて、 Nbを添加したり、 さらには Nb添加量を変化させたりすることで、 鋼 の再結晶温度を変えることができる。すなわち、適正な焼鈍温度を上下でき、 随時目的の温度に合わせることが可能となる。 その結果、 他の鋼板と焼鈍 の機会を合わせることもできるので、 生産性の面から非常に効率的である。 しかし、 Nbを 0.05%超えで含有すると、 再結晶温度が高くなりすぎて、 CAL (連続焼鈍ライン) における通板性 (processing capability) が低下する。 また、 炭化物の析出強化により 目標の強度より高くなる。 このため、 Nb含 有量は 0.05%以下とする。
基本的に、 本発明では強化元素は添加しないが、 Nbについては焼鈍温度の 観点から添加することが好ましく、 0.05%以下であれば、 むしろ添加量を調 整することで Nbの析出強化を利用して所望の強度にすることが可能である。 また、 Nb添加は、溶接時の再結晶を抑制することで、溶接強度(weld strength) が低下するのを防止することにも有効である。 なお、 より好ましい上限は 0.04%である。 一方、 Nb添加量が 0.001%未満では、 上記の効果を発揮する ことができないため、 当該効果を目的として Nbを添加する場合は、 0.001%を 下限とする。 より好ましくは 0.005%以上添加する。 さらに好ましくは 0.01% 以上である。
B :0.0001〜0.005%
Bは再結晶温度を上昇させる元素である。 従って、 Nbと同様の目的で Bを 添加することができる。 しかし、 過剰に添加すると熱間圧延時にオーステ ナイ ト域での再結晶を阻害し、 圧延荷重を増大させるため、 B添加量は 0.005%以下とする。 好ましくは 0.002%以下である。 ま 'た、 0. 0001 %以下では再結晶温度を上昇させる効果が得られないので、 当該効果を目的として Bを添加する場合は、 0. 0001 %を下限とする。 好まし くは 0. 0005 %以上である。 さらに好ましくは 0. 0008%以上である。
Bも Nbと同様に、 上記の添加範囲内であれば、 Bの析出強化により所望の 強度にすることが可能である。 また、 溶接時の再結晶を抑制することで、 溶 接強度が低下するのを防止することにも有効である。
Nbおよび Bはその一方のみを添加してもよいし、 両方を上記の各範囲内で 添加してもよレ、。
残部は Feおよび不可避不純物とする。 板厚: 0. 18mm以下
本発明において、 板厚は重要な因子である。 引張強度 550MPa以上として薄 肉化 (gauge down) することがとくに有意義なのは、 板厚が 0· 18mm以下の範 囲である。 また、 板厚が 0. 18mmを超える鋼板であれば、 750tを超える高温 域でも容易に連続焼鈍を行うことができるが、 0. 18mm以下の鋼板では連続焼 鈍時に破断や板の形状が悪くなる恐れがあり、 生産性が低下する。 本発明 の方法では焼鈍温度を再結晶開始温度- 20^以下 (通常 700^:以下程度 :後述 の実施例参照) としているため、 板厚が 0. 18m m以下の銷でも容易に生産で さる。
よって、 本発明では、 引張強度 550MPa以上の範囲で効果が大きいことと、 低温域での焼鈍によって生産性向上効果が顕著に表れることとから、 板厚は 0. 18mm以下に限定する。 以下、 本発明において目標とした鋼板特性についてもその理由を述べる。 引張強度: 550~ 700MPa
本発明により製造される缶用鋼板は、 現在は D R材のような高強度かつ極 薄の鋼板を利用している分野、 例えば D R D缶や溶接缶の缶胴部への適用を 目的の一つとしている。 このような分野において、 鋼板の板厚を 0. 18mm以 下にし、 かつ引張強度を 550MPa以下にすると、 缶体強度が不足するため缶の 座屈が懸念される。 これを回避するだめ引張強度は 550MPa以上を目標とす る。 一方、 700MPa超え (Nb、 Bを利用しない場合は 650MPa超え) の強度を 得ようとすると、 多量の強化元素の添加が必要となり、 耐食性を阻害する懸 念がある。
なお、 引張強度は主として鋼板組成、 冷間圧延率、 焼鈍温度を調整して目 標値に制御する。
具体的には、 C : 0.003%以下、 N : 0.004%以下、 Mn: 0.05%〜0.5%、 P: 0.02%以下、 Si : 0.02%以下、 S: 0.03%以下、 A1: 0.1%以下の組成として冷 間圧延率を 60%以上とし、 さらに均熱温度:(再結晶開始温度一 200 :)〜(再 結晶開始温度一 20で) で焼鈍を行うことで、 引張強度 550〜650MPaに制御する (図 1 )。
一方、 C : 0.003%以下、 N : 0.004%以下、 Mn: 0.05%〜0.5%、 P: 0.02% 以下、 Si: 0.02%以下、 S: 0.03%以下、 A1: 0.1%以下の組成と.し、 さらに Nb: 0.001% ~0.05%, B : 0.0001%〜0.005%の少なく ともいずれかを添加して 冷間圧延率を 60%以上とし、 さらに均熱温度 : (再結晶開始温度一 200 ) 〜 (再結晶開始温度一 20で) で焼鈍を行うことで、 引張強度 550〜700MPaに制御 する (図 2 )。
なお、 ロ ック ウェル硬さ (HR30T) では、 Nb、 B無添加の場合で 74〜77程 度、 Nbおよび Bの少なく ともいずれかを添加した場合は 74〜80程度となる。 全伸び: 4 %以上
全伸びが 4%を下回ると溶接缶のフランジ加工性が悪くなり、 割れの発生 率が高くなる等、 加工性に影響する。 これを回避するため、 全伸びは 4 %以 上を目標とする。 なお、 加工性を極力高めるためには全伸ぴを 5 %以上確保 することが望ましい。
なお、 全伸びは主として銅板組成および熱間圧延時の仕上げ後の冷却速度 を調整して、 目標値に制御する。 次に本発明の缶用鋼板の製造方法について説明する。
上述した化学成分に調整された溶鋼を、 転炉等を用いた通常公知の溶製 (steel making) 方法により溶製し (produce), 次に連続铸造法等の通常用 いられる铸造方法で圧延素材 (鋼塊、 とくにスラブ) とする。
次に、 上記により得られた圧延素材を用いて熱間圧延により、 熱延板とす る。 熱間圧延に先立ち、 圧延素材は 1250で以上に加熱することが望ましい。 これは、 鋼中の析出物を完全に固溶させ、 偏析を解消して材質の均質化を図 るためである。 仕上げ温度は A r3変態点以上とする。 次いで、 600〜750での卷取り温度で 卷取る。 次いで、 鋼板表面を覆うスケール (scal e) を、 通常は酸洗によって 除去する。 その後、 60〜95%の圧下率で冷間圧延を行った後に、 (再結晶開始 温度— ZOOt ) 〜 (再結晶開始温度— 20T: ) の温度で焼鈍を行う。
( 1) 熱間圧延条件
仕上げ温度: A r3変態点以上
熱間圧延の仕上げ温度は A r3変態点以上とする必要がある。 既に述べたよ うに、 A r3変態点未満で仕上げ圧延を行うことは、 回復焼鈍において鋼の強 度を低下させる利点を有するが、 スラブの幅方向中央部が A r3変態点未満に なるように仕上げ圧延を行うと、 中央部より冷却速度の速い幅方向ェッジ部 は仕上げ圧延時に導入された歪が再結晶や回復で開放されにくい。このため、 エッジ部が硬くなり、 中央部とエッジ部の強度差が大きくなるとともに、 不 均一組織をもつ熱延板が得られやすい。 従って、 均一な組織を有する熱延板 を得るためには、 仕上げ温度は A r3変態点以上にする。
製品特性 (延性など) を改善する観点から、 より好ましくは、 仕上げ温度 を A r3変態点 + 5 以上とする。 . なお、 仕上げ温度は 950¾以下とすることが、 スケール性欠陥回避の観点 から好ましい。
'また、 本発明の鋼板組成およぴ熱間圧延条件において、 A r3変態点は概ね 840〜910 の範囲内となる。 本発明においては、 従来の回復焼鈍を用いる技術と異なり、 A r3変態点以 上の熱間圧延のみで鋼の全伸び等を確保することができるが、 これは以下の 理由による。熱延板のフェライ ト粒径は、 (本発明の条件である)熱間圧延仕 上げ温度を A r3変態点以上とする場合は比較的小さく、 (従来の回復焼鈍を 用いる技術での条件である) 熱間圧延仕上げ温度を A r3変態点より低い温度 とする場合は比較的大きい。 両者を冷間圧延すると、 熱延板のフェライ ト粒 径が小さい場合の方が冷延板に蓄積される歪エネルギーが高くなる。 変形を 拘束する結晶粒界が多いためである。 回復現象は冷延板に蓄積された歪エネ ルギーを駆動力として進行するため、 結果として、 本発明の条件は回復現象 の進行を促進する条件であると言える。 回復現象により、 冷延鋼板は強度を 低下させるが、 本発明の条件は歪エネルギーが高い状態であるため、 回復後 も目標とする高い強度を維持することができる。 且つ、 回復現象により延性 は改善するため、 目的とする適切な延性を確保することができる。 なお、 上 記機構より、 粒径が成長しやすい熱延高温仕上げや高純度組成は避けること が好ましい。
( 2) 卷取り温度 : 600¾〜750Τ
熱間圧延工程における、 卷取り温度は 600で以上 750 以下となるようにす る必要がある。 600¾未満だと、 卷取り後の保熱効果が十分でなく、 熱延板の フェライ ト粒径が必要以上に小さくなるため、 強度が過度に高くなる傾向に める。 7こ 組織 ( mi crostructure hav ing mixed gra i n s i ze) ¾:作り 易くなるため、 好ましくない。
—方、 750でを超える温度で卷き取った場合は、 鋼板のスケール厚みが顕 著に増大し、 次工程の酸洗における脱スケール性 (desca l ab i l ity) が悪化す る可能性がある。 なお、 このような問題をより一層改善するには卷取り温度 を 700で以下にするのが望ましい。
( 3) 冷間圧延条件 (圧下率) : 60〜95 %
冷間圧延は、 圧下率を 60〜95 %とする。 圧下率が 60 %未満であると、 冷間 圧延して熱処理 (回復焼鈍) を施した後に目的の強度に到達しない。 また、 材質の不均一、 特に板摩方向の不均一性に起因すると考えられる不具合が生 じる。 一方、 圧下率が 95 %を超えると、 局部延性の劣化を回避することが困 難になる。 好ましい圧下率は 80%以上である。
( 4) 冷間圧延後の熱処理 (焼鈍) 条件:
温度 :再結晶開始温度一 200 以上、 再結晶開始温度一 20 以下 熱処理 (焼鈍) は、 再結晶開始温度一 200Ό以上、 再結晶開始温度 _ 20 以下の温度域で行う。 再結晶温度は組成、 例えば Nb、 Bなどの添加により変 化させているので、 温度範囲 (均熱温度範囲) についてはそれぞれの鋼の再 結晶開始温度を基に、 _ 200¾〜一 20でとしている。
本発明における焼鈍 (回復焼鈍) の目的は、 冷間圧延で導入した歪により 強度が高くなっている状態から、 歪取り焼鈍を行うことで目標の強度まで低 下させることである。 再結晶開始温度— 200で未満では、十分に歪みが解放 されず、 また目標の強度よりも高くかつ延性が低くなるため、 再結晶開始温 度一 200¾:を下限値とする。 延性確保の観点からより好ましい下限温度は、 再結晶開始温度一 150でである。
一方、 温度が高すぎると再結晶が開始して、 軟化しすぎて目標の強度が得 られず、 また部分的に再結晶して均一な組織が得られなくなるので、 再結晶 開始温度一 20でを上限値とする。 なお、 再結晶した粒と回復しただけの粒 は、 光学あるいは電子顕微鏡による観察で識別可能である。 強度確保の観 点からより好ましい上限温度は、 再結晶開始温度— 30 である。
本発明の鋼板組成および冷間圧延条件において再結晶開始温度は概ね 560 〜650 : (Nb、 B無添加) あるいは 620~ 780で (Nb、 Bの少なく ともいずれか を添加) の範囲内となる。
なお、 本発明では、 生産性の観点から連続焼鈍炉で焼鈍することが好まし い。 ゆえに、 生産性を阻害しないために、 焼鈍時の均熱時間は 10 s以上、 90 s以下とすることが好ましい。
〔実施例〕
(実施例 1 )
表 1に示す成分組成を含有し、 残部が不可避不純物と Feからなる銅を溶製 し、 鋼スラブを得た。 得られた鋼スラブを表 2に記載の各温度で再加熱した 後、 熱間圧延を開始した。 熱間圧延は、 仕上げ圧延温度を 800〜950 、 卷取 り温度を 550〜700¾の範囲で変えて(いずれも表 2に記載)行った。次いで、 酸洗後、 表 2に記載の各圧下率で冷間圧延して、 0. 15mmの薄鋼板を製造した (ここで、 圧下率に応じて熱延板の板厚を調整した)。 得られた薄鋼板を、 連 続焼鈍炉にて焼鈍温度 350〜620^、 焼鈍時間 30 sで (回復) 焼鈍を行い、 伸 長率が 1. 5 %以下になるように調質圧延を施し、 通常のク ロム鍍金 (電気めつ き) を連続的に施してめっき銅板 (ティ ンフ リースチール) を得た。 なお、 詳細な製造条件等を表 2に示す。
また、 焼鈍温度の影響に関しては、 表 1の鋼 1 を用いた鋼板 (焼鈍温度以 外は表 2の鋼板 1 の条件で製造) の再結晶挙動を確認した。 結果を図 1 に 示すが、 590でで再結晶が開始していることが確認できたため、 銅 1 ( 90%冷 延) における焼鈍の温度範囲を 390〜570¾と した。 なお、 600¾の焼鈍で再結 晶はほぼ完了した。
表 1
湖銅 C Si n P S N AI Nb B 備考
1 0.001 7 0.01 0.1 5 0.01 0.003 0.0025 0.05 0 0 適合
4 0.0031 0.01 0.28 0.01 0.004 0.0025 0.05 0.022 0.002 適合
* - 位:獮 〔量%
表 2
Figure imgf000017_0001
以上により得られためっき鋼板に対して、 引張試験、 Γ値測定を行った。 引張試験は、 JIS5号サイズの引張試験片 (圧延方向) を用いて行い、 引張強 度、伸び(全伸ぴ)を測定し、強度および延性を評価した。平均 r値は JIS Z2254 で規定している固有振動法により求めた。
得られた結果を表 3に示す。 ここで銅板特性の調査は板幅中央から採取 したサンプルについて行い、 特記した板幅方向エッジ部の鋼板特性は、 板幅 端部から 50mmの位置のサンプルについて求めた。 表 3
Figure imgf000018_0001
*( )内の数値は板幅方向エッジ部の値を示す
表 3より、 本発明例 (鋼板 1、 2など) では、 引張強度が 550〜600MPa、 全伸びが 5 %以上という結果が得られている。
一方、 比較例 (鋼板 3 ) では、 焼鈍温度が本発明の範囲を下回り、 鋼中歪 みの回復が少ないため延性が低下している。 また、 比較例 (鋼板 4 ) は焼鈍 温度が本発明の範囲を超えて高く、 局所的に再結晶が開始しているため強度 が不足している。
これは図 1の結果でも同様である。 すなわち、 再結晶開始温度— 20で〜— 200での間の焼鈍温度では TS : 550〜650MPaが得られる。 なお、再結晶開始温度 — 40¾以下で焼純するととくに TS : 600〜650MPa力 S得られ、他方、 550〜600MPa の鋼板を得るには再結晶開始温度— 20^:〜一 50¾:程度(好ましくは〜— 40¾:) で焼鈍することが好ましいことが分る。
また、 仕上げ温度が A r3変態点を下回ると、 エッジ部における硬化および 特性劣化が大きく、事実上鋼板の硬さ等級が異なってしまうことがわかる(鋼 板 21、 29)。 さらに、 鋼板 20と 25との比較より、 圧下率をあまり下げると延 性が改善されないまま強度が低下することが分る。
(実施例 2 )
表 4示す成分組成を含有し、 残部が不可避不純物と Feからなる鋼を実機転 炉で溶製し、 鋼スラブを得た。 得られた鋼スラブを 1 150〜1250 で再加熱 した後、 熱間圧延を開始した。 熱間圧延は、 仕上げ圧延温度を 880〜900で の範囲で変え、卷取り温度を 620^として行った。 次いで、酸洗後、 80〜90 % の圧下率で冷間圧延して、 0. 15〜0. 18mmの薄鋼板を製造した。 得られた薄 鋼板を、 連続焼鈍炉にて焼鈍温度 300 700で、 焼鈍時間 30 sで (回復) 焼鈍 を行い、伸長率が 1. 5 %以下になるように調質圧延を施し、通常のクロム鍍金 を連続的に施してティンフリースチールを得た。 なお、 詳細な製造条件を表 5に示す。
また、 焼鈍温度に関しては、 鋼 2〜18の再結晶挙動を確認した結果、 表 5 に示すように 620〜720 で再結晶が完了していることが確認できた。例えば、 表 4の鋼 5 (焼鈍温度以外は表 5の鋼板 13の条件で製造) の再結晶挙動を確 認した結果を図 2に示す。
i O 66ioiAV
瞷贓 % *:
Figure imgf000020_0001
表 5
Figure imgf000021_0001
以上により得られためっき鋼板 (ティ ンフリ一スチール) に対して、 引張 試験、 r値測定を行った。 各特性については実施例 1 と同様の方法で測定し た。 得られた結果を表 6に示す。 表 6
Figure imgf000022_0001
表 6より、 本発明例 (銅板 5、 7、 9、 10、 12、 13など) では、 引張強度 が 550〜700MPa、 全伸びが 4 %以上得られている。
一方、 比較例 (鋼板 6、 8 ) は焼鈍温度が本発明の範囲を下回り低く鋼中 歪みの回復が少ないため、 強度が高く、 延性が低下している。 比較例 (銅板 11) は焼鈍温度が本発明の範囲を超えて高く局所的に再結晶が開始するため 強度が不足している。
これは図 2の結果でも同様である。 すなわち、 再結晶開始温度一 20 〜一 200^:の間の焼鈍温度では TS : 550〜700MPaが得られる。 なお、再結晶開始温度 _ 40で以下で焼鈍すると とく に TS : 650〜700MPaが得られ、他方、 550〜650MPa の鋼板を得るには再結晶開始温度— 20 〜一 50で程度(好ましく は〜一 40で) で焼鈍することが好ましいことが分る。
また、 比較例 (鋼板 14など) は成分が本発明の範囲を超えるため、 強度が 高く延性が低下している。 そして、 本発明で得られた銅板では、 Nb、 B添加量により再結晶挙動が変 化するため、 適用できる焼鈍温度を変化させることが可能である。 また、 Nb、 B添加量により、 得られる強度を変化させることが可能である。 従つ て、 本発明の製造方法は、 他の缶用鋼板と同じサイクルで焼鈍することがで きて、 所望の強度を得られるため、 実機にて製造する上で非常に効率的であ る。 産業上の利用の可能性
本発明によれば、 550〜650MPaの引張強度、 5 %以上の全伸びを有した缶 用鋼板が得られる。 そして、 D R工程および再結晶焼鈍工程を省略した方 法でも、 Nb、 Bを添加した場合で、 引張強度が 550〜700MPaの強度、 4 %以上 の伸びが得られることになる。
その結果、 本発明の製造方法を適用することで、 小さい異方性が必要と さ れない缶用途に対して、 耐食性を損なう ことなく、 高強度缶用銅板を低コス トで製造し提供することが可能になる。
さらに、 本発明の製造方法は、 通常の缶用鋼板の製造方法に比べて低温域 で焼鈍するためエネルギーコス トを削減することが可能となる。 また、 Nb、 Bを添加することで、通常の缶用鋼板と同じ温度域で焼鈍することも可能とな る。 この場合、 焼鈍チャンスを別途設ける必要がない。 その結果、 生産性 を阻害することなく、 T S 550〜700MPa級の鋼板を製造することが可能となる。 ざらに、 本発明では、 図 1および 2から分るように焼鈍温度によって強度 の変化が小さい温度域で焼鈍することが可能であるため、 焼鈍温度にばらつ きが生じても幅方向に均一な強度レベルの鋼板が得ちれる。
本発明の製造方法により製造される缶用鋼板は、 飲料缶詰や食品缶詰の容 器として用いられる 2ピースの D R D缶や 3ピース溶接缶を中心に缶用鋼板 として最適である。

Claims

請求の範囲
1. 質量%で、
C : 0.003%以下、 N : 0.004%以下、
Mn: 0.05%〜0.5%、 P : 0.02%以下、
Si : 0.02%以下、 S : 0.03%以下、
A1: 0.1%以下
を含有し、 残部が鉄および不可避的不純物からなる鋼を、
A Γ 3変態点以上の仕上げ温度で熱間圧延し、
600〜750 の卷取り温度で卷取り、
次いで、 60〜95%の圧下率で冷間圧延を行った後に、
(再結晶開始温度一 200 ) 〜 (再結晶開始温度一 20で) の温度で焼鈍を 行う、
板厚 0.18mm以下である缶用鋼板の製造方法。
2. 前記鋼が質量%でさらに、 N b : 0.001%〜0.05%および B : 0.0001% 〜0.005%の少なく ともいずれかを含有する請求項 1に記載の缶用鋼板の製 造方法。
PCT/JP2008/053125 2007-02-21 2008-02-19 缶用鋼板の製造方法 WO2008102899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08711889.9A EP2123780B1 (en) 2007-02-21 2008-02-19 Processes for production of steel sheets for cans
CN200880001425.7A CN101578381B (zh) 2007-02-21 2008-02-19 罐用钢板的制造方法
KR1020097010592A KR101128315B1 (ko) 2007-02-21 2008-02-19 캔용 강판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007041065A JP5076544B2 (ja) 2007-02-21 2007-02-21 缶用鋼板の製造方法
JP2007-041065 2007-02-21

Publications (1)

Publication Number Publication Date
WO2008102899A1 true WO2008102899A1 (ja) 2008-08-28

Family

ID=39710169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053125 WO2008102899A1 (ja) 2007-02-21 2008-02-19 缶用鋼板の製造方法

Country Status (5)

Country Link
EP (1) EP2123780B1 (ja)
JP (1) JP5076544B2 (ja)
KR (1) KR101128315B1 (ja)
CN (1) CN101578381B (ja)
WO (1) WO2008102899A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076544B2 (ja) 2007-02-21 2012-11-21 Jfeスチール株式会社 缶用鋼板の製造方法
JP5655300B2 (ja) * 2009-03-05 2015-01-21 Jfeスチール株式会社 曲げ加工性に優れた冷延鋼板、その製造方法およびそれを用いた部材
JP5811686B2 (ja) * 2010-10-18 2015-11-11 Jfeスチール株式会社 高強度缶用鋼板およびその製造方法
JP5903884B2 (ja) * 2011-12-27 2016-04-13 Jfeスチール株式会社 耐腰折れ性に優れた高強度薄鋼板の製造方法
BR112014024324B1 (pt) * 2012-03-30 2019-04-24 Tata Steel Ijmuiden Bv Processo para fabricar um substrato de aço revestido recozido de recuperação para aplicações de embalagem e produto de aço de embalagem produzido desse modo
DE102013003516A1 (de) * 2013-03-04 2014-09-04 Outokumpu Nirosta Gmbh Verfahren zur Herstellung eines ultrahochfesten Werkstoffs mit hoher Dehnung
BR112016019612A2 (pt) * 2014-02-25 2018-10-23 Jfe Steel Corp folha de aço para tampa de coroa, método para fabricação da mesma e tampa de coroa
MY171370A (en) 2014-05-30 2019-10-10 Jfe Steel Corp Steel sheet for cans and manufacturing method thereof
MY196420A (en) * 2019-03-29 2023-03-30 Jfe Steel Corp Steel Sheet for Cans and Method for Manufacturing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320445B2 (ja) 1972-03-09 1978-06-27
JPS62161938A (ja) * 1986-01-09 1987-07-17 Kawasaki Steel Corp 化成処理性、加工性の良好な冷延鋼板とその製造方法
JPH02118026A (ja) * 1988-10-28 1990-05-02 Kawasaki Steel Corp 缶用鋼板の製造方法
JPH02118024A (ja) * 1988-10-28 1990-05-02 Kawasaki Steel Corp 缶用鋼板の製造方法
JPH03294432A (ja) * 1990-04-13 1991-12-25 Nippon Steel Corp 板取り性が優れた溶接缶用極薄鋼板の製造法
JPH06248338A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 容器用原板の製造方法
JPH06248339A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 高剛性容器用鋼板の製造方法
JPH0841549A (ja) 1994-08-01 1996-02-13 Kawasaki Steel Corp 製缶用鋼板の製造方法
JPH08246060A (ja) * 1995-03-10 1996-09-24 Kawasaki Steel Corp 缶用鋼板の製造方法
JPH08269568A (ja) 1995-03-30 1996-10-15 Kawasaki Steel Corp フランジ成形性に優れた製缶用鋼板の製造方法
JP2001107186A (ja) 1999-08-05 2001-04-17 Kawasaki Steel Corp 高強度缶用鋼板およびその製造方法
JP2004285418A (ja) * 2003-03-24 2004-10-14 Nippon Steel Corp 製缶性に優れた高時効硬化容器用鋼板及びその製造方法
JP2005336610A (ja) 2004-04-27 2005-12-08 Jfe Steel Kk 高強度高延性な缶用鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264144A (en) 1962-09-13 1966-08-02 Youngstown Sheet And Tube Co Method of producing a rolled steel product
US3950190A (en) 1974-11-18 1976-04-13 Youngstown Sheet And Tube Company Recovery-annealed cold-reduced plain carbon steels and methods of producing
US3963531A (en) 1975-02-28 1976-06-15 Armco Steel Corporation Cold rolled, ductile, high strength steel strip and sheet and method therefor
DE69311393T2 (de) * 1992-02-21 1997-09-25 Kawasaki Steel Co Verfahren zum Herstellen hochfester Stahlbleche für Dosen
JPH06248332A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 容器用鋼板の製造方法
JPH08127816A (ja) 1994-10-28 1996-05-21 Nippon Steel Corp 耐しわ性にすぐれた容器用原板の製造方法
JPH08264060A (ja) * 1995-03-23 1996-10-11 Ngk Insulators Ltd ポリマー碍子の接合方法
JPH10330882A (ja) * 1997-04-04 1998-12-15 Nippon Steel Corp 成形性に優れた冷延鋼板およびその製造方法
CN100336930C (zh) * 2001-10-04 2007-09-12 新日本制铁株式会社 容器用的薄钢板及其生产方法
JP4604883B2 (ja) * 2005-06-30 2011-01-05 Jfeスチール株式会社 異方性の小さい鋼板およびその製造方法
WO2008075444A1 (ja) * 2006-12-20 2008-06-26 Jfe Steel Corporation 冷延鋼板およびその製造方法
JP5076544B2 (ja) 2007-02-21 2012-11-21 Jfeスチール株式会社 缶用鋼板の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320445B2 (ja) 1972-03-09 1978-06-27
JPS62161938A (ja) * 1986-01-09 1987-07-17 Kawasaki Steel Corp 化成処理性、加工性の良好な冷延鋼板とその製造方法
JPH02118026A (ja) * 1988-10-28 1990-05-02 Kawasaki Steel Corp 缶用鋼板の製造方法
JPH02118024A (ja) * 1988-10-28 1990-05-02 Kawasaki Steel Corp 缶用鋼板の製造方法
JPH03294432A (ja) * 1990-04-13 1991-12-25 Nippon Steel Corp 板取り性が優れた溶接缶用極薄鋼板の製造法
JPH06248338A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 容器用原板の製造方法
JPH06248339A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 高剛性容器用鋼板の製造方法
JPH0841549A (ja) 1994-08-01 1996-02-13 Kawasaki Steel Corp 製缶用鋼板の製造方法
JPH08246060A (ja) * 1995-03-10 1996-09-24 Kawasaki Steel Corp 缶用鋼板の製造方法
JPH08269568A (ja) 1995-03-30 1996-10-15 Kawasaki Steel Corp フランジ成形性に優れた製缶用鋼板の製造方法
JP2001107186A (ja) 1999-08-05 2001-04-17 Kawasaki Steel Corp 高強度缶用鋼板およびその製造方法
JP2004285418A (ja) * 2003-03-24 2004-10-14 Nippon Steel Corp 製缶性に優れた高時効硬化容器用鋼板及びその製造方法
JP2005336610A (ja) 2004-04-27 2005-12-08 Jfe Steel Kk 高強度高延性な缶用鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2123780A4 *

Also Published As

Publication number Publication date
EP2123780B1 (en) 2015-12-02
CN101578381B (zh) 2013-06-19
JP2008202113A (ja) 2008-09-04
JP5076544B2 (ja) 2012-11-21
KR101128315B1 (ko) 2012-04-12
EP2123780A1 (en) 2009-11-25
EP2123780A4 (en) 2010-10-27
CN101578381A (zh) 2009-11-11
KR20090084885A (ko) 2009-08-05

Similar Documents

Publication Publication Date Title
JP5135868B2 (ja) 缶用鋼板およびその製造方法
CN102216474B (zh) 磷含量提高的锰钢带及其制备方法
WO2008102899A1 (ja) 缶用鋼板の製造方法
JP5453884B2 (ja) 高強度容器用鋼板およびその製造方法
JP7499243B2 (ja) 高降伏比冷間圧延二相鋼及びその製造方法
WO2011122237A1 (ja) 延性に優れた高張力鋼板およびその製造方法
WO2012060294A1 (ja) 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
JP5526483B2 (ja) 高強度缶用鋼板およびその製造方法
JP5272714B2 (ja) 製缶用鋼板の製造方法
JP4943244B2 (ja) 極薄容器用鋼板
TWI513831B (zh) Molybdenum iron stainless steel plate with excellent formability
JP6288331B2 (ja) 缶用鋼板およびその製造方法
CN109440004B (zh) 罐用钢板及其制造方法
CN107541663A (zh) 一种饮料罐用电镀锡钢板及其生产方法
JP6684905B2 (ja) 剪断加工性に優れた高強度冷延鋼板及びその製造方法
CN111465710B (zh) 高屈强比型高强度钢板及其制造方法
JP2007211337A (ja) 耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JP2009179832A (ja) 角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板およびその製造方法ならびに製品形状に優れた自動車用部品
JP2007204800A (ja) 軟質缶用鋼板およびその製造方法
JP2006118018A (ja) 伸びフランジ性に優れたCr含有高強度冷延鋼板およびその製造方法
JP2010007138A (ja) 耳発生の小さい深絞り用鋼板および製造方法
EP3018227B1 (en) Hot-rolled steel sheet having excellent workability and anti-aging properties and method for manufacturing same
JP2021155849A (ja) 缶用鋼板およびその製造方法
JP2001089817A (ja) 耐たて割れ性に優れた熱延鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001425.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097010592

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008711889

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE