WO2008069243A1 - Cold-cathode electron source, its manufacturing method, and light-emitting element using same - Google Patents

Cold-cathode electron source, its manufacturing method, and light-emitting element using same Download PDF

Info

Publication number
WO2008069243A1
WO2008069243A1 PCT/JP2007/073507 JP2007073507W WO2008069243A1 WO 2008069243 A1 WO2008069243 A1 WO 2008069243A1 JP 2007073507 W JP2007073507 W JP 2007073507W WO 2008069243 A1 WO2008069243 A1 WO 2008069243A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold cathode
electron source
cathode electron
source according
metal oxide
Prior art date
Application number
PCT/JP2007/073507
Other languages
French (fr)
Japanese (ja)
Inventor
Mikio Takai
Chieko Fukuyama
Yoichi Takaoka
Yoshimasa Kumashiro
Tadahiko Takimoto
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to JP2008548314A priority Critical patent/JPWO2008069243A1/en
Publication of WO2008069243A1 publication Critical patent/WO2008069243A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30426Coatings on the emitter surface, e.g. with low work function materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material

Definitions

  • the present invention relates to a field emission flat panel display (FED), a field emission lamp (FE), FE
  • the present invention relates to a cold cathode electron source incorporated in a device utilizing a light emission phenomenon caused by electron beam excitation such as U.
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • FEDs Field emission flat panel displays
  • Mo, carbon / PdO or carbon nanotubes (CNT) are mainly considered as the emitter materials used for the cold cathode electron source of FED, and various studies have been made!
  • fluorescent lamps which are the most common lighting fixtures at present, use ultraviolet rays generated from mercury as the excitation source of the phosphor, and there is a need for alternatives due to environmental load problems caused by mercury.
  • White LEDs are expected as a candidate for replacement of fluorescent lamps in terms of low power consumption, durability, and luminous efficiency.
  • the size of the LED elements is as small as several millimeters at most, so it has a large area like indoor lighting. In order to obtain this light emission, it is inevitable that the cost will be higher than using a large number of LEDs side by side.
  • LED phosphors have few variations of highly efficient phosphors, and it is difficult to obtain a wide spectrum over the entire visible range, which is ideal for white.
  • FED field emission lamp
  • FEU field emission lamp
  • FEL is inferior to LED in terms of power consumption, durability, and luminous efficiency.
  • it is easy to increase the area of the phosphor screen and the emitter array, making it suitable for surface emission, and for the emission color, a good white color is achieved by combining many electron beam-excited phosphors. Is expected to do.
  • the emitter material of the cold cathode electron source used above it is generally known that a material in which high electric field concentration occurs in the field emission portion, that is, a material having a high aspect ratio is suitable.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-203998
  • metal oxides such as titanium oxide do not have electrical conductivity, and therefore good emission characteristics cannot always be expected even with a high aspect ratio.
  • metal oxides can be manufactured at a lower cost than the above CNTs, so if this can be used as an emitter material, these devices can be used for cold cathode electron sources used in FEDs and FELs. It can be provided at low cost. That is, an object of the present invention is to provide a cold cathode electron source using a metal oxide as an emitter material.
  • the inventors of the present invention have made various studies to improve the characteristics of the metal oxide emitter material used for the cold cathode electron source. As a result, the activated metal oxide was used for the electron emission portion. The present inventors have found that the cold cathode electron source has excellent emission characteristics and completed the present invention.
  • the present invention provides a cold cathode electron source having a force sword electrode and an electron emission portion formed thereon, and uses a metal oxide activated in the electron emission portion. It is a cathode electron source.
  • the present invention also provides a method of manufacturing a cold cathode electron source as described above, wherein an activation process is performed on an electron emission portion including a metal oxide formed on a force sword electrode. It is a manufacturing method.
  • the present invention relates to FED and FEL using the cold cathode electron source.
  • the cold cathode electron source of the present invention is capable of reducing the emission starting electric field and obtaining a sufficient emission current. Furthermore, it is useful as an FED emitter material because it can use metal oxide powder that is less expensive than CNT. It is particularly useful as a required FEL emitter material.
  • the present invention provides a cold cathode electron source having a force sword electrode and an electron emission portion formed thereon, and uses a metal oxide activated in the electron emission portion. It is a cathode electron source. If only a metal oxide is used for the electron emission part, the emission phenomenon hardly occurs and it is difficult to obtain a sufficient emission current.
  • the field electron emission phenomenon can be confirmed with a low applied voltage by using an activated metal oxide for the electron emission portion.
  • a high electric field application process or a laser beam irradiation process is used as the activation process, surprisingly, even if a metal oxide that does not inherently have conductivity is used, the emission starting electric field is sufficiently reduced and the force is sufficient. Emission power to obtain current.
  • the activation treatment is a method of forming an electron emission portion called a so-called emission site in an electron emission material on a substrate.
  • this also includes removing sites that do not contribute to emissions or that have adverse effects.
  • the parts that do not contribute to the emission mentioned here are, for example, impurities, electron-emitting materials arranged in a direction different from the direction of the applied electric field, and even if arranged in the electric field direction, they are dense and hinder electric field concentration. This refers to the electron emission material that is present.
  • the electron emission portion of the present invention will be described with reference to FIG.
  • the metal oxide 1 that is an electron emission material is the force S deposited on the force sword substrate 2, and if this deposition amount is uniform, electric field concentration is less likely to occur in the electron emission material and the emission start voltage increases. Or a sufficient emission current may not be obtained.
  • a high electric field concentration effect can be obtained at the boundary 4 between the sparse region and the dense region by locally forming the portion 3 where the deposition amount is sparse.
  • the boundary includes the boundary and its vicinity, and is preferably the boundary.
  • FIGS. 2A and 2B are electron microscopic images of an electron emission part that has not been activated
  • FIGS. 3A and B are electron micrographs of the electron emission part that have been activated according to an embodiment of the present invention. It is a statue.
  • Figs. 3A and B the presence of local sparse regions and the presence of prominent structures are observed.
  • the area, position, and spacing of the sparse portion, the number of protruding structures, etc. are not particularly limited, and may be present in the electron emission portion to the extent that the effect is recognized. As described below, various methods can be applied as the activation processing method.
  • Examples of the metal oxide that can be used in the present invention include titanium oxide, tin oxide, and zinc oxide.
  • titanium oxide and tin oxide are preferable metal oxides because they have excellent emission characteristics and can be manufactured at low cost.
  • Titanium oxide may be any crystalline form of titanium oxide, which is known to have a rutile, anatase, or brookite type as its crystalline form.
  • the particle shape of the metal oxide is more preferably an acicular shape such as an acicular shape or a plate shape, but may be a shape having a small anisotropy shape such as a granular shape.
  • particles having a size in the range of several nm to 10 m are not particularly limited.
  • the activation process includes a so-called tape peeling process in which a tape is applied to the surface of the electron emission part and then peeled off, a process of mechanically polishing the electron emission part, and a high electric field in a direction perpendicular to the electrode surface in the electron emission part. This is the power to apply the process of applying, and the irradiation process with the laser beam to the electron emission part.
  • a metal oxide having conductivity for the electron emission portion it is preferable to use a metal oxide having conductivity for the electron emission portion, and more preferably, an acicular conductive titanium oxide is used as the metal oxide. And / or acicular conductive tin oxide. Needle-like conductive titanium oxide has a minor axis diameter of 0 ;! ⁇ 0. ⁇ ⁇ ⁇ ⁇ major axis diameter 1. 0—10.0 m and an axial ratio (major axis diameter / minor axis diameter) of 10 A shape of ⁇ 20 is preferred.
  • acicular conductive tin oxide has a minor axis diameter of 0.005-0.050 111, a major axis diameter of 0 ⁇ ;! to 5.0 ⁇ m, and an axial ratio (major axis diameter / minor axis diameter) of 20 ⁇ ; 100 shapes are preferred.
  • the needle shape includes not only the needle shape but also a shape called a rod shape or a column shape.
  • the electrical conductivity of the particles is preferably high! /, But volume resistance is used as an index of electrical conductivity.
  • the range force is at most 10 ⁇ cm, preferably S, more preferably from 0 ⁇ 01 to; 100 ⁇ cm.
  • any known acicular conductive titanium oxide can be used.
  • the acicular conductive tin oxide for example, the use of acicular conductive tin oxide described in JP-A-8-217444, JP-A-8-217445, JP-A-8-231222, etc. Monkey.
  • Acicular conductive titanium oxide is obtained by subjecting acicular titanium dioxide to a conductive treatment, and can be produced, for example, according to the method described in the above publication. That is, it can be produced by heating a mixture of titanium dioxide powder and metal titanium powder in an inert gas atmosphere, or by heating and reducing titanium dioxide powder in an ammonia gas atmosphere. In the method of heating and reducing titanium dioxide powder in an ammonia gas atmosphere, the ratio of titanium and oxygen can be changed by appropriately adjusting the conditions such as the heating atmosphere and temperature, thereby achieving the desired conductivity. It is preferable because conductive nonstoichiometric titanium oxide particles can be obtained.
  • the titanium oxide in the present invention includes titanium oxynitride in which part of oxygen is replaced with nitrogen by heat treatment in an ammonia gas atmosphere.
  • a metal oxide having a high dielectric constant such as titanium oxide as the electron emission material because the interaction with the electric field can be further strengthened. Furthermore, even when a weak discharge is caused in a high electric field application process, a part of the electron emission portion can be peeled off to obtain a minute sparse region.
  • an activation processing apparatus in which an electron emission portion is a force sword and an anode electrode is installed on the opposite side at a certain distance.
  • the activated electron emission part has a large area
  • the force sword electrode known materials such as ITO glass and metal A1 plate can be used. Furthermore, a known plastic substrate formed with a conductive oxide or metal film can also be used as a force sword substrate, and such a substrate is more preferable because it can be applied to flexible applications.
  • the same anode electrode can be used.
  • the force sword electrode is aluminum or a substrate having an aluminum layer on the surface, and the metal oxide is preferably titanium oxide, or the force sword electrode is a substrate having an electrically conductive titanium oxide layer on the surface. It is preferable that the metal oxide is titanium oxide.
  • substrate is not specifically limited, For example, it is glass.
  • the difference between the work function of the force sword electrode after activation and the work function of the metal oxide in the electron emission portion is preferably 2 eV or less, and more preferably 0.5 eV or less.
  • a method for forming an electron emission portion containing a metal oxide on a force sword electrode is as follows.
  • a metal oxide preferably a metal oxide powder
  • the substrate is submerged in the dispersion to statically.
  • a known method such as a method (precipitation method) of depositing the metal oxide powder on the substrate by natural precipitation (precipitation method), a CVD method, or an electrophoretic deposition method can be used.
  • a metal oxide preferably a metal oxide powder and an immobilizing substance are dispersed in an arbitrary solvent to form an electron emission source composition, and the paste-like composition is preferably applied onto a substrate.
  • an electron emission portion may be formed.
  • the application method is not particularly limited, and any of screen printing, spray printing, dipping, spin coating, doctor blade, and applicator methods may be used.
  • the solvent is not particularly limited, but for example, toluene, terbinol, butyl carbitol, butyl carbitol acetate, methyl isobutyl ketone, methyl ethyl ketone, cyclohexane, anisole, N-methyl-2-pyrrolidone, n-butanol, isopropanol, For example, acetonitrile is used.
  • the immobilization substance a part of the metal oxide in the electron emission part and the substrate are bound by the immobilization substance, and the electron emission part may be peeled off by being charged during operation. This is preferable because it is prevented and can provide a stable emission current for a long time.
  • Examples of the immobilizing substance include glass compositions such as glass powder colloidal silica and alkyl silicate, and metal, metal oxide, and complex nanoparticle sols, and glass compositions are preferred. Especially when using a glass composition, the amount added is in terms of SiO,
  • the addition ratio and solvent of the metal oxide and the immobilizing substance are not particularly limited, and are appropriately determined experimentally depending on the type of the metal oxide and the immobilizing substance.
  • heat treatment is required to obtain a binding effect.
  • heat treatment is performed at a temperature higher than that at which these surfaces are necked
  • alkyl silicate is used, the heat treatment is performed at a temperature higher than that at which the alkyl silicate initiates the polymerization reaction! .
  • the upper limit of the heat treatment temperature is selected according to the heat resistance temperature of the power sword substrate and metal oxide powder used, and is 100 ° C to 1 000 ° C. C, preferred ⁇ 200. C ⁇ 600. C.
  • heat treatment atmosphere air, inert gas, vacuum, or the like can be used.
  • heat treatment in an inert gas atmosphere or vacuum is suitable.
  • the electron emission source composition contains an organic substance, it is necessary to oxidatively decompose and remove the organic substance by heat treatment. In this case, heat treatment in the atmosphere is suitable. Therefore, it is possible to perform multi-step heat treatment by combining firing in different atmospheres! /.
  • a dispersant may be added in order to disperse the metal oxide or the immobilizing substance, and a resin may be added in order to adjust the viscosity and improve the coating property.
  • a resin known resins such as acrylic resins, cellulose resins, alkyd resins, melamine resins, epoxy resins, etc. can be widely used. Since they must be removed by heat treatment, acrylic resins that decompose at a relatively low temperature. More preferably, cellulose resin or the like is used.
  • the resin content is appropriately adjusted because the viscosity varies depending on the coating method. It is. For example, when screen printing or applicator method is used, even those with relatively high viscosity can be used.
  • the solid content that is, the sum of metal oxide and resin
  • the electron emission source composition is contained in the electron emission source composition at 1 to 70% by weight. It is preferable.
  • the electron emission source composition contains 1 to 30% by weight of a solid content.
  • a conductive material such as metal fine particles or conductive carbon may be mixed. These additives are not particularly limited, and if they are used in the preparation of ordinary organic paints, the addition ratio may be determined as appropriate according to the type and amount of the metal oxide and the immobilizing substance to be used. Just do it.
  • the cold cathode electron source of the present invention is obtained by activating the electron emission portion containing the metal oxide formed on the force sword electrode by the above method.
  • the activation treatment a tape peeling treatment, a high electric field application treatment, an irradiation treatment with a laser beam, and the like can be used. From a practical aspect, a high electric field application treatment or an irradiation treatment with a laser beam is preferable.
  • the electric field strength used for high electric field treatment is higher than SV / ⁇ m, more preferably a pulse high electric field with a no-less width of 5 to 2000 s and a repetition frequency of 1 to 1000 Hz.
  • the wavelength of the laser beam used is preferably in the range of 150 to 550 nm, more preferably 248 nm KrF excimer laser.
  • the laser energy density is 10 to 200 mj / cm 2
  • the pulse width is 5 to 20 ns
  • the pulse repetition frequency is !! to 100 Hz
  • the power density at this time is 0 ⁇ ;!
  • To 20 MW / cm 2 preferably 0. 7 ⁇ 8 ⁇ 6MW / cm 2 , more preferably a 3 ⁇ 7MW / cm 2.
  • the present invention relates to FED and FEL using the cold cathode electron source.
  • the cold cathode electron source of the present invention can form a metal oxide layer on a substrate by a coating method as described above, and is suitable for manufacturing a large area cold cathode electron source. It is suitable as an emitter material for large screen FEDs and FELs that require a cathode electron source.
  • the FEL of the present invention is obtained by forming a metal oxide cold cathode on a conductive substrate, placing a transparent substrate such as glass coated with a fluorescent film on the opposite side, and vacuum-sealing it.
  • the surface of the fluorescent film may be provided with a conductive vapor deposition film such as metal A1 or metal Zn.
  • the FEL of the present invention has a driving voltage and a pulse width. It can be said that it is excellent as a lighting fixture because the lamp can be easily dimmed by adjusting the gate and, if necessary, forming a gate electrode between the electrodes.
  • FIG. 5 is a configuration example of a bipolar FEL
  • FIG. 6 is a configuration example of a FEL having a gate electrode.
  • 5 and 6 9 is a phosphor layer
  • 10 is an A1 vapor deposition film
  • 11 is an electron emission part
  • 12 is a force sword electrode
  • 13 is an insulating support base
  • 14 is glass
  • 15 is a power source
  • 16 is an insulating layer. 17 are gate electrodes.
  • Rutile acicular titanium oxide (FTL — 100, manufactured by Ishihara Sangyo) with an average major axis diameter of 1.68 111 and an average minor axis diameter of 0.13 m was calcined in ammonia gas at a temperature of 800 ° C for 1 hour. Acicular conductive titanium oxide having a volume resistance of 0.021 ⁇ cm was obtained. X-ray diffraction measurement of this acicular conductive titanium oxide revealed that in addition to the rutile-type titanium dioxide peak, a lower oxide and / or nitride peak of titanium was also obtained. Also, it was confirmed by electron microscope observation that the original shape of acicular titanium oxide was retained.
  • acicular conductive titanium oxide is mixed with an Ag paste and applied to an ITO substrate, and a portion of the acicular conductive titanium oxide is formed on the substrate by a so-called tape peeling process in which a tape is applied and then peeled off.
  • a cold cathode electron source of the present invention oriented vertically was prepared. An ITO substrate coated with a ZnO phosphor film was placed in parallel with the cold cathode electron source at an interval of 125 ⁇ .
  • Example 2 Baked acicular titanium oxide (FTL-300, manufactured by Ishihara Sangyo) with an average major axis diameter of 5. 15 111 and an average minor axis diameter of 0.27 m in ammonia gas at a temperature of 800 ° C for 1 hour. Acicular conductive titanium oxide having a resistance of 0.044 ⁇ cm was obtained. Since the cold cathode electron source and the field emission light emitting device (device B) of the present invention were produced in the same manner as in Example 1, and the FN plot was taken, linearity was shown in the electric field region of 5 V / m or more. It was confirmed that the emission was field emission.
  • FTL-300 manufactured by Ishihara Sangyo
  • the cold cathode electron source and the field emission light-emitting device (device C) of the present invention were prepared by the same treatment as in Fig. 1, and the F—N plot showed linearity in an electric field region of 5 V / m or more. It was confirmed that the mission was field emission.
  • Disperse titanium oxide (F TL 100, manufactured by Ishihara Sangyo), which has an average major axis diameter of 1.68 111 and an average minor axis diameter of 0.113 111, in water and submerge the A1 substrate in this dispersion.
  • acicular titanium oxide was deposited on the A1 substrate.
  • a cold cathode electron source of the present invention was produced by irradiating this non-conductive acicular titanium oxide film with a KrF excimer laser with a wavelength of 248 nm at a power density of 3 MW / cm 2 and a pulse width of 20 ns.
  • Example D An ITO substrate coated with a ZnO phosphor film was placed in parallel with the cold cathode electron source at an interval of 250 m. And a phosphor layer anode, a cold cathode electron source and connect the power such that the force cathode sealed vacuum sealed 10_ 5 Pa, to obtain a field emission light-emitting device (Sample D).
  • sample E An inventive cold cathode electron source (sample E) was obtained.
  • the emission started at an electric field of 2 V / ⁇ m, and it was confirmed from the FN plot that this emission was a field emission.
  • the emission current in the electric field m was ImA / cm 2 .
  • FIG. 7 A graph showing the relationship between the applied voltage and the emission current density of Samples D and E is shown in Fig. 7, and a graph showing the FN plot of Samples D and E is shown in Fig. 8.
  • An average length of 1.68 111, an average diameter of 0.13 m of needle-shaped titanium oxide (FTL-100, manufactured by Ishihara Sangyo) and an average particle diameter of 1.1 m of glass powder In a weight ratio, it was dispersed in a mixed solution of toluene and n-butanol to which a dispersing agent was added, and an acrylic resin was added to form a paint, which was applied onto an ITO glass substrate using an applicator. Organic substances in the coating composition were removed by baking at 500 ° C. for 1 hour in a nitrogen atmosphere. An ITO substrate was placed in parallel with the obtained titanium oxide film at a distance of 125 m.
  • Titanium oxide film force Sword ITO substrate pairs direction side vacuum sealing to connect the power 10_ 5 Pa so that the anode.
  • An activation treatment was performed by applying a pulse high electric field of 3.5 kV, a pulse width of 167 s, and a repetition frequency of 60 Hz for 1 second between the obtained electrodes to obtain the cold cathode electron source of the present invention.
  • the field-emission light-emitting device (sample F) using the cold cathode electron source of the present invention is obtained by replacing the opposing ITO electrode with an electrode with a ZnO phosphor film and vacuum-sealing in the same manner as described above.
  • the current due to the emitted electrons was measured and the F—N plot was taken using the Fowler-Nordheim equation, linearity was shown in the electric field region of 3.5 V / m or more. It was confirmed that the mission was field emission.
  • E mission current in the electric field SV / ⁇ m was 10_ 2 mA / cm 2.
  • Fig. 9 is a graph showing the relationship between the applied voltage and the emission current density of Sample F.
  • the light emission pattern of the ZnO phosphor film is shown in FIG.
  • Titanium oxide with an average length of 1.68 111 and an average diameter of 0.13 m (FTL—100) (Manufactured by Ishihara Sangyo Co., Ltd.) and glass powder with an average particle size of 1.1 m in a weight ratio of 1: 0.12 in a mixed solution of toluene and n-butanol with a dispersant added, and acrylic resin added.
  • the coating was made into a paint and applied onto an ITO glass substrate using an applicator. Organic substances in the coating composition were removed by baking at 400 ° C. for 1 hour in a nitrogen atmosphere.
  • a cold cathode electron source was obtained by irradiating this non-conductive acicular titanium oxide film with a KrF excimer laser with a wavelength of 248 nm at a low power density of lMW / cm 2 and a 20 ns pulse width.
  • An ITO substrate coated with a ZnO phosphor film was placed in parallel with the cold cathode electron source at an interval of 125 m. Then, a power source was connected so that the fluorescent film was an anode and the cold cathode electron source was a force sword, and vacuum sealing was performed at 10 to 5 Pa to obtain a field emission light emitting device (Sample G). Emission was not confirmed even when the voltage was increased to 8 V / m when the voltage was applied to Sample G.
  • a cold cathode electron source (sample H) of the present invention was obtained in the same manner as in Example 7 except that the substrate was a glass plate on which aluminum was deposited.
  • emission started at an electric field of 3 V / ⁇ m, and it was confirmed from the FN plot that this emission was a field emission.
  • E mission current in field m was 10_ 2 mA / cm 2.
  • the cold cathode electron source of the present invention has greatly improved emission characteristics.
  • the cold cathode electron source of the present invention is useful for a field emission flat panel display (FED), a field emission lamp (a cold cathode electron source incorporated in a device utilizing a light emission phenomenon by electron beam excitation such as FEU). It is.
  • FED field emission flat panel display
  • FEU field emission lamp
  • FIG. 1 shows the structure of an electron emission portion in an embodiment of the present invention.
  • FIG. 2A is an electron microscopic image of the electron emission part after activation! /, NA! /.
  • FIG. 2B is an electron microscopic image of the electron emission part after activation! /, NA! /.
  • FIG. 3A is an electron micrograph image of an activated electron emission portion in an embodiment of the present invention.
  • 3B An electron microscopic image of an activated electron emission portion in the embodiment of the present invention.
  • FIG. 6 shows a configuration example of a FEL having a gate electrode in the embodiment of the present invention.
  • 7 A graph showing the relationship between the applied voltage and emission current density for samples D and E.
  • FIG. 8 is a graph showing FN plots of Samples D and E.
  • FIG. 10 shows the emission pattern of the ZnO phosphor film of Sample F.

Abstract

A cold-cathode electron source having a cathode and an electron-emitting part provided on the cathode electrode and using an activated metal oxide. The activation is conducted by raising by tape peeling, by applying a laser beam, by applying high-electric field, or the like. If laser application or high electric field application is used, an emission phenomenon can be brought about even at a low applied voltage even if a nonconductive metal oxide is used. A cold-cathode electron source in which metal oxide more inexpensive than carbon nanotube is used as the emitter material can be provided.

Description

明 細 書  Specification
冷陰極電子源及びその製造方法並びにそれを用いた発光素子 技術分野  Cold cathode electron source, method for manufacturing the same, and light emitting device using the same
[0001] 本発明は、電界放出型フラットパネルディスプレイ (FED)、電界放出型ランプ (FE The present invention relates to a field emission flat panel display (FED), a field emission lamp (FE
U等の電子線励起による発光現象を利用した機器に組み込まれる冷陰極電子源に 関する。 The present invention relates to a cold cathode electron source incorporated in a device utilizing a light emission phenomenon caused by electron beam excitation such as U.
背景技術  Background art
[0002] 近年、陰極線管(CRT)に代わる画像表示装置として、液晶ディスプレイ (LCD)や プラズマディスプレイ(PDP)が開発され、現在でも種々改良が加えられて!/、るなか、 新たな画像表示装置として電界放出型フラットパネルディスプレイ (FED)が注目され ている。 FEDの冷陰極電子源に用いるェミッタ材料としては主に Moや炭素/ PdO またはカーボンナノチューブ(CNT)が有力視され、種々の研究がなされて!/、る。  In recent years, liquid crystal displays (LCDs) and plasma displays (PDPs) have been developed as image display devices to replace cathode ray tubes (CRTs), and various improvements have been made today! Field emission flat panel displays (FEDs) are attracting attention as devices. Mo, carbon / PdO or carbon nanotubes (CNT) are mainly considered as the emitter materials used for the cold cathode electron source of FED, and various studies have been made!
[0003] また、現在最も一般的な照明器具である蛍光灯は、蛍光体の励起源に水銀から発 生する紫外線を用いており、水銀による環境負荷の問題から代替が求められている。 蛍光灯代替品の候補として、低消費電力、耐久性、発光効率の面から白色 LEDが 期待されているが、 LEDの素子のサイズは高々数 mm程度と小さいため、室内照明 のように大面積の発光を得るためには、膨大な数の LEDを並べて用いるほかなぐコ スト高になることが避けられない。更に LED用蛍光体は効率の高い蛍光体のバリエ ーシヨンが少なく、白色として理想的な可視域全体に渡る幅広いスペクトルを得ること が難しい。そこで、 FEDと同じ冷陰極電子源を用いた照明、いわゆる電界放出型ラン プ (FEUが最近、注目されている。 FELは、消費電力、耐久性、発光効率に関して は LEDと比較して遜色なレ、上に、蛍光面とェミッタ一アレイを大面積化することが容 易であるため面発光にも適している。更に発光色については数多い電子線励起蛍光 体の組み合わせによって良好な白色を実現することが期待される。  [0003] In addition, fluorescent lamps, which are the most common lighting fixtures at present, use ultraviolet rays generated from mercury as the excitation source of the phosphor, and there is a need for alternatives due to environmental load problems caused by mercury. White LEDs are expected as a candidate for replacement of fluorescent lamps in terms of low power consumption, durability, and luminous efficiency. However, the size of the LED elements is as small as several millimeters at most, so it has a large area like indoor lighting. In order to obtain this light emission, it is inevitable that the cost will be higher than using a large number of LEDs side by side. Furthermore, LED phosphors have few variations of highly efficient phosphors, and it is difficult to obtain a wide spectrum over the entire visible range, which is ideal for white. Therefore, illumination using the same cold cathode electron source as FED, the so-called field emission lamp (FEU has recently attracted attention. FEL is inferior to LED in terms of power consumption, durability, and luminous efficiency. In addition, it is easy to increase the area of the phosphor screen and the emitter array, making it suitable for surface emission, and for the emission color, a good white color is achieved by combining many electron beam-excited phosphors. Is expected to do.
[0004] 上記に利用される冷陰極電子源のェミッタ材料は、その電界放出部分に高い電界 集中が起こる材料、すなわち高アスペクト比である材料が好適であると一般的に知ら れており、上記の CNTに加え細線や針状と!/、つた形状の様々な材料が提案されて いる。その中で、安価で化学的安定性にも優れた細線 (ゥイスカー)状酸化チタンを 電子放出材料に用いることが提案されて!/、るが実用化には至ってレ、な!/ヽ(特許文献 1参照)。 [0004] As the emitter material of the cold cathode electron source used above, it is generally known that a material in which high electric field concentration occurs in the field emission portion, that is, a material having a high aspect ratio is suitable. In addition to CNTs, various materials with thin wires and needles! Yes. Among them, it has been proposed to use thin wire-like titanium oxide, which is inexpensive and excellent in chemical stability, as an electron emission material! /, But it has been put into practical use! Reference 1).
[0005] 特許文献 1 :特開 2000— 203998号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-203998
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 一般的に酸化チタンのような金属酸化物は導電性も持たないことなどから、高いァ スぺタト比であっても必ずしも良好なェミッション特性は期待できない。一方で、金属 酸化物は上記 CNTと較べ安価に製造することが可能であるため、このものをェミッタ 材料として利用出来れば、 FEDや FELに用いられる冷陰極電子源に利用してこれら の機器を安価に提供することが可能となる。すなわち、本発明は金属酸化物をェミツ タ材料として用いた冷陰極電子源を提供することを課題とする。 [0006] Generally, metal oxides such as titanium oxide do not have electrical conductivity, and therefore good emission characteristics cannot always be expected even with a high aspect ratio. On the other hand, metal oxides can be manufactured at a lower cost than the above CNTs, so if this can be used as an emitter material, these devices can be used for cold cathode electron sources used in FEDs and FELs. It can be provided at low cost. That is, an object of the present invention is to provide a cold cathode electron source using a metal oxide as an emitter material.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、冷陰極電子源に用いられる金属酸化物ェミッタ材料の特性を向上 すべく種々の研究を重ねたところ、電子放出部に活性化処理された金属酸化物を用 いた冷陰極電子源は、優れたェミッション特性を有することを見出し、本発明を完成 した。 [0007] The inventors of the present invention have made various studies to improve the characteristics of the metal oxide emitter material used for the cold cathode electron source. As a result, the activated metal oxide was used for the electron emission portion. The present inventors have found that the cold cathode electron source has excellent emission characteristics and completed the present invention.
[0008] すなわち、本発明は、力ソード電極およびその上に形成された電子放出部を有する 冷陰極電子源において、電子放出部に活性化処理された金属酸化物を用いること を特徴とする冷陰極電子源である。また、本発明は、上記冷陰極電子源の製造方法 であって、力ソード電極上に形成された金属酸化物を含む電子放出部に活性化処 理することを特徴とする冷陰極電子源の製造方法である。さらに、本発明は上記冷陰 極電子源を用いた FED及び FELである。  That is, the present invention provides a cold cathode electron source having a force sword electrode and an electron emission portion formed thereon, and uses a metal oxide activated in the electron emission portion. It is a cathode electron source. The present invention also provides a method of manufacturing a cold cathode electron source as described above, wherein an activation process is performed on an electron emission portion including a metal oxide formed on a force sword electrode. It is a manufacturing method. Furthermore, the present invention relates to FED and FEL using the cold cathode electron source.
発明の効果  The invention's effect
[0009] 本発明の冷陰極電子源は、ェミッション開始電界が低ぐし力、も十分なェミッション 電流を得ること力 Sできるものである。更に CNTと較べて安価な金属酸化物粉体を利 用できるため FED用ェミッタ材料として有用なものであり、より安価なェミッタ材料が 必要とされる FEL用ェミッタ材料として特に有用なものである。 [0009] The cold cathode electron source of the present invention is capable of reducing the emission starting electric field and obtaining a sufficient emission current. Furthermore, it is useful as an FED emitter material because it can use metal oxide powder that is less expensive than CNT. It is particularly useful as a required FEL emitter material.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明は、力ソード電極およびその上に形成された電子放出部を有する冷陰極電 子源において、電子放出部に活性化処理された金属酸化物を用いることを特徴とす る冷陰極電子源である。電子放出部に単に金属酸化物を用いただけでは、エミッショ ン現象はほとんど発現せず、十分なェミッション電流を得ることは困難である。本発明 においては、電子放出部に活性化処理された金属酸化物を用いることにより、低い 印加電圧で電界電子放出現象を確認することができる。特に、活性化処理として高 電界印加処理やレーザー光による照射処理を用いると、意外にも、本来導電性を有 しない金属酸化物を用いても、ェミッション開始電界が低ぐし力、も十分なェミッション 電流を得ること力 Sできる。  The present invention provides a cold cathode electron source having a force sword electrode and an electron emission portion formed thereon, and uses a metal oxide activated in the electron emission portion. It is a cathode electron source. If only a metal oxide is used for the electron emission part, the emission phenomenon hardly occurs and it is difficult to obtain a sufficient emission current. In the present invention, the field electron emission phenomenon can be confirmed with a low applied voltage by using an activated metal oxide for the electron emission portion. In particular, when a high electric field application process or a laser beam irradiation process is used as the activation process, surprisingly, even if a metal oxide that does not inherently have conductivity is used, the emission starting electric field is sufficiently reduced and the force is sufficient. Emission power to obtain current.
[0011] 活性化処理とは、基板上の電子放出材料中に所謂ェミッションサイトと呼ばれる電 子放出部を形成する方法である。文字通り電子放出材料の中に新たにェミッションに 寄与する部位を形成することに加え、ェミッションに寄与しない部位又は悪影響を及 ぼす部位を取り除くことをも含む。ここで言うェミッションに寄与しない部位とは、例え ば不純物、印加電界の方向と異なる方向に配列している電子放出材料、電界方向 に配列していてもそれらが密で電界集中の妨げになっている電子放出材料などを指 す。  The activation treatment is a method of forming an electron emission portion called a so-called emission site in an electron emission material on a substrate. Literally, in addition to forming a new site that contributes to emissions in the electron-emitting material, this also includes removing sites that do not contribute to emissions or that have adverse effects. The parts that do not contribute to the emission mentioned here are, for example, impurities, electron-emitting materials arranged in a direction different from the direction of the applied electric field, and even if arranged in the electric field direction, they are dense and hinder electric field concentration. This refers to the electron emission material that is present.
[0012] 本発明の電子放出部を図 1を用いて説明する。電子放出材料である金属酸化物 1 は力ソード基板 2上に堆積している力 S、この堆積量が一様であると、電子放出材料に 電界集中が起こりにくくなり、ェミッション開始電圧が上昇したり、十分なェミッション電 流が得られなくなったりする。これに対し、この堆積量が疎となる部分 3を局所的に形 成することで疎領域と密領域の境界 4で高い電界集中効果が得られることが見出さ れた。更にこの境界 4において電子放出材料が突出した構造 5をとるようにすると、よ り高い電界集中効果が得られるため好ましい。本発明において境界とは、境界及び その近傍を含み、好ましくは境界である。図では針状材料を例にとっており、この針 状の形状は、先端を突出させるために好ましい形状ではあるが適用できる形状はこ の限りではない。 疎領域の局所的な存在及び突出した構造の存在は、電子顕微鏡写真で確認でき る。図 2A及び Bは、活性化を行っていない電子放出部の電子顕微鏡撮影像であり、 図 3A及び Bは、活性化を行った本発明の実施の形態における電子放出部の電子顕 微鏡撮影像である。図 3A及び Bにおいて、疎領域の局所的な存在及び突出した構 造の存在が認められる。なお、この疎な部分の面積、位置、間隔や、突出した構造の 数などは特に限定されず、効果が認められる程度に電子放出部に存在すればよい。 活性化処理の方法としては後述のとおり、種々の方法が適用できる。 The electron emission portion of the present invention will be described with reference to FIG. The metal oxide 1 that is an electron emission material is the force S deposited on the force sword substrate 2, and if this deposition amount is uniform, electric field concentration is less likely to occur in the electron emission material and the emission start voltage increases. Or a sufficient emission current may not be obtained. On the other hand, it was found that a high electric field concentration effect can be obtained at the boundary 4 between the sparse region and the dense region by locally forming the portion 3 where the deposition amount is sparse. Furthermore, it is preferable to adopt a structure 5 in which the electron emission material protrudes at the boundary 4 because a higher electric field concentration effect can be obtained. In the present invention, the boundary includes the boundary and its vicinity, and is preferably the boundary. In the figure, an acicular material is taken as an example, and this acicular shape is a preferable shape for projecting the tip, but the applicable shape is not limited to this. The local presence of sparse regions and the presence of protruding structures can be confirmed by electron micrographs. FIGS. 2A and 2B are electron microscopic images of an electron emission part that has not been activated, and FIGS. 3A and B are electron micrographs of the electron emission part that have been activated according to an embodiment of the present invention. It is a statue. In Figs. 3A and B, the presence of local sparse regions and the presence of prominent structures are observed. The area, position, and spacing of the sparse portion, the number of protruding structures, etc. are not particularly limited, and may be present in the electron emission portion to the extent that the effect is recognized. As described below, various methods can be applied as the activation processing method.
[0013] 本発明において用いることの出来る金属酸化物としては、例えば、酸化チタン、酸 化錫、酸化亜鉛などが挙げられる。中でも、酸化チタン及び酸化錫は、ェミッション特 性にも優れ、し力、も安価に製造することが出来るため好ましい金属酸化物である。な お、酸化チタンはその結晶形としてルチル型、アナターゼ型、ブルッカイト型のものが 知られている力 S、何れの結晶形の酸化チタンをも用いることができる。金属酸化物の 粒子形状は針状、板状等の異方形状のものが好ましぐ針状のものがより好ましいが 、粒状等の異方性の小さな形状のものでも構わない。また、粒子の大きさにも特に制 限はなぐ数 nm〜10 mの範囲のものを用いることができる。  [0013] Examples of the metal oxide that can be used in the present invention include titanium oxide, tin oxide, and zinc oxide. Among these, titanium oxide and tin oxide are preferable metal oxides because they have excellent emission characteristics and can be manufactured at low cost. Titanium oxide may be any crystalline form of titanium oxide, which is known to have a rutile, anatase, or brookite type as its crystalline form. The particle shape of the metal oxide is more preferably an acicular shape such as an acicular shape or a plate shape, but may be a shape having a small anisotropy shape such as a granular shape. In addition, particles having a size in the range of several nm to 10 m are not particularly limited.
[0014] 活性化処理としては、電子放出部の表面にテープを貼った後に剥がす所謂テープ ピーリング処理、電子放出部を機械的に研磨する処理、電子放出部に電極面と垂直 な方向の高電界を印加する処理、電子放出部へのレーザー光による照射処理等を 適用すること力でさる。  [0014] The activation process includes a so-called tape peeling process in which a tape is applied to the surface of the electron emission part and then peeled off, a process of mechanically polishing the electron emission part, and a high electric field in a direction perpendicular to the electrode surface in the electron emission part. This is the power to apply the process of applying, and the irradiation process with the laser beam to the electron emission part.
[0015] 活性化処理としてテープピーリング処理を適用する場合には、電子放出部には導 電性を有する金属酸化物を用いるのが好ましぐより好ましくは金属酸化物として針 状導電性酸化チタン及び/又は針状導電性酸化錫を用いる。針状導電性酸化チタ ンは、短軸径 0. ;!〜 0. δ μ ΐΐΐ^長軸径 1. 0—10. 0 mであって、軸比(長軸径/短 軸径) 10〜20の形状が好ましい。また、針状導電性酸化スズは、短軸径 0. 005-0 . 050 111、長軸径 0· ;!〜 5· 0 mであって、軸比(長軸径/短軸径) 20〜; 100の 形状が好ましい。なお、本発明において針状とは、針状の他、棒状あるいは柱状と呼 ばれる形状をも包含するものである。  [0015] When a tape peeling process is applied as the activation process, it is preferable to use a metal oxide having conductivity for the electron emission portion, and more preferably, an acicular conductive titanium oxide is used as the metal oxide. And / or acicular conductive tin oxide. Needle-like conductive titanium oxide has a minor axis diameter of 0 ;! ~ 0. Δ μ ΐΐΐ ^ major axis diameter 1. 0—10.0 m and an axial ratio (major axis diameter / minor axis diameter) of 10 A shape of ~ 20 is preferred. In addition, acicular conductive tin oxide has a minor axis diameter of 0.005-0.050 111, a major axis diameter of 0 · ;! to 5.0 · m, and an axial ratio (major axis diameter / minor axis diameter) of 20 ~; 100 shapes are preferred. In the present invention, the needle shape includes not only the needle shape but also a shape called a rod shape or a column shape.
[0016] また、該粒子の導電性は高レ、ほど好まし!/、が、導電性の指標として体積抵抗を用 いると大きくとも 10 Ω cmである範囲力 S好ましく、より好ましくは 0· 01〜; 100 Ω cmの範 囲である。 [0016] Further, the electrical conductivity of the particles is preferably high! /, But volume resistance is used as an index of electrical conductivity. The range force is at most 10 Ωcm, preferably S, more preferably from 0 · 01 to; 100 Ωcm.
[0017] 針状導電性酸化チタンは、公知のものを用いることができる。例えば、特開平 2— 9 2824号公報に記載された針状低次酸化チタンや、特開平 6— 279618号公報に記 載された導電性アンチモン含有酸化スズの被覆層を有する酸化チタンが挙げられる 。また、針状導電性酸化スズとしては、例えば、特開平 8— 217444公報、特開平 8 217445公報、特開平 8— 231222公報等に記載された針状導電性酸化スズを用 いること力 Sでさる。  [0017] Any known acicular conductive titanium oxide can be used. For example, there are acicular low-order titanium oxides described in JP-A-2-92824 and titanium oxide having a coating layer of conductive antimony-containing tin oxide described in JP-A-6-279618. . As the acicular conductive tin oxide, for example, the use of acicular conductive tin oxide described in JP-A-8-217444, JP-A-8-217445, JP-A-8-231222, etc. Monkey.
[0018] 針状導電性酸化チタンは、針状二酸化チタンに導電処理を施したものであって、例 えば、上記公報に記載された方法に準じて製造することができる。すなわち、二酸化 チタン粉末と金属チタン粉末との混合物を不活性ガス雰囲気中で加熱したり、二酸 化チタン粉末をアンモニアガス雰囲気中で加熱還元したりして製造することができる 。二酸化チタン粉末をアンモニアガス雰囲気中で加熱還元する方法は、加熱の雰囲 気及び温度等の条件を適宜調整することにより、チタンと酸素の比率を変化させるこ とができ、それにより所望の導電性を有する導電性不定比酸化チタン粒子を得ること ができ好ましい。なお、本発明における酸化チタンには、アンモニアガス雰囲気中で の熱処理により、酸素の一部が窒素で置換された酸窒化チタンも包含される。  [0018] Acicular conductive titanium oxide is obtained by subjecting acicular titanium dioxide to a conductive treatment, and can be produced, for example, according to the method described in the above publication. That is, it can be produced by heating a mixture of titanium dioxide powder and metal titanium powder in an inert gas atmosphere, or by heating and reducing titanium dioxide powder in an ammonia gas atmosphere. In the method of heating and reducing titanium dioxide powder in an ammonia gas atmosphere, the ratio of titanium and oxygen can be changed by appropriately adjusting the conditions such as the heating atmosphere and temperature, thereby achieving the desired conductivity. It is preferable because conductive nonstoichiometric titanium oxide particles can be obtained. The titanium oxide in the present invention includes titanium oxynitride in which part of oxygen is replaced with nitrogen by heat treatment in an ammonia gas atmosphere.
[0019] また、活性化処理として高電界印加処理やレーザー光による照射処理を適用する 場合には、導電性の有無にかかわらず種々のものを用いることができるため好ましい  [0019] In addition, when a high electric field application process or a laser beam irradiation process is applied as the activation process, various processes can be used regardless of the presence or absence of conductivity.
[0020] 活性化処理として高電界印加処理を適用する場合には、例えば酸化チタンのよう な誘電率の高い金属酸化物を電子放出材料とすると、電界との相互作用をより強く できるため好ましい。さらに高電界印加処理において、微弱な放電を起こすことによ つても、電子放出部の一部を剥離して微小な疎領域を得ることができる。 [0020] When a high electric field application treatment is applied as the activation treatment, it is preferable to use a metal oxide having a high dielectric constant such as titanium oxide as the electron emission material because the interaction with the electric field can be further strengthened. Furthermore, even when a weak discharge is caused in a high electric field application process, a part of the electron emission portion can be peeled off to obtain a minute sparse region.
[0021] 高電界印加処理を適用する場合には、電子放出部を力ソードとし、一定の距離を 隔てて対向側にアノード電極を設置した活性化処理装置を形成する必要がある。活 性化する電子放出部が大面積となる場合に、アノード電極も対応する大きさにすると 電極の橈み等により、電子放出部全領域において均一な電極間隔を維持することが できず、均一な活性化処理を行うことが困難となる。そこで、例えば図 4に示すような 棒状のアノード電極 6を用い、アノード電極 6又は力ソード電極 7のいずれ力、、もしくは その両方を移動させながらパルス高圧電源 8から電界を印加することで、所望の大き さの電子放出部を均一に活性化できる。この方法によれば、所望の大きさ(面積)の 冷陰極電子源を安価で且つ容易に製造することが可能であるので好ましい。 In the case of applying a high electric field application process, it is necessary to form an activation processing apparatus in which an electron emission portion is a force sword and an anode electrode is installed on the opposite side at a certain distance. When the activated electron emission part has a large area, if the anode electrode is made to have a corresponding size, a uniform electrode spacing can be maintained in the entire region of the electron emission part due to the stagnation of the electrode. Therefore, it becomes difficult to perform a uniform activation process. Therefore, for example, a rod-shaped anode electrode 6 as shown in FIG. 4 is used, and an electric field is applied from a pulsed high-voltage power supply 8 while moving either or both of the anode electrode 6 and the force sword electrode 7, and the desired electric field is applied. It is possible to uniformly activate the electron emission portion of the size. This method is preferable because a cold cathode electron source having a desired size (area) can be manufactured inexpensively and easily.
[0022] 力ソード電極としては、 ITOガラス、金属 A1板等の公知の材料を用いることができる 。更に、公知のプラスチック基板に導電性酸化物や金属を成膜したものも力ソード基 板として用いることができ、このような基板はフレキシブルな用途に適用できるためより 好ましい。 [0022] As the force sword electrode, known materials such as ITO glass and metal A1 plate can be used. Furthermore, a known plastic substrate formed with a conductive oxide or metal film can also be used as a force sword substrate, and such a substrate is more preferable because it can be applied to flexible applications.
アノード電極としても同様のものを使用できる。  The same anode electrode can be used.
さらに、力ソード電極はアルミニウム、または表面にアルミニウムの層を有する基板 であり、金属酸化物が酸化チタンであることが好ましぐまたは力ソード電極が表面に 導電性酸化チタンの層を有する基板であり、金属酸化物が酸化チタンであることが好 ましい。基板は特に限定されず、例えば、ガラスである。  Further, the force sword electrode is aluminum or a substrate having an aluminum layer on the surface, and the metal oxide is preferably titanium oxide, or the force sword electrode is a substrate having an electrically conductive titanium oxide layer on the surface. It is preferable that the metal oxide is titanium oxide. A board | substrate is not specifically limited, For example, it is glass.
[0023] 活性化後の力ソード電極の仕事関数と電子放出部の金属酸化物の仕事関数との 差が 2eV以下であることが好ましぐさらに 0. 5eV以下あることが好ましい。  [0023] The difference between the work function of the force sword electrode after activation and the work function of the metal oxide in the electron emission portion is preferably 2 eV or less, and more preferably 0.5 eV or less.
[0024] 力ソード電極上に金属酸化物を含む電子放出部を形成する方法は、金属酸化物、 好ましくは金属酸化物粉体を任意の溶液に分散し、この分散液に基板を沈めて静置 することで、基板上に金属酸化物粉体を自然沈降させて堆積させる方法(沈降法)や 、 CVD法、電気泳動堆積法等の公知の方法を用いることができる。  [0024] A method for forming an electron emission portion containing a metal oxide on a force sword electrode is as follows. A metal oxide, preferably a metal oxide powder, is dispersed in an arbitrary solution, and the substrate is submerged in the dispersion to statically. By placing, a known method such as a method (precipitation method) of depositing the metal oxide powder on the substrate by natural precipitation (precipitation method), a CVD method, or an electrophoretic deposition method can be used.
[0025] 更に、金属酸化物、好ましくは金属酸化物粉体と固定化物質とを任意の溶媒中に 分散させて電子放出源組成物とし、好ましくはペースト状の前記組成物を基板上に 塗布して電子放出部を形成してもよい。塗布方法は特に限定されず、スクリーン印刷 、スプレー印刷、ディップ法、スピンコート法、ドクターブレード法、アプリケーター法の いずれの方法を用いてもよい。溶媒も特に限定されないが、たとえばトルエン、テルビ ネオール、ブチルカルビトール、ブチルカルビトールアセテート、メチルイソブチルケ トン、メチルェチルケトン、シクロへキサン、ァニソール、 N—メチルー 2—ピロリドン、 n ーブタノール、イソプロパノール、ァセトニトリルなどが用いられる。 固定化物質を使用することにより、電子放出部の金属酸化物の一部と基板とが固 定化物質によって結着されて、電子放出部が動作中に帯電するなどして剥離するこ とが防がれ、長時間安定したェミッション電流を与えることができ、好ましい。 [0025] Further, a metal oxide, preferably a metal oxide powder and an immobilizing substance are dispersed in an arbitrary solvent to form an electron emission source composition, and the paste-like composition is preferably applied onto a substrate. Thus, an electron emission portion may be formed. The application method is not particularly limited, and any of screen printing, spray printing, dipping, spin coating, doctor blade, and applicator methods may be used. The solvent is not particularly limited, but for example, toluene, terbinol, butyl carbitol, butyl carbitol acetate, methyl isobutyl ketone, methyl ethyl ketone, cyclohexane, anisole, N-methyl-2-pyrrolidone, n-butanol, isopropanol, For example, acetonitrile is used. By using the immobilization substance, a part of the metal oxide in the electron emission part and the substrate are bound by the immobilization substance, and the electron emission part may be peeled off by being charged during operation. This is preferable because it is prevented and can provide a stable emission current for a long time.
[0026] 固定化物質としては、例えばガラスパウダーゃコロイダルシリカ、アルキルシリケート などのガラス組成物や、金属、金属酸化物、錯体のナノ粒子ゃゾルなどが挙げられ、 ガラス組成物が好ましい。特にガラス組成物を用いる場合、添加量は SiO換算で、 [0026] Examples of the immobilizing substance include glass compositions such as glass powder colloidal silica and alkyl silicate, and metal, metal oxide, and complex nanoparticle sols, and glass compositions are preferred. Especially when using a glass composition, the amount added is in terms of SiO,
2 金属酸化物 100重量部に対し 1〜500重量部であることが好ましい。ガラスパウダー を用いる場合には軟化点が 300°C〜600°Cで平均粒子径が 0. 1〜5 111のものを 用いること力 Sでさる。  2 It is preferable that it is 1-500 weight part with respect to 100 weight part of metal oxides. When using glass powder, use the one with a softening point of 300 ° C to 600 ° C and an average particle size of 0.1 to 5111.
金属酸化物と固定化物質の添加割合や溶媒は特に限定されず、金属酸化物や固 定化物質の種類に応じて適宜、実験的に決定される。  The addition ratio and solvent of the metal oxide and the immobilizing substance are not particularly limited, and are appropriately determined experimentally depending on the type of the metal oxide and the immobilizing substance.
[0027] 固定化物質にガラス組成物を用いた場合などには、結着効果を得るために熱処理 が必要となる。例えばガラスパウダーゃコロイダルシリカを用いる場合にはこれらの表 面がネッキングするよりも高い温度で、アルキルシリケートを用いる場合にはアルキル シリケートが重合反応を開始するよりも高!/、温度で熱処理を行う。熱処理温度の上限 は用いる力ソード基板や金属酸化物粉体の耐熱温度によって選択され、 100°C〜1 000。C、好まし <は 200。C〜600。Cである。  [0027] When a glass composition is used as the immobilizing substance, heat treatment is required to obtain a binding effect. For example, when glass powder or colloidal silica is used, heat treatment is performed at a temperature higher than that at which these surfaces are necked, and when alkyl silicate is used, the heat treatment is performed at a temperature higher than that at which the alkyl silicate initiates the polymerization reaction! . The upper limit of the heat treatment temperature is selected according to the heat resistance temperature of the power sword substrate and metal oxide powder used, and is 100 ° C to 1 000 ° C. C, preferred <200. C ~ 600. C.
熱処理雰囲気としては、大気、不活性ガス、真空などが利用でき、力ソード基板など に酸化による劣化が起こりうる場合には不活性ガス雰囲気や真空での熱処理が適し てレ、る。 一方で電子放出源組成物が有機物を含む場合には熱処理による有機物 の酸化分解除去が必要であり、この場合には大気中での熱処理が適している。その ため異なる雰囲気の焼成を組み合わせて、多段階の熱処理を行ってもよ!/、。  As the heat treatment atmosphere, air, inert gas, vacuum, or the like can be used. When a sword substrate or the like can be deteriorated by oxidation, heat treatment in an inert gas atmosphere or vacuum is suitable. On the other hand, when the electron emission source composition contains an organic substance, it is necessary to oxidatively decompose and remove the organic substance by heat treatment. In this case, heat treatment in the atmosphere is suitable. Therefore, it is possible to perform multi-step heat treatment by combining firing in different atmospheres! /.
[0028] 電子放出源組成物には、金属酸化物や固定化物質を分散させるために分散剤を 添加してもよく、粘度を調整して塗布性を向上するために樹脂を加えてもよい。この 樹脂としてはアクリル系樹脂、セルロース系樹脂、アルキド樹脂、メラミン樹脂、ェポキ シ樹脂などの公知のものが幅広く利用できる力 熱処理による除去が必要であるの で、比較的低温で分解するアクリル系樹脂やセルロース系樹脂などを用いることがよ り好ましい。樹脂の含有量は、塗布方法によって適した粘度が異なるため適宜調整さ れる。たとえばスクリーン印刷やアプリケーター法などを用いる場合は比較的高粘度 のものまで利用できるため、固形分すなわち金属酸化物と樹脂の和として、電子放出 源組成物中に 1〜70重量%含有されていることが好ましい。一方、スプレー印刷など を用いる場合には低粘度のものが適用でき、電子放出源組成分中に固形分が 1〜3 0重量%含有されていることが好ましい。また、組成物の導電性を向上させるため、金 属微粒子や導電性カーボンなどの導電性物質を混合しても良い。これらの添加物は 特に限定されず、通常の有機塗料を調製する際に用いるものを使用すればよぐ添 加割合も使用する金属酸化物や固定化物質の種類や量に応じて適宜、定めればよ い。 [0028] In the electron emission source composition, a dispersant may be added in order to disperse the metal oxide or the immobilizing substance, and a resin may be added in order to adjust the viscosity and improve the coating property. . As this resin, known resins such as acrylic resins, cellulose resins, alkyd resins, melamine resins, epoxy resins, etc. can be widely used. Since they must be removed by heat treatment, acrylic resins that decompose at a relatively low temperature. More preferably, cellulose resin or the like is used. The resin content is appropriately adjusted because the viscosity varies depending on the coating method. It is. For example, when screen printing or applicator method is used, even those with relatively high viscosity can be used. Therefore, the solid content, that is, the sum of metal oxide and resin, is contained in the electron emission source composition at 1 to 70% by weight. It is preferable. On the other hand, when spray printing or the like is used, one having a low viscosity can be applied, and it is preferable that the electron emission source composition contains 1 to 30% by weight of a solid content. Further, in order to improve the conductivity of the composition, a conductive material such as metal fine particles or conductive carbon may be mixed. These additives are not particularly limited, and if they are used in the preparation of ordinary organic paints, the addition ratio may be determined as appropriate according to the type and amount of the metal oxide and the immobilizing substance to be used. Just do it.
[0029] 上記の方法により、力ソード電極上に形成された金属酸化物を含む電子放出部に 活性化処理することにより本発明の冷陰極電子源を得る。活性化処理としては前述 のとおり、テープピーリング処理や、高電界印加処理、レーザー光による照射処理等 を用いることができる力 実用面では高電界印加処理やレーザー光による照射処理 が好ましい。高電界処理に用いる電界強度は、 SV/ ^ m以上が好ましぐより好まし くはノ ノレス幅 5〜2000 s、繰り返し周波数 l〜1000Hzのパルス高電界である。レ 一ザ一による照射処理の場合、用いるレーザー光の波長は、 150〜550nmの範囲 が好ましぐより好ましくは 248nmの KrFエキシマレーザーである。又、レーザーのェ ネルギー密度は 10〜200mj/cm2、パルス幅は 5〜20ns、パルスの繰り返し周波 数は;!〜 100Hz、このときのパワー密度は 0· ;!〜 20MW/cm2、より好ましくは 0. 7 〜8· 6MW/cm2、さらに好ましくは、 3〜7MW/cm2である。 The cold cathode electron source of the present invention is obtained by activating the electron emission portion containing the metal oxide formed on the force sword electrode by the above method. As described above, as the activation treatment, a tape peeling treatment, a high electric field application treatment, an irradiation treatment with a laser beam, and the like can be used. From a practical aspect, a high electric field application treatment or an irradiation treatment with a laser beam is preferable. The electric field strength used for high electric field treatment is higher than SV / ^ m, more preferably a pulse high electric field with a no-less width of 5 to 2000 s and a repetition frequency of 1 to 1000 Hz. In the case of laser irradiation, the wavelength of the laser beam used is preferably in the range of 150 to 550 nm, more preferably 248 nm KrF excimer laser. The laser energy density is 10 to 200 mj / cm 2 , the pulse width is 5 to 20 ns, the pulse repetition frequency is !! to 100 Hz, and the power density at this time is 0 ·;! To 20 MW / cm 2 preferably 0. 7 ~8 · 6MW / cm 2 , more preferably a 3~7MW / cm 2.
[0030] さらに本発明は、上記冷陰極電子源を用いた FED及び FELである。本発明の冷 陰極電子源は、上記のとおり基板上に塗布法により金属酸化物層を形成することが でき、大面積の冷陰極電子源を製造するのに適しているため、大面積の冷陰極電子 源を必要とする大画面 FED及び FEL用のェミッタ材料として好適なものである。  Furthermore, the present invention relates to FED and FEL using the cold cathode electron source. The cold cathode electron source of the present invention can form a metal oxide layer on a substrate by a coating method as described above, and is suitable for manufacturing a large area cold cathode electron source. It is suitable as an emitter material for large screen FEDs and FELs that require a cathode electron source.
[0031] 本発明の FELは、導電性基板上に金属酸化物の冷陰極を形成し、対向に蛍光膜 を塗布したガラス等の透明基板を配置して真空封止することにより得られる。蛍光膜 の導電性を確保し光の反射率を高めるために、蛍光膜表面は金属 A1や金属 Znなど の導電性の蒸着膜を備えていても良い。また本発明の FELは、駆動電圧、パルス幅 の調整や、必要により電極間にゲート電極を構成することでランプの調光を容易に行 えるため、照明器具として優れていると言える。 [0031] The FEL of the present invention is obtained by forming a metal oxide cold cathode on a conductive substrate, placing a transparent substrate such as glass coated with a fluorescent film on the opposite side, and vacuum-sealing it. In order to ensure the conductivity of the fluorescent film and increase the light reflectance, the surface of the fluorescent film may be provided with a conductive vapor deposition film such as metal A1 or metal Zn. In addition, the FEL of the present invention has a driving voltage and a pulse width. It can be said that it is excellent as a lighting fixture because the lamp can be easily dimmed by adjusting the gate and, if necessary, forming a gate electrode between the electrodes.
図 5は、二極型 FELの構成例であり、図 6は、ゲート電極を有する FELの構成例で ある。図 5及び図 6において、 9は蛍光体層、 10は A1蒸着膜、 11は電子放出部、 12 は力ソード電極、 13は絶縁性支持基盤、 14はガラス、 15は電源、 16は絶縁層、 17 はゲート電極である。  FIG. 5 is a configuration example of a bipolar FEL, and FIG. 6 is a configuration example of a FEL having a gate electrode. 5 and 6, 9 is a phosphor layer, 10 is an A1 vapor deposition film, 11 is an electron emission part, 12 is a force sword electrode, 13 is an insulating support base, 14 is glass, 15 is a power source, and 16 is an insulating layer. 17 are gate electrodes.
[0032] 以下、本発明を実施例により説明するが、本発明はそれら実施例に限定されるもの ではない。  [0032] Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
実施例  Example
[0033] 実施例 1 [0033] Example 1
平均長軸径 1. 68 111、平均短軸径 0. 13 mのルチル型針状酸化チタン(FTL — 100、石原産業製)を、アンモニアガス中で 800°Cの温度で 1時間焼成し、体積抵 抗 0. 021 Ω cmの針状導電性酸化チタンを得た。この針状導電性酸化チタンの X線 回折測定を行ったところ、ルチル型の二酸化チタンのピークに加えてチタンの低級酸 化物及び/又は窒化物のピークも得られた。また、電子顕微鏡観察により、元の針 状酸化チタンの形状を保持していることを確認した。さらに元素分析の結果、窒素/ 酸素 =0. 705 (モル)と窒素を含有していることがわ力 た。得られた針状導電性酸 化チタンを Agペーストと混合して ITO基板に塗布し、表面にテープを貼った後に剥 がす所謂テープピーリング処理によって、一部の針状導電性酸化チタンが基板に垂 直に配向した本発明の冷陰極電子源を作製した。 ZnO蛍光膜が塗布された ITO基 板を、前記冷陰極電子源と 125 πιの間隔で平行に配置した。そして蛍光膜をァノ ード、冷陰極電子源を力ソードとなるように電源を接続して 10_5Paに真空封止し、電 界放出型発光素子(素子 A)を得た。素子 Aに電圧を印加すると蛍光膜が発光し、電 界 5V/ mからェミッションが開始することが確認された。ェミッションした電子による 電流を測定し、フアウラ——ノルドハイム(Fowler— Nordheim)の式によって F— N プロットをとると 5V/ m以上の電界領域で直線性を示したため、前記ェミッションが 電界放出であることが確認された。 Rutile acicular titanium oxide (FTL — 100, manufactured by Ishihara Sangyo) with an average major axis diameter of 1.68 111 and an average minor axis diameter of 0.13 m was calcined in ammonia gas at a temperature of 800 ° C for 1 hour. Acicular conductive titanium oxide having a volume resistance of 0.021 Ωcm was obtained. X-ray diffraction measurement of this acicular conductive titanium oxide revealed that in addition to the rutile-type titanium dioxide peak, a lower oxide and / or nitride peak of titanium was also obtained. Also, it was confirmed by electron microscope observation that the original shape of acicular titanium oxide was retained. Furthermore, as a result of elemental analysis, it was found that nitrogen / oxygen = 0.705 (mol) and nitrogen were contained. The obtained acicular conductive titanium oxide is mixed with an Ag paste and applied to an ITO substrate, and a portion of the acicular conductive titanium oxide is formed on the substrate by a so-called tape peeling process in which a tape is applied and then peeled off. A cold cathode electron source of the present invention oriented vertically was prepared. An ITO substrate coated with a ZnO phosphor film was placed in parallel with the cold cathode electron source at an interval of 125 πι. The fluorescent film of § node, a cold cathode electron source and connect the power such that the force cathode vacuum sealed to 10_ 5 Pa, to obtain electric field emission type light-emitting device (device A). It was confirmed that when a voltage was applied to device A, the phosphor film emitted light and emission started from an electric field of 5 V / m. When the current due to the emitted electrons was measured and the F—N plot was taken according to the Fowler-Nordheim equation, the linearity was shown in the electric field region of 5 V / m or more. It was confirmed that there was.
[0034] 実施例 2 平均長軸径 5. 15 111、平均短軸径 0. 27 mの針状酸化チタン(FTL— 300、石 原産業製)を、アンモニアガス中で 800°Cの温度で 1時間焼成し、体積抵抗 0. 044 Ω cmの針状導電性酸化チタンを得た。実施例 1と同様の方法で本発明の冷陰極電 子源及び電界放出型発光素子(素子 B)を作製し F— Nプロットをとると 5V/ m以 上の電界領域で直線性を示したため、前記ェミッションが電界放出であることが確認 された。 [0034] Example 2 Baked acicular titanium oxide (FTL-300, manufactured by Ishihara Sangyo) with an average major axis diameter of 5. 15 111 and an average minor axis diameter of 0.27 m in ammonia gas at a temperature of 800 ° C for 1 hour. Acicular conductive titanium oxide having a resistance of 0.044 Ωcm was obtained. Since the cold cathode electron source and the field emission light emitting device (device B) of the present invention were produced in the same manner as in Example 1, and the FN plot was taken, linearity was shown in the electric field region of 5 V / m or more. It was confirmed that the emission was field emission.
[0035] 実施例 3 [0035] Example 3
針状導電性酸化チタンに代えて平均長軸径 1. lO ^ m、平均短軸径 0. 015 111 の針状導電性酸化スズ (FS— 10P、石原産業製)を用いた以外は実施例 1と同様に 処理して本発明の冷陰極電子源及び電界放出型発光素子(素子 C)を作成し F— N プロットをとると 5V/ m以上の電界領域で直線性を示したため、前記ェミッションが 電界放出であることが確認された。  Example in which acicular conductive tin oxide (FS-10P, manufactured by Ishihara Sangyo Co., Ltd.) with an average major axis diameter of 1. lO ^ m and an average minor axis diameter of 0.0015 111 was used instead of acicular conductive titanium oxide The cold cathode electron source and the field emission light-emitting device (device C) of the present invention were prepared by the same treatment as in Fig. 1, and the F—N plot showed linearity in an electric field region of 5 V / m or more. It was confirmed that the mission was field emission.
[0036] 実施例 4 [0036] Example 4
平均長軸径 1. 68 111、平均短軸径 0. 13 111の針状形状を有する酸化チタン(F TL 100、石原産業製)を水中に分散し、この分散液中に A1基板を沈めて静置する ことで、 A1基板上に針状酸化チタンを堆積した。この導電性を有さない針状酸化チタ ン膜に波長 248nmの KrFエキシマレーザーを 3MW/cm2のパワー密度、パルス幅 20nsでワンショット照射し、本発明の冷陰極電子源を作製した。 ZnO蛍光膜が塗布 された ITO基板を、前記冷陰極電子源と 250 mの間隔で平行に配置した。そして 蛍光膜をアノード、冷陰極電子源を力ソードとなるように電源を接続して 10_5Paに真 空封止し、電界放出型発光素子 (試料 D)を得た。 Disperse titanium oxide (F TL 100, manufactured by Ishihara Sangyo), which has an average major axis diameter of 1.68 111 and an average minor axis diameter of 0.113 111, in water and submerge the A1 substrate in this dispersion. By allowing it to stand, acicular titanium oxide was deposited on the A1 substrate. A cold cathode electron source of the present invention was produced by irradiating this non-conductive acicular titanium oxide film with a KrF excimer laser with a wavelength of 248 nm at a power density of 3 MW / cm 2 and a pulse width of 20 ns. An ITO substrate coated with a ZnO phosphor film was placed in parallel with the cold cathode electron source at an interval of 250 m. And a phosphor layer anode, a cold cathode electron source and connect the power such that the force cathode sealed vacuum sealed 10_ 5 Pa, to obtain a field emission light-emitting device (Sample D).
[0037] 試料 Dに電圧を印加すると蛍光膜が発光し、電界 1. SV/ ^ mからェミッションが 開始することが確認された。ェミッションした電子による電流を測定し、フアウラ一一ノ ノレドハイム(Fowler— Nordheim)の式によって F— Nプロットをとると 1 · 5V/ μ m以 上の電界領域で直線性を示したため、前記ェミッションが電界放出であることが確認 された。又、電界 SV/ ^ mにおけるェミッション電流は lO^mA/cm2であった。 [0037] It was confirmed that when a voltage was applied to sample D, the phosphor film emitted light, and emission started from an electric field of 1. SV / ^ m. The current due to the emitted electrons was measured, and when the F—N plot was taken by the Fowler-Nordheim equation, linearity was shown in the electric field region of 1.5 V / μm or more. It was confirmed that the mission was field emission. In addition, E mission current in the electric field SV / ^ m was lO ^ mA / cm 2.
[0038] 実施例 5  [0038] Example 5
レーザー光のパワー密度を 7MW/cm2とすること以外は実施例 1と同様にして本 発明の冷陰極電子源 (試料 E)を得た。試料 Eに電圧を印加すると電界が 2V/ μ m でェミッションが開始し、 F— Nプロットからこのェミッションがフィールドェミッションで あることが確認された。電界 mにおけるェミッション電流は ImA/cm2であつ た。 Except that the power density of the laser beam is 7 MW / cm 2 , this An inventive cold cathode electron source (sample E) was obtained. When voltage was applied to sample E, the emission started at an electric field of 2 V / μm, and it was confirmed from the FN plot that this emission was a field emission. The emission current in the electric field m was ImA / cm 2 .
[0039] 試料 D及び Eの、印加電圧とェミッション電流密度の関係を表すグラフを図 7に、試 料 D及び Eの、 F— Nプロットを示したグラフを図 8に示す。  [0039] A graph showing the relationship between the applied voltage and the emission current density of Samples D and E is shown in Fig. 7, and a graph showing the FN plot of Samples D and E is shown in Fig. 8.
[0040] 実施例 6 [0040] Example 6
平均長さ 1. 68 111、平均径 0. 13 mの針状形状をした酸化チタン(FTL— 100 、石原産業製)と平均粒子径 1. 1 mのガラスパウダーとを 1 : 0. 12の重量比で、分 散剤を添加したトルエンと n—ブタノールの混合溶液中に分散し、アクリル樹脂を添 カロして塗料化し、アプリケーターを用いて ITOガラス基板上に塗布した。塗料組成物 中の有機物を、窒素雰囲気中 500°Cで一時間焼成して除去した。得られた酸化チタ ンの膜と 125 mの間隔で ITO基板を平行に配置した。酸化チタン膜が力ソード、対 向側の ITO基板がアノードとなるように電源を接続し 10_5Paに真空封止した。得られ た電極間に 3. 5kV、パルス幅 167 s、繰り返し周波数 60Hzのパルス高電界を 1秒 間印加して活性化処理を行い、本発明の冷陰極電子源を得た。 An average length of 1.68 111, an average diameter of 0.13 m of needle-shaped titanium oxide (FTL-100, manufactured by Ishihara Sangyo) and an average particle diameter of 1.1 m of glass powder In a weight ratio, it was dispersed in a mixed solution of toluene and n-butanol to which a dispersing agent was added, and an acrylic resin was added to form a paint, which was applied onto an ITO glass substrate using an applicator. Organic substances in the coating composition were removed by baking at 500 ° C. for 1 hour in a nitrogen atmosphere. An ITO substrate was placed in parallel with the obtained titanium oxide film at a distance of 125 m. Titanium oxide film force Sword, ITO substrate pairs direction side vacuum sealing to connect the power 10_ 5 Pa so that the anode. An activation treatment was performed by applying a pulse high electric field of 3.5 kV, a pulse width of 167 s, and a repetition frequency of 60 Hz for 1 second between the obtained electrodes to obtain the cold cathode electron source of the present invention.
[0041] 対向の ITO電極を ZnO蛍光膜を付けた電極に取替え、前述と同様の方法で真空 封止することで本発明の冷陰極電子源を用いた電界放出発光素子 (試料 F)を得た 。試料 Fに電圧を印加すると ZnO蛍光膜が一様に発光し、電界 3. SV/ ^ mからエミ ッシヨンが開始することが確認された。ェミッションした電子による電流を測定し、ファ ウラ^——ノルドハイム(Fowler—Nordheim)の式によって F— Nプロットをとると 3· 5 V/ m以上の電界領域で直線性を示したため、前記ェミッションが電界放出である ことが確認された。又、電界 SV/ ^ mにおけるェミッション電流は 10_2mA/cm2で あった。 [0041] The field-emission light-emitting device (sample F) using the cold cathode electron source of the present invention is obtained by replacing the opposing ITO electrode with an electrode with a ZnO phosphor film and vacuum-sealing in the same manner as described above. The When a voltage was applied to sample F, the ZnO phosphor film emitted light uniformly, and it was confirmed that emission started from an electric field of 3. SV / ^ m. When the current due to the emitted electrons was measured and the F—N plot was taken using the Fowler-Nordheim equation, linearity was shown in the electric field region of 3.5 V / m or more. It was confirmed that the mission was field emission. In addition, E mission current in the electric field SV / ^ m was 10_ 2 mA / cm 2.
[0042] 試料 Fの、印加電圧とェミッション電流密度の関係を表すグラフを図 9に、試料 Fの [0042] Fig. 9 is a graph showing the relationship between the applied voltage and the emission current density of Sample F.
、 ZnO蛍光膜の発光パターンを図 10に示す。 The light emission pattern of the ZnO phosphor film is shown in FIG.
[0043] 実施例 7 [0043] Example 7
平均長さ 1. 68 111、平均径 0. 13 mの針状形状をした酸化チタン(FTL— 100 、石原産業製)と平均粒子径 1. 1 mのガラスパウダーとを 1 : 0. 12の重量比で、分 散剤を添加したトルエンと n—ブタノールの混合溶液中に分散し、アクリル樹脂を添 カロして塗料化し、アプリケーターを用いて ITOガラス基板上に塗布した。塗料組成物 中の有機物を、窒素雰囲気中 400°Cで一時間焼成して除去した。この導電性を有さ ない針状酸化チタン膜に波長 248nmの KrFエキシマレーザーを lMW/cm2の低 いパワー密度、ノ ルス幅 20nsでワンショット照射し、冷陰極電子源を得た。 ZnO蛍光 膜が塗布された ITO基板を、前記冷陰極電子源と 125 mの間隔で平行に配置し た。そして蛍光膜をアノード、冷陰極電子源を力ソードとなるように電源を接続して 10 _5Paに真空封止し、電界放出型発光素子 (試料 G)を得た。試料 Gに電圧を印加し た力 8V/ mまで電圧を上げてもェミッションは確認されなかった。 Titanium oxide with an average length of 1.68 111 and an average diameter of 0.13 m (FTL—100) (Manufactured by Ishihara Sangyo Co., Ltd.) and glass powder with an average particle size of 1.1 m in a weight ratio of 1: 0.12 in a mixed solution of toluene and n-butanol with a dispersant added, and acrylic resin added. The coating was made into a paint and applied onto an ITO glass substrate using an applicator. Organic substances in the coating composition were removed by baking at 400 ° C. for 1 hour in a nitrogen atmosphere. A cold cathode electron source was obtained by irradiating this non-conductive acicular titanium oxide film with a KrF excimer laser with a wavelength of 248 nm at a low power density of lMW / cm 2 and a 20 ns pulse width. An ITO substrate coated with a ZnO phosphor film was placed in parallel with the cold cathode electron source at an interval of 125 m. Then, a power source was connected so that the fluorescent film was an anode and the cold cathode electron source was a force sword, and vacuum sealing was performed at 10 to 5 Pa to obtain a field emission light emitting device (Sample G). Emission was not confirmed even when the voltage was increased to 8 V / m when the voltage was applied to Sample G.
[0044] 実施例 8 [0044] Example 8
基板を、アルミニウムを蒸着したガラス板とすること以外は実施例 7と同様にして、本 発明の冷陰極電子源 (試料 H)を得た。試料 Hに電圧を印加すると電界が 3V/ μ m でェミッションが開始し、 F— Nプロットからこのェミッションがフィールドェミッションで あることが確認された。電界 mにおけるェミッション電流は 10_2mA/cm2で あった。 A cold cathode electron source (sample H) of the present invention was obtained in the same manner as in Example 7 except that the substrate was a glass plate on which aluminum was deposited. When a voltage was applied to sample H, emission started at an electric field of 3 V / μm, and it was confirmed from the FN plot that this emission was a field emission. E mission current in field m was 10_ 2 mA / cm 2.
[0045] これらの実施例から、本発明の冷陰極電子源はェミッション特性が飛躍的に向上し たものであることがわかった。  [0045] From these examples, it was found that the cold cathode electron source of the present invention has greatly improved emission characteristics.
産業上の利用可能性  Industrial applicability
[0046] 本発明の冷陰極電子源は、電界放出型フラットパネルディスプレイ (FED)、電界 放出型ランプ (FEU等の電子線励起による発光現象を利用した機器に組み込まれ る冷陰極電子源に有用である。 [0046] The cold cathode electron source of the present invention is useful for a field emission flat panel display (FED), a field emission lamp (a cold cathode electron source incorporated in a device utilizing a light emission phenomenon by electron beam excitation such as FEU). It is.
図面の簡単な説明  Brief Description of Drawings
[0047] [図 1]この発明の実施の形態における電子放出部の構造である。  [0047] FIG. 1 shows the structure of an electron emission portion in an embodiment of the present invention.
[図 2A]活性化を行って!/、な!/、電子放出部の電子顕微鏡撮影像である。  FIG. 2A is an electron microscopic image of the electron emission part after activation! /, NA! /.
[図 2B]活性化を行って!/、な!/、電子放出部の電子顕微鏡撮影像である。  FIG. 2B is an electron microscopic image of the electron emission part after activation! /, NA! /.
[図 3A]この発明の実施の形態における、活性化した電子放出部の電子顕微鏡撮影 像である。 園 3B]この発明の実施の形態における、活性化した電子放出部の電子顕微鏡撮影 像である。 FIG. 3A is an electron micrograph image of an activated electron emission portion in an embodiment of the present invention. 3B] An electron microscopic image of an activated electron emission portion in the embodiment of the present invention.
園 4]この発明の実施の形態における高電界印加処理装置の構成である。 4] This is the configuration of the high electric field application processing apparatus in the embodiment of the present invention.
園 5]この発明の実施の形態における二極型 FELの構成例である。 Sono 5] This is a configuration example of a bipolar FEL in an embodiment of the present invention.
[図 6]この発明の実施の形態における、ゲート電極を有する FELの構成例である。 園 7]試料 D及び Eの、印加電圧とェミッション電流密度の関係を表すグラフである。  FIG. 6 shows a configuration example of a FEL having a gate electrode in the embodiment of the present invention. 7] A graph showing the relationship between the applied voltage and emission current density for samples D and E.
[図 8]試料 D及び Eの、 F— Nプロットを示したグラフである。  FIG. 8 is a graph showing FN plots of Samples D and E.
園 9]試料 Fの、印加電圧とェミッション電流密度の関係を表すグラフである。 9] This is a graph showing the relationship between the applied voltage and emission current density of Sample F.
[図 10]試料 Fの、 ZnO蛍光膜の発光パターンである。  FIG. 10 shows the emission pattern of the ZnO phosphor film of Sample F.

Claims

請求の範囲 The scope of the claims
[I] 力ソード電極およびその上に形成された電子放出部を有する冷陰極電子源にぉレヽ て、電子放出部に活性化処理された金属酸化物を用いることを特徴とする冷陰極電 子源。  [I] A cold cathode electron, wherein a metal oxide activated in the electron emission portion is used in a cold cathode electron source having a force sword electrode and an electron emission portion formed thereon. source.
[2] 活性化処理された金属酸化物の一部が固定化物質によって力ソード電極に固定さ れて!/、ることを特徴とする請求項 1に記載の冷陰極電子源。  2. The cold cathode electron source according to claim 1, wherein a part of the activated metal oxide is fixed to the force sword electrode by an immobilizing substance! /.
[3] 金属酸化物が、活性化処理により力ソード電極上に疎な領域を有して堆積している ことを特徴とする請求項 1に記載の冷陰極電子源。 3. The cold cathode electron source according to claim 1, wherein the metal oxide is deposited with a sparse region on the force sword electrode by activation treatment.
[4] 金属酸化物が、活性化処理により疎領域と密領域の境界において突出している部 分を、少なくとも一つ有することを特徴とする請求項 3に記載の冷陰極電子源。 4. The cold cathode electron source according to claim 3, wherein the metal oxide has at least one portion protruding at a boundary between the sparse region and the dense region by the activation treatment.
[5] 金属酸化物が酸化チタン及び/又は酸化錫であることを特徴とする請求項 1に記 載の冷陰極電子源。 5. The cold cathode electron source according to claim 1, wherein the metal oxide is titanium oxide and / or tin oxide.
[6] 金属酸化物の形状が針状であることを特徴とする請求項 1に記載の冷陰極電子源 6. The cold cathode electron source according to claim 1, wherein the metal oxide has a needle shape.
Yes
[7] 金属酸化物が針状導電性酸化チタン及び/又は針状導電性酸化スズであることを 特徴とする請求項 1に記載の冷陰極電子源。  7. The cold cathode electron source according to claim 1, wherein the metal oxide is acicular conductive titanium oxide and / or acicular conductive tin oxide.
[8] 針状導電性酸化チタンが針状二酸化チタンを導電処理したものであることを特徴と する請求項 7に記載の冷陰極電子源。 8. The cold cathode electron source according to claim 7, wherein the acicular conductive titanium oxide is a conductive treatment of acicular titanium dioxide.
[9] 導電処理がアンモニアガス雰囲気中での加熱還元処理であることを特徴とする請 求項 8に記載の冷陰極電子源。 [9] The cold cathode electron source according to claim 8, wherein the conductive treatment is a heat reduction treatment in an ammonia gas atmosphere.
[10] 力ソード電極の仕事関数と電子放出部の金属酸化物の仕事関数との差が 2eV以 下であることを特徴とする請求項 1に記載の冷陰極電子源。 10. The cold cathode electron source according to claim 1, wherein the difference between the work function of the force sword electrode and the work function of the metal oxide in the electron emission portion is 2 eV or less.
[I I] 力ソード電極の仕事関数と電子放出部の金属酸化物の仕事関数との差が 0. 5eV 以下あることを特徴とする請求項 1に記載の冷陰極電子源。  2. The cold cathode electron source according to claim 1, wherein the difference between the work function of the [I I] force sword electrode and the work function of the metal oxide in the electron emission portion is 0.5 eV or less.
[12] 力ソード電極がアルミニウム、または表面にアルミニウムの層を有する基板であり、 金属酸化物が酸化チタンであることを特徴とする請求項 1に記載の冷陰極電子源。  12. The cold cathode electron source according to claim 1, wherein the force sword electrode is aluminum or a substrate having an aluminum layer on the surface, and the metal oxide is titanium oxide.
[13] 力ソード電極が表面に導電性酸化チタンの層を有する基板であり、金属酸化物が 酸化チタンであることを特徴とする請求項 1に記載の冷陰極電子源。 13. The cold cathode electron source according to claim 1, wherein the force sword electrode is a substrate having a conductive titanium oxide layer on its surface, and the metal oxide is titanium oxide.
[14] 固定化物質がガラス組成物であることを特徴とする請求項 2に記載の冷陰極電子 源。 [14] The cold cathode electron source according to [2], wherein the immobilizing substance is a glass composition.
[15] 活性化処理がレーザー光による照射処理であることを特徴とする請求項 1に記載の 冷陰極電子源。  15. The cold cathode electron source according to claim 1, wherein the activation treatment is an irradiation treatment with a laser beam.
[16] 活性化処理が高電界印加処理であることを特徴とする、請求項 1に記載の冷陰極 電子源。  16. The cold cathode electron source according to claim 1, wherein the activation process is a high electric field application process.
[17] 力ソード電極上に形成された金属酸化物を活性化処理する工程を含むことを特徴 とする冷陰極電子源の製造方法。  [17] A method for producing a cold cathode electron source, comprising a step of activating a metal oxide formed on a force sword electrode.
[18] 活性化処理が高電界印加処理であることを特徴とする請求項 17に記載の冷陰極 電子源の製造方法。 18. The method for producing a cold cathode electron source according to claim 17, wherein the activation treatment is a high electric field application treatment.
[19] 印加する高電界の強度が 8V/ a m以上のノ ルス電界であることを特徴とする請求 項 18に記載の冷陰極電子源の製造方法。  19. The method for producing a cold cathode electron source according to claim 18, wherein the intensity of the applied high electric field is a Norse electric field of 8 V / am or more.
[20] 高電界印加処理が、力ソード電極から一定の間隔をおいてアノード電極を配置し、 アノード電極と力ソード電極の何れ力、、若しくはその両方を走査しながら行うことを特 徴とする請求項 17に記載の冷陰極電子源の製造方法。 [20] It is characterized in that the high electric field application process is performed while the anode electrode is arranged at a certain interval from the force sword electrode and scanning is performed with either or both of the anode electrode and the force sword electrode. The method for producing a cold cathode electron source according to claim 17.
[21] 活性化処理がレーザー光による照射処理であることを特徴とする請求項 17に記載 の冷陰極電子源の製造方法。 21. The method for manufacturing a cold cathode electron source according to claim 17, wherein the activation treatment is an irradiation treatment with a laser beam.
[22] レーザー光の照射密度が 0. ;!〜 20MW/cm2の範囲にあることを特徴とする請求 項 21に記載の冷陰極電子源の製造方法。 22. The method for producing a cold cathode electron source according to claim 21, wherein the irradiation density of the laser beam is in the range of 0.;! To 20 MW / cm 2 .
[23] 金属酸化物と固定化物質とを含むペーストを力ソード電極上に塗布する工程を含 むことを特徴とする請求項 1に記載の冷陰極電子源の製造方法。 23. The method for manufacturing a cold cathode electron source according to claim 1, further comprising a step of applying a paste containing a metal oxide and an immobilizing substance on the force sword electrode.
[24] 塗布方法が、スクリーン印刷、スプレー法、ディップ法、スピンコート法、ドクターブレ ード法、アプリケーター法の何れかであることを特徴とする請求項 23に記載の冷陰極 電子源の製造方法。 [24] The cold cathode electron source production according to claim 23, wherein the coating method is any one of a screen printing method, a spraying method, a dipping method, a spin coating method, a doctor blade method, and an applicator method. Method.
[25] 金属酸化物と固定化物質とを含むことを特徴とする電子放出源組成物。  [25] An electron emission source composition comprising a metal oxide and an immobilizing substance.
[26] 固定化物質がガラス組成物であることを特徴とする請求項 25に記載の電子放出源 組成物。 26. The electron emission source composition according to claim 25, wherein the immobilizing substance is a glass composition.
[27] 請求項 1に記載の冷陰極電子源を用いた電界放出型フラットパネルディスプレイ。 [28] 請求項 1に記載の冷陰極電子源を用いた電界放出型ランプ。 27. A field emission flat panel display using the cold cathode electron source according to claim 1. 28. A field emission lamp using the cold cathode electron source according to claim 1.
PCT/JP2007/073507 2006-12-06 2007-12-05 Cold-cathode electron source, its manufacturing method, and light-emitting element using same WO2008069243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008548314A JPWO2008069243A1 (en) 2006-12-06 2007-12-05 Cold cathode electron source, manufacturing method thereof, and light emitting device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006329187 2006-12-06
JP2006-329187 2006-12-06

Publications (1)

Publication Number Publication Date
WO2008069243A1 true WO2008069243A1 (en) 2008-06-12

Family

ID=39492125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073507 WO2008069243A1 (en) 2006-12-06 2007-12-05 Cold-cathode electron source, its manufacturing method, and light-emitting element using same

Country Status (3)

Country Link
JP (2) JPWO2008069243A1 (en)
TW (1) TWI457966B (en)
WO (1) WO2008069243A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515170A (en) * 2012-06-28 2014-01-15 清华大学 Preparation method for carbon nanotube field emitter
RU2525856C1 (en) * 2013-04-16 2014-08-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Process device for treatment of hollow cold cathode in gas discharge
RU2581610C1 (en) * 2014-12-17 2016-04-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Method of creating anode oxide film of cold cathode of gas laser in direct current glow discharge
RU2713915C1 (en) * 2019-09-11 2020-02-11 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Method of producing oxide film of cold cathode of gas laser in glow discharge of direct current
CN111081504A (en) * 2019-12-10 2020-04-28 深圳先进技术研究院 Field emission cathode and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120636A (en) * 2004-10-19 2006-05-11 Samsung Sdi Co Ltd Composition for forming electron emission source, method for manufacturing electron emission source using the same, and electron emission source

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305405B2 (en) * 1993-03-25 2002-07-22 石原産業株式会社 Rod-shaped fine particle conductive titanium oxide and method for producing the same
US5726524A (en) * 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters
US6495965B1 (en) * 1998-07-21 2002-12-17 Futaba Corporation Cold cathode electronic device
JP2000123714A (en) * 1998-10-19 2000-04-28 Sony Corp Cold cathode field electron emission element, its manufacture, and cold cathode field electron emission display device
US6504292B1 (en) * 1999-07-15 2003-01-07 Agere Systems Inc. Field emitting device comprising metallized nanostructures and method for making the same
JP4043153B2 (en) * 1999-07-30 2008-02-06 双葉電子工業株式会社 Electron emission source manufacturing method, emitter substrate manufacturing method, electron emission source, and fluorescent light emitting display
JP4136211B2 (en) * 1999-08-02 2008-08-20 キヤノン株式会社 Method for producing cylindrical film
US6436221B1 (en) * 2001-02-07 2002-08-20 Industrial Technology Research Institute Method of improving field emission efficiency for fabricating carbon nanotube field emitters
CN1155980C (en) * 2001-11-27 2004-06-30 北京大学 Field emitting cathode and its making process and application
US7455757B2 (en) * 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP2004127730A (en) * 2002-10-03 2004-04-22 Hidetoshi Saito Acicular metal oxide structure and its manufacturing method
JP4083611B2 (en) * 2003-03-25 2008-04-30 三菱電機株式会社 Manufacturing method of cold cathode electron source
JP4678156B2 (en) * 2004-08-11 2011-04-27 ソニー株式会社 Cathode panel conditioning method, cold cathode field emission display device conditioning method, and cold cathode field emission display device manufacturing method
JP4517865B2 (en) * 2005-01-26 2010-08-04 Jfeエンジニアリング株式会社 Method for producing carbon nanotube electrode
JP2006210162A (en) * 2005-01-28 2006-08-10 Stanley Electric Co Ltd Electron beam source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120636A (en) * 2004-10-19 2006-05-11 Samsung Sdi Co Ltd Composition for forming electron emission source, method for manufacturing electron emission source using the same, and electron emission source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515170A (en) * 2012-06-28 2014-01-15 清华大学 Preparation method for carbon nanotube field emitter
CN103515170B (en) * 2012-06-28 2016-04-27 清华大学 The preparation method of field emission body of Nano carbon tube
RU2525856C1 (en) * 2013-04-16 2014-08-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Process device for treatment of hollow cold cathode in gas discharge
RU2581610C1 (en) * 2014-12-17 2016-04-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Method of creating anode oxide film of cold cathode of gas laser in direct current glow discharge
RU2713915C1 (en) * 2019-09-11 2020-02-11 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Method of producing oxide film of cold cathode of gas laser in glow discharge of direct current
CN111081504A (en) * 2019-12-10 2020-04-28 深圳先进技术研究院 Field emission cathode and preparation method thereof
CN111081504B (en) * 2019-12-10 2022-07-05 深圳先进技术研究院 Field emission cathode and preparation method thereof

Also Published As

Publication number Publication date
JP5517369B2 (en) 2014-06-11
JP2013016504A (en) 2013-01-24
JPWO2008069243A1 (en) 2010-03-25
TWI457966B (en) 2014-10-21
TW200842926A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
US7365482B2 (en) Field emission display including electron emission source formed in multi-layer structure
JP5517369B2 (en) Cold cathode electron source, manufacturing method thereof, field emission flat panel display and lamp
JP4932873B2 (en) Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and method of manufacturing self-light-emitting element
JP2008518759A5 (en)
KR20080005603A (en) Low work function cathode
KR20050060287A (en) Method for forming carbon nanotube emitter
JP2006120636A (en) Composition for forming electron emission source, method for manufacturing electron emission source using the same, and electron emission source
JP2003203557A (en) Complex for paste including carbon nanotube and electron emitting element using this complex and method of manufacture
JP7029331B2 (en) Field electron emission film, field electron emission element, light emitting element and their manufacturing method
WO2014034423A1 (en) Field electron emission film, field electron emission element, light emitting element, and method for producing same
JP2010192245A (en) Method of manufacturing emitter, emitter, method of manufacturing field emission light emitting element, field emission light emitting element, and lighting device
KR20090113907A (en) Field emission device with anode coating
KR20070108829A (en) Producing mathod for carbon nanotube film, field emission display using the same
JP2005521217A (en) Field electron emission materials and equipment
JP2010135133A (en) Manufacturing method of cold cathode electron source, and field emission element
JP5444893B2 (en) Nanocarbon material composite substrate manufacturing method, electron-emitting device using the same, and illumination lamp
JP2021089841A (en) Field electron-emitting element and light-emitting element, and manufacturing methods thereof
Ye et al. Application of ZnO nanopillars and nanoflowers to field-emission luminescent tubes
JP7393246B2 (en) Carbon nanotube dispersion liquid, method for manufacturing a field electron emission device using the same, and method for manufacturing a light emitting device
Chung et al. Improvement of lighting uniformity and phosphor life in field emission lamps using carbon nanocoils
JP2010132481A (en) Electron emission material, and cold cathode electron source using the electron emission material
KR20090059992A (en) Method for treatment zno nanowire of field emission devices
KR100637942B1 (en) A field emission display and it&#39;s manufacturing method
KR100623233B1 (en) Fabrication method of the fluorescent powder and fluorescent screen mixed carbonnanotubes for cathode luminescence
CN1790588A (en) Method for making three-electrode flat-type display based on carbon nano-tube field emission array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548314

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850131

Country of ref document: EP

Kind code of ref document: A1