WO2008068972A1 - 管の探傷用追従装置及びこれを用いた管の自動探傷装置 - Google Patents

管の探傷用追従装置及びこれを用いた管の自動探傷装置 Download PDF

Info

Publication number
WO2008068972A1
WO2008068972A1 PCT/JP2007/070890 JP2007070890W WO2008068972A1 WO 2008068972 A1 WO2008068972 A1 WO 2008068972A1 JP 2007070890 W JP2007070890 W JP 2007070890W WO 2008068972 A1 WO2008068972 A1 WO 2008068972A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
flaw detection
detection sensor
displacement
pipe
Prior art date
Application number
PCT/JP2007/070890
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kubota
Yoshiyuki Nakao
Masami Ikeda
Nobuyuki Mori
Hiroshi Sato
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to BRPI0720180-0A priority Critical patent/BRPI0720180B1/pt
Priority to US12/312,962 priority patent/US8104349B2/en
Priority to EP07830624.8A priority patent/EP2088427B1/en
Publication of WO2008068972A1 publication Critical patent/WO2008068972A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the present invention relates to a non-contact type flaw detection in which a flaw detection sensor disposed opposite to an outer surface of a pipe for flaw detection such as a steel pipe accurately follows a pipe rotating in the circumferential direction during flaw detection.
  • TECHNICAL FIELD The present invention relates to a follow-up device, and an automatic tube flaw detection device that enables automatic flaw detection over the entire length of a tube including a tube end portion using the same.
  • flaw detection methods such as an ultrasonic flaw detection method, an eddy current flaw detection method, and a leakage magnetic flux flaw detection method are known as non-destructive inspection methods for tubes.
  • These flaw detection methods generally involve rotating a flaw detection sensor (for example, an ultrasonic probe) relative to the circumferential direction of the tube and moving the flaw detection sensor relative to the axial direction of the tube.
  • a flaw detection sensor for example, an ultrasonic probe
  • the flaw detection sensor relative to the axial direction of the tube.
  • the positional relationship between the tube and the flaw detection sensor that rotate relatively in the circumferential direction during the flaw detection is determined. It is important to keep it constant.
  • the position of the flaw detection sensor (position in the plane perpendicular to the axial direction of the tube) is fixed due to the cross-sectional shape of the tube, vibration during tube conveyance, especially the influence of the bending of the tube at the tube end. Therefore, it is difficult to keep the relative positional relationship between the tube and the flaw detection sensor constant.
  • a flaw detection sensor is attached to a contact-type follow-up device in which a mechanical contact member such as a roller or the like is brought into contact with the pipe mainly in a portion excluding the pipe end. Automatic flaw detection is performed while the sensor follows the fluctuation of the tube position.
  • the ultrasonic probe is manually scanned to conduct ultrasonic flaw detection or magnetic particle flaw detection. Is going.
  • Japanese Patent Application Laid-Open No. 64-38648 discloses a flaw detection sensor (probe) that follows a pipe, and measures the positional relationship between the flaw detection sensor and the pipe.
  • a non-contact displacement meter (displacement sensor) is integrated, and the position of the flaw detection sensor is immediately controlled based on the positional relationship between the two measured by the displacement meter.
  • high tracking accuracy cannot be obtained due to an operation delay that inevitably exists in the positioning means (servo mechanism) of the flaw detection sensor.
  • the present invention has been made to solve the above-described problems of the prior art, and a flaw detection sensor disposed opposite to the outer surface of a pipe for flaw detection in the pipe is provided in the circumferential direction during flaw detection.
  • a flaw detection sensor disposed opposite to the outer surface of a pipe for flaw detection in the pipe is provided in the circumferential direction during flaw detection.
  • the present invention that solves the above-mentioned problem is to detect a tube rotating in the circumferential direction.
  • At least one non-contact type of non-contact measuring device for non-contact measurement of the displacement of the outer surface of the tube.
  • a displacement meter, positioning means for moving the flaw detection sensor in a plane orthogonal to the axial direction of the pipe along the opposing direction of the tube and the flaw detection sensor, and the orthogonal direction orthogonal to the opposing direction; and the positioning Positioning control means for controlling the means, and the positioning control means performs displacement with the non-contact displacement meter based on the positional relationship between the non-contact displacement meter and the flaw detection sensor and the number of rotations of the tube.
  • the positioning means is controlled based on the displacement measured by the non-contact displacement meter and the operation delay time of the positioning means so that the relative position in the direction is substantially constant, and the flaw detection sensor is moved in the facing direction.
  • the portion of the tube whose displacement is measured by the non-contact displacement meter based on the positional relationship between the non-contact displacement meter and the flaw detection sensor and the number of rotations of the tube is the center of rotation of the tube.
  • the positioning means is controlled based on the displacement measured by the non-contact displacement meter and the operation delay time of the positioning means, and the flaw detection sensor is moved along the orthogonal direction.
  • the positioning control means causes the flaw detection sensor to follow the pipe based on the displacement measured by the non-contact displacement meter (the direction in which the flaw detection sensor faces the pipe and the opposite direction).
  • the positioning means for moving the flaw detection sensor is controlled so that a contact member such as a roller does not need to contact the pipe. Even if the end is bent, the flaw detection sensor can follow the entire length of the tube.
  • the displacement of the tube in the facing direction with respect to the flaw detection sensor changes according to the displacement measured by the non-contact displacement meter. More specific description will be given below. For example, when the cross-section in the direction perpendicular to the axial direction of the tube is a perfect circle, the distance to the tube measured by a non-contact displacement meter is displaced when the tube center and the tube rotation center are aligned. Standard (the origin of non-contact displacement gauge).
  • the facing direction of the flaw detection sensor facing the tube center and the tube Is the reference for the displacement in the opposite direction (the origin of the flaw detection sensor in the opposite direction).
  • the absolute value of the displacement (distance from the origin of the non-contact displacement meter) measured by the non-contact displacement meter when the center of the tube and the rotation center of the tube are deviated is the center of the tube and the tube.
  • the portion of the tube whose displacement is measured by the non-contact displacement meter is: A time required to reach a predetermined position on a straight line extending in the opposite direction through the center of rotation of the tube is predicted, and relative to the tube after the predicted time has elapsed in the opposite direction of the flaw detection sensor after the predicted time has elapsed.
  • the flaw detection sensor can be made to follow the pipe with high accuracy.
  • the absolute value of (distance) is the absolute value of the displacement in the orthogonal direction of the tube center with respect to the flaw detection sensor (distance from the origin in the orthogonal direction of the flaw detection sensor) when the tube center and the rotation center of the tube are displaced. Match the value.
  • the portion of the tube whose displacement is measured by the non-contact displacement meter is the center of rotation of the tube.
  • the time to reach a predetermined position on a straight line that passes through the orthogonal direction is predicted, and the relative position of the flaw detection sensor in the orthogonal direction after the prediction time with respect to the tube after the prediction time has elapsed is substantially constant.
  • the displacement measured by a non-contact displacement meter (as described above, the absolute value of this displacement is equal to the absolute value of the displacement in the direction perpendicular to the center of the tube relative to the flaw detection sensor after the predicted time has elapsed). Based on this, the flaw detection sensor is moved along the orthogonal direction, so that the flaw detection sensor can accurately follow the pipe.
  • the non-contact displacement meter and the flaw detection sensor are arranged at different positions along the circumferential direction of the tube, so that immediately based on the displacement measured by the non-contact displacement meter.
  • the positioning means i.e., control the position of the flaw detection sensor
  • the operation delay time of the positioning means mechanical from when the operation start command is sent to the positioning means until the actual operation starts, Since it is configured to take into account the electrical delay time), it is possible to obtain high tracking accuracy.
  • the tube flaw detection follow-up device includes at least two non-contact displacement meters respectively disposed along the facing direction and the orthogonal direction
  • the positioning control means includes the facing direction.
  • the tube whose displacement was measured by the non-contact displacement meter disposed along the facing direction based on the positional relationship between the non-contact displacement meter and the flaw detection sensor disposed along The time until the part reaches a predetermined position on a straight line extending in the opposite direction through the rotation center of the tube is predicted, and the flaw detection sensor after the predicted time has elapsed for the tube after the predicted time has elapsed
  • the positioning means is controlled based on the displacement measured by a non-contact displacement meter arranged along the facing direction and the operation delay time of the positioning means so that the relative position in the facing direction becomes substantially constant.
  • the flaw detection sensor Is moved along the opposite direction, and along the orthogonal direction based on the positional relationship between the non-contact displacement meter and the flaw detection sensor arranged along the orthogonal direction and the number of rotations of the tube.
  • the part of the tube whose displacement was measured by the non-contact displacement meter was The time required to reach a predetermined position on a straight line passing through the center of rotation of the flaw sensor in the orthogonal direction is predicted, and the relative position in the orthogonal direction of the flaw detection sensor after the prediction time has elapsed with respect to the pipe after the prediction time has elapsed.
  • the positioning means is controlled based on a displacement measured by a non-contact displacement meter arranged along the orthogonal direction and an operation delay time of the positioning means so as to be substantially constant, and the flaw detection sensor is moved to the orthogonal direction. It is configured to move along the direction.
  • the flaw detection sensor is moved along the facing direction based on the displacement measured by the non-contact type displacement meter arranged along the facing direction, and at the same time the orthogonal direction.
  • the flaw detection sensor is moved along the orthogonal direction based on the displacement measured by the non-contact displacement meter arranged along the vertical axis.
  • the displacement measurement direction matches the direction in which the flaw detection sensor is moved based on the measured displacement, it can be expected that the flaw detection sensor follows the tube with even higher accuracy.
  • the section of the tube whose displacement in the direction perpendicular to the axial direction of the tube is elliptical and the displacement is measured at a position facing the non-contact displacement meter arranged along the orthogonal direction.
  • the elliptical major axis or minor axis part even if the center of the tube and the center of rotation of the tube are not deviated from each other, the applied force is also deviated (the cross section of the tube is a perfect circle) And the same displacement is measured as when the center and the center of rotation are deviated.
  • the tube part where the displacement was measured is an elliptical long-diameter part
  • the displacement in the direction smaller than the origin of the non-contact displacement meter (negative displacement) is the short-diameter part. Is a displacement in the direction larger than the origin of the non-contact displacement meter (positive displacement). Therefore, if the flaw detection sensor is moved along the orthogonal direction based on the measured displacement, the center of the tube and the rotation center of the tube will be displaced. Even if it is not necessary! /)), The flaw detection sensor will be moved, and the tracking accuracy may deteriorate.
  • the tube flaw detection tracking device includes a pair of non-contact displacement meters arranged to face each other along the orthogonal direction across the tube,
  • the positioning control means is configured to determine the position of the tube whose displacement is measured by the pair of non-contact displacement meters based on the positional relationship between the pair of non-contact displacement meters and the flaw detection sensor and the number of rotations of the tube. Until it reaches a predetermined position on a straight line that passes through the center of rotation of the force tube and extends in the orthogonal direction.
  • the displacement measured by one non-contact displacement meter so that the relative position in the orthogonal direction of the flaw detection sensor after the prediction time has elapsed with respect to the tube after the prediction time has elapsed is predicted.
  • the displacement measured by the other non-contact displacement meter and the operation delay time of the positioning means to control the positioning means, move the flaw detection sensor along the orthogonal direction, and Any one of a pair of non-contact type displacement gauges or other non-contact type displacement gauges, based on the positional relationship between one non-contact type displacement gauge and the flaw detection sensor, and the number of rotations of the tube The time required for the portion of the pipe whose displacement was measured by two non-contact displacement gauges to reach a predetermined position on a straight line passing through the center of rotation of the pipe in the opposite direction is predicted, and the pipe after the predicted time has elapsed.
  • the flaw detection sensor after the predicted time has elapsed
  • the positioning means is controlled based on the displacement measured by any one of the non-contact displacement gauges and the operation delay time of the positioning means so that the relative position in the opposite direction of the support is substantially constant, It is preferable that the flaw detection sensor is configured to move along the facing direction.
  • the flaw detection sensor is moved along the orthogonal direction based on the difference from the displacement measured by the non-contact displacement meter. Therefore, even if the cross section of the tube is elliptical, if the center of the tube and the center of rotation of the tube coincide, the difference in displacement measured by both non-contact displacement gauges will be zero. It is possible to maintain tracking accuracy without moving the sensor along the orthogonal direction.
  • the positioning control means is configured to calculate an outer diameter of the tube based on a displacement measured by the pair of non-contact displacement meters.
  • the pair of non-contact displacement meters provided in the tracking device can be used not only for tracking the tube of the flaw detection sensor but also for calculating the outer diameter of the tube.
  • the outer diameter of the tube is calculated, for example, by calculating the distance to the outer surface of each non-contact displacement gauge based on the displacement measured by each non-contact displacement meter (or each non-contact displacement gauge). Measure the distance to the outer surface of the tube directly with a meter), and determine the outer surface of the tube from each calculated non-contact displacement meter based on the separation distance of each non-contact displacement meter. It is possible to calculate by subtracting the distance to the surface.
  • the non-contact displacement meter for example, an eddy current displacement meter that utilizes the fact that the magnitude of the eddy current generated in the displacement measurement object changes according to the distance to the displacement measurement object can be used. It is.
  • the magnitude of the eddy current also changes depending on the material (specifically, permeability, conductivity, etc.) of the tube that is the object of displacement measurement in the present invention, the displacement measured according to the material of the tube Preferable to correct.
  • the non-contact displacement meter is an eddy current displacement meter
  • the positioning control means corrects the displacement measured by the non-contact displacement meter according to the material of the tube.
  • the positioning means is controlled based on the corrected displacement.
  • an ultrasonic probe can be used as the flaw detection sensor. Then, as the initial position in the orthogonal direction of the ultrasonic probe, setting the position where the outer surface force of the tube received by the ultrasonic probe and the echo intensity of the tube are the highest is set. It is preferable for improving the flaw detection sensitivity.
  • the flaw detection sensor is an ultrasonic probe
  • the positioning control means controls the positioning means with respect to a stationary tube so that the ultrasonic probe is The position is such that the position where the echo intensity from the outer surface of the tube received by the ultrasonic probe is maximized is set as the initial position of the ultrasonic probe.
  • a non-contact type tube that causes a flaw detection sensor disposed opposite to an outer surface of a pipe to detect a pipe such as a steel pipe to accurately follow a pipe rotating in the circumferential direction during flaw detection.
  • a follow-up device for flaw detection and an automatic flaw detection device for a tube that enables automatic flaw detection over the entire length of the tube including the tube end portion.
  • FIG. 1 is a diagram showing a schematic configuration of a tube flaw detection follow-up device according to a first embodiment of the present invention.
  • 2 is a diagram showing a schematic configuration of the positioning means shown in FIG.
  • FIG. 3 is an explanatory diagram for explaining the principle of the follower shown in FIG. 1.
  • FIG. 4 is a front view showing a schematic configuration of a tube flaw detection follow-up device according to a second embodiment of the present invention.
  • FIG. 5 is a front view showing a schematic configuration of a tube flaw detection follow-up device according to a third embodiment of the present invention.
  • FIG. 6 is an explanatory diagram for explaining the principle of the tracking device shown in FIG.
  • FIG. 7 is a graph showing an example of the results of evaluating the tracking accuracy for the examples of the present invention and comparative examples.
  • FIG. 8 is a graph showing another example of the result of evaluating the tracking accuracy for the example of the present invention and the comparative example.
  • FIG. 1 is a diagram showing a schematic configuration of a tube flaw detection follower according to the first embodiment of the present invention.
  • FIG. 1 (a) is a front view (a diagram viewed from the axial direction of the tube), and FIG. (b) shows a side view (viewed from the direction perpendicular to the axial direction of the tube).
  • a tube flaw detection tracking device (hereinafter simply referred to as a “tracking device”) 100 according to the present embodiment 100 is used to detect a tube P rotating in the circumferential direction.
  • the flaw detection sensor 1 that is disposed opposite to the tube P and moves relatively along the axial direction of the tube P (in this embodiment, the tube P moves in the axial direction) is a device that follows the tube P.
  • the flaw detection sensor 1 and the tracking device 100 are fixed without moving in the axial direction of the pipe P.
  • the tube p is supported by the turning roller 5 and is rotated in the circumferential direction and conveyed in the axial direction.
  • the flaw detection sensor 1 is disposed downstream of the pipe P in the transport direction (downstream of the most downstream turning roller 5) and below the pipe P in the vertical direction.
  • the present invention is not limited to this, but the pipe P is not conveyed in the axial direction but only rotated in the circumferential direction.
  • the flaw detection sensor 1 and the follower 100 May be employed in the axial direction of the pipe P.
  • the installation position is not limited to the vertical downward direction of the pipe P, and it can be installed at any position along the circumferential direction of the pipe P as long as there are no restrictions on the installation space.
  • the tracking device 100 is disposed so as to face the outer surface of the tube P, and measures the displacement of the outer surface of the tube P in a non-contact manner.
  • the tracking device 100 faces the tube P and the flaw detection sensor 1.
  • one non-contact displacement meter 2 is arranged on the downstream side in the conveyance direction of the pipe P (downstream side of the most downstream turning roller 5) and above the vertical direction of the pipe P. Yes.
  • the present invention is not limited to this, as long as it is disposed at a position different from the flaw detection sensor 1 and is not limited by a mounting space or the like, it is disposed at an arbitrary position along the circumferential direction of the pipe P. Is possible.
  • the non-contact displacement meter 2 according to the present embodiment preferably has an eddy current type that utilizes the fact that the magnitude of the eddy current generated in the displacement measurement object changes according to the distance to the displacement measurement object. Displacement meter.
  • the positioning means 3 moves the flaw detection sensor 1 of the pipe P along the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction) perpendicular to the axial direction of the pipe P. It is configured to move in a plane perpendicular to the axial direction.
  • positioning means 3A for moving the flaw detection sensor 1 along the Z-axis direction and positioning means 3B for moving along the X-axis direction are provided.
  • the positioning means 3A and the positioning means 3B can adopt the same configuration except that the reciprocating direction of a piston rod 311 described later is different.
  • FIG. 2 is a diagram showing a schematic configuration of the positioning means 3 (3A or 3B) according to the present embodiment.
  • the positioning means 3 according to the present embodiment includes a hydraulic cylinder 31, a hydraulic pump 32, a servo motor 33, a linear scale 34, a servo amplifier 35, and an adder 36.
  • the hydraulic pump 32 is a bidirectional pump that is driven to rotate in both forward and reverse directions by a servo motor 33. By switching the direction of rotation of the hydraulic pump 32, the supply and discharge of the hydraulic fluid to the forward port 31A and the backward port 31B of the hydraulic cylinder 31 are switched.
  • Pressure oil is supplied to port 31A, When the pressure oil is discharged from the port 31B, the piston rod 311 of the hydraulic cylinder 31 moves forward (moves to the right side in FIG. 2), the pressure oil is discharged from the port 31A, and the pressure oil is supplied to the port 31B. Sometimes, the piston rod 311 moves backward (moves to the left in FIG. 2).
  • the flaw detection sensor 1 is attached to the piston rod 311 of the hydraulic cylinder 31. As the piston rod 31 1 reciprocates, the Z-axis direction (in the case of positioning means 3A) or the X-axis direction (in the case of positioning means 3B) ) Will move along.
  • the linear scale 34 is configured to detect an actual displacement of the piston rod 311.
  • the output voltage Ef of the linear scale 34 corresponding to the displacement of the piston rod 311 is fed back to the adder 36, and the input voltage output from the positioning control means 4 (the flaw detection sensor 1 is made to follow the tube P in the Z-axis direction). Or, corresponding to the amount of movement along the X-axis direction) Compared with Ei.
  • the differential voltage between the input voltage Ei and the output voltage Ef is amplified by the servo amplifier 35 and used for driving the servo motor 33.
  • the positioning means 3 is configured to perform so-called servo control, and therefore can perform highly accurate positioning.
  • wear parts such as ball screws and linear bearings are not required, and oil tanks, various pipes, control valves, etc. that are required for general hydraulic actuators are also unnecessary, making them compact and excellent in maintainability. The advantage is obtained.
  • the positioning control means 4 is configured by a general-purpose computer or an appropriate electronic circuit connected thereto.
  • the positioning control means 4 includes a positional relationship between the non-contact displacement meter 2 and the flaw detection sensor 1 (in this embodiment, the non-contact displacement meter 2 and the flaw detection sensor 1 are 180 ° in the circumferential direction of the pipe P.
  • Information such as the position relationship of being spaced apart), the rotation speed of the pipe P, the outer diameter and material of the pipe P, and the operation delay time of the positioning means 3 are input. Such information may be manually input directly to the positioning control means 4, or may be configured to be received from a host process computer.
  • the follow-up accuracy of the flaw detection sensor 1 is enhanced by using the measured value instead of the set value.
  • a pulse generator (PLG) 6 that contacts the outer surface of the pipe P is attached, and the positioning control means 4 determines the output value of the PLG6 and the ratio of the outer diameter of the PLG6 and the outer diameter of the pipe P. It is possible to adopt a configuration for calculating the number of rotations of the pipe P.
  • Turning roller 5 A pulse generator (PLG) 6 that detects the number of rotations is attached to the cylinder, and the positioning control means 4 determines the number of rotations of the pipe from the output value of PLG6 and the ratio of the outer diameter of the turning roller 5 to the outer diameter of the pipe P
  • PLG pulse generator
  • a configuration may be adopted in which Alternatively, a speedometer (not shown) for measuring the peripheral speed of the outer surface of the pipe P is attached, and the positioning control means 4 determines the rotation speed of the pipe P from the output value of the speedometer and the outer diameter of the pipe P.
  • a configuration may be adopted in which
  • the force using the eddy current displacement meter as the non-contact displacement meter 2 The magnitude of the eddy current varies depending on the material of the tube P (such as permeability and conductivity). Therefore, it is preferable to correct the displacement measured with the non-contact displacement meter 2 according to the material of the pipe P. For this reason, in the positioning control means 4, the correction coefficient for the displacement measured by the non-contact displacement meter 2 is stored in advance in the form of a table, for example, for each material of the pipe P. As described above, the material of the pipe P is input to the positioning control means 4.
  • the positioning control unit 4 selects a correction coefficient corresponding to the input material of the pipe P from the table force and multiplies the displacement measured by the non-contact displacement meter 2 by the selected correction coefficient. Correction is performed, and the positioning means 3 is controlled based on the corrected displacement.
  • the position in the X-axis direction of the non-contact displacement meter 2 can be fixed and set, for example, at an intermediate point between a pair of turning rollers 5 arranged in parallel in the X-axis direction.
  • the non-contact displacement meter 2 is attached to an appropriate moving stage that can be moved in the X-axis direction, and the pipe P in a stationary state (below the cross section in the direction orthogonal to the axial direction is close to a perfect circle)
  • the distance to the tube P measured by the non-contact displacement meter 2 is It is also possible to set it to the smallest position (corresponding to the position facing the center of pipe P).
  • the appropriate position of the non-contact displacement meter 2 in the Z-axis direction varies depending on the outer diameter of the pipe P to be inspected. For this reason, for example, the non-contact displacement meter 2 is attached to an appropriate moving stage that can be moved in the Z-axis direction, and the stationary pipe P (disconnected in the direction perpendicular to the axial direction) is The non-contact displacement meter 2 is moved in the Z-axis direction in a state where it is preferable to use a tube P whose surface is close to a perfect circle and has few bends). For example, the distance to the pipe P may be set at a position approximately in the middle of the distance measurement range of the non-contact displacement meter 2. Then, the distance to the pipe P measured by the non-contact displacement meter 2 set in this way is used as the reference (origin) of the displacement, and the distance from the origin is output as the displacement.
  • the initial position of the flaw detection sensor 1 in the X-axis direction can be fixed and set, for example, at an intermediate point between a pair of turning rollers 5 arranged in parallel in the X-axis direction.
  • the position where the echo intensity is maximized may be set as the initial position of the ultrasonic probe.
  • the separation distance between the flaw detection sensor 1 and the pipe P is the outer diameter of the pipe P because the flaw detection sensor 1 is disposed vertically below the pipe P supported by the turning roller 5. Does not change much even if changes.
  • the initial position of the flaw detection sensor 1 in the Z-axis direction can be fixed at a position where a predetermined flaw detection sensitivity can be obtained.
  • flaw detection sensor 1 when flaw detection sensor 1 is arranged vertically above tube P, if the position of flaw detection sensor 1 is fixed, the separation distance between flaw detection sensor 1 and tube P according to the outer diameter of tube P Therefore, it is preferable that the flaw detection sensor 1 is moved along the Z-axis direction according to the outer diameter of the pipe P, and a position that maintains a certain separation distance is set as the initial position.
  • the pipe P which is the actual flaw detection material
  • the positioning control means 4 operates as follows to cause the flaw detection sensor 1 to follow the pipe P.
  • the positioning control means 4 includes a non-contact displacement meter so that the relative position in the Z-axis direction of the flaw detection sensor 1 after the predicted time Taz has elapsed with respect to the pipe P after the predicted time Taz has elapsed. Based on the displacement measured in 2 and the input operation delay time of the positioning means 3A, the positioning means 3A is controlled to move the flaw detection sensor 1 along the Z-axis direction. For example, if the operation delay time of the positioning means 3A is Tba, the positioning control means 4 performs flaw detection with respect to the positioning means 3A after Taz—Tba time has elapsed since the displacement was measured by the non-contact displacement meter 2. An operation start command is issued to move sensor 1 from the initial position in the Z-axis direction by a predetermined amount of movement (outputs voltage Ei (see Fig. 2) corresponding to the amount of movement).
  • the amount of movement of the flaw detection sensor 1 in the Z-axis direction is, for example, that the displacement measured by the non-contact displacement meter 2 is ⁇ (the outer surface of the tube is moved from the origin to the non-contact displacement meter 2 side by ⁇ . ) (Or a value obtained by multiplying ⁇ by a relaxation coefficient k of 0 ⁇ k ⁇ l) in the direction away from the tube. The reason for this will be explained below with reference to FIG.
  • FIG. 3 is an explanatory diagram for explaining the principle of the tracking device according to the present embodiment.
  • the pipe P0 used for setting the position of the non-contact displacement meter 2 described above has a true circular cross section in the direction orthogonal to the axial direction, and the center of the pipe P0 and the rotation of the pipe P0 Consider the case where the center O coincides with the distance to the pipe P0 measured by the non-contact displacement meter 2 as the displacement reference (the origin of the non-contact displacement meter 2).
  • the pipe P0 is used, and the initial position of the flaw detection sensor 1 is set so as to face the center O of the pipe P0.
  • the distance in the Z-axis direction between the flaw detection sensor 1 and the pipe PO is used as a reference for displacement in the Z-axis direction (the origin of the flaw detection sensor 1 in the Z-axis direction).
  • the pipe P that is the actual flaw detection material (the outer diameter is equal to the pipe P0 is assumed to be a true circle) is conveyed below the non-contact displacement meter 2.
  • Tube P immediately after transport is designated pipe P1.
  • the pipe rod will rotate in the circumferential direction.
  • the center C1 of the pipe P1 immediately after the conveyance, and 90 ° Center C2 of tube ⁇ 2 after rotating and center C3 of tube ⁇ 3 after rotating 180 ° are located on the arc around the center of rotation of tube ⁇ , and non-contact displacement meter 2
  • the part A1 of the pipe P1 that measured the displacement of ⁇ at a position opposite to Rotate 180 ° and reaches the position of the part A3 of the pipe ⁇ 3 the displacement in the ⁇ axis direction of the tube ⁇ ⁇ ⁇ ⁇ 3 relative to the flaw detection sensor 1 is The tube is approaching the flaw detection sensor 1).
  • the amount of movement of the flaw detection sensor 1 in the ⁇ axial direction when rotated 180 ° into the state of the tube ⁇ 3 is ⁇ in the direction away from the tube ⁇ 3, so that the ⁇ ⁇ ⁇ of the flaw detection sensor 1 with respect to the tube ⁇ 3 is It is possible to make the relative position in the axial direction substantially constant (substantially equivalent to the relative position in the axial direction of the flaw detection sensor 1 with respect to the tube ⁇ 0 when setting the initial position).
  • the positioning control means 4 is based on the positional relationship between the input non-contact displacement meter 2 and the flaw detection sensor 1 and the number of rotations of the pipe in parallel with the calculation of the predicted time Taz described above.
  • the positioning control means 4 includes a non-contact displacement meter so that the relative position in the X-axis direction of the flaw detection sensor 1 after the predicted time Tax has elapsed with respect to the pipe P after the predicted time Tax has elapsed. Based on the displacement measured in 2 and the input operation delay time of the positioning means 3B, the positioning means 3B is controlled to move the flaw detection sensor 1 along the X-axis direction.
  • the positioning control means 4 performs flaw detection with respect to the positioning means 3B after the lapse of Tax-Tbb time after measuring the displacement with the non-contact displacement meter 2.
  • An operation start command is issued to move sensor 1 in the X-axis direction from the initial position by a predetermined amount of movement (outputs voltage Ei (see Fig. 2) corresponding to the amount of movement).
  • the amount of movement of the flaw detection sensor 1 in the X-axis direction is as shown in FIG. It is set to a (or a value obtained by multiplying ⁇ by a relaxation coefficient k of 0 ⁇ k ⁇ l) in the right direction of the page.
  • the pipe PI part A1 which measured the displacement of ⁇ at the position facing the non-contact displacement meter 2, turned 90 ° and reached the position of the part A2 of pipe P 2, and the pipe for flaw detection sensor 1
  • the displacement in the X-axis direction of the center C2 of P2 is ⁇ (the tube P moves to the right of the page in Fig.
  • the amount of movement of the flaw detection sensor 1 in the X-axis direction when rotated 90 ° to the state of the tube ⁇ 2 is set to ⁇ in the right direction of the page in FIG. It is possible to make the relative position in the axial direction substantially constant (substantially equivalent to the relative position in the X-axis direction of the flaw detection sensor 1 with respect to tube 0 when setting the initial position).
  • a value obtained by multiplying ⁇ by a predetermined relaxation coefficient k of 0 ⁇ k ⁇ l may be set as the movement amount of the flaw detection sensor 1. I like it.
  • the flaw detection sensor 1 disposed opposite to the outer surface of the pipe P for flaw detection is used for the pipe P rotating in the circumferential direction during flaw detection. Can be tracked with high accuracy and automatic flaw detection can be performed over the entire length of the pipe P including the pipe end.
  • FIG. 4 is a front view showing a schematic configuration of a tube flaw detection follow-up device according to a second embodiment of the present invention.
  • the tracking device 100A according to the present embodiment is arranged opposite to the outer surface of the pipe P to detect the pipe P rotating in the circumferential direction, as in the first embodiment.
  • This is a device that causes the flaw detection sensor 1 that moves relatively along the axial direction of P to follow the pipe P.
  • the tracking device 100A includes at least two (two in the present embodiment) non-contact displacement meters 2A and 2B disposed along the Z-axis direction and the X-axis direction, respectively. ing.
  • the position of the non-contact displacement meter 2B is, for example, mounted on an appropriate moving stage that can move the non-contact displacement meter 2B in the Z-axis direction, and the stationary pipe P (axial direction) on the turning roller 5.
  • the non-contact displacement gauge 2B is moved in the Z-axis direction with the tube P having a cross-section close to a perfect circle and a small bend in the direction perpendicular to the It is possible to set the position where the distance to the pipe P measured by 2B in total is the smallest (corresponding to the position facing the center of the pipe P).
  • the position of the non-contact displacement meter 2A can be set similarly to the first embodiment.
  • the positioning control means 4 is based on the non-contact displacement meter 2A and the flaw detection sensor 1 arranged along the Z-axis direction and the non-contact based on the rotational speed of the tube P.
  • the part A1 of the pipe P whose displacement was measured by the equation displacement meter 2A, reached a predetermined position on the straight line extending in the Z-axis direction through the rotation center of the pipe P (for example, the position A3 rotated 180 °). Predict time.
  • the positioning control means 4 measures the non-contact displacement meter 2A so that the relative position in the Z-axis direction of the flaw detection sensor 1 after the predicted time has elapsed with respect to the pipe P after the predicted time has elapsed.
  • the positioning means 3A is controlled based on the displacement and positioning means 3 (specifically, positioning means 3A for moving the flaw detection sensor 1 along the Z-axis direction) to control the flaw detection sensor 1 Is moved along the Z-axis direction.
  • the positioning control means 4 is based on the non-contact displacement meter 2B and the flaw detection sensor 1 arranged along the X-axis direction and the non-contact displacement based on the rotational speed of the tube P.
  • the positioning control means 4 measures the non-contact displacement meter 2B so that the relative position in the X-axis direction of the flaw detection sensor 1 after the predicted time has elapsed with respect to the pipe P after the predicted time has elapsed.
  • Displacement and positioning means 3 Specifically, the flaw detection sensor 1 is moved along the X-axis direction.
  • the positioning means 3B is controlled based on the operation delay time of the positioning means 3B) to cause the flaw detection sensor 1 to move along the X-axis direction.
  • the flaw detection sensor 1 is based on the displacement measured by the non-contact displacement meter 2A disposed along the Z-axis direction! Is moved along the Z-axis direction, and the flaw detection sensor 1 is moved along the X-axis direction based on the displacement measured by the non-contact displacement meter 2B arranged along the X-axis direction. .
  • the flaw detection sensor is more accurate than the follower 100 according to the first embodiment. 1 can be expected to follow the tube.
  • FIG. 5 is a front view showing a schematic configuration of a tube flaw detection follow-up device according to a third embodiment of the present invention.
  • the tracking device 100B according to the present embodiment is disposed opposite to the outer surface of the pipe P in order to detect the pipe P rotating in the circumferential direction, as in the first and second embodiments.
  • the tracking device 100B includes a pair of non-contact type displacement meters 2C and 2D arranged to face each other along the X-axis direction with the tube P interposed therebetween.
  • the position of the non-contact displacement gauges 2C, 2D is, for example, mounted on an appropriate moving stage that can move the non-contact displacement gauges 2C, 2D integrally or individually in the Z-axis direction.
  • the non-contact displacement gauges 2C and 2D Z are placed in a state where a stationary tube P (preferably a tube P whose cross section perpendicular to the axial direction is close to a perfect circle and has little bending) is placed on It is possible to set it to the position where the distance to the pipe P measured by the non-contact displacement meter 2C, 2D is the smallest (corresponding to the position facing the center of the pipe P) by moving it in the axial direction. .
  • a stationary tube P preferably a tube P whose cross section perpendicular to the axial direction is close to a perfect circle and has little bending
  • the positioning control means 4 includes a pair of non-contact displacement meters based on the positional relationship between the pair of non-contact displacement meters 2C, 2D and the flaw detection sensor 1 and the rotational speed of the tube P.
  • Parts A4 and A2 of the pipe P where the displacement is measured in 2C and 2D are the predetermined positions on the straight line that passes through the rotation center of the pipe P and extends in the X-axis direction (for example, the position A2 and part A2 where the part A4 is rotated 180 °) 18 Predict the time to reach position A4) rotated 0 °.
  • the positioning control means 4 includes one non-contact displacement meter 2C so that the relative position in the X-axis direction of the flaw detection sensor 1 after the predicted time has elapsed with respect to the pipe P after the predicted time has elapsed.
  • the positioning means 3 (specifically, positioning means 3B for moving the flaw detection sensor 1 along the X-axis direction) and the difference between the displacement measured in step 2 and the displacement measured by the other non-contact displacement meter 2D
  • the positioning means 3B is controlled on the basis of the operation delay time, and the flaw detection sensor 1 is moved along the X-axis direction.
  • FIG. 6 is an explanatory diagram for explaining the principle of the tracking device according to the present embodiment.
  • the pipe PO used for the position setting of the non-contact displacement gauges 2C and 2D described above has a true circular cross section in the direction perpendicular to the axial direction, and the pipe P0
  • the center of C and the rotation center O of pipe P0 are the same, and the distance to pipe PO measured by non-contact displacement gauges 2C and 2D is the displacement standard (the origin of non-contact displacement gauges 2C and 2D)
  • the initial position of the flaw detection sensor 1 is set, the case where the pipe P0 is used and the initial position of the flaw detection sensor 1 is set so as to face the center O of the pipe P0 is considered.
  • pipe P (the center C of pipe P coincides with the rotation center O, and the cross section is elliptical) like the pipe P0 after non-contact.
  • Fig. 6 (a) it is assumed that the elliptical long diameter parts A4 and A2 face the non-contact displacement gauges 2C and 2D, respectively (see Fig. 6 (a)).
  • Pipe P in this state is called pipe P2.
  • the tube P 2 rotates 180 °, and the portion A4 of the tube P2 reaches the position facing the non-contact displacement meter 2D, and the position A2 of the tube P 2 reaches the position facing the non-contact displacement meter 2C.
  • the pipe P in this state is called pipe P4).
  • the displacement of the part A4 of the pipe P2 measured with one non-contact displacement meter 2C is the difference between the center of the pipe P2 and the center of rotation O of the pipe P2.
  • the displacement of ⁇ When the amount of movement of the flaw detection sensor 1 in the X-axis direction when the tube P4 is in the state of the tube P4 is set, the center C of the tube P and the rotation center O of the tube P are actually misaligned. Even if it is not (therefore, it is not necessary to move the flaw detection sensor 1 in the X-axis direction), the flaw detection sensor 1 is moved, and the tracking accuracy may be deteriorated.
  • the pipe rod which is the actual flaw detection material, has an outer diameter equal to that of the pipe rod.
  • device amount
  • the displacement of the tube ⁇ 2 measured by the non-contact displacement meter 2C is ⁇
  • the displacement of the tube ⁇ ⁇ 2 measured by the non-contact displacement meter 2D is ⁇ .
  • the amount of movement of the flaw detection sensor 1 in the X-axis direction when it is rotated 180 ° from the state of tube ⁇ 2 to the state of tube ⁇ 4 is set to ⁇ ⁇ in the left direction of the page of FIG. It is possible to make the relative position of the flaw detection sensor 1 relative to the X axis direction substantially constant (substantially the same as the relative position of the flaw detection sensor 1 relative to the tube 0 when setting the initial position).
  • the use of ⁇ as the amount of movement of the flaw detection sensor 1 in the X-axis direction is not limited to the tube P having an elliptical cross section as shown in Fig. 6 (a), as shown in Fig. 6 (b).
  • the movement amount of the flaw detection sensor 1 is set to a value obtained by multiplying Mx by a predetermined relaxation coefficient k of 0 ⁇ k ⁇ 1, as described in the first embodiment. It is preferable to set as
  • the positioning control means 4 includes the positional relationship between one of the non-contact displacement gauges 2C and 2D and the flaw detection sensor 1, and the rotational speed of the tube P. And Based on any of the above-mentioned forces, one non-contact displacement meter 2C or 2D, the position A4, A2 of the pipe P is a straight line extending in the Z-axis direction through the center of rotation of the pipe P. The time to reach a predetermined position (for example, position A1 where part A4 is rotated 90 ° or position A3 where part A2 is rotated 90 °) is predicted.
  • a predetermined position for example, position A1 where part A4 is rotated 90 ° or position A3 where part A2 is rotated 90 °
  • the positioning control means 4 is one of the non-contact type displacements so that the relative position in the Z-axis direction of the flaw detection sensor 1 after the predicted time has passed with respect to the pipe P after the predicted time has passed is substantially constant.
  • the positioning means 3A is controlled based on the displacement measured by the meter and the operation delay time of the positioning means 3 (specifically, the positioning means 3A for moving the flaw detection sensor 1 along the Z-axis direction). Move sensor 1 along the Z-axis.
  • the positioning control means 4 is preferable! /, As an aspect, calculates the outer diameter of the pipe P based on the displacement measured by the pair of non-contact displacement meters 2C, 2D. Possible configuration. Specifically, for the outer diameter of the pipe P, for example, the distance to the pipe P measured by the non-contact displacement gauges 2C and 2D is subtracted from the separation distance of the non-contact displacement gauges 2C and 2D, respectively. It can be calculated by S. As described above, the positions of the non-contact displacement meters 2C and 2D are set so as to face each other along the X-axis direction with the center of the initial setting pipe P0 interposed therebetween.
  • the center of the pipe P is the opposite direction of the non-contact displacement gauges 2C and 2D (non- When it is shifted in the Z-axis direction from the straight line connecting the contact displacement meters 2C and 2D), the measured outer diameter of the pipe P geometrically calculated as described above depends on the amount of deviation described above. Errors occur. Specifically, the larger the deviation amount, the smaller the measured outer diameter of the pipe P than the actual outer diameter of the pipe P. Also, if the above-mentioned deviations are the same, geometrically, the smaller the actual outer diameter of the pipe P, the larger the error.
  • the outer diameter measurement obtained according to the above deviation and the approximate outer diameter (design value, etc.) of the pipe P is obtained.
  • the power to correct the value for example, adding a predetermined correction value.
  • the positioning control means 4 is configured to record the outer diameter measurement value and the position of the flaw detection sensor 1 in the Z-axis direction for one pipe P in time series.
  • a correction value to be added to the outer diameter measurement value is stored in advance in a table format, for example, for each of the deviation amount of the center of the pipe P and the outer diameter design value of the pipe P.
  • the position in the Z-axis direction of the flaw detection sensor 1 at a certain time corresponds to the above deviation amount of the center of the tube P at the same time if the flaw detection sensor 1 has high tracking accuracy.
  • the positioning control means 4 calculates the deviation amount of the center of the tube P at each time based on the recorded position of the flaw detection sensor 1 at each time at the time, and the calculated deviation amount and the input.
  • the correction value corresponding to the design value of the outer diameter of the pipe P is sequentially selected from the table force, and the correction value is added to the recorded outer diameter measurement value at the same time. As described above, by correcting the recorded outer diameter value at each time, it is possible to maintain the outer diameter measurement accuracy even if the pipe P has a position variation in the Z-axis direction such as bending. .
  • a test for evaluating the tracking accuracy of the flaw detection sensor 1 was performed using the tracking device 100B (configuration of the third embodiment described above) shown in FIG.
  • a tube having an outer diameter (design value) of 73 mm and an eccentricity of the tube center with respect to the rotation center of the tube by a bending force S of about ⁇ 3 mm (hereinafter referred to as a bent tube) was used.
  • the part of the bent pipe whose displacement was measured with the non-contact displacement gauges 2C and 2D rotated 180 °. Estimate the time to reach the specified position. Then, the displacement measured by the non-contact displacement meter 2C and the non-contact displacement meter 2C are set so that the relative position in the X-axis direction of the flaw detection sensor 1 after the predicted time has elapsed with respect to the bent pipe after the predicted time has elapsed.
  • the flaw detection sensor 1 was moved along the X-axis direction by controlling the positioning means 3B based on the difference between the two and the operation delay time of the positioning means 3B.
  • the portion of the bent tube whose displacement was measured by the non-contact displacement meter 2D was rotated 90 °. Predict the time to reach the position. Then, the displacement measured by the non-contact displacement meter 2D and the positioning means 3A so that the relative position in the Z-axis direction of the flaw detection sensor 1 after the predicted time has elapsed with respect to the bent pipe after the predicted time has elapsed
  • the positioning means 3A was controlled on the basis of the operation delay time and the flaw detection sensor 1 was moved along the Z-axis direction.
  • the portion of the bent tube whose displacement was measured by the non-contact displacement meter 2D was rotated 180 °. Estimate the time to reach the position. Then, the displacement measured by the non-contact displacement meter 2D and the positioning are determined so that the relative position in the X-axis direction of the flaw detection sensor 1 after the predicted time has elapsed with respect to the bent pipe after the predicted time has elapsed.
  • the positioning means 3B was controlled based on the operation delay time of the means 3B, and the flaw detection sensor 1 was moved along the X-axis direction.
  • a micrometer as a contact displacement meter (Z-axis contact displacement meter) was attached to flaw detection sensor 1, and the needle tip was brought into contact with the bottom of the bent tube. Then, for Examples 1-1, 1-2 and Comparative Example 1, the displacement of the needle tip of the micrometer was measured.
  • the measured displacement should always be constant if the flaw detection sensor 1 completely follows the position change in the Z-axis direction of the bent pipe as it rotates in the circumferential direction. Therefore, the smaller the fluctuation range of the displacement measured with the Z-axis contact displacement meter, the higher the follow-up accuracy in the Z-axis direction.
  • a micrometer as a contact displacement meter (X-axis contact displacement meter) was attached to the flaw detection sensor 1, and the needle tip was brought into contact with the side surface of the bent tube in the X-axis direction.
  • the displacement of the needle tip of the micrometer was measured.
  • the flaw detection sensor 1 completely follows the position fluctuation in the X-axis direction of the bent pipe accompanying the rotation in the circumferential direction, the measured displacement should be always constant. Therefore, the smaller the fluctuation range of the displacement measured with the X-axis contact displacement meter, the higher the tracking accuracy in the X-axis direction.
  • Fig. 7 is a graph showing the results of evaluation of the following accuracy.
  • Fig. 7 (a) shows the result of Comparative Example 1
  • Fig. 7 (b) shows the result of Example 12
  • Fig. 7 (c) shows the result.
  • Example 1 shows the result of 1.
  • the displacement measured with the non-contact displacement meters 2C and 2D is plotted along with the displacement measured with the Z-axis contact displacement meter and the X-axis contact displacement meter.
  • Example 11 (FIG. 7 (c)
  • Example 12 (FIG. 7 (b)
  • the variation range of displacement in Example 1 1 was smaller because the cross section of the bent pipe also contained some elliptical components that were not completely perfect circles. This is thought to be a factor.
  • the configuration of Example 11 (the configuration of the third embodiment described above) functions effectively, and the influence of the ellipse component is reduced, so that the tracking accuracy is increased.
  • a test for evaluating the tracking accuracy of the flaw detection sensor 1 was performed under the same conditions as in Example 12 except that an elliptic tube was used as the flaw detection material.
  • the test was performed under the same conditions as in Comparative Example 1 except that an elliptical tube was used as the flaw detection material.
  • Fig. 8 is a graph showing the evaluation results of the tracking accuracy.
  • Fig. 8 (a) shows the result of Comparative Example 2
  • Fig. 8 (b) shows the result of Example 2-2
  • Fig. 8 (c) shows the result.
  • the results of Example 2-1 are shown.
  • the displacement measured with the non-contact displacement meters 2C and 2D is plotted along with the displacement measured with the Z-axis contact displacement meter and the X-axis contact displacement meter.
  • the fluctuation range of the displacement measured by the X-axis contact displacement meter (graph indicated by a thick solid line) is 0.098mm in Comparative Example 2 (Fig. 8 (a)).
  • Example 2-1 (FIG. 8 (c)
  • Example 2-2 (FIG. 8 (b)
  • the displacement fluctuation range measured with the X-axis contact displacement meter of Comparative Example 2 is fixed to the position of flaw detection sensor 1! There is a slight variation in displacement due to this). For this reason, the tracking accuracy in the X-axis direction cannot be compared between the example and the comparative example.
  • Example 2-1 has a smaller displacement fluctuation range than Example 2-2, and the follow-up accuracy is improved. That was a component.
  • This result shows that the configuration of the third embodiment described above is particularly effective in the present invention in order for the flaw detection sensor 1 to follow a tube having an elliptical cross section.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 追従装置100は、非接触式変位計2と、探傷センサ1を管Pの軸方向に直交する平面内で移動させる位置決め手段3と、位置決め手段を制御する位置決め制御手段4とを備える。位置決め制御手段は、変位計及び探傷センサの位置関係と、管の回転数とに基づいて、変位計で変位を測定した管の部位が、管の回転中心を通りZ軸方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する探傷センサのZ軸方向の相対位置が略一定となるように、変位計で測定した変位と位置決め手段の動作遅れ時間とに基づいて位置決め手段を制御し、探傷センサをZ軸方向に沿って移動させる。位置決め制御手段は、X軸方向についても同様の制御を行う。

Description

明 細 書
管の探傷用追従装置及びこれを用いた管の自動探傷装置
技術分野
[0001] 本発明は、鋼管などの管を探傷するために管の外表面に対向配置される探傷セン サを、探傷時に周方向に回転する管に精度良く追従させる非接触式の管の探傷用 追従装置、及びこれを用いて管端部を含む管の全長に亘る自動探傷を可能にする 管の自動探傷装置に関する。
背景技術
[0002] 管の非破壊検査方法として、超音波探傷法、渦流探傷法、漏洩磁束探傷法等の各 種の探傷方法が知られている。これらの探傷方法は、一般的に、探傷センサ (例えば 、超音波探触子等)を管の周方向に相対的に回転させると共に、探傷センサを管の 軸方向に相対的に移動させることにより実施される。これら探傷方法においては、探 傷感度を一定に保っために、探傷時に周方向に相対的に回転する管と探傷センサ との位置関係(管の軸方向に直交する平面内での位置関係)を一定に保つことが重 要である。
[0003] しかし、管の断面形状や、管の搬送時の振動、特に管端では管の曲がりの影響等 により、探傷センサの位置(管の軸方向に直交する平面内での位置)を固定したので は、管と探傷センサとの相対的な位置関係を一定に保つことは困難である。
[0004] そこで、従来の探傷方法では、主として管端部を除く部分について、例えばローラ ゃシユー等の機械的な接触部材を管に接触させる接触式の追従装置に探傷センサ を取り付けることにより、探傷センサを管の位置変動に追従させながら自動探傷を行 つている。一方、接触部材が破損する虞があることから接触式追従装置の適用が困 難である管端部については、手動で超音波探触子を走査して超音波探傷を行ったり 、磁粉探傷を行っている。
[0005] しかし、接触式追従装置は、管の回転数(回転速度)を大きくすると、接触部材が管 力、ら離れ易くなつて探傷センサの追従精度が悪化するため、管の回転数を制限せざ るを得ず、探傷効率が悪くなるという問題がある。また、接触部材を管に接触させる必 要があるため、メンテナンスに手間を要したり、接触部材の破損が生じる虞があるとい う問題がある。また、管端部についての手動での超音波探傷や磁粉探傷は、作業に 手間を要し探傷効率が悪い他、特に磁粉探傷では検出したきずの定量化が困難で あるという問題もある。
[0006] このため、上記のような接触部材を有しない非接触式の構成であって、探傷センサ を管の全長に亘つて追従させることが可能な追従装置の開発が望まれている。
[0007] これまでにも、非接触式の追従装置として、例えば、 日本国特開昭 64— 38648号 公報、 日本国特開平 5— 265559号公報、 日本国特開 2001— 208730号公報に記 載の装置が提案されている。
[0008] しかしな力 Sら、 日本国特開昭 64— 38648号公報に記載の装置は、管に追従させる 探傷センサ (探触子)と、探傷センサ及び管の位置関係を測定するための非接触式 変位計 (変位センサ)とが一体化されており、変位計で測定した両者の位置関係に基 づいて、直ちに探傷センサの位置を制御する構成である。このため、探傷センサの位 置決め手段(サーボ機構)に不可避的に存在する動作遅れに起因して、高い追従精 度を得ることができないという問題がある。換言すれば、追従精度を高めるには、探 傷時の管の回転数を極めて小さくする必要があり、探傷効率が悪化するという問題が ある。
[0009] また、 日本国特開平 5— 265559号公報や日本国特開 2001— 208730号公報に 記載の装置は、静止(周方向に未回転)状態の管に探傷センサを追従させる (位置 決めする)構成であるため、管が周方向に回転することにより、探傷センサと管との相 対位置が刻一刻変化するような場合に適用することは困難である。
発明の開示
[0010] 本発明は、斯カ、る従来技術の問題を解決するためになされたものであり、管を探傷 するために管の外表面に対向配置される探傷センサを、探傷時に周方向に回転す る管に精度良く追従させる非接触式の管の探傷用追従装置、及びこれを用いて管端 部を含む管の全長に亘る自動探傷を可能にする管の自動探傷装置を提供すること を課題とする。
[0011] 前記課題を解決するべぐ本発明は、周方向に回転する管を探傷するために管の 外表面に対向配置され管の軸方向に沿って相対的に移動する探傷センサを管に追 従させる追従装置であって、管の外表面の変位を非接触で測定する少なくとも 1つの 非接触式変位計と、管及び前記探傷センサの対向方向、並びに、該対向方向に直 交する直交方向に沿って、前記探傷センサを管の軸方向に直交する平面内で移動 させる位置決め手段と、前記位置決め手段を制御する位置決め制御手段とを備え、 前記位置決め制御手段は、前記非接触式変位計及び前記探傷センサの位置関係 と、管の回転数とに基づいて、前記非接触式変位計で変位を測定した管の部位が、 管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時 間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサ の前記対向方向の相対位置が略一定となるように、前記非接触式変位計で測定した 変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し 、前記探傷センサを前記対向方向に沿って移動させると共に、前記非接触式変位計 及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記非接触式変位 計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線 上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該 予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるよう に、前記非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに 基づレ、て前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移 動させることを特徴とする管の探傷用追従装置を提供するものである。
[0012] 斯かる発明によれば、位置決め制御手段が、非接触式変位計で測定した変位に基 づいて、探傷センサが管に追従するように(管に対する探傷センサの対向方向及び 該対向方向に直交する直交方向の相対位置が略一定となるように)、探傷センサを 移動させる位置決め手段を制御する構成であり、ローラゃシユー等の接触部材を管 に接触させる必要がないため、たとえ管端部に曲がりが生じていても管の全長に探 傷センサを追従させることが可能である。
[0013] また、仮に、管の周方向への回転の中心(管の回転中心)が一定であって、管の中 心と管の回転中心とがずれている場合を考えると、管の周方向への回転に伴って、 管の中心は管の回転中心周りの円弧上を移動することになる。そして、仮に、管の軸 方向に直交する方向の断面が真円形である場合を考えると、非接触式変位計に対 向する位置で変位を測定した管の部位が、管の回転中心を通り前記対向方向(管と 探傷センサとの対向方向)に延びる直線上の所定位置に到達したとき、探傷センサ に対する管の前記対向方向の変位は、前記非接触式変位計で測定した変位に応じ て変化する。以下、より具体的に説明する。例えば、管の軸方向に直交する方向の 断面が真円形であり、管の中心と管の回転中心とがー致している場合に非接触式変 位計で測定される管までの距離を変位の基準 (非接触変位計の原点)とする。同様 に、管の軸方向に直交する方向の断面が真円形であり、管の中心と管の回転中心と がー致している場合に管の中心に正対する探傷センサと管との前記対向方向の距 離を前記対向方向の変位の基準 (探傷センサの対向方向の原点)とする。このとき、 管の中心と管の回転中心とがずれている場合に非接触式変位計で測定される変位( 前記非接触変位計の原点からの距離)の絶対値は、管の中心と管の回転中心とがず れている場合の探傷センサに対する管の対向方向の変位 (前記探傷センサの対向 方向の原点からの距離)の絶対値に一致する。従って、本発明によれば、非接触式 変位計及び探傷センサの位置関係と、管の回転数(回転速度)とに基づいて、非接 触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延 びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に 対する該予測時間経過後の探傷センサの前記対向方向の相対位置が略一定となる ように、非接触式変位計で測定した変位 (前述のように、この変位の絶対値は、予測 時間経過後の探傷センサに対する管の対向方向の変位の絶対値に等しくなる)に基 づいて探傷センサを対向方向に沿って移動させるため、探傷センサを管に精度良く 追従させることが可能である。
同様にして、管の軸方向に直交する方向の断面が真円形であり、管の中心と管の 回転中心とがー致している場合に管の中心に正対する探傷センサの位置を前記直 交方向の変位の基準 (探傷センサの直交方向の原点)とする。このとき、非接触式変 位計に対向する位置で変位を測定した管の部位が、管の回転中心を通り前記直交 方向に延びる直線上の所定位置に到達したとき、管の中心と管の回転中心とがずれ てレ、る場合に非接触式変位計で測定される変位 (前記非接触変位計の原点からの 距離)の絶対値は、管の中心と管の回転中心とがずれている場合の探傷センサに対 する管の中心の直交方向の変位(前記探傷センサの直交方向の原点からの距離)の 絶対値に一致する。従って、本発明によれば、非接触式変位計及び探傷センサの位 置関係と、管の回転数とに基づいて、非接触式変位計で変位を測定した管の部位が 、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの 時間を予測し、該予測時間経過後の管に対する該予測時間経過後の探傷センサの 前記直交方向の相対位置が略一定となるように、非接触式変位計で測定した変位( 前述のように、この変位の絶対値は、予測時間経過後の探傷センサに対する管の中 心の直交方向の変位の絶対値に等しくなる)に基づいて探傷センサを直交方向に沿 つて移動させるため、探傷センサを管に精度良く追従させることが可能である。
[0015] さらに、本発明によれば、非接触式変位計と探傷センサとを管の周方向に沿った異 なる位置に配置することにより、非接触式変位計で測定した変位に基づいて直ちに 位置決め手段を制御(すなわち探傷センサの位置を制御)する必要が無くなる上、位 置決め手段の動作遅れ時間 (位置決め手段に動作開始指令を行ってから実際に動 作を開始するまでの機械的、電気的な遅延時間)をも加味して制御する構成である ため、高い追従精度を得ることが可能である。
[0016] 好ましくは、前記管の探傷用追従装置は、前記対向方向及び前記直交方向に沿つ てそれぞれ配置された少なくとも 2つの非接触式変位計を備え、前記位置決め制御 手段は、前記対向方向に沿って配置された非接触式変位計及び前記探傷センサの 位置関係と、管の回転数とに基づいて、前記対向方向に沿って配置された非接触式 変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる 直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対す る該予測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となる ように、前記対向方向に沿って配置された非接触式変位計で測定した変位と前記位 置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷セ ンサを前記対向方向に沿って移動させると共に、前記直交方向に沿って配置された 非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前 記直交方向に沿って配置された非接触式変位計で変位を測定した管の部位が、管 の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間 を予測し、該予測時間経過後の管に対する前記予測時間経過後の前記探傷センサ の前記直交方向の相対位置が略一定となるように、前記直交方向に沿って配置され た非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づい て前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移動させ る構成とされる。
[0017] 斯カ、る好ましい構成によれば、対向方向に沿って配置された非接触式変位計で測 定した変位に基づいて、探傷センサを対向方向に沿って移動させると共に、直交方 向に沿って配置された非接触式変位計で測定した変位に基づいて、探傷センサを 直交方向に沿って移動させることになる。すなわち、変位の測定方向とこの測定した 変位に基づいて探傷センサを移動させる方向とがー致するため、より一層精度良く 探傷センサが管に追従することが期待できる。
[0018] ところで、例えば、管の軸方向に直交する方向の断面が楕円形であり、前記直交方 向に沿って配置された非接触式変位計に対向する位置で変位を測定した管の部位 が楕円形の長径部又は短径部である場合を考えると、管の中心と管の回転中心とが ずれていなくとも、あた力、も両者がずれている場合 (管の断面が真円形であり、その 中心と回転中心とがずれている場合)と同様の変位が測定される。具体的には、変位 を測定した管の部位が楕円形の長径部である場合には、非接触式変位計の原点より も小さな方向の変位 (負の変位)となり、短径部である場合には、非接触式変位計の 原点よりも大きな方向の変位 (正の変位)となる。従って、この測定した変位に基づい て探傷センサを直交方向に沿って移動させると、管の中心と管の回転中心とがずれ てレ、な!/、(従って、直交方向に探傷センサを移動させる必要がな!/、)場合であっても 探傷センサを移動させることになり、追従精度が悪化する虞がある。
[0019] 上記追従精度の悪化の虞を回避するには、前記管の探傷用追従装置は、管を挟 んで前記直交方向に沿って対向配置された一対の非接触式変位計を備え、前記位 置決め制御手段は、前記一対の非接触式変位計及び前記探傷センサの位置関係と 、管の回転数とに基づいて、前記一対の非接触式変位計で変位を測定した管の部 位力 管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するま での時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷 センサの前記直交方向の相対位置が略一定となるように、一方の非接触式変位計で 測定した変位と他方の非接触式変位計で測定した変位との差と、前記位置決め手段 の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記 直交方向に沿って移動させると共に、前記一対の非接触式変位計又は他の非接触 式変位計の内の何れか 1つの非接触式変位計及び前記探傷センサの位置関係と、 管の回転数とに基づいて、前記何れ力、 1つの非接触式変位計で変位を測定した管 の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達す るまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記 探傷センサの前記対向方向の相対位置が略一定となるように、前記何れか 1つの非 接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前 記位置決め手段を制御し、前記探傷センサを前記対向方向に沿って移動させる構 成とすることが好ましい。
[0020] 斯カ、る好ましい構成によれば、管を挟んで直交方向に沿って対向配置された一対 の非接触式変位計の内、一方の非接触式変位計で測定した変位と他方の非接触式 変位計で測定した変位との差に基づいて、探傷センサを直交方向に沿って移動させ ることになる。従って、仮に管の断面が楕円形であっても、管の中心と管の回転中心 とが一致する場合には、両非接触式変位計で測定した変位の差は 0となるため、探 傷センサを直交方向に沿って移動させることなぐ追従精度を維持することが可能で ある。
[0021] 好ましくは、前記位置決め制御手段は、前記一対の非接触式変位計で測定した変 位に基づいて、管の外径を算出する構成とされる。
[0022] 斯カ、る好ましい構成によれば、追従装置が備える一対の非接触式変位計を探傷セ ンサの管への追従のみならず、管の外径算出にも利用できるため、別途の外径測定 装置を設ける必要が無くなる点で好都合である。なお、管の外径は、例えば、各非接 触式変位計で測定した変位に基づいて各非接触式変位計力 管の外表面までの距 離を算出し (或いは、各非接触式変位計で管の外表面までの距離を直接測定し)、 各非接触式変位計の離間距離から、前記算出した各非接触式変位計から管の外表 面までの距離をそれぞれ減算することによって算出することが可能である。
[0023] 非接触式変位計としては、例えば、変位測定対象までの距離に応じて、変位測定 対象に生じる渦電流の大きさが変化することを利用した渦電流式変位計を用いること が可能である。ここで、渦電流の大きさは、本発明における変位測定対象である管の 材質 (具体的には、透磁率や導電率など)によっても変化するため、管の材質に応じ て測定した変位を補正することが好ましレ、。
[0024] 従って、好ましくは、前記非接触式変位計は、渦電流式変位計であり、前記位置決 め制御手段は、管の材質に応じて前記非接触式変位計で測定した変位を補正し、 該補正後の変位に基づいて前記位置決め手段を制御する構成とされる。
[0025] 探傷センサとしては、例えば、超音波探触子を用いることが可能である。そして、超 音波探触子の直交方向の初期位置として、超音波探触子で受信される管の外表面 力、らのエコー強度が最も大きくなる位置を設定することが、超音波探触子の探傷感度 を高める上で好ましい。
[0026] 従って、好ましくは、前記探傷センサは、超音波探触子であり、前記位置決め制御 手段は、静止状態の管に対して前記位置決め手段を制御して、前記超音波探触子 を前記直交方向に沿って移動させ、前記超音波探触子で受信される管の外表面か らのエコー強度が最も大きくなる位置を前記超音波探触子の初期位置として設定す る構成とされる。
[0027] なお、前記課題を解決するべぐ本発明は、前記何れかに記載の管の探傷用追従 装置と、前記管の探傷用追従装置によって管に追従する探傷センサとを備えることを 特徴とする管の自動探傷装置としても提供される。
[0028] 本発明によれば、鋼管などの管を探傷するために管の外表面に対向配置される探 傷センサを、探傷時に周方向に回転する管に精度良く追従させる非接触式の管の 探傷用追従装置、及びこれを用いて管端部を含む管の全長に亘る自動探傷を可能 にする管の自動探傷装置が提供される。
図面の簡単な説明
[0029] [図 1]図 1は、本発明の第 1実施形態に係る管の探傷用追従装置の概略構成を示す 図である。 [図 2]図 2は、図 1に示す位置決め手段の概略構成を示す図である。
[図 3]図 3は、図 1に示す追従装置の原理を説明する説明図である。
[図 4]図 4は、本発明の第 2実施形態に係る管の探傷用追従装置の概略構成を示す 正面図である。
[図 5]図 5は、本発明の第 3実施形態に係る管の探傷用追従装置の概略構成を示す 正面図である。
[図 6]図 6は、図 5に示す追従装置の原理を説明する説明図である。
[図 7]図 7は、本発明の実施例及び比較例について、追従精度を評価した結果の一 例を示すグラフである。
[図 8]図 8は、本発明の実施例及び比較例について、追従精度を評価した結果の他 の例を示すグラフである。
発明を実施するための最良の形態
[0030] 以下、添付図面を適宜参照しつつ、本発明の実施形態について説明する。
[0031] <第 1実施形態〉
図 1は、本発明の第 1実施形態に係る管の探傷用追従装置の概略構成を示す図で あり、図 1 (a)は正面図(管の軸方向から見た図)を、図 1 (b)は側面図(管の軸方向に 直交する方向から見た図)を示す。図 1に示すように、本実施形態に係る管の探傷用 追従装置 (以下、適宜「追従装置」と略称する) 100は、周方向に回転する管 Pを探傷 するために管 Pの外表面に対向配置され管 Pの軸方向に沿って相対的に移動(本実 施形態では管 Pが軸方向に移動)する探傷センサ 1を管 Pに追従させる装置である。
[0032] 本実施形態では、探傷センサ 1及び追従装置 100 (具体的には、追従装置 100を 構成する後述の非接触式変位計 2)が管 Pの軸方向に移動せず固定される一方、管 pがターニングローラ 5に支持され、その回転によって周方向に回転すると共に軸方 向に搬送される形態とされている。そして、探傷センサ 1は、管 Pの搬送方向下流側( 最下流のターニングローラ 5よりも下流側)であって管 Pの鉛直方向下方に配置され ている。し力、しながら、本発明はこれに限るものではなぐ管 Pを軸方向には搬送せず 周方向に回転させるのみとする一方、探傷センサ 1及び追従装置 100 (非接触式変 位計 2)を管 Pの軸方向に移動させる構成を採用してもよい。また、探傷センサ 1の設 置位置も管 Pの鉛直方向下方に限られるものではなぐ取付スペース等の制約がな い限り、管 Pの周方向に沿った任意の位置に設置することが可能である。
[0033] 追従装置 100は、管 Pの外表面に対向配置され管 Pの外表面の変位を非接触で測 定する少なくとも 1つの非接触式変位計 2と、管 P及び探傷センサ 1の対向方向、並 びに、対向方向に直交する直交方向に沿って、探傷センサ 1を管 Pの軸方向に直交 する平面内で移動させる位置決め手段 3と、位置決め手段 3を制御する位置決め制 御手段 4とを備えている。
[0034] 本実施形態では、管 Pの搬送方向下流側(最下流のターユングローラ 5よりも下流 側)であって管 Pの鉛直方向上方に 1つの非接触式変位計 2が配置されている。しか しながら、本発明はこれに限るものではなぐ探傷センサ 1と異なる位置に配置する限 りにおいて、また取付スペース等の制約がない限り、管 Pの周方向に沿った任意の位 置に配置することが可能である。なお、本実施形態に係る非接触式変位計 2は、好ま しい構成として、変位測定対象までの距離に応じて、変位測定対象に生じる渦電流 の大きさが変化することを利用した渦電流式変位計とされている。
[0035] 本実施形態に係る位置決め手段 3は、鉛直方向(Z軸方向)、並びに、管 Pの軸方 向に直交する水平方向(X軸方向)に沿って、探傷センサ 1を管 Pの軸方向に直交す る平面内で移動させるように構成されている。本実施形態では、探傷センサ 1を Z軸 方向に沿って移動させるための位置決め手段 3Aと、 X軸方向に沿って移動させるた めの位置決め手段 3Bとがそれぞれ設けられている。なお、位置決め手段 3A及び位 置決め手段 3Bは、後述するピストンロッド 311の往復動の方向が異なる点を除き、同 一の構成を採用可能である。
[0036] 図 2は、本実施形態に係る位置決め手段 3 (3A又は 3B)の概略構成を示す図であ る。図 2に示すように、本実施形態に係る位置決め手段 3は、油圧シリンダ 31、油圧 ポンプ 32、サーボモータ 33、リニアスケール 34、サーボ増幅器 35及び加算器 36を 備えている。油圧ポンプ 32は、サーボモータ 33によって、正逆の両方向に回転駆動 される双方向ポンプとされている。そして、油圧ポンプ 32の回転方向を切り替えること により、油圧シリンダ 31の往動側のポート 31A及び復動側のポート 31Bに対する圧 油の供給と排出とが切り替わるように構成されている。ポート 31Aに圧油が供給され、 ポート 31Bから圧油が排出されるときには、油圧シリンダ 31のピストンロッド 311は往 動(図 2の紙面右側に移動)し、ポート 31Aから圧油が排出され、ポート 31Bに圧油が 供給されるときには、ピストンロッド 311は復動(図 2の紙面左側に移動)する。探傷セ ンサ 1は、油圧シリンダ 31のピストンロッド 311に取り付けられており、ピストンロッド 31 1の往復動に伴い、 Z軸方向(位置決め手段 3Aの場合)又は X軸方向(位置決め手 段 3Bの場合)に沿って移動することになる。
[0037] リニアスケール 34は、ピストンロッド 311の実際の変位を検出するように構成されて いる。ピストンロッド 311の変位に対応するリニアスケール 34の出力電圧 Efは、加算 器 36にフィードバックされ、位置決め制御手段 4から出力された入力電圧(管 Pに追 従させるために探傷センサ 1を Z軸方向又は X軸方向に沿って移動させる移動量に 対応) Eiと比較される。そして、入力電圧 Eiと出力電圧 Efとの差分電圧がサーボ増 幅器 35で増幅され、サーボモータ 33の駆動に供される。
[0038] 以上に説明したように、本実施形態に係る位置決め手段 3は、いわゆるサーボ制御 を行う構成であるため、高精度な位置決めが可能である。また、ボールねじやリニア ベアリング等の摩耗部品が不要である他、一般的な油圧ァクチユエータでは必要とさ れるオイルタンク、各種配管、制御弁等も不要であるため、小型となり且つメンテナン ス性に優れるとレ、う利点が得られる。
[0039] 本実施形態に係る位置決め制御手段 4は、汎用のコンピュータやこれに接続され た適宜の電子回路によって構成される。そして、位置決め制御手段 4には、非接触式 変位計 2と探傷センサ 1との位置関係 (本実施形態では、非接触式変位計 2及び探 傷センサ 1は、管 Pの周方向に 180° 離間して配置された位置関係)、管 Pの回転数 、管 Pの外径や材質、位置決め手段 3の動作遅れ時間等の情報が入力される。これ らの情報は、位置決め制御手段 4に手動で直接入力してもよいし、上位のプロセスコ ンピュータから受信する構成としてもよい。特に、管 Pの回転数については、設定値で はなく実測値を用いた方が、探傷センサ 1の追従精度が高まることが期待できる。こ のため、例えば、管 Pの外表面に接触するパルスジェネレータ(PLG) 6を取り付け、 位置決め制御手段 4が、 PLG6の出力値と、 PLG6の外径と管 Pの外径との比とから 管 Pの回転数を算出する構成を採用することが可能である。また、ターニングローラ 5 にその回転数を検出するパルスジェネレータ(PLG) 6を取り付け、位置決め制御手 段 4が、 PLG6の出力値と、ターニングローラ 5の外径と管 Pの外径との比とから管 の 回転数を算出する構成を採用してもよい。或いは、管 Pの外表面の周速度を測定す る速度計(図示せず)を取り付け、位置決め制御手段 4が、前記速度計の出力値と、 管 Pの外径とから管 Pの回転数を算出する構成を採用してもよい。
[0040] 以下、上述した構成を有する追従装置 100の初期設定及び動作について順次説 明する。
[0041] (1)非接触式変位計の測定値に対する補正係数の設定
前述のように、本実施形態では、非接触式変位計 2として渦電流式変位計を用いて いる力 渦電流の大きさは管 Pの材質 (透磁率や導電率など)によっても変化するた め、管 Pの材質に応じて非接触式変位計 2で測定した変位を補正することが好ましレ、 。このため、位置決め制御手段 4には、非接触式変位計 2で測定した変位に対する 補正係数が、管 Pの材質毎に例えばテーブル形式で予め記憶される。前述のように 、位置決め制御手段 4には、管 Pの材質が入力される。これにより、位置決め制御手 段 4は、前記入力された管 Pの材質に応じた補正係数をテーブル力、ら選択し、非接 触式変位計 2で測定した変位に前記選択した補正係数を乗ずる補正を施して、該補 正後の変位に基づいて位置決め手段 3を制御する。
[0042] (2)非接触式変位計の位置設定
非接触式変位計 2の X軸方向の位置は、例えば、 X軸方向に並設される一対のタ 一ユングローラ 5の中間点に固定して設定することが可能である。或いは、例えば、 非接触式変位計 2を X軸方向に移動させることが可能な適宜の移動ステージに取り 付け、下方に静止状態の管 P (軸方向に直交する方向の断面が真円形に近ぐ且つ 曲がりの少ない管 Pを用いることが好ましい)が配置された状態で非接触式変位計 2 を X軸方向に移動させて、非接触式変位計 2で測定される管 Pまでの距離が最も小さ くなる位置(管 Pの中心に対向する位置に相当)に設定することも可能である。
[0043] 非接触式変位計 2の Z軸方向の適切な位置は、探傷する管 Pの外径に応じて変化 する。このため、例えば、非接触式変位計 2を Z軸方向に移動させることが可能な適 宜の移動ステージに取り付け、下方に静止状態の管 P (軸方向に直交する方向の断 面が真円形に近ぐ且つ曲がりの少ない管 Pを用いることが好ましい)が配置された状 態で非接触式変位計 2を Z軸方向に移動させて、非接触式変位計 2で測定される管 Pまでの距離が非接触式変位計 2の距離測定レンジの例えば略中間となる位置に設 定すればよい。そして、このように位置設定された非接触式変位計 2で測定される管 Pまでの距離が変位の基準 (原点)とされ、原点からの距離が変位として出力されるこ とになる。
[0044] (3)探傷センサの初期位置設定
探傷センサ 1の X軸方向の初期位置は、例えば、 X軸方向に並設される一対のター ユングローラ 5の中間点に固定して設定することも可能である。し力もながら、実際に 探傷感度が最も高くなる位置を検出し、その位置を X軸方向の初期位置として設定 する方が好ましい。このため、例えば、探傷センサ 1として超音波探触子を用いる場 合には、上方に静止状態の管 P (軸方向に直交する方向の断面が真円形に近ぐ且 つ曲がりの少ない管 Pを用いることが好ましい)が配置された状態で位置決め手段 3 を制御して超音波探触子を X軸方向に沿って移動させ、超音波探触子で受信される 管 Pの外表面からのエコー強度が最も大きくなる位置を超音波探触子の初期位置と して設定すればよい。
[0045] 探傷センサ 1と管 Pとの離間距離は、本実施形態の場合、探傷センサ 1がターニン グローラ 5に支持された管 Pの鉛直方向下方に配置されているため、管 Pの外径が変 化してもあまり変化しない。また、探傷センサ 1として超音波探触子を用いる場合には 、管 Pとの離間距離が多少変動しても探傷感度への影響が乏しい。従って、探傷セン サ 1の Z軸方向の初期位置としては、所定の探傷感度が得られる位置に固定して設 定することが可能である。ただし、探傷センサ 1を管 Pの鉛直方向上方に配置するよう な場合には、探傷センサ 1の位置を固定したのでは、管 Pの外径に応じて探傷センサ 1と管 Pとの離間距離が変化するため、管 Pの外径に応じて探傷センサ 1を Z軸方向 に沿って移動させ、一定の離間距離を保持する位置を初期位置として設定すること が好ましい。
[0046] (4)位置決め制御手段 4の動作
上記(1)〜(3)の初期設定の後、実際の被探傷材である管 Pがターニングローラ 5 によって周方向に回転しながら軸方向に搬送される。この際、位置決め制御手段 4は 、以下のように動作して、探傷センサ 1を管 Pに追従させる。
[0047] まず最初に、位置決め制御手段 4は、入力された非接触式変位計 2及び探傷セン サ 1の位置関係(管 Pの周方向に 180° 離間して配置された位置関係)と、管の回転 数とに基づいて、非接触式変位計 2で変位を測定した管 Pの部位力 S、管 Pの回転中 心を通り Z軸方向に延びる直線上の所定位置 (例えば、 180° 回転した位置)に到達 するまでの時間を予測する。例えば、非接触式変位計 2で変位を測定した管 Pの部 位が 180° 回転した位置に到達するまでの時間 Tazは、管 Pの回転数を N (rpm)と すると、 Taz = l/2N (min)と予測される。
[0048] 次に、位置決め制御手段 4は、予測時間 Taz経過後の管 Pに対する予測時間 Taz 経過後の探傷センサ 1の Z軸方向の相対位置が略一定となるように、非接触式変位 計 2で測定した変位と、入力された位置決め手段 3Aの動作遅れ時間とに基づ!/、て 位置決め手段 3Aを制御し、探傷センサ 1を Z軸方向に沿って移動させる。例えば、 位置決め手段 3Aの動作遅れ時間が Tbaであるとすると、位置決め制御手段 4は、非 接触式変位計 2で変位を測定してから Taz— Tba時間経過後に、位置決め手段 3A に対して、探傷センサ 1を初期位置から所定の移動量だけ Z軸方向に移動させる動 作の開始指令を行う (移動量に対応した電圧 Ei (図 2参照)を出力する)。
[0049] 前記探傷センサ 1の Z軸方向への移動量は、例えば、非接触式変位計 2で測定し た変位が α (管 Ρの外表面が原点から αだけ非接触変位計 2側に近づいたことを 意味する)であったとすると、管 Ρから離間する方向に α (或いは、 αに 0<k< lの緩 和係数 kを乗じた値)とされる。以下、この理由について、図 3を参照しつつ説明する
[0050] 図 3は、本実施形態に係る追従装置の原理を説明する説明図である。図 3に示すよ うに、前述した非接触式変位計 2の位置設定の際に用いる管 P0が、軸方向に直交 する方向の断面が真円形であって、管 P0の中心と管 P0の回転中心 Oとが一致して おり、非接触式変位計 2で測定される管 P0までの距離を変位の基準 (非接触変位計 2の原点)とした場合を考える。同様に、前述した探傷センサ 1の初期位置設定の際 にも管 P0を用い、管 P0の中心 Oに正対するように探傷センサ 1の初期位置が設定さ れ、探傷センサ 1と管 POとの Z軸方向の距離を Z軸方向の変位の基準 (探傷センサ 1 の Z軸方向の原点)とした場合を考える。
[0051] 以上の初期設定の後、実際の被探傷材である管 P (外径は管 P0と等しぐ断面は 真円形であるとする)が非接触式変位計 2の下方に搬送されたとする (搬送直後の管 Pを管 P1とする)。例えば、管 Pに曲力 Sりが生じていることにより、管 Pの中心と管 Pの 回転中心 Oとがずれている(ずれ量 = α )とすると、管 Ρの周方向への回転に伴って、 管 Ρの中心は管の回転中心 Ο周りの円弧(半径 = 上を移動することになる。すな わち、図 3に示すように、搬送直後の管 P1の中心 C1と、 90° 回転した後の管 Ρ2の 中心 C2と、 180° 回転した後の管 Ρ3の中心 C3とは、それぞれ管 Ρの回転中心 Ο周 りの円弧上に位置する。そして、非接触式変位計 2に対向する位置で αの変位を 測定した管 P1の部位 A1が、 180° 回転して管 Ρ3の部位 A3の位置に到達したとき、 探傷センサ 1に対する管 Ρ3の Ζ軸方向の変位も α だけ管 Ρが探傷センサ 1に 近づく)となる。従って、 180° 回転して管 Ρ3の状態となったときの探傷センサ 1の Ζ 軸方向への移動量を管 Ρ3から離間する方向に αとすることにより、管 Ρ3に対する探 傷センサ 1の Ζ軸方向の相対位置を略一定 (初期位置設定の際の管 Ρ0に対する探 傷センサ 1の Ζ軸方向の相対位置と略同等)にすることが可能である。
[0052] なお、以上に説明した原理は、管 Ρ0や管 Ρの断面が真円形であると共に、管 Ρの回 転中心 Οが変化せずに一定であるという仮定を前提としているため、実際には上記 原理の通りにはなり難ぐ αそのものを探傷センサ 1の移動量にしたのでは追従精度 が悪化する虞もある。これを回避するには、 αに 0<k< lの所定の緩和係数 kを乗じ た値を探傷センサ 1の移動量として設定することが好ましい。
[0053] 一方、位置決め制御手段 4は、前述した予測時間 Tazの演算と並行して、入力され た非接触式変位計 2及び探傷センサ 1の位置関係と、管の回転数とに基づいて、非 接触式変位計 2で変位を測定した管 Pの部位が、管 Pの回転中心を通り X軸方向に 延びる直線上の所定位置 (例えば、 90° 回転した位置)に到達するまでの時間を予 測する。例えば、非接触式変位計 2で変位を測定した管 Pの部位が 90° 回転した位 置に到達するまでの時間 Taxは、管 Pの回転数を N (rpm)とすると、 Tax= l/4N ( min)と予測される。 [0054] 次に、位置決め制御手段 4は、予測時間 Tax経過後の管 Pに対する予測時間 Tax 経過後の探傷センサ 1の X軸方向の相対位置が略一定となるように、非接触式変位 計 2で測定した変位と、入力された位置決め手段 3Bの動作遅れ時間とに基づ!/、て 位置決め手段 3Bを制御し、探傷センサ 1を X軸方向に沿って移動させる。例えば、 位置決め手段 3Bの動作遅れ時間が Tbbであるとすると、位置決め制御手段 4は、非 接触式変位計 2で変位を測定してから Tax— Tbb時間経過後に、位置決め手段 3B に対して、探傷センサ 1を初期位置から所定の移動量だけ X軸方向に移動させる動 作の開始指令を行う (移動量に対応した電圧 Ei (図 2参照)を出力する)。
[0055] 前述したのと同様、図 3に示すように、非接触式変位計 2で測定した変位が αで あつたとすると、前記探傷センサ 1の X軸方向への移動量は、図 3の紙面右側方向に a (或いは、 αに 0 < k< lの緩和係数 kを乗じた値)とされる。これは、非接触式変位 計 2に対向する位置で αの変位を測定した管 P Iの部位 A1が、 90° 回転して管 P 2の部位 A2の位置に到達したとき、探傷センサ 1に対する管 P2の中心 C2の X軸方 向の変位は α ( αだけ管 Pが図 3の紙面右側方向に移動する)となる。従って、 90° 回転して管 Ρ2の状態となったときの探傷センサ 1の X軸方向への移動量を図 3の紙 面右側方向に αとすることにより、管 Ρ2に対する探傷センサ 1の X軸方向の相対位 置を略一定 (初期位置設定の際の管 Ρ0に対する探傷センサ 1の X軸方向の相対位 置と略同等)にすることが可能である。なお、追従精度が悪化する虞を回避するには 、前述したのと同様に、 αに 0 < k< lの所定の緩和係数 kを乗じた値を探傷センサ 1 の移動量として設定することが好ましレ、。
[0056] 以上に説明した本実施形態に係る追従装置 100によれば、管 Pを探傷するために 管 Pの外表面に対向配置される探傷センサ 1を、探傷時に周方向に回転する管 Pに 精度良く追従させることができ、管端部を含む管 Pの全長に亘る自動探傷が可能とな
[0057] <第 2実施形態〉
図 4は、本発明の第 2実施形態に係る管の探傷用追従装置の概略構成を示す正 面図である。図 4に示すように、本実施形態に係る追従装置 100Aは、第 1実施形態 と同様に、周方向に回転する管 Pを探傷するために管 Pの外表面に対向配置され管 Pの軸方向に沿って相対的に移動する探傷センサ 1を管 Pに追従させる装置である。 以下、第 1実施形態と異なる点についてのみ説明し、共通する点については説明を 省略する。
[0058] 本実施形態に係る追従装置 100Aは、 Z軸方向及び X軸方向に沿ってそれぞれ配 置された少なくとも 2つ(本実施形態では 2つ)の非接触式変位計 2A、 2Bを備えてい る。非接触式変位計 2Bの位置は、例えば、非接触式変位計 2Bを Z軸方向に移動さ せることが可能な適宜の移動ステージに取り付け、ターニングローラ 5上に静止状態 の管 P (軸方向に直交する方向の断面が真円形に近ぐ且つ曲がりの少ない管 Pを用 いることが好ましい)が配置された状態で非接触式変位計 2Bを Z軸方向に移動させ て、非接触式変位計 2Bで測定される管 Pまでの距離が最も小さくなる位置 (管 Pの中 心に対向する位置に相当)に設定することが可能である。なお、非接触式変位計 2A の位置は、第 1実施形態と同様に設定することが可能である。
[0059] 本実施形態に係る位置決め制御手段 4は、 Z軸方向に沿って配置された非接触式 変位計 2A及び探傷センサ 1の位置関係と、管 Pの回転数とに基づいて、非接触式変 位計 2Aで変位を測定した管 Pの部位 A1が、管 Pの回転中心を通り Z軸方向に延び る直線上の所定位置 (例えば、 180° 回転した位置 A3)に到達するまでの時間を予 測する。そして、位置決め制御手段 4は、前記予測時間経過後の管 Pに対する該予 測時間経過後の探傷センサ 1の Z軸方向の相対位置が略一定となるように、非接触 式変位計 2Aで測定した変位と位置決め手段 3 (具体的には、探傷センサ 1を Z軸方 向に沿って移動させるための位置決め手段 3A)の動作遅れ時間とに基づいて位置 決め手段 3Aを制御し、探傷センサ 1を Z軸方向に沿って移動させる。
[0060] 一方、位置決め制御手段 4は、 X軸方向に沿って配置された非接触式変位計 2B及 び探傷センサ 1の位置関係と、管 Pの回転数とに基づいて、非接触式変位計 2Bで変 位を測定した管 Pの部位 A2が、管 Pの回転中心を通り X軸方向に延びる直線上の所 定位置 (例えば、 180° 回転した位置 A4)に到達するまでの時間を予測する。そして 、位置決め制御手段 4は、前記予測時間経過後の管 Pに対する該予測時間経過後 の探傷センサ 1の X軸方向の相対位置が略一定となるように、非接触式変位計 2Bで 測定した変位と位置決め手段 3 (具体的には、探傷センサ 1を X軸方向に沿って移動 させるための位置決め手段 3B)の動作遅れ時間とに基づいて位置決め手段 3Bを制 御し、探傷センサ 1を X軸方向に沿って移動させる。
[0061] 以上のように、本実施形態に係る追従装置 100Aによれば、 Z軸方向に沿って配置 された非接触式変位計 2Aで測定した変位に基づ!/、て、探傷センサ 1を Z軸方向に 沿って移動させると共に、 X軸方向に沿って配置された非接触式変位計 2Bで測定し た変位に基づいて、探傷センサ 1を X軸方向に沿って移動させることになる。すなわ ち、変位の測定方向とこの測定した変位に基づいて探傷センサ 1を移動させる方向と がー致するため、第 1実施形態に係る追従装置 100に比べて、より一層精度良く探 傷センサ 1が管に追従することが期待できる。
[0062] <第 3実施形態〉
図 5は、本発明の第 3実施形態に係る管の探傷用追従装置の概略構成を示す正 面図である。図 5に示すように、本実施形態に係る追従装置 100Bは、第 1実施形態 や第 2実施形態と同様に、周方向に回転する管 Pを探傷するために管 Pの外表面に 対向配置され管 Pの軸方向に沿って相対的に移動する探傷センサ 1を管 Pに追従さ せる装置である。以下、第 1実施形態と異なる点についてのみ説明し、共通する点に ついては説明を省略する。
[0063] 本実施形態に係る追従装置 100Bは、管 Pを挟んで X軸方向に沿って対向配置さ れた一対の非接触式変位計 2C、 2Dを備えている。非接触式変位計 2C、 2Dの位置 は、例えば、非接触式変位計 2C、 2Dを一体として又は個別に Z軸方向に移動させ ることが可能な適宜の移動ステージに取り付け、ターニングローラ 5上に静止状態の 管 P (軸方向に直交する方向の断面が真円形に近ぐ且つ曲がりの少ない管 Pを用い ることが好ましい)が配置された状態で非接触式変位計 2C、 2Dを Z軸方向に移動さ せて、非接触式変位計 2C、 2Dで測定される管 Pまでの距離が最も小さくなる位置( 管 Pの中心に対向する位置に相当)に設定することが可能である。
[0064] 本実施形態に係る位置決め制御手段 4は、一対の非接触式変位計 2C、 2D及び 探傷センサ 1の位置関係と、管 Pの回転数とに基づいて、一対の非接触式変位計 2C 、 2Dで変位を測定した管 Pの部位 A4、 A2が、管 Pの回転中心を通り X軸方向に延 びる直線上の所定位置(例えば、部位 A4が 180° 回転した位置 A2、部位 A2が 18 0° 回転した位置 A4)に到達するまでの時間を予測する。そして、位置決め制御手 段 4は、前記予測時間経過後の管 Pに対する該予測時間経過後の探傷センサ 1の X 軸方向の相対位置が略一定となるように、一方の非接触式変位計 2Cで測定した変 位と他方の非接触式変位計 2Dで測定した変位との差と、位置決め手段 3 (具体的に は、探傷センサ 1を X軸方向に沿って移動させるための位置決め手段 3B)の動作遅 れ時間とに基づいて位置決め手段 3Bを制御し、探傷センサ 1を X軸方向に沿って移 動させる。
[0065] 前記探傷センサ 1の X軸方向への移動量は、例えば、図 5の紙面の右側方向に Mx = (非接触式変位計 2Cで測定した変位 非接触式変位計 2Dで測定した変位) /2 とされる力、、或いは、この Mxに 0<k< lの緩和係数 kを乗じた値とされる。以下、この 理由について、図 6を参照しつつ説明する。
[0066] 図 6は、本実施形態に係る追従装置の原理を説明する説明図である。図 6 (a)に示 すように、前述した非接触式変位計 2C、 2Dの位置設定の際に用いる管 POが、軸方 向に直交する方向の断面が真円形であって、管 P0の中心 Cと管 P0の回転中心 Oと がー致しており、非接触式変位計 2C、 2Dで測定される管 POまでの距離を変位の基 準 (非接触変位計 2C、 2Dの原点)とした場合を考える。同様に、探傷センサ 1の初期 位置設定の際にも管 P0を用い、管 P0の中心 Oに正対するように探傷センサ 1の初期 位置が設定された場合を考える。
[0067] 以上の初期設定の後、実際の被探傷材である管 P (管 Pの中心 Cは管 P0と同じく回 転中心 Oと一致し、断面は楕円形であるとする)が非接触式変位計 2C、 2Dの間に搬 送され、図 6 (a)に示すように、楕円形の長径部 A4、 A2がそれぞれ非接触式変位計 2C、 2Dに対向した状態になったとする(この状態の管 Pを管 P2とする)。そして、管 P 2が 180° 回転して、管 P2の部位 A4が非接触式変位計 2Dに対向する位置に、管 P 2の部位 A2が非接触式変位計 2Cに対向する位置に到達したとする(この状態の管 Pを管 P4とする)。この間、管 Pの中心 Cと管 Pの回転中心 Oとは一致しているため、 探傷センサ 1を X軸方向に移動させる必要はない。し力もながら、例えば、一方の非 接触式変位計 2Cで測定した管 P2の部位 A4の変位は、あた力、も管 P2の中心 Cと管 P2の回転中心 Oとがずれている場合と同様の αとなる。このため、 αの変位の みを用いて管 P4の状態となったときの探傷センサ 1の X軸方向への移動量を設定し たのでは、実際には管 Pの中心 Cと管 Pの回転中心 Oとがずれていない(従って、 X軸 方向に探傷センサ 1を移動させる必要がない)場合であっても探傷センサ 1を移動さ せることになり、追従精度が悪化する虞がある。
[0068] これに対し、本実施形態のように、管 P4の状態となったときの探傷センサ 1の X軸方 向への移動量を、前述のように図 5の紙面の右側方向に Mx= (非接触式変位計 2C で測定した変位 非接触式変位計 2Dで測定した変位) /2とすれば、非接触式変 位計 2Cで測定した管 P2の部位 A4の変位は αで、非接触式変位計 2Dで測定し た管 Ρ2の部位 Α2の変位も αであるため、 Mx= 0となり、探傷センサ 1を X軸方向 に沿って移動させることなぐ追従精度を維持することが可能である。
[0069] また、図 6 (b)に示すように、実際の被探傷材である管 Ρが、外径は管 ΡΟと等しぐ 断面は真円形であり、管 Ρの中心と管 Ρの回転中心 Οとがずれている(ずれ量 = α ) 場合には、非接触式変位計 2Cで測定した管 Ρ2の部位 Α4の変位は αで、非接触式 変位計 2Dで測定した管 Ρ2の部位 Α2の変位は— αであるため、 Mx= aとなる。管 P2の状態から 180° 回転して管 P4の状態になったとき、探傷センサ 1に対する管 P4 の中心 C4の X軸方向の変位は a だけ管 Ρが図 6の紙面左側方向に移動する) となる。従って、管 Ρ2の状態から 180° 回転して管 Ρ4の状態となったときの探傷セン サ 1の X軸方向への移動量を図 6の紙面左側方向に Μχとすることにより、管 Ρ4に対 する探傷センサ 1の X軸方向の相対位置を略一定 (初期位置設定の際の管 Ρ0に対 する探傷センサ 1の X軸方向の相対位置と略同等)にすることが可能である。すなわ ち、探傷センサ 1の X軸方向への移動量として Μχを用いることは、図 6 (a)に示すよう な断面楕円形の管 Pのみならず、図 6 (b)に示すように、管 Pに曲がりが生じているこ とにより、管 Pの中心と管 Pの回転中心 Oとがずれている場合にも有効である。なお、 追従精度が悪化する虞を回避するには、第 1実施形態において説明したのと同様に 、 Mxに 0 < k< 1の所定の緩和係数 kを乗じた値を探傷センサ 1の移動量として設定 することが好ましい。
[0070] また、本実施形態に係る位置決め制御手段 4は、一対の非接触式変位計 2C、 2D の何れか 1つの非接触式変位計及び探傷センサ 1の位置関係と、管 Pの回転数とに 基づ!/、て、前記何れ力、 1つの非接触式変位計 2C又は 2Dで変位を測定した管 Pの部 位 A4、 A2が、管 Pの回転中心を通り Z軸方向に延びる直線上の所定位置 (例えば、 部位 A4が 90° 回転した位置 A1、又は、部位 A2が 90° 回転した位置 A3)に到達 するまでの時間を予測する。そして、位置決め制御手段 4は、前記予測時間経過後 の管 Pに対する該予測時間経過後の探傷センサ 1の Z軸方向の相対位置が略一定と なるように、前記何れか 1つの非接触式変位計で測定した変位と、位置決め手段 3 ( 具体的には、探傷センサ 1を Z軸方向に沿って移動させるための位置決め手段 3A) の動作遅れ時間とに基づいて位置決め手段 3Aを制御し、探傷センサ 1を Z軸方向に 沿って移動させる。
[0071] なお、本実施形態に係る位置決め制御手段 4は、好まし!/、態様として、一対の非接 触式変位計 2C、 2Dで測定した変位に基づいて、管 Pの外径を算出可能な構成とさ れている。具体的には、管 Pの外径は、例えば、各非接触式変位計 2C、 2Dの離間 距離から、各非接触式変位計 2C、 2Dで測定した管 Pまでの距離をそれぞれ減算す ることによって算出すること力 Sできる。なお、前述のように、非接触式変位計 2C、 2D の位置は、初期設定用の管 P0の中心を挟んで X軸方向に沿って対向するように設 定される。ここで、実際に外径を測定する管 Pに曲がり等の Z軸方向の位置変動が生 じていることにより、その管 Pの中心が、非接触式変位計 2C、 2Dの対向方向(非接触 式変位計 2C及び 2Dを結ぶ直線)から Z軸方向にずれた状態になると、幾何学的に 、上記のようにして算出される管 Pの外径測定値には上記のずれ量に応じた誤差が 生じる。具体的には、上記のずれ量が大きくなればなるほど、管 Pの外径測定値の方 が実際の管 Pの外径よりも小さな値となる。また、上記のずれ量が同一であるとすれ ば、幾何学的に、管 Pの実際の外径が小さいほど誤差は大きくなる。従って、管 Pに 曲がりが生じていても外径測定精度を維持するには、上記のずれ量と管 Pのおおよ その外径 (設計値等)とに応じて、得られた外径測定値を補正する(例えば、所定の 補正値を加算する)こと力 S好ましレ、。
[0072] 上記の補正は、例えば、以下のようにして実行することが可能である。まず、位置決 め制御手段 4が、一本の管 Pについて、外径測定値及び探傷センサ 1の Z軸方向の 位置を時系列で記録するように構成する。また、管 Pの外径設計値を位置決め制御 手段 4に予め入力する。さらに、位置決め制御手段 4には、外径測定値に加算する 補正値が、管 Pの中心の上記ずれ量及び管 Pの外径設計値毎に例えばテーブル形 式で予め記憶される。ここで、ある時刻における探傷センサ 1の Z軸方向の位置は、 探傷センサ 1の追従精度が高ければ、同時刻における管 Pの中心の上記ずれ量に 対応する。従って、位置決め制御手段 4に記録された各時刻における探傷センサ 1 の Z軸方向の位置に基づいて、同時刻における管 Pの中心の上記ずれ量を算出する ことが可能である。位置決め制御手段 4は、記録された各時刻における探傷センサ 1 の Z軸方向の位置に基づいて、各時刻における管 Pの中心の上記ずれ量を算出し、 該算出したずれ量と前記入力された管 Pの外径設計値とに応じた補正値をテーブル 力 逐次選択して、記録された同時刻における外径測定値に前記補正値を加算す ればよい。以上のようにして、記録された各時刻における外径測定値を補正すれば、 管 Pに曲がり等の Z軸方向の位置変動が生じていても外径測定精度を維持すること が可能である。
[0073] 以下、実施例及び比較例を説明することにより、本発明の特徴をより一層明らかに する。
[0074] <実施例 1 1〉
図 5に示す追従装置 100B (前述した第 3実施形態の構成)を用いて、探傷センサ 1 の追従精度を評価する試験を行った。被探傷材としては、外径 (設計値)が 73mmで あり、曲力 Sりによって管の回転中心に対する管中心の偏芯量が約 ± 3mmである管( 以下、曲がり管という)を用いた。この曲がり管をターニングローラ 5上に配置し、軸方 向への搬送は行わずに曲がり管を周方向に回転(回転数 = 180rpm)させた。そして 、この回転する曲がり管に、以下のようにして探傷センサ 1を追従させた。
[0075] ( 1 ) X軸方向につ!/、ての探傷センサ 1の追従
非接触式変位計 2C、 2D及び探傷センサ 1の位置関係と、曲がり管の回転数とに 基づいて、非接触式変位計 2C、 2Dで変位を測定した曲がり管の部位が、 180° 回 転した位置に到達するまでの時間を予測する。そして、前記予測時間経過後の曲が り管に対する該予測時間経過後の探傷センサ 1の X軸方向の相対位置が略一定とな るように、非接触式変位計 2Cで測定した変位と非接触式変位計 2Dで測定した変位 との差と、位置決め手段 3Bの動作遅れ時間とに基づいて位置決め手段 3Bを制御し 、探傷センサ 1を X軸方向に沿って移動させた。この探傷センサ 1の X軸方向への移 動量 Mxは、 Mx= (非接触式変位計 2Cで測定した変位 非接触式変位計 2Dで測 定した変位) /2とした。
[0076] (2) Z軸方向につ!/、ての探傷センサ 1の追従
非接触式変位計 2D及び探傷センサ 1の位置関係と、曲がり管の回転数とに基づ!/、 て、非接触式変位計 2Dで変位を測定した曲がり管の部位が、 90° 回転した位置に 到達するまでの時間を予測する。そして、前記予測時間経過後の曲がり管に対する 該予測時間経過後の探傷センサ 1の Z軸方向の相対位置が略一定となるように、非 接触式変位計 2Dで測定した変位と、位置決め手段 3Aの動作遅れ時間とに基づ!/ヽ て位置決め手段 3Aを制御し、探傷センサ 1を Z軸方向に沿って移動させた。
[0077] <実施例 1 2〉
探傷センサ 1を曲がり管に追従させるために、非接触式変位計 2Dで測定した変位 のみを用いた(非接触式変位計 2Cで測定した変位は用いな力、つた)点を除き、実施 例 1 1と同様の条件で、探傷センサ 1の追従精度を評価する試験を行った。具体的 には、以下のようにして曲がり管に探傷センサ 1を追従させた。
[0078] ( 1 ) X軸方向につ!/、ての探傷センサ 1の追従
非接触式変位計 2D及び探傷センサ 1の位置関係と、曲がり管の回転数とに基づ!/、 て、非接触式変位計 2Dで変位を測定した曲がり管の部位が、 180° 回転した位置 に到達するまでの時間を予測する。そして、前記予測時間経過後の曲がり管に対す る該予測時間経過後の探傷センサ 1の X軸方向の相対位置が略一定となるように、 非接触式変位計 2Dで測定した変位と、位置決め手段 3Bの動作遅れ時間とに基づ いて位置決め手段 3Bを制御し、探傷センサ 1を X軸方向に沿って移動させた。
[0079] (2) Z軸方向につ!/、ての探傷センサ 1の追従
実施例 1 1と同様に追従させた。
[0080] <比較例 1〉
曲がり管に探傷センサ 1を追従させな力、つた(すなわち、探傷センサ 1の位置を初期 設定のまま固定した)点を除き、実施例 1— 1と同様の条件で試験を行った。 [0081] <追従精度の評価方法〉
( 1 ) Z軸方向の追従精度の評価方法
探傷センサ 1に接触式変位計 (Z軸接触式変位計)としてのマイクロメータを取り付 け、その針先を曲がり管の底面に接触させた。そして、実施例 1— 1、 1—2及び比較 例 1について、マイクロメータの針先の変位を測定した。探傷センサ 1が、周方向への 回転に伴う曲がり管の Z軸方向の位置変動に完全に追従していれば、原理的には、 上記測定した変位が常に一定となるはずである。従って、 Z軸接触式変位計で測定 した変位の変動幅が小さいほど、 Z軸方向の追従精度が高いと評価した。
[0082] (2) X軸方向の追従精度の評価方法
探傷センサ 1に接触式変位計 (X軸接触式変位計)としてのマイクロメータを取り付 け、その針先を曲がり管の X軸方向の側面に接触させた。そして、実施例 1— 1、 1 - 2及び比較例 1について、マイクロメータの針先の変位を測定した。探傷センサ 1が、 周方向への回転に伴う曲がり管の X軸方向の位置変動に完全に追従していれば、原 理的には、上記測定した変位が常に一定となるはずである。従って、 X軸接触式変位 計で測定した変位の変動幅が小さレ、ほど、 X軸方向の追従精度が高レ、と評価した。
[0083] <追従精度の評価結果〉
図 7は、上記追従精度の評価結果を示すグラフであり、図 7 (a)は比較例 1の結果を 、図 7 (b)は実施例 1 2の結果を、図 7 (c)は実施例 1 1の結果を示す。なお、図 7 には、 Z軸接触式変位計及び X軸接触式変位計で測定した変位と共に、非接触式変 位計 2C、 2Dで測定した変位もプロットした。
[0084] 図 7に示すように、 Z軸接触式変位計で測定した変位 (太い破線で示すグラフ)の変 動幅は、比較例 1 (図 7 (a) )では 5. 410mmであったのに対し、実施例 1—1 (図 7 (c ) )では 0. 946mm,実施例 1— 2 (図 7 (b) )では 0. 921mmとなった。従って、 Z軸方 向の追従精度は、実施例の方が比較例よりも大幅に高くなることが分かった。
[0085] また、図 7に示すように、 X軸接触式変位計で測定した変位 (太い実線で示すグラフ )の変動幅は、比較例 1 (図 7 (a) )では 6. 602mmであったのに対し、実施例 1 1 ( 図 7 (c) )では 0. 713mm,実施例 1 2 (図 7 (b) )では 1. 047mmとなった。従って、 X軸方向の追従精度についても、実施例の方が比較例よりも大幅に高くなることが分 かった。なお、実施例 1 1と実施例 1 2とを対比すると、実施例 1 1の方が変位の 変動幅が小さくなつたのは、曲がり管の断面は完全な真円ではなぐ楕円成分も若干 含まれていることが一因だと考えられる。すなわち、実施例 1 1の構成(前述した第 3実施形態の構成)が有効に機能して、楕円成分の影響が低減されることにより、追 従精度が高くなつたものと考えられる。
[0086] <実施例 2— 1〉
被探傷材として、外径 (設計値)が 73mmで、断面が楕円形 (楕円率 = 2. 7%)の 管(以下、楕円管という)を用いた点を除き、実施例 1—1と同様の条件で、探傷セン サ 1の追従精度を評価する試験を行った。なお、楕円率は、下記の式で定義される 値である。
楕円率 = 2 X (最大外径 最小外径) / (最大外径 +最小外径) X 100 (%) [0087] <実施例 2— 2〉
被探傷材として、楕円管を用いた点を除き、実施例 1 2と同様の条件で、探傷セ ンサ 1の追従精度を評価する試験を行った。
[0088] <比較例 2〉
被探傷材として、楕円管を用いた点を除き、比較例 1と同様の条件で試験を行った
[0089] <追従精度の評価方法〉
( 1 ) Z軸方向の追従精度の評価方法
実施例 1 1、 1 2及び比較例 1についての評価方法と同様の方法で、実施例 2 1、 2— 2及び比較例 2についての Z軸方向の追従精度を評価した。
[0090] (2) X軸方向の追従精度の評価方法
たとえ各非接触式変位計の測定値が楕円管の回転に伴って変動したとしても、楕 円管の中心と楕円管の回転中心とがずれていなければ、 X軸方向には探傷センサ 1 を移動させる必要がない。逆に、探傷センサ 1が X軸方向に移動するとすれば、追従 精度が悪いことを意味する。従って、ここでは、探傷センサ 1の X軸方向の移動量に 相当する位置決め手段 3Bのピストンロッド 311 (図 2参照)の変位を測定し、この測定 した変位の変動幅が小さいほど、追従精度が高いと評価することにした。具体的には 、ピストンロッド 311の端面に、接触式変位計 (X軸接触式変位計)としてのマイクロメ 一タの針先を接触させ、実施例 2— 1、 2— 2及び比較例 2について、マイクロメータの 針先の変位を測定した。そして、上記のように、 X軸接触式変位計で測定した変位の 変動幅が小さいほど、 X軸方向の追従精度が高いと評価した。
[0091] <追従精度の評価結果〉
図 8は、上記追従精度の評価結果を示すグラフであり、図 8 (a)は比較例 2の結果を 、図 8 (b)は実施例 2— 2の結果を、図 8 (c)は実施例 2—1の結果を示す。なお、図 8 には、 Z軸接触式変位計及び X軸接触式変位計で測定した変位と共に、非接触式変 位計 2C、 2Dで測定した変位もプロットした。
[0092] 図 8に示すように、 Z軸接触式変位計で測定した変位 (太い破線で示すグラフ)の変 動幅は、比較例 2 (図 8 (a) )では 0. 683mmであったのに対し、実施例 2—1 (図 8 (c ) )では 0. 639mm,実施例 2— 2 (図 8 (b) )では 0. 652mmとなった。従って、 Z軸方 向の追従精度は、実施例の方が比較例よりも若干ではあるが高くなることが分力、つた
[0093] また、図 8に示すように、 X軸接触式変位計で測定した変位 (太い実線で示すグラフ )の変動幅は、比較例 2 (図 8 (a) )では 0. 098mm,実施例 2— 1 (図 8 (c) )では 0. 7 25mm,実施例 2— 2 (図 8 (b) )では 0. 869mmであった。ここで、比較例 2の X軸接 触式変位計で測定した変位の変動幅は、探傷センサ 1の位置を固定して!/、るため、 当然 0mmに近い値になる (機械的振動に起因した若干変位の変動が生じている)。 このため、 X軸方向の追従精度については、実施例と比較例との対比はできない。実 施例 2— 1と実施例 2— 2とを対比すると、上記のように、実施例 2— 1の方が実施例 2 —2よりも変位の変動幅が小さくなつて、追従精度が高まることが分力、つた。この結果 は、断面が楕円形の管に探傷センサ 1を追従させるには、本発明の中でも前述した 第 3実施形態の構成が特に有効であることを示すものである。

Claims

請求の範囲
[1] 周方向に回転する管を探傷するために管の外表面に対向配置され管の軸方向に 沿って相対的に移動する探傷センサを管に追従させる追従装置であって、
管の外表面の変位を非接触で測定する少なくとも 1つの非接触式変位計と、 管及び前記探傷センサの対向方向、並びに、該対向方向に直交する直交方向に 沿って、前記探傷センサを管の軸方向に直交する平面内で移動させる位置決め手 段と、
前記位置決め手段を制御する位置決め制御手段とを備え、
前記位置決め制御手段は、
前記非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づい て、前記非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記 対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間 経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対 位置が略一定となるように、前記非接触式変位計で測定した変位と前記位置決め手 段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前 記対向方向に沿って移動させると共に、
前記非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づい て、前記非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記 直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間 経過後の管に対する該予測時間経過後の前記探傷センサの前記直交方向の相対 位置が略一定となるように、前記非接触式変位計で測定した変位と前記位置決め手 段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前 記直交方向に沿って移動させることを特徴とする管の探傷用追従装置。
[2] 前記対向方向及び前記直交方向に沿ってそれぞれ配置された少なくとも 2つの非 接触式変位計を備え、
前記位置決め制御手段は、
前記対向方向に沿って配置された非接触式変位計及び前記探傷センサの位置関 係と、管の回転数とに基づいて、前記対向方向に沿って配置された非接触式変位計 で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上 の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予 測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となるように、 前記対向方向に沿って配置された非接触式変位計で測定した変位と前記位置決め 手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを 前記対向方向に沿って移動させると共に、
前記直交方向に沿って配置された非接触式変位計及び前記探傷センサの位置関 係と、管の回転数とに基づいて、前記直交方向に沿って配置された非接触式変位計 で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上 の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する前記 予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるよう に、前記直交方向に沿って配置された非接触式変位計で測定した変位と前記位置 決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷セン サを前記直交方向に沿って移動させることを特徴とする請求項 1に記載の管の探傷 用追従装置。
管を挟んで前記直交方向に沿って対向配置された一対の非接触式変位計を備え 前記位置決め制御手段は、
前記一対の非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに 基づいて、前記一対の非接触式変位計で変位を測定した管の部位が、管の回転中 心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、 該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記直交 方向の相対位置が略一定となるように、一方の非接触式変位計で測定した変位と他 方の非接触式変位計で測定した変位との差と、前記位置決め手段の動作遅れ時間 とに基づいて前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿つ て移動させると共に、
前記一対の非接触式変位計又は他の非接触式変位計の内の何れか 1つの非接触 式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記何れ 力、 1つの非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記 対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間 経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対 位置が略一定となるように、前記何れか 1つの非接触式変位計で測定した変位と前 記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探 傷センサを前記対向方向に沿って移動させることを特徴とする請求項 1に記載の管 の探傷用追従装置。
[4] 前記位置決め制御手段は、前記一対の非接触式変位計で測定した変位に基づ!/、 て、管の外径を算出することを特徴とする請求項 3に記載の管の探傷用追従装置。
[5] 前記非接触式変位計は、渦電流式変位計であり、
前記位置決め制御手段は、管の材質に応じて前記非接触式変位計で測定した変 位を補正し、該補正後の変位に基づレ、て前記位置決め手段を制御することを特徴と する請求項 1から 4の何れかに記載の管の探傷用追従装置。
[6] 前記探傷センサは、超音波探触子であり、
前記位置決め制御手段は、静止状態の管に対して前記位置決め手段を制御して 、前記超音波探触子を前記直交方向に沿って移動させ、前記超音波探触子で受信 される管の外表面からのエコー強度が最も大きくなる位置を前記超音波探触子の初 期位置として設定することを特徴とする請求項 1から 5の何れかに記載の管の探傷用 追従装置。
[7] 請求項 1から 6の何れかに記載の管の探傷用追従装置と、
前記管の探傷用追従装置によって管に追従する探傷センサとを備えることを特徴と する管の自動探傷装置。
PCT/JP2007/070890 2006-12-04 2007-10-26 管の探傷用追従装置及びこれを用いた管の自動探傷装置 WO2008068972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0720180-0A BRPI0720180B1 (pt) 2006-12-04 2007-10-26 Dispositivo de acompanhamento de detecção de falha para cano ou tubo e aparelho de detecção de falha automático para cano ou tubo usando o mesmo
US12/312,962 US8104349B2 (en) 2006-12-04 2007-10-26 Flaw detection tracking device for pipe or tube and automatic flaw detecting apparatus for pipe or tube using the same
EP07830624.8A EP2088427B1 (en) 2006-12-04 2007-10-26 Follow-up device for detecting flaw of pipe and automatic flaw detection apparatus of pipe employing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-326817 2006-12-04
JP2006326817A JP4842784B2 (ja) 2006-12-04 2006-12-04 管の探傷用追従装置及びこれを用いた管の自動探傷装置

Publications (1)

Publication Number Publication Date
WO2008068972A1 true WO2008068972A1 (ja) 2008-06-12

Family

ID=39491883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070890 WO2008068972A1 (ja) 2006-12-04 2007-10-26 管の探傷用追従装置及びこれを用いた管の自動探傷装置

Country Status (6)

Country Link
US (1) US8104349B2 (ja)
EP (1) EP2088427B1 (ja)
JP (1) JP4842784B2 (ja)
AR (1) AR064080A1 (ja)
BR (1) BRPI0720180B1 (ja)
WO (1) WO2008068972A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809608A (zh) * 2012-07-30 2012-12-05 燕山大学 内置机器人小车式大型筒节类件超声波自动探伤机
US20140060195A1 (en) * 2008-03-31 2014-03-06 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and equipment therefor
CN112347414A (zh) * 2020-10-30 2021-02-09 西南石油大学 一种单缺陷弯管极限内压计算方法
CN114909972A (zh) * 2022-05-19 2022-08-16 南通市计量检定测试所 一种管道轴线平行线定位装置、截面定位装置及定位方法
CN114993229A (zh) * 2022-06-02 2022-09-02 西南石油大学 一种基于多传感器数据融合的椭圆度在线检测方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008024394A1 (de) * 2008-05-15 2009-12-03 V&M Deutschland Gmbh Verfahren zur zerstörungsfreien Prüfung von Rohren
BRPI1013637B1 (pt) 2009-03-30 2021-05-25 Nippon Steel Corporation Aparelho de teste ultrassônico para porção de extremidade de tubulação ou tubo
GB2475314B8 (en) 2009-11-16 2013-09-25 Innospection Group Ltd Remote environment inspection apparatus and method
JP5093699B2 (ja) 2010-09-09 2012-12-12 住友金属工業株式会社 管端部の超音波探傷装置
JP6070004B2 (ja) * 2012-09-20 2017-02-01 大同特殊鋼株式会社 超音波探傷装置
GB2537124B (en) 2015-04-07 2018-09-05 Innospection Group Ltd In-line inspection tool
EP3314247A4 (en) 2015-06-29 2019-01-23 The Charles Stark Draper Laboratory, Inc. SYSTEM AND METHOD FOR CHARACTERIZING FERROMAGNETIC MATERIAL
US11796096B2 (en) 2017-02-07 2023-10-24 Bioforce Tech Corporation Air lock system
CN107478727A (zh) * 2017-09-21 2017-12-15 镇江龙逸电子科技有限公司 一种测量金属工件的超声波探伤仪器
CN109556484A (zh) * 2018-12-30 2019-04-02 深圳华侨城文化旅游科技股份有限公司 一种检测物体移动到位的方法及***
CN112710535A (zh) * 2020-12-08 2021-04-27 苏州热工研究院有限公司 衬胶管道的检测方法
US11493319B2 (en) * 2021-03-10 2022-11-08 Roger Dale REEVES Electromagnetic multifunction inspection apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629156A (en) * 1979-08-17 1981-03-23 Sumitomo Metal Ind Ltd Noncontact type flaw detector
JPS593347A (ja) * 1982-06-30 1984-01-10 Sumitomo Metal Ind Ltd 探傷装置
JPS60224060A (ja) * 1984-04-21 1985-11-08 Sumitomo Metal Ind Ltd プロ−ブ回転型探傷装置のレベル変動補正方法及び装置
JPS6156963A (ja) * 1984-08-28 1986-03-22 Sumitomo Metal Ind Ltd 電磁誘導探傷試験装置
JPS6438648A (en) 1987-08-04 1989-02-08 Tokyo Keiki Kk Apparatus for controlling posture of probe
JPH0259658A (ja) * 1988-08-25 1990-02-28 Tokyo Keiki Co Ltd 周方向欠陥検出用被検管偏心補正方法および装置
JPH0466896A (ja) * 1990-07-09 1992-03-03 Japan Nuclear Fuel Co Ltd<Jnf> 原子燃料棒溶接部超音波検査装置
JPH0429411Y2 (ja) * 1985-08-08 1992-07-16
JPH05265559A (ja) 1992-03-18 1993-10-15 Sumitomo Metal Ind Ltd 材料非接触検査装置の位置制御方法
JP2001208730A (ja) 2000-01-28 2001-08-03 Nkk Corp 非接触超音波装置
JP2006105892A (ja) * 2004-10-08 2006-04-20 Sumitomo Metal Ind Ltd 超音波探触子、超音波探傷方法及び超音波探傷装置
WO2007024000A1 (ja) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. 超音波探触子、超音波探傷装置、超音波探傷方法及び継目無管の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1192024A (fr) * 1958-02-27 1959-10-23 Commissariat Energie Atomique Dispositif de mesure des déplacements d'un solide rendu inaccessible par la radioactivité du milieu
US3479743A (en) * 1967-04-18 1969-11-25 United States Steel Corp Depth-measuring gauge
JPS5929156A (ja) 1982-08-09 1984-02-16 旭有機材工業株式会社 強化熱可塑性樹脂積層体
US4710712A (en) * 1984-04-11 1987-12-01 Pa Incorporated Method and apparatus for measuring defects in ferromagnetic elements
DE4003330A1 (de) * 1990-02-05 1991-08-08 Foerster Inst Dr Friedrich Wirbelstrompruefgeraet
JPH0429411A (ja) 1990-05-23 1992-01-31 Matsushita Electric Ind Co Ltd 位相比較装置
US5600069A (en) * 1995-04-26 1997-02-04 Ico, Inc. Ultrasonic testing apparatus and method for multiple diameter oilfield tubulars
US7997139B2 (en) * 2007-12-03 2011-08-16 Fbs, Inc. Guided wave pipeline inspection system and method with enhanced natural focusing techniques
GB2456831B (en) * 2008-01-28 2012-01-11 Schlumberger Holdings Fatigue and damage monitoring of pipes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629156A (en) * 1979-08-17 1981-03-23 Sumitomo Metal Ind Ltd Noncontact type flaw detector
JPS593347A (ja) * 1982-06-30 1984-01-10 Sumitomo Metal Ind Ltd 探傷装置
JPS60224060A (ja) * 1984-04-21 1985-11-08 Sumitomo Metal Ind Ltd プロ−ブ回転型探傷装置のレベル変動補正方法及び装置
JPS6156963A (ja) * 1984-08-28 1986-03-22 Sumitomo Metal Ind Ltd 電磁誘導探傷試験装置
JPH0429411Y2 (ja) * 1985-08-08 1992-07-16
JPS6438648A (en) 1987-08-04 1989-02-08 Tokyo Keiki Kk Apparatus for controlling posture of probe
JPH0259658A (ja) * 1988-08-25 1990-02-28 Tokyo Keiki Co Ltd 周方向欠陥検出用被検管偏心補正方法および装置
JPH0466896A (ja) * 1990-07-09 1992-03-03 Japan Nuclear Fuel Co Ltd<Jnf> 原子燃料棒溶接部超音波検査装置
JPH05265559A (ja) 1992-03-18 1993-10-15 Sumitomo Metal Ind Ltd 材料非接触検査装置の位置制御方法
JP2001208730A (ja) 2000-01-28 2001-08-03 Nkk Corp 非接触超音波装置
JP2006105892A (ja) * 2004-10-08 2006-04-20 Sumitomo Metal Ind Ltd 超音波探触子、超音波探傷方法及び超音波探傷装置
WO2007024000A1 (ja) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. 超音波探触子、超音波探傷装置、超音波探傷方法及び継目無管の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060195A1 (en) * 2008-03-31 2014-03-06 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and equipment therefor
US9335301B2 (en) * 2008-03-31 2016-05-10 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and equipment therefor
CN102809608A (zh) * 2012-07-30 2012-12-05 燕山大学 内置机器人小车式大型筒节类件超声波自动探伤机
CN102809608B (zh) * 2012-07-30 2014-11-12 燕山大学 内置机器人小车式大型筒节类件超声波自动探伤机
CN112347414A (zh) * 2020-10-30 2021-02-09 西南石油大学 一种单缺陷弯管极限内压计算方法
CN114909972A (zh) * 2022-05-19 2022-08-16 南通市计量检定测试所 一种管道轴线平行线定位装置、截面定位装置及定位方法
CN114909972B (zh) * 2022-05-19 2024-01-30 南通市计量检定测试所 一种管道轴线平行线定位装置、截面定位装置及定位方法
CN114993229A (zh) * 2022-06-02 2022-09-02 西南石油大学 一种基于多传感器数据融合的椭圆度在线检测方法
CN114993229B (zh) * 2022-06-02 2024-06-11 西南石油大学 一种基于多传感器数据融合的椭圆度在线检测方法

Also Published As

Publication number Publication date
AR064080A1 (es) 2009-03-11
EP2088427A4 (en) 2017-03-22
BRPI0720180B1 (pt) 2018-06-26
EP2088427B1 (en) 2018-02-07
US20100126278A1 (en) 2010-05-27
EP2088427A1 (en) 2009-08-12
US8104349B2 (en) 2012-01-31
BRPI0720180A2 (pt) 2014-04-15
JP4842784B2 (ja) 2011-12-21
JP2008139191A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
WO2008068972A1 (ja) 管の探傷用追従装置及びこれを用いた管の自動探傷装置
KR101562505B1 (ko) 가변 곡률반경에서의 연장형 가공물의 연속 절곡용 롤러 벤딩 머신의 검사 및 제어방법, 및 그 제어 머신
EP2294399B1 (en) Integrated multi-sensor non-destructive testing
JP4961051B2 (ja) 非破壊検査用走査装置および非破壊検査装置
US20190360976A1 (en) Pipeline inspection systems and methods
US10746527B2 (en) Method and system for detecting bend in rotating shaft of magnetic bearing
JP2006194662A (ja) ボルト軸力の測定方法及び装置
JP2011007587A (ja) 鋼管の寸法測定装置
CN109883368A (zh) 一种金属管壁厚检测装置及检测方法
JP5140677B2 (ja) 管形状の被検体のための漏れ磁束検査装置
JP2010071778A (ja) 大径管の外径測定装置
JP7028080B2 (ja) 管の溶接部の超音波探傷方法
JP2017015569A (ja) 渦流探傷装置
JP4560796B2 (ja) 超音波探傷装置
JP6959585B2 (ja) 非磁性金属の肉厚測定方法および肉厚測定装置
JP5510068B2 (ja) 被加工物の加工表面の欠陥検出装置
RU194298U1 (ru) Устройство для последовательного неразрушающего контроля зоны сварного шва
US11506638B2 (en) Contactless odometer
US20230280146A1 (en) Internal inspection device for determining a length of a tubular good
JPH11211407A (ja) 配管内移動装置の位置検出方法
JP2007078426A (ja) 膜厚測定装置
JP6090263B2 (ja) 長尺材の非破壊検査設備における被検査材位置調整機構
JP4393213B2 (ja) ホースの圧縮剛性測定装置
JPH07280544A (ja) ストリップ幅測長装置
Boden et al. Advances in Large Diameter Pipe Inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830624

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007830624

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12312962

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0720180

Country of ref document: BR

Free format text: APRESENTE DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM A DIVERGENCIA NO NOME DE UM DOS INVENTORES QUE CONSTA NA PUBLICACAO INTERNACIONAL WO2008/068792 A1 DE 12/06/2008 "HIROSHI KUBOTA" E O CONSTANTE DA PETICAO INICIAL NO 020090055833 DE 04/06/2009 "HITOSHI KUBOTA".

ENP Entry into the national phase

Ref document number: PI0720180

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090604