JP2008139191A - 管の探傷用追従装置及びこれを用いた管の自動探傷装置 - Google Patents

管の探傷用追従装置及びこれを用いた管の自動探傷装置 Download PDF

Info

Publication number
JP2008139191A
JP2008139191A JP2006326817A JP2006326817A JP2008139191A JP 2008139191 A JP2008139191 A JP 2008139191A JP 2006326817 A JP2006326817 A JP 2006326817A JP 2006326817 A JP2006326817 A JP 2006326817A JP 2008139191 A JP2008139191 A JP 2008139191A
Authority
JP
Japan
Prior art keywords
tube
flaw detection
detection sensor
pipe
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006326817A
Other languages
English (en)
Other versions
JP4842784B2 (ja
Inventor
Hiroshi Kubota
央 久保田
Yoshiyuki Nakao
喜之 中尾
Masami Ikeda
正美 池田
Nobuyuki Mori
伸行 森
Hiroshi Sato
佐藤  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Daiichi Electric Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Daiichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Daiichi Electric Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006326817A priority Critical patent/JP4842784B2/ja
Priority to EP07830624.8A priority patent/EP2088427B1/en
Priority to BRPI0720180-0A priority patent/BRPI0720180B1/pt
Priority to PCT/JP2007/070890 priority patent/WO2008068972A1/ja
Priority to US12/312,962 priority patent/US8104349B2/en
Priority to ARP070105360A priority patent/AR064080A1/es
Publication of JP2008139191A publication Critical patent/JP2008139191A/ja
Application granted granted Critical
Publication of JP4842784B2 publication Critical patent/JP4842784B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】探傷センサを探傷時に周方向に回転する管に精度良く追従させる非接触式の管の探傷用追従装置等を提供する。
【解決手段】追従装置100は、非接触式変位計2と、探傷センサ1を管Pの軸方向に直交する平面内で移動させる位置決め手段3と、位置決め手段を制御する位置決め制御手段4とを備える。位置決め制御手段は、変位計及び探傷センサの位置関係と、管の回転数とに基づいて、変位計で変位を測定した管の部位が、管の回転中心を通りZ軸方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する探傷センサのZ軸方向の相対位置が略一定となるように、変位計で測定した変位と位置決め手段の動作遅れ時間とに基づいて位置決め手段を制御し、探傷センサをZ軸方向に沿って移動させる。位置決め制御手段は、X軸方向についても同様の制御を行う。
【選択図】図1

Description

本発明は、鋼管などの管を探傷するために管の外表面に対向配置される探傷センサを、探傷時に周方向に回転する管に精度良く追従させる非接触式の管の探傷用追従装置、及びこれを用いて管端部を含む管の全長に亘る自動探傷を可能にする管の自動探傷装置に関する。
管の非破壊検査方法として、超音波探傷法、渦流探傷法、漏洩磁束探傷法等の各種の探傷方法が知られている。これらの探傷方法は、一般的に、探傷センサ(例えば、超音波探触子等)を管の周方向に相対的に回転させると共に、探傷センサを管の軸方向に相対的に移動させることにより実施される。これら探傷方法においては、探傷感度を一定に保つために、探傷時に周方向に相対的に回転する管と探傷センサとの位置関係(管の軸方向に直交する平面内での位置関係)を一定に保つことが重要である。
しかし、管の断面形状や、管の搬送時の振動、特に管端では管の曲がりの影響等により、探傷センサの位置(管の軸方向に直交する平面内での位置)を固定したのでは、管と探傷センサとの相対的な位置関係を一定に保つことは困難である。
そこで、従来の探傷方法では、主として管端部を除く部分について、例えばローラやシュー等の機械的な接触部材を管に接触させる接触式の追従装置に探傷センサを取り付けることにより、探傷センサを管の位置変動に追従させながら自動探傷を行っている。一方、接触部材が破損する虞があることから接触式追従装置の適用が困難である管端部については、手動で超音波探触子を走査して超音波探傷を行ったり、磁粉探傷を行っている。
しかし、接触式追従装置は、管の回転数(回転速度)を大きくすると、接触部材が管から離れ易くなって探傷センサの追従精度が悪化するため、管の回転数を制限せざるを得ず、探傷効率が悪くなるという問題がある。また、接触部材を管に接触させる必要があるため、メンテナンスに手間を要したり、接触部材の破損が生じる虞があるという問題がある。また、管端部についての手動での超音波探傷や磁粉探傷は、作業に手間を要し探傷効率が悪い他、特に磁粉探傷では検出したきずの定量化が困難であるという問題もある。
このため、上記のような接触部材を有しない非接触式の構成であって、探傷センサを管の全長に亘って追従させることが可能な追従装置の開発が望まれている。
これまでにも、非接触式の追従装置として、例えば、特許文献1〜3に記載の装置が提案されている。
しかしながら、特許文献1に記載の装置は、管に追従させる探傷センサ(探触子)と、探傷センサ及び管の位置関係を測定するための非接触式変位計(変位センサ)とが一体化されており、変位計で測定した両者の位置関係に基づいて、直ちに探傷センサの位置を制御する構成である。このため、探傷センサの位置決め手段(サーボ機構)に不可避的に存在する動作遅れに起因して、高い追従精度を得ることができないという問題がある。換言すれば、追従精度を高めるには、探傷時の管の回転数を極めて小さくする必要があり、探傷効率が悪化するという問題がある。
また、特許文献2や3に記載の装置は、静止(周方向に未回転)状態の管に探傷センサを追従させる(位置決めする)構成であるため、管が周方向に回転することにより、探傷センサと管との相対位置が刻一刻変化するような場合に適用することは困難である。
特開昭64−38648号公報 特開平5−265559号公報 特開2001−208730号公報
本発明は、斯かる従来技術の問題を解決するためになされたものであり、管を探傷するために管の外表面に対向配置される探傷センサを、探傷時に周方向に回転する管に精度良く追従させる非接触式の管の探傷用追従装置、及びこれを用いて管端部を含む管の全長に亘る自動探傷を可能にする管の自動探傷装置を提供することを課題とする。
前記課題を解決するべく、本発明は、周方向に回転する管を探傷するために管の外表面に対向配置され管の軸方向に沿って相対的に移動する探傷センサを管に追従させる追従装置であって、管の外表面の変位を非接触で測定する少なくとも1つの非接触式変位計と、管及び前記探傷センサの対向方向、並びに、該対向方向に直交する直交方向に沿って、前記探傷センサを管の軸方向に直交する平面内で移動させる位置決め手段と、前記位置決め手段を制御する位置決め制御手段とを備え、前記位置決め制御手段は、前記非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となるように、前記非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記対向方向に沿って移動させると共に、前記非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるように、前記非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移動させることを特徴とする管の探傷用追従装置を提供するものである。
斯かる発明によれば、位置決め制御手段が、非接触式変位計で測定した変位に基づいて、探傷センサが管に追従するように(管に対する探傷センサの対向方向及び該対向方向に直交する直交方向の相対位置が略一定となるように)、探傷センサを移動させる位置決め手段を制御する構成であり、ローラやシュー等の接触部材を管に接触させる必要がないため、たとえ管端部に曲がりが生じていても管の全長に探傷センサを追従させることが可能である。
また、仮に、管の周方向への回転の中心(管の回転中心)が一定であって、管の中心と管の回転中心とがずれている場合を考えると、管の周方向への回転に伴って、管の中心は管の回転中心周りの円弧上を移動することになる。そして、仮に、管の軸方向に直交する方向の断面が真円形である場合を考えると、非接触式変位計に対向する位置で変位を測定した管の部位が、管の回転中心を通り前記対向方向(管と探傷センサとの対向方向)に延びる直線上の所定位置に到達したとき、探傷センサに対する管の前記対向方向の変位は、前記非接触式変位計で測定した変位に応じて変化する。以下、より具体的に説明する。例えば、管の軸方向に直交する方向の断面が真円形であり、管の中心と管の回転中心とが一致している場合に非接触式変位計で測定される管までの距離を変位の基準(非接触変位計の原点)とする。同様に、管の軸方向に直交する方向の断面が真円形であり、管の中心と管の回転中心とが一致している場合に管の中心に正対する探傷センサと管との前記対向方向の距離を前記対向方向の変位の基準(探傷センサの対向方向の原点)とする。このとき、管の中心と管の回転中心とがずれている場合に非接触式変位計で測定される変位(前記非接触変位計の原点からの距離)の絶対値は、管の中心と管の回転中心とがずれている場合の探傷センサに対する管の対向方向の変位(前記探傷センサの対向方向の原点からの距離)の絶対値に一致する。従って、本発明によれば、非接触式変位計及び探傷センサの位置関係と、管の回転数(回転速度)とに基づいて、非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の探傷センサの前記対向方向の相対位置が略一定となるように、非接触式変位計で測定した変位(前述のように、この変位の絶対値は、予測時間経過後の探傷センサに対する管の対向方向の変位の絶対値に等しくなる)に基づいて探傷センサを対向方向に沿って移動させるため、探傷センサを管に精度良く追従させることが可能である。
同様にして、管の軸方向に直交する方向の断面が真円形であり、管の中心と管の回転中心とが一致している場合に管の中心に正対する探傷センサの位置を前記直交方向の変位の基準(探傷センサの直交方向の原点)とする。このとき、非接触式変位計に対向する位置で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達したとき、管の中心と管の回転中心とがずれている場合に非接触式変位計で測定される変位(前記非接触変位計の原点からの距離)の絶対値は、管の中心と管の回転中心とがずれている場合の探傷センサに対する管の中心の直交方向の変位(前記探傷センサの直交方向の原点からの距離)の絶対値に一致する。従って、本発明によれば、非接触式変位計及び探傷センサの位置関係と、管の回転数とに基づいて、非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の探傷センサの前記直交方向の相対位置が略一定となるように、非接触式変位計で測定した変位(前述のように、この変位の絶対値は、予測時間経過後の探傷センサに対する管の中心の直交方向の変位の絶対値に等しくなる)に基づいて探傷センサを直交方向に沿って移動させるため、探傷センサを管に精度良く追従させることが可能である。
さらに、本発明によれば、非接触式変位計と探傷センサとを管の周方向に沿った異なる位置に配置することにより、非接触式変位計で測定した変位に基づいて直ちに位置決め手段を制御(すなわち探傷センサの位置を制御)する必要が無くなる上、位置決め手段の動作遅れ時間(位置決め手段に動作開始指令を行ってから実際に動作を開始するまでの機械的、電気的な遅延時間)をも加味して制御する構成であるため、高い追従精度を得ることが可能である。
好ましくは、前記管の探傷用追従装置は、前記対向方向及び前記直交方向に沿ってそれぞれ配置された少なくとも2つの非接触式変位計を備え、前記位置決め制御手段は、前記対向方向に沿って配置された非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記対向方向に沿って配置された非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となるように、前記対向方向に沿って配置された非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記対向方向に沿って移動させると共に、前記直交方向に沿って配置された非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記直交方向に沿って配置された非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する前記予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるように、前記直交方向に沿って配置された非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移動させる構成とされる。
斯かる好ましい構成によれば、対向方向に沿って配置された非接触式変位計で測定した変位に基づいて、探傷センサを対向方向に沿って移動させると共に、直交方向に沿って配置された非接触式変位計で測定した変位に基づいて、探傷センサを直交方向に沿って移動させることになる。すなわち、変位の測定方向とこの測定した変位に基づいて探傷センサを移動させる方向とが一致するため、より一層精度良く探傷センサが管に追従することが期待できる。
ところで、例えば、管の軸方向に直交する方向の断面が楕円形であり、前記直交方向に沿って配置された非接触式変位計に対向する位置で変位を測定した管の部位が楕円形の長径部又は短径部である場合を考えると、管の中心と管の回転中心とがずれていなくとも、あたかも両者がずれている場合(管の断面が真円形であり、その中心と回転中心とがずれている場合)と同様の変位が測定される。具体的には、変位を測定した管の部位が楕円形の長径部である場合には、非接触式変位計の原点よりも小さな方向の変位(負の変位)となり、短径部である場合には、非接触式変位計の原点よりも大きな方向の変位(正の変位)となる。従って、この測定した変位に基づいて探傷センサを直交方向に沿って移動させると、管の中心と管の回転中心とがずれていない(従って、直交方向に探傷センサを移動させる必要がない)場合であっても探傷センサを移動させることになり、追従精度が悪化する虞がある。
上記追従精度の悪化の虞を回避するには、前記管の探傷用追従装置は、管を挟んで前記直交方向に沿って対向配置された一対の非接触式変位計を備え、前記位置決め制御手段は、前記一対の非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記一対の非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるように、一方の非接触式変位計で測定した変位と他方の非接触式変位計で測定した変位との差と、前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移動させると共に、前記一対の非接触式変位計又は他の非接触式変位計の内の何れか1つの非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記何れか1つの非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となるように、前記何れか1つの非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記対向方向に沿って移動させる構成とすることが好ましい。
斯かる好ましい構成によれば、管を挟んで直交方向に沿って対向配置された一対の非接触式変位計の内、一方の非接触式変位計で測定した変位と他方の非接触式変位計で測定した変位との差に基づいて、探傷センサを直交方向に沿って移動させることになる。従って、仮に管の断面が楕円形であっても、管の中心と管の回転中心とが一致する場合には、両非接触式変位計で測定した変位の差は0となるため、探傷センサを直交方向に沿って移動させることなく、追従精度を維持することが可能である。
好ましくは、前記位置決め制御手段は、前記一対の非接触式変位計で測定した変位に基づいて、管の外径を算出する構成とされる。
斯かる好ましい構成によれば、追従装置が備える一対の非接触式変位計を探傷センサの管への追従のみならず、管の外径算出にも利用できるため、別途の外径測定装置を設ける必要が無くなる点で好都合である。なお、管の外径は、例えば、各非接触式変位計で測定した変位に基づいて各非接触式変位計から管の外表面までの距離を算出し(或いは、各非接触式変位計で管の外表面までの距離を直接測定し)、各非接触式変位計の離間距離から、前記算出した各非接触式変位計から管の外表面までの距離をそれぞれ減算することによって算出することが可能である。
非接触式変位計としては、例えば、変位測定対象までの距離に応じて、変位測定対象に生じる渦電流の大きさが変化することを利用した渦電流式変位計を用いることが可能である。ここで、渦電流の大きさは、本発明における変位測定対象である管の材質(具体的には、透磁率や導電率など)によっても変化するため、管の材質に応じて測定した変位を補正することが好ましい。
従って、好ましくは、前記非接触式変位計は、渦電流式変位計であり、前記位置決め制御手段は、管の材質に応じて前記非接触式変位計で測定した変位を補正し、該補正後の変位に基づいて前記位置決め手段を制御する構成とされる。
探傷センサとしては、例えば、超音波探触子を用いることが可能である。そして、超音波探触子の直交方向の初期位置として、超音波探触子で受信される管の外表面からのエコー強度が最も大きくなる位置を設定することが、超音波探触子の探傷感度を高める上で好ましい。
従って、好ましくは、前記探傷センサは、超音波探触子であり、前記位置決め制御手段は、静止状態の管に対して前記位置決め手段を制御して、前記超音波探触子を前記直交方向に沿って移動させ、前記超音波探触子で受信される管の外表面からのエコー強度が最も大きくなる位置を前記超音波探触子の初期位置として設定する構成とされる。
なお、前記課題を解決するべく、本発明は、前記何れかに記載の管の探傷用追従装置と、前記管の探傷用追従装置によって管に追従する探傷センサとを備えることを特徴とする管の自動探傷装置としても提供される。
本発明によれば、鋼管などの管を探傷するために管の外表面に対向配置される探傷センサを、探傷時に周方向に回転する管に精度良く追従させる非接触式の管の探傷用追従装置、及びこれを用いて管端部を含む管の全長に亘る自動探傷を可能にする管の自動探傷装置が提供される。
以下、添付図面を適宜参照しつつ、本発明の実施形態について説明する。
<第1実施形態>
図1は、本発明の第1実施形態に係る管の探傷用追従装置の概略構成を示す図であり、図1(a)は正面図(管の軸方向から見た図)を、図1(b)は側面図(管の軸方向に直交する方向から見た図)を示す。図1に示すように、本実施形態に係る管の探傷用追従装置(以下、適宜「追従装置」と略称する)100は、周方向に回転する管Pを探傷するために管Pの外表面に対向配置され管Pの軸方向に沿って相対的に移動(本実施形態では管Pが軸方向に移動)する探傷センサ1を管Pに追従させる装置である。
本実施形態では、探傷センサ1及び追従装置100(具体的には、追従装置100を構成する後述の非接触式変位計2)が管Pの軸方向に移動せず固定される一方、管Pがターニングローラ5に支持され、その回転によって周方向に回転すると共に軸方向に搬送される形態とされている。そして、探傷センサ1は、管Pの搬送方向下流側(最下流のターニングローラ5よりも下流側)であって管Pの鉛直方向下方に配置されている。しかしながら、本発明はこれに限るものではなく、管Pを軸方向には搬送せず周方向に回転させるのみとする一方、探傷センサ1及び追従装置100(非接触式変位計2)を管Pの軸方向に移動させる構成を採用してもよい。また、探傷センサ1の設置位置も管Pの鉛直方向下方に限られるものではなく、取付スペース等の制約がない限り、管Pの周方向に沿った任意の位置に設置することが可能である。
追従装置100は、管Pの外表面に対向配置され管Pの外表面の変位を非接触で測定する少なくとも1つの非接触式変位計2と、管P及び探傷センサ1の対向方向、並びに、対向方向に直交する直交方向に沿って、探傷センサ1を管Pの軸方向に直交する平面内で移動させる位置決め手段3と、位置決め手段3を制御する位置決め制御手段4とを備えている。
本実施形態では、管Pの搬送方向下流側(最下流のターニングローラ5よりも下流側)であって管Pの鉛直方向上方に1つの非接触式変位計2が配置されている。しかしながら、本発明はこれに限るものではなく、探傷センサ1と異なる位置に配置する限りにおいて、また取付スペース等の制約がない限り、管Pの周方向に沿った任意の位置に配置することが可能である。なお、本実施形態に係る非接触式変位計2は、好ましい構成として、変位測定対象までの距離に応じて、変位測定対象に生じる渦電流の大きさが変化することを利用した渦電流式変位計とされている。
本実施形態に係る位置決め手段3は、鉛直方向(Z軸方向)、並びに、管Pの軸方向に直交する水平方向(X軸方向)に沿って、探傷センサ1を管Pの軸方向に直交する平面内で移動させるように構成されている。本実施形態では、探傷センサ1をZ軸方向に沿って移動させるための位置決め手段3Aと、X軸方向に沿って移動させるための位置決め手段3Bとがそれぞれ設けられている。なお、位置決め手段3A及び位置決め手段3Bは、後述するピストンロッド311の往復動の方向が異なる点を除き、同一の構成を採用可能である。
図2は、本実施形態に係る位置決め手段3(3A又は3B)の概略構成を示す図である。図2に示すように、本実施形態に係る位置決め手段3は、油圧シリンダ31、油圧ポンプ32、サーボモータ33、リニアスケール34、サーボ増幅器35及び加算器36を備えている。油圧ポンプ32は、サーボモータ33によって、正逆の両方向に回転駆動される双方向ポンプとされている。そして、油圧ポンプ32の回転方向を切り替えることにより、油圧シリンダ31の往動側のポート31A及び復動側のポート31Bに対する油圧の給排が切り替わるように構成されている。ポート31Aに油圧が供給され、ポート31Bから油圧が排出されるときには、油圧シリンダ31のピストンロッド311は往動(図2の紙面右側に移動)し、ポート31Aから油圧が排出され、ポート31Bに油圧が供給されるときには、ピストンロッド311は復動(図2の紙面左側に移動)する。探傷センサ1は、油圧シリンダ31のピストンロッド311に取り付けられており、ピストンロッド311の往復動に伴い、Z軸方向(位置決め手段3Aの場合)又はX軸方向(位置決め手段3Bの場合)に沿って移動することになる。
リニアスケール34は、ピストンロッド311の実際の変位を検出するように構成されている。ピストンロッド311の変位に対応するリニアスケール34の出力電圧Efは、加算器36にフィードバックされ、位置決め制御手段4から出力された入力電圧(管Pに追従させるために探傷センサ1をZ軸方向又はX軸方向に沿って移動させる移動量に対応)Eiと比較される。そして、入力電圧Eiと出力電圧Efとの差分電圧がサーボ増幅器35で増幅され、サーボモータ33の駆動に供される。
以上に説明したように、本実施形態に係る位置決め手段3は、いわゆるサーボ制御を行う構成であるため、高精度な位置決めが可能である。また、ボールねじやリニアベアリング等の摩耗部品が不要である他、一般的な油圧アクチュエータでは必要とされるオイルタンク、各種配管、制御弁等も不要であるため、小型となり且つメンテナンス性に優れるという利点が得られる。
本実施形態に係る位置決め制御手段4は、汎用のコンピュータやこれに接続された適宜の電子回路によって構成される。そして、位置決め制御手段4には、非接触式変位計2と探傷センサ1との位置関係(本実施形態では、非接触式変位計2及び探傷センサ1は、管Pの周方向に180°離間して配置された位置関係)、管Pの回転数、管Pの外径や材質、位置決め手段3の動作遅れ時間等の情報が入力される。これらの情報は、位置決め制御手段4に手動で直接入力してもよいし、上位のプロセスコンピュータから受信する構成としてもよい。特に、管Pの回転数については、設定値ではなく実測値を用いた方が、探傷センサ1の追従精度が高まることが期待できる。このため、例えば、管Pの外表面に接触するパルスジェネレータ(PLG)6を取り付け、位置決め制御手段4が、PLG6の出力値と、PLG6及び管Pの外径比とから管Pの回転数を算出する構成を採用することが可能である。また、ターニングローラ5にその回転数を検出するパルスジェネレータ(PLG)6を取り付け、位置決め制御手段4が、PLG6の出力値と、ターニングローラ5及び管Pの外径比とから管Pの回転数を算出する構成を採用してもよい。或いは、管Pの外表面の周速度を測定する速度計(図示せず)を取り付け、位置決め制御手段4が、前記速度計の出力値と、管Pの外径とから管Pの回転数を算出する構成を採用してもよい。
以下、上述した構成を有する追従装置100の初期設定及び動作について順次説明する。
(1)非接触式変位計の測定値に対する補正係数の設定
前述のように、本実施形態では、非接触式変位計2として渦電流式変位計を用いているが、渦電流の大きさは管Pの材質(透磁率や導電率など)によっても変化するため、管Pの材質に応じて非接触式変位計2で測定した変位を補正することが好ましい。このため、位置決め制御手段4には、非接触式変位計2で測定した変位に対する補正係数が、管Pの材質毎に例えばテーブル形式で予め記憶される。前述のように、位置決め制御手段4には、管Pの材質が入力される。これにより、位置決め制御手段4は、前記入力された管Pの材質に応じた補正係数をテーブルから選択し、非接触式変位計2で測定した変位に前記選択した補正係数を乗ずる補正を施して、該補正後の変位に基づいて位置決め手段3を制御する。
(2)非接触式変位計の位置設定
非接触式変位計2のX軸方向の位置は、例えば、X軸方向に並設される一対のターニングローラ5の中間点に固定して設定することが可能である。或いは、例えば、非接触式変位計2をX軸方向に移動させることが可能な適宜の移動ステージに取り付け、下方に静止状態の管P(軸方向に直交する方向の断面が真円形に近く、且つ曲がりの少ない管Pを用いることが好ましい)が配置された状態で非接触式変位計2をX軸方向に移動させて、非接触式変位計2で測定される管Pまでの距離が最も小さくなる位置(管Pの中心に対向する位置に相当)に設定することも可能である。
非接触式変位計2のZ軸方向の適切な位置は、探傷する管Pの外径に応じて変化する。このため、例えば、非接触式変位計2をZ軸方向に移動させることが可能な適宜の移動ステージに取り付け、下方に静止状態の管P(軸方向に直交する方向の断面が真円形に近く、且つ曲がりの少ない管Pを用いることが好ましい)が配置された状態で非接触式変位計2をZ軸方向に移動させて、非接触式変位計2で測定される管Pまでの距離が非接触式変位計2の距離測定レンジの例えば略中間となる位置に設定すればよい。そして、このように位置設定された非接触式変位計2で測定される管Pまでの距離が変位の基準(原点)とされ、原点からの距離が変位として出力されることになる。
(3)探傷センサの初期位置設定
探傷センサ1のX軸方向の初期位置は、例えば、X軸方向に並設される一対のターニングローラ5の中間点に固定して設定することも可能である。しかしながら、実際に探傷感度が最も高くなる位置を検出し、その位置をX軸方向の初期位置として設定する方が好ましい。このため、例えば、探傷センサ1として超音波探触子を用いる場合には、上方に静止状態の管P(軸方向に直交する方向の断面が真円形に近く、且つ曲がりの少ない管Pを用いることが好ましい)が配置された状態で位置決め手段3を制御して超音波探触子をX軸方向に沿って移動させ、超音波探触子で受信される管Pの外表面からのエコー強度が最も大きくなる位置を超音波探触子の初期位置として設定すればよい。
探傷センサ1と管Pとの離間距離は、本実施形態の場合、探傷センサ1がターニングローラ5に支持された管Pの鉛直方向下方に配置されているため、管Pの外径が変化してもあまり変化しない。また、探傷センサ1として超音波探触子を用いる場合には、管Pとの離間距離が多少変動しても探傷感度への影響が乏しい。従って、探傷センサ1のZ軸方向の初期位置としては、所定の探傷感度が得られる位置に固定して設定することが可能である。ただし、探傷センサ1を管Pの鉛直方向上方に配置するような場合には、探傷センサ1の位置を固定したのでは、管Pの外径に応じて探傷センサ1と管Pとの離間距離が変化するため、管Pの外径に応じて探傷センサ1をZ軸方向に沿って移動させ、一定の離間距離を保持する位置を初期位置として設定することが好ましい。
(4)位置決め制御手段4の動作
上記(1)〜(3)の初期設定の後、実際の被探傷材である管Pがターニングローラ5によって周方向に回転しながら軸方向に搬送される。この際、位置決め制御手段4は、以下のように動作して、探傷センサ1を管Pに追従させる。
まず最初に、位置決め制御手段4は、入力された非接触式変位計2及び探傷センサ1の位置関係(管Pの周方向に180°離間して配置された位置関係)と、管の回転数とに基づいて、非接触式変位計2で変位を測定した管Pの部位が、管Pの回転中心を通りZ軸方向に延びる直線上の所定位置(例えば、180°回転した位置)に到達するまでの時間を予測する。例えば、非接触式変位計2で変位を測定した管Pの部位が180°回転した位置に到達するまでの時間Tazは、管Pの回転数をN(rpm)とすると、Taz=1/2N(min)と予測される。
次に、位置決め制御手段4は、予測時間Taz経過後の管Pに対する予測時間Taz経過後の探傷センサ1のZ軸方向の相対位置が略一定となるように、非接触式変位計2で測定した変位と、入力された位置決め手段3Aの動作遅れ時間とに基づいて位置決め手段3Aを制御し、探傷センサ1をZ軸方向に沿って移動させる。例えば、位置決め手段3Aの動作遅れ時間がTbaであるとすると、位置決め制御手段4は、非接触式変位計2で変位を測定してからTaz−Tba時間経過後に、位置決め手段3Aに対して、探傷センサ1を初期位置から所定の移動量だけZ軸方向に移動させる動作の開始指令を行う(移動量に対応した電圧Ei(図2参照)を出力する)。
前記探傷センサ1のZ軸方向への移動量は、例えば、非接触式変位計2で測定した変位が−α(管Pの外表面が原点からαだけ非接触変位計2側に近づいたことを意味する)であったとすると、管Pから離間する方向にα(或いは、αに0<k<1の緩和係数kを乗じた値)とされる。以下、この理由について、図3を参照しつつ説明する。
図3は、本実施形態に係る追従装置の原理を説明する説明図である。図3に示すように、前述した非接触式変位計2の位置設定の際に用いる管P0が、軸方向に直交する方向の断面が真円形であって、管P0の中心と管P0の回転中心Oとが一致しており、非接触式変位計2で測定される管P0までの距離を変位の基準(非接触変位計2の原点)とした場合を考える。同様に、前述した探傷センサ1の初期位置設定の際にも管P0を用い、管P0の中心Oに正対するように探傷センサ1の初期位置が設定され、探傷センサ1と管P0とのZ軸方向の距離をZ軸方向の変位の基準(探傷センサ1のZ軸方向の原点)とした場合を考える。
以上の初期設定の後、実際の被探傷材である管P(外径は管P0と等しく、断面は真円形であるとする)が非接触式変位計2の下方に搬送されたとする(搬送直後の管Pを管P1とする)。例えば、管Pに曲がりが生じていることにより、管Pの中心と管Pの回転中心Oとがずれている(ずれ量=α)とすると、管Pの周方向への回転に伴って、管Pの中心は管の回転中心O周りの円弧(半径=α)上を移動することになる。すなわち、図3に示すように、搬送直後の管P1の中心C1と、90°回転した後の管P2の中心C2と、180°回転した後の管P3の中心C3とは、それぞれ管Pの回転中心O周りの円弧上に位置する。そして、非接触式変位計2に対向する位置で−αの変位を測定した管P1の部位A1が、180°回転して管P3の部位A3の位置に到達したとき、探傷センサ1に対する管P3のZ軸方向の変位も−α(αだけ管Pが探傷センサ1に近づく)となる。従って、180°回転して管P3の状態となったときの探傷センサ1のZ軸方向への移動量を管P3から離間する方向にαとすることにより、管P3に対する探傷センサ1のZ軸方向の相対位置を略一定(初期位置設定の際の管P0に対する探傷センサ1のZ軸方向の相対位置と略同等)にすることが可能である。
なお、以上に説明した原理は、管P0や管Pの断面が真円形であると共に、管Pの回転中心Oが変化せずに一定であるという仮定を前提としているため、実際には上記原理の通りにはなり難く、αそのものを探傷センサ1の移動量にしたのでは追従精度が悪化する虞もある。これを回避するには、αに0<k<1の所定の緩和係数kを乗じた値を探傷センサ1の移動量として設定することが好ましい。
一方、位置決め制御手段4は、前述した予測時間Tazの演算と並行して、入力された非接触式変位計2及び探傷センサ1の位置関係と、管の回転数とに基づいて、非接触式変位計2で変位を測定した管Pの部位が、管Pの回転中心を通りX軸方向に延びる直線上の所定位置(例えば、90°回転した位置)に到達するまでの時間を予測する。例えば、非接触式変位計2で変位を測定した管Pの部位が90°回転した位置に到達するまでの時間Taxは、管Pの回転数をN(rpm)とすると、Tax=1/4N(min)と予測される。
次に、位置決め制御手段4は、予測時間Tax経過後の管Pに対する予測時間Tax経過後の探傷センサ1のX軸方向の相対位置が略一定となるように、非接触式変位計2で測定した変位と、入力された位置決め手段3Bの動作遅れ時間とに基づいて位置決め手段3Bを制御し、探傷センサ1をX軸方向に沿って移動させる。例えば、位置決め手段3Bの動作遅れ時間がTbbであるとすると、位置決め制御手段4は、非接触式変位計2で変位を測定してからTax−Tbb時間経過後に、位置決め手段3Bに対して、探傷センサ1を初期位置から所定の移動量だけX軸方向に移動させる動作の開始指令を行う(移動量に対応した電圧Ei(図2参照)を出力する)。
前述したのと同様、図3に示すように、非接触式変位計2で測定した変位が−αであったとすると、前記探傷センサ1のX軸方向への移動量は、図3の紙面右側方向にα(或いは、αに0<k<1の緩和係数kを乗じた値)とされる。これは、非接触式変位計2に対向する位置で−αの変位を測定した管P1の部位A1が、90°回転して管P2の部位A2の位置に到達したとき、探傷センサ1に対する管P2の中心C2のX軸方向の変位はα(αだけ管Pが図3の紙面右側方向に移動する)となる。従って、90°回転して管P2の状態となったときの探傷センサ1のX軸方向への移動量を図3の紙面右側方向にαとすることにより、管P2に対する探傷センサ1のX軸方向の相対位置を略一定(初期位置設定の際の管P0に対する探傷センサ1のX軸方向の相対位置と略同等)にすることが可能である。なお、追従精度が悪化する虞を回避するには、前述したのと同様に、αに0<k<1の所定の緩和係数kを乗じた値を探傷センサ1の移動量として設定することが好ましい。
以上に説明した本実施形態に係る追従装置100によれば、管Pを探傷するために管Pの外表面に対向配置される探傷センサ1を、探傷時に周方向に回転する管Pに精度良く追従させることができ、管端部を含む管Pの全長に亘る自動探傷が可能となる。
<第2実施形態>
図4は、本発明の第2実施形態に係る管の探傷用追従装置の概略構成を示す正面図である。図4に示すように、本実施形態に係る追従装置100Aは、第1実施形態と同様に、周方向に回転する管Pを探傷するために管Pの外表面に対向配置され管Pの軸方向に沿って相対的に移動する探傷センサ1を管Pに追従させる装置である。以下、第1実施形態と異なる点についてのみ説明し、共通する点については説明を省略する。
本実施形態に係る追従装置100Aは、Z軸方向及びX軸方向に沿ってそれぞれ配置された少なくとも2つ(本実施形態では2つ)の非接触式変位計2A、2Bを備えている。非接触式変位計2Bの位置は、例えば、非接触式変位計2BをZ軸方向に移動させることが可能な適宜の移動ステージに取り付け、ターニングローラ5上に静止状態の管P(軸方向に直交する方向の断面が真円形に近く、且つ曲がりの少ない管Pを用いることが好ましい)が配置された状態で非接触式変位計2BをZ軸方向に移動させて、非接触式変位計2Bで測定される管Pまでの距離が最も小さくなる位置(管Pの中心に対向する位置に相当)に設定することが可能である。なお、非接触式変位計2Aの位置は、第1実施形態と同様に設定することが可能である。
本実施形態に係る位置決め制御手段4は、Z軸方向に沿って配置された非接触式変位計2A及び探傷センサ1の位置関係と、管Pの回転数とに基づいて、非接触式変位計2Aで変位を測定した管Pの部位A1が、管Pの回転中心を通りZ軸方向に延びる直線上の所定位置(例えば、180°回転した位置A3)に到達するまでの時間を予測する。そして、位置決め制御手段4は、前記予測時間経過後の管Pに対する該予測時間経過後の探傷センサ1のZ軸方向の相対位置が略一定となるように、非接触式変位計2Aで測定した変位と位置決め手段3(具体的には、探傷センサ1をZ軸方向に沿って移動させるための位置決め手段3A)の動作遅れ時間とに基づいて位置決め手段3Aを制御し、探傷センサ1をZ軸方向に沿って移動させる。
一方、位置決め制御手段4は、X軸方向に沿って配置された非接触式変位計2B及び探傷センサ1の位置関係と、管Pの回転数とに基づいて、非接触式変位計2Bで変位を測定した管Pの部位A2が、管Pの回転中心を通りX軸方向に延びる直線上の所定位置(例えば、180°回転した位置A4)に到達するまでの時間を予測する。そして、位置決め制御手段4は、前記予測時間経過後の管Pに対する該予測時間経過後の探傷センサ1のX軸方向の相対位置が略一定となるように、非接触式変位計2Bで測定した変位と位置決め手段3(具体的には、探傷センサ1をX軸方向に沿って移動させるための位置決め手段3B)の動作遅れ時間とに基づいて位置決め手段3Bを制御し、探傷センサ1をX軸方向に沿って移動させる。
以上のように、本実施形態に係る追従装置100Aによれば、Z軸方向に沿って配置された非接触式変位計2Aで測定した変位に基づいて、探傷センサ1をZ軸方向に沿って移動させると共に、X軸方向に沿って配置された非接触式変位計2Bで測定した変位に基づいて、探傷センサ1をX軸方向に沿って移動させることになる。すなわち、変位の測定方向とこの測定した変位に基づいて探傷センサ1を移動させる方向とが一致するため、第1実施形態に係る追従装置100に比べて、より一層精度良く探傷センサ1が管に追従することが期待できる。
<第3実施形態>
図5は、本発明の第3実施形態に係る管の探傷用追従装置の概略構成を示す正面図である。図5に示すように、本実施形態に係る追従装置100Bは、第1実施形態や第2実施形態と同様に、周方向に回転する管Pを探傷するために管Pの外表面に対向配置され管Pの軸方向に沿って相対的に移動する探傷センサ1を管Pに追従させる装置である。以下、第1実施形態と異なる点についてのみ説明し、共通する点については説明を省略する。
本実施形態に係る追従装置100Bは、管Pを挟んでX軸方向に沿って対向配置された一対の非接触式変位計2C、2Dを備えている。非接触式変位計2C、2Dの位置は、例えば、非接触式変位計2C、2Dを一体として又は個別にZ軸方向に移動させることが可能な適宜の移動ステージに取り付け、ターニングローラ5上に静止状態の管P(軸方向に直交する方向の断面が真円形に近く、且つ曲がりの少ない管Pを用いることが好ましい)が配置された状態で非接触式変位計2C、2DをZ軸方向に移動させて、非接触式変位計2C、2Dで測定される管Pまでの距離が最も小さくなる位置(管Pの中心に対向する位置に相当)に設定することが可能である。
本実施形態に係る位置決め制御手段4は、一対の非接触式変位計2C、2D及び探傷センサ1の位置関係と、管Pの回転数とに基づいて、一対の非接触式変位計2C、2Dで変位を測定した管Pの部位A4、A2が、管Pの回転中心を通りX軸方向に延びる直線上の所定位置(例えば、部位A4が180°回転した位置A2、部位A2が180°回転した位置A4)に到達するまでの時間を予測する。そして、位置決め制御手段4は、前記予測時間経過後の管Pに対する該予測時間経過後の探傷センサ1のX軸方向の相対位置が略一定となるように、一方の非接触式変位計2Cで測定した変位と他方の非接触式変位計2Dで測定した変位との差と、位置決め手段3(具体的には、探傷センサ1をX軸方向に沿って移動させるための位置決め手段3B)の動作遅れ時間とに基づいて位置決め手段3Bを制御し、探傷センサ1をX軸方向に沿って移動させる。
前記探傷センサ1のX軸方向への移動量は、例えば、図5の紙面の右側方向にMx=(非接触式変位計2Cで測定した変位−非接触式変位計2Dで測定した変位)/2とされるか、或いは、このMxに0<k<1の緩和係数kを乗じた値とされる。以下、この理由について、図6を参照しつつ説明する。
図6は、本実施形態に係る追従装置の原理を説明する説明図である。図6(a)に示すように、前述した非接触式変位計2C、2Dの位置設定の際に用いる管P0が、軸方向に直交する方向の断面が真円形であって、管P0の中心Cと管P0の回転中心Oとが一致しており、非接触式変位計2C、2Dで測定される管P0までの距離を変位の基準(非接触変位計2C、2Dの原点)とした場合を考える。同様に、探傷センサ1の初期位置設定の際にも管P0を用い、管P0の中心Oに正対するように探傷センサ1の初期位置が設定された場合を考える。
以上の初期設定の後、実際の被探傷材である管P(管Pの中心Cは管P0と同じく回転中心Oと一致し、断面は楕円形であるとする)が非接触式変位計2C、2Dの間に搬送され、図6(a)に示すように、楕円形の長径部A4、A2がそれぞれ非接触式変位計2C、2Dに対向した状態になったとする(この状態の管Pを管P2とする)。そして、管P2が180°回転して、管P2の部位A4が非接触式変位計2Dに対向する位置に、管P2の部位A2が非接触式変位計2Cに対向する位置に到達したとする(この状態の管Pを管P4とする)。この間、管Pの中心Cと管Pの回転中心Oとは一致しているため、探傷センサ1をX軸方向に移動させる必要はない。しかしながら、例えば、一方の非接触式変位計2Cで測定した管P2の部位A4の変位は、あたかも管P2の中心Cと管P2の回転中心Oとがずれている場合と同様の−αとなる。このため、−αの変位のみを用いて管P4の状態となったときの探傷センサ1のX軸方向への移動量を設定したのでは、実際には管Pの中心Cと管Pの回転中心Oとがずれていない(従って、X軸方向に探傷センサ1を移動させる必要がない)場合であっても探傷センサ1を移動させることになり、追従精度が悪化する虞がある。
これに対し、本実施形態のように、管P4の状態となったときの探傷センサ1のX軸方向への移動量を、前述のように図5の紙面の右側方向にMx=(非接触式変位計2Cで測定した変位−非接触式変位計2Dで測定した変位)/2とすれば、非接触式変位計2Cで測定した管P2の部位A4の変位は−αで、非接触式変位計2Dで測定した管P2の部位A2の変位も−αであるため、Mx=0となり、探傷センサ1をX軸方向に沿って移動させることなく、追従精度を維持することが可能である。
また、図6(b)に示すように、実際の被探傷材である管Pが、外径は管P0と等しく、断面は真円形であり、管Pの中心と管Pの回転中心Oとがずれている(ずれ量=α)場合には、非接触式変位計2Cで測定した管P2の部位A4の変位はαで、非接触式変位計2Dで測定した管P2の部位A2の変位は−αであるため、Mx=αとなる。管P2の状態から180°回転して管P4の状態になったとき、探傷センサ1に対する管P4の中心C4のX軸方向の変位は−α(αだけ管Pが図6の紙面左側方向に移動する)となる。従って、管P2の状態から180°回転して管P4の状態となったときの探傷センサ1のX軸方向への移動量を図6の紙面左側方向にMxとすることにより、管P4に対する探傷センサ1のX軸方向の相対位置を略一定(初期位置設定の際の管P0に対する探傷センサ1のX軸方向の相対位置と略同等)にすることが可能である。すなわち、探傷センサ1のX軸方向への移動量としてMxを用いることは、図6(a)に示すような断面楕円形の管Pのみならず、図6(b)に示すように、管Pに曲がりが生じていることにより、管Pの中心と管Pの回転中心Oとがずれている場合にも有効である。なお、追従精度が悪化する虞を回避するには、第1実施形態において説明したのと同様に、Mxに0<k<1の所定の緩和係数kを乗じた値を探傷センサ1の移動量として設定することが好ましい。
また、本実施形態に係る位置決め制御手段4は、一対の非接触式変位計2C、2Dの何れか1つの非接触式変位計及び探傷センサ1の位置関係と、管Pの回転数とに基づいて、前記何れか1つの非接触式変位計2C又は2Dで変位を測定した管Pの部位A4、A2が、管Pの回転中心を通りZ軸方向に延びる直線上の所定位置(例えば、部位A4が90°回転した位置A1、又は、部位A2が90°回転した位置A3)に到達するまでの時間を予測する。そして、位置決め制御手段4は、前記予測時間経過後の管Pに対する該予測時間経過後の探傷センサ1のZ軸方向の相対位置が略一定となるように、前記何れか1つの非接触式変位計で測定した変位と、位置決め手段3(具体的には、探傷センサ1をZ軸方向に沿って移動させるための位置決め手段3A)の動作遅れ時間とに基づいて位置決め手段3Aを制御し、探傷センサ1をZ軸方向に沿って移動させる。
なお、本実施形態に係る位置決め制御手段4は、好ましい態様として、一対の非接触式変位計2C、2Dで測定した変位に基づいて、管Pの外径を算出可能な構成とされている。具体的には、管Pの外径は、例えば、各非接触式変位計2C、2Dの離間距離から、各非接触式変位計2C、2Dで測定した管Pまでの距離をそれぞれ減算することによって算出することができる。なお、前述のように、非接触式変位計2C、2Dの位置は、初期設定用の管P0の中心を挟んでX軸方向に沿って対向するように設定される。ここで、実際に外径を測定する管Pに曲がり等のZ軸方向の位置変動が生じていることにより、その管Pの中心が、非接触式変位計2C、2Dの対向方向(非接触式変位計2C及び2Dを結ぶ直線)からZ軸方向にずれた状態になると、幾何学的に、上記のようにして算出される管Pの外径測定値には上記のずれ量に応じた誤差が生じる。具体的には、上記のずれ量が大きくなればなるほど、管Pの外径測定値の方が実際の管Pの外径よりも小さな値となる。また、上記のずれ量が同一であるとすれば、幾何学的に、管Pの実際の外径が小さいほど誤差は大きくなる。従って、管Pに曲がりが生じていても外径測定精度を維持するには、上記のずれ量と管Pのおおよその外径(設計値等)とに応じて、得られた外径測定値を補正する(例えば、所定の補正値を加算する)ことが好ましい。
上記の補正は、例えば、以下のようにして実行することが可能である。まず、位置決め制御手段4が、一本の管Pについて、外径測定値及び探傷センサ1のZ軸方向の位置を時系列で記録するように構成する。また、管Pの外径設計値を位置決め制御手段4に予め入力する。さらに、位置決め制御手段4には、外径測定値に加算する補正値が、管Pの中心の上記ずれ量及び管Pの外径設計値毎に例えばテーブル形式で予め記憶される。ここで、ある時刻における探傷センサ1のZ軸方向の位置は、探傷センサ1の追従精度が高ければ、同時刻における管Pの中心の上記ずれ量に対応する。従って、位置決め制御手段4に記録された各時刻における探傷センサ1のZ軸方向の位置に基づいて、同時刻における管Pの中心の上記ずれ量を算出することが可能である。位置決め制御手段4は、記録された各時刻における探傷センサ1のZ軸方向の位置に基づいて、各時刻における管Pの中心の上記ずれ量を算出し、該算出したずれ量と前記入力された管Pの外径設計値とに応じた補正値をテーブルから逐次選択して、記録された同時刻における外径測定値に前記補正値を加算すればよい。以上のようにして、記録された各時刻における外径測定値を補正すれば、管Pに曲がり等のZ軸方向の位置変動が生じていても外径測定精度を維持することが可能である。
以下、実施例及び比較例を説明することにより、本発明の特徴をより一層明らかにする。
<実施例1−1>
図5に示す追従装置100B(前述した第3実施形態の構成)を用いて、探傷センサ1の追従精度を評価する試験を行った。被探傷材としては、外径(設計値)が73mmであり、曲がりによって管の回転中心に対する管中心の偏芯量が約±3mmである管(以下、曲がり管という)を用いた。この曲がり管をターニングローラ5上に配置し、軸方向への搬送は行わずに曲がり管を周方向に回転(回転数=180rpm)させた。そして、この回転する曲がり管に、以下のようにして探傷センサ1を追従させた。
(1)X軸方向についての探傷センサ1の追従
非接触式変位計2C、2D及び探傷センサ1の位置関係と、曲がり管の回転数とに基づいて、非接触式変位計2C、2Dで変位を測定した曲がり管の部位が、180°回転した位置に到達するまでの時間を予測する。そして、前記予測時間経過後の曲がり管に対する該予測時間経過後の探傷センサ1のX軸方向の相対位置が略一定となるように、非接触式変位計2Cで測定した変位と非接触式変位計2Dで測定した変位との差と、位置決め手段3Bの動作遅れ時間とに基づいて位置決め手段3Bを制御し、探傷センサ1をX軸方向に沿って移動させた。この探傷センサ1のX軸方向への移動量Mxは、Mx=(非接触式変位計2Cで測定した変位−非接触式変位計2Dで測定した変位)/2とした。
(2)Z軸方向についての探傷センサ1の追従
非接触式変位計2D及び探傷センサ1の位置関係と、曲がり管の回転数とに基づいて、非接触式変位計2Dで変位を測定した曲がり管の部位が、90°回転した位置に到達するまでの時間を予測する。そして、前記予測時間経過後の曲がり管に対する該予測時間経過後の探傷センサ1のZ軸方向の相対位置が略一定となるように、非接触式変位計2Dで測定した変位と、位置決め手段3Aの動作遅れ時間とに基づいて位置決め手段3Aを制御し、探傷センサ1をZ軸方向に沿って移動させた。
<実施例1−2>
探傷センサ1を曲がり管に追従させるために、非接触式変位計2Dで測定した変位のみを用いた(非接触式変位計2Cで測定した変位は用いなかった)点を除き、実施例1−1と同様の条件で、探傷センサ1の追従精度を評価する試験を行った。具体的には、以下のようにして曲がり管に探傷センサ1を追従させた。
(1)X軸方向についての探傷センサ1の追従
非接触式変位計2D及び探傷センサ1の位置関係と、曲がり管の回転数とに基づいて、非接触式変位計2Dで変位を測定した曲がり管の部位が、180°回転した位置に到達するまでの時間を予測する。そして、前記予測時間経過後の曲がり管に対する該予測時間経過後の探傷センサ1のX軸方向の相対位置が略一定となるように、非接触式変位計2Dで測定した変位と、位置決め手段3Bの動作遅れ時間とに基づいて位置決め手段3Bを制御し、探傷センサ1をX軸方向に沿って移動させた。
(2)Z軸方向についての探傷センサ1の追従
実施例1−1と同様に追従させた。
<比較例1>
曲がり管に探傷センサ1を追従させなかった(すなわち、探傷センサ1の位置を初期設定のまま固定した)点を除き、実施例1−1と同様の条件で試験を行った。
<追従精度の評価方法>
(1)Z軸方向の追従精度の評価方法
探傷センサ1に接触式変位計(Z軸接触式変位計)としてのマイクロメータを取り付け、その針先を曲がり管の底面に接触させた。そして、実施例1−1、1−2及び比較例1について、マイクロメータの針先の変位を測定した。探傷センサ1が、周方向への回転に伴う曲がり管のZ軸方向の位置変動に完全に追従していれば、原理的には、上記測定した変位が常に一定となるはずである。従って、Z軸接触式変位計で測定した変位の変動幅が小さいほど、Z軸方向の追従精度が高いと評価した。
(2)X軸方向の追従精度の評価方法
探傷センサ1に接触式変位計(X軸接触式変位計)としてのマイクロメータを取り付け、その針先を曲がり管のX軸方向の側面に接触させた。そして、実施例1−1、1−2及び比較例1について、マイクロメータの針先の変位を測定した。探傷センサ1が、周方向への回転に伴う曲がり管のX軸方向の位置変動に完全に追従していれば、原理的には、上記測定した変位が常に一定となるはずである。従って、X軸接触式変位計で測定した変位の変動幅が小さいほど、X軸方向の追従精度が高いと評価した。
<追従精度の評価結果>
図7は、上記追従精度の評価結果を示すグラフであり、図7(a)は比較例1の結果を、図7(b)は実施例1−2の結果を、図7(c)は実施例1−1の結果を示す。なお、図7には、Z軸接触式変位計及びX軸接触式変位計で測定した変位と共に、非接触式変位計2C、2Dで測定した変位もプロットした。
図7に示すように、Z軸接触式変位計で測定した変位(太い破線で示すグラフ)の変動幅は、比較例1(図7(a))では5.410mmであったのに対し、実施例1−1(図7(c))では0.946mm、実施例1−2(図7(b))では0.921mmとなった。従って、Z軸方向の追従精度は、実施例の方が比較例よりも大幅に高くなることが分かった。
また、図7に示すように、X軸接触式変位計で測定した変位(太い実線で示すグラフ)の変動幅は、比較例1(図7(a))では6.602mmであったのに対し、実施例1−1(図7(c))では0.713mm、実施例1−2(図7(b))では1.047mmとなった。従って、X軸方向の追従精度についても、実施例の方が比較例よりも大幅に高くなることが分かった。なお、実施例1−1と実施例1−2とを対比すると、実施例1−1の方が変位の変動幅が小さくなったのは、曲がり管の断面は完全な真円ではなく、楕円成分も若干含まれていることが一因だと考えられる。すなわち、実施例1−1の構成(前述した第3実施形態の構成)が有効に機能して、楕円成分の影響が低減されることにより、追従精度が高くなったものと考えられる。
<実施例2−1>
被探傷材として、外径(設計値)が73mmで、断面が楕円形(楕円率=2.7%)の管(以下、楕円管という)を用いた点を除き、実施例1−1と同様の条件で、探傷センサ1の追従精度を評価する試験を行った。なお、楕円率は、下記の式で定義される値である。
楕円率=2×(最大外径−最小外径)/(最大外径+最小外径)×100(%)
<実施例2−2>
被探傷材として、楕円管を用いた点を除き、実施例1−2と同様の条件で、探傷センサ1の追従精度を評価する試験を行った。
<比較例2>
被探傷材として、楕円管を用いた点を除き、比較例1と同様の条件で試験を行った。
<追従精度の評価方法>
(1)Z軸方向の追従精度の評価方法
実施例1−1、1−2及び比較例1についての評価方法と同様の方法で、実施例2−1、2−2及び比較例2についてのZ軸方向の追従精度を評価した。
(2)X軸方向の追従精度の評価方法
たとえ各非接触式変位計の測定値が楕円管の回転に伴って変動したとしても、楕円管の中心と楕円管の回転中心とがずれていなければ、X軸方向には探傷センサ1を移動させる必要がない。逆に、探傷センサ1がX軸方向に移動するとすれば、追従精度が悪いことを意味する。従って、ここでは、探傷センサ1のX軸方向の移動量に相当する位置決め手段3Bのピストンロッド311(図2参照)の変位を測定し、この測定した変位の変動幅が小さいほど、追従精度が高いと評価することにした。具体的には、ピストンロッド311の端面に、接触式変位計(X軸接触式変位計)としてのマイクロメータの針先を接触させ、実施例2−1、2−2及び比較例2について、マイクロメータの針先の変位を測定した。そして、上記のように、X軸接触式変位計で測定した変位の変動幅が小さいほど、X軸方向の追従精度が高いと評価した。
<追従精度の評価結果>
図8は、上記追従精度の評価結果を示すグラフであり、図8(a)は比較例2の結果を、図8(b)は実施例2−2の結果を、図8(c)は実施例2−1の結果を示す。なお、図8には、Z軸接触式変位計及びX軸接触式変位計で測定した変位と共に、非接触式変位計2C、2Dで測定した変位もプロットした。
図8に示すように、Z軸接触式変位計で測定した変位(太い破線で示すグラフ)の変動幅は、比較例2(図8(a))では0.683mmであったのに対し、実施例2−1(図8(c))では0.639mm、実施例2−2(図8(b))では0.652mmとなった。従って、Z軸方向の追従精度は、実施例の方が比較例よりも若干ではあるが高くなることが分かった。
また、図8に示すように、X軸接触式変位計で測定した変位(太い実線で示すグラフ)の変動幅は、比較例2(図8(a))では0.098mm、実施例2−1(図8(c))では0.725mm、実施例2−2(図8(b))では0.869mmであった。ここで、比較例2のX軸接触式変位計で測定した変位の変動幅は、探傷センサ1の位置を固定しているため、当然0mmに近い値になる(機械的振動に起因した若干変位の変動が生じている)。このため、X軸方向の追従精度については、実施例と比較例との対比はできない。実施例2−1と実施例2−2とを対比すると、上記のように、実施例2−1の方が実施例2−2よりも変位の変動幅が小さくなって、追従精度が高まることが分かった。この結果は、断面が楕円形の管に探傷センサ1を追従させるには、本発明の中でも前述した第3実施形態の構成が特に有効であることを示すものである。
図1は、本発明の第1実施形態に係る管の探傷用追従装置の概略構成を示す図である。 図2は、図1に示す位置決め手段の概略構成を示す図である。 図3は、図1に示す追従装置の原理を説明する説明図である。 図4は、本発明の第2実施形態に係る管の探傷用追従装置の概略構成を示す正面図である。 図5は、本発明の第3実施形態に係る管の探傷用追従装置の概略構成を示す正面図である。 図6は、図5に示す追従装置の原理を説明する説明図である。 図7は、本発明の実施例及び比較例について、追従精度を評価した結果の一例を示すグラフである。 図8は、本発明の実施例及び比較例について、追従精度を評価した結果の他の例を示すグラフである。
符号の説明
1・・・探傷センサ
2,2A,2B,2C,2D・・・非接触式変位計
3,3A,3B・・・位置決め手段
4・・・位置決め制御手段
5・・・ターニングローラ
6・・・パルスジェネレータ

Claims (7)

  1. 周方向に回転する管を探傷するために管の外表面に対向配置され管の軸方向に沿って相対的に移動する探傷センサを管に追従させる追従装置であって、
    管の外表面の変位を非接触で測定する少なくとも1つの非接触式変位計と、
    管及び前記探傷センサの対向方向、並びに、該対向方向に直交する直交方向に沿って、前記探傷センサを管の軸方向に直交する平面内で移動させる位置決め手段と、
    前記位置決め手段を制御する位置決め制御手段とを備え、
    前記位置決め制御手段は、
    前記非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となるように、前記非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記対向方向に沿って移動させると共に、
    前記非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるように、前記非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移動させることを特徴とする管の探傷用追従装置。
  2. 前記対向方向及び前記直交方向に沿ってそれぞれ配置された少なくとも2つの非接触式変位計を備え、
    前記位置決め制御手段は、
    前記対向方向に沿って配置された非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記対向方向に沿って配置された非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となるように、前記対向方向に沿って配置された非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記対向方向に沿って移動させると共に、
    前記直交方向に沿って配置された非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記直交方向に沿って配置された非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する前記予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるように、前記直交方向に沿って配置された非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移動させることを特徴とする請求項1に記載の管の探傷用追従装置。
  3. 管を挟んで前記直交方向に沿って対向配置された一対の非接触式変位計を備え、
    前記位置決め制御手段は、
    前記一対の非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記一対の非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記直交方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記直交方向の相対位置が略一定となるように、一方の非接触式変位計で測定した変位と他方の非接触式変位計で測定した変位との差と、前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記直交方向に沿って移動させると共に、
    前記一対の非接触式変位計又は他の非接触式変位計の内の何れか1つの非接触式変位計及び前記探傷センサの位置関係と、管の回転数とに基づいて、前記何れか1つの非接触式変位計で変位を測定した管の部位が、管の回転中心を通り前記対向方向に延びる直線上の所定位置に到達するまでの時間を予測し、該予測時間経過後の管に対する該予測時間経過後の前記探傷センサの前記対向方向の相対位置が略一定となるように、前記何れか1つの非接触式変位計で測定した変位と前記位置決め手段の動作遅れ時間とに基づいて前記位置決め手段を制御し、前記探傷センサを前記対向方向に沿って移動させることを特徴とする請求項1に記載の管の探傷用追従装置。
  4. 前記位置決め制御手段は、前記一対の非接触式変位計で測定した変位に基づいて、管の外径を算出することを特徴とする請求項3に記載の管の探傷用追従装置。
  5. 前記非接触式変位計は、渦電流式変位計であり、
    前記位置決め制御手段は、管の材質に応じて前記非接触式変位計で測定した変位を補正し、該補正後の変位に基づいて前記位置決め手段を制御することを特徴とする請求項1から4の何れかに記載の管の探傷用追従装置。
  6. 前記探傷センサは、超音波探触子であり、
    前記位置決め制御手段は、静止状態の管に対して前記位置決め手段を制御して、前記超音波探触子を前記直交方向に沿って移動させ、前記超音波探触子で受信される管の外表面からのエコー強度が最も大きくなる位置を前記超音波探触子の初期位置として設定することを特徴とする請求項1から5の何れかに記載の管の探傷用追従装置。
  7. 請求項1から6の何れかに記載の管の探傷用追従装置と、
    前記管の探傷用追従装置によって管に追従する探傷センサとを備えることを特徴とする管の自動探傷装置。
JP2006326817A 2006-12-04 2006-12-04 管の探傷用追従装置及びこれを用いた管の自動探傷装置 Active JP4842784B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006326817A JP4842784B2 (ja) 2006-12-04 2006-12-04 管の探傷用追従装置及びこれを用いた管の自動探傷装置
EP07830624.8A EP2088427B1 (en) 2006-12-04 2007-10-26 Follow-up device for detecting flaw of pipe and automatic flaw detection apparatus of pipe employing it
BRPI0720180-0A BRPI0720180B1 (pt) 2006-12-04 2007-10-26 Dispositivo de acompanhamento de detecção de falha para cano ou tubo e aparelho de detecção de falha automático para cano ou tubo usando o mesmo
PCT/JP2007/070890 WO2008068972A1 (ja) 2006-12-04 2007-10-26 管の探傷用追従装置及びこれを用いた管の自動探傷装置
US12/312,962 US8104349B2 (en) 2006-12-04 2007-10-26 Flaw detection tracking device for pipe or tube and automatic flaw detecting apparatus for pipe or tube using the same
ARP070105360A AR064080A1 (es) 2006-12-04 2007-11-30 Dispositivo de rastreo de deteccion de defectos para tubos o tuberias y aparato automatico de deteccion de defectos que lo comprende

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326817A JP4842784B2 (ja) 2006-12-04 2006-12-04 管の探傷用追従装置及びこれを用いた管の自動探傷装置

Publications (2)

Publication Number Publication Date
JP2008139191A true JP2008139191A (ja) 2008-06-19
JP4842784B2 JP4842784B2 (ja) 2011-12-21

Family

ID=39491883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326817A Active JP4842784B2 (ja) 2006-12-04 2006-12-04 管の探傷用追従装置及びこれを用いた管の自動探傷装置

Country Status (6)

Country Link
US (1) US8104349B2 (ja)
EP (1) EP2088427B1 (ja)
JP (1) JP4842784B2 (ja)
AR (1) AR064080A1 (ja)
BR (1) BRPI0720180B1 (ja)
WO (1) WO2008068972A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116791A1 (ja) 2009-03-30 2010-10-14 住友金属工業株式会社 管端部の超音波探傷装置
WO2012033001A1 (ja) 2010-09-09 2012-03-15 住友金属工業株式会社 管端部の超音波探傷装置及び探触子ホルダーの初期位置設定方法
JP2014062781A (ja) * 2012-09-20 2014-04-10 Daido Steel Co Ltd 超音波探傷装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524764B2 (ja) * 2008-03-31 2010-08-18 住友金属工業株式会社 超音波探傷方法及び装置
DE102008024394A1 (de) * 2008-05-15 2009-12-03 V&M Deutschland Gmbh Verfahren zur zerstörungsfreien Prüfung von Rohren
GB2475314B8 (en) 2009-11-16 2013-09-25 Innospection Group Ltd Remote environment inspection apparatus and method
CN102809608B (zh) * 2012-07-30 2014-11-12 燕山大学 内置机器人小车式大型筒节类件超声波自动探伤机
GB2537124B (en) 2015-04-07 2018-09-05 Innospection Group Ltd In-line inspection tool
EP3314247A4 (en) 2015-06-29 2019-01-23 The Charles Stark Draper Laboratory, Inc. SYSTEM AND METHOD FOR CHARACTERIZING FERROMAGNETIC MATERIAL
WO2018148118A1 (en) * 2017-02-07 2018-08-16 Bioforcetech Corporation Air lock system
CN107478727A (zh) * 2017-09-21 2017-12-15 镇江龙逸电子科技有限公司 一种测量金属工件的超声波探伤仪器
CN109556484A (zh) * 2018-12-30 2019-04-02 深圳华侨城文化旅游科技股份有限公司 一种检测物体移动到位的方法及***
CN112347414A (zh) * 2020-10-30 2021-02-09 西南石油大学 一种单缺陷弯管极限内压计算方法
CN112710535A (zh) * 2020-12-08 2021-04-27 苏州热工研究院有限公司 衬胶管道的检测方法
US11493319B2 (en) * 2021-03-10 2022-11-08 Roger Dale REEVES Electromagnetic multifunction inspection apparatus
CN114909972B (zh) * 2022-05-19 2024-01-30 南通市计量检定测试所 一种管道轴线平行线定位装置、截面定位装置及定位方法
CN114993229B (zh) * 2022-06-02 2024-06-11 西南石油大学 一种基于多传感器数据融合的椭圆度在线检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629156A (en) * 1979-08-17 1981-03-23 Sumitomo Metal Ind Ltd Noncontact type flaw detector
JPS593347A (ja) * 1982-06-30 1984-01-10 Sumitomo Metal Ind Ltd 探傷装置
JPS60224060A (ja) * 1984-04-21 1985-11-08 Sumitomo Metal Ind Ltd プロ−ブ回転型探傷装置のレベル変動補正方法及び装置
JPS6156963A (ja) * 1984-08-28 1986-03-22 Sumitomo Metal Ind Ltd 電磁誘導探傷試験装置
JPS6438648A (en) * 1987-08-04 1989-02-08 Tokyo Keiki Kk Apparatus for controlling posture of probe
JPH0259658A (ja) * 1988-08-25 1990-02-28 Tokyo Keiki Co Ltd 周方向欠陥検出用被検管偏心補正方法および装置
JPH0466896A (ja) * 1990-07-09 1992-03-03 Japan Nuclear Fuel Co Ltd<Jnf> 原子燃料棒溶接部超音波検査装置
JPH0429411Y2 (ja) * 1985-08-08 1992-07-16
JPH05265559A (ja) * 1992-03-18 1993-10-15 Sumitomo Metal Ind Ltd 材料非接触検査装置の位置制御方法
JP2006105892A (ja) * 2004-10-08 2006-04-20 Sumitomo Metal Ind Ltd 超音波探触子、超音波探傷方法及び超音波探傷装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1192024A (fr) * 1958-02-27 1959-10-23 Commissariat Energie Atomique Dispositif de mesure des déplacements d'un solide rendu inaccessible par la radioactivité du milieu
US3479743A (en) * 1967-04-18 1969-11-25 United States Steel Corp Depth-measuring gauge
JPS5929156A (ja) 1982-08-09 1984-02-16 旭有機材工業株式会社 強化熱可塑性樹脂積層体
US4710712A (en) * 1984-04-11 1987-12-01 Pa Incorporated Method and apparatus for measuring defects in ferromagnetic elements
DE4003330A1 (de) * 1990-02-05 1991-08-08 Foerster Inst Dr Friedrich Wirbelstrompruefgeraet
JPH0429411A (ja) 1990-05-23 1992-01-31 Matsushita Electric Ind Co Ltd 位相比較装置
US5600069A (en) * 1995-04-26 1997-02-04 Ico, Inc. Ultrasonic testing apparatus and method for multiple diameter oilfield tubulars
JP2001208730A (ja) 2000-01-28 2001-08-03 Nkk Corp 非接触超音波装置
US8490490B2 (en) * 2005-08-26 2013-07-23 Nippon Steel & Sumitomo Metal Corporation Ultrasonic probe, ultrasonic testing equipment, ultrasonic testing method, and manufacturing method of seamless pipe or tube
US7997139B2 (en) * 2007-12-03 2011-08-16 Fbs, Inc. Guided wave pipeline inspection system and method with enhanced natural focusing techniques
GB2456831B (en) * 2008-01-28 2012-01-11 Schlumberger Holdings Fatigue and damage monitoring of pipes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629156A (en) * 1979-08-17 1981-03-23 Sumitomo Metal Ind Ltd Noncontact type flaw detector
JPS593347A (ja) * 1982-06-30 1984-01-10 Sumitomo Metal Ind Ltd 探傷装置
JPS60224060A (ja) * 1984-04-21 1985-11-08 Sumitomo Metal Ind Ltd プロ−ブ回転型探傷装置のレベル変動補正方法及び装置
JPS6156963A (ja) * 1984-08-28 1986-03-22 Sumitomo Metal Ind Ltd 電磁誘導探傷試験装置
JPH0429411Y2 (ja) * 1985-08-08 1992-07-16
JPS6438648A (en) * 1987-08-04 1989-02-08 Tokyo Keiki Kk Apparatus for controlling posture of probe
JPH0259658A (ja) * 1988-08-25 1990-02-28 Tokyo Keiki Co Ltd 周方向欠陥検出用被検管偏心補正方法および装置
JPH0466896A (ja) * 1990-07-09 1992-03-03 Japan Nuclear Fuel Co Ltd<Jnf> 原子燃料棒溶接部超音波検査装置
JPH05265559A (ja) * 1992-03-18 1993-10-15 Sumitomo Metal Ind Ltd 材料非接触検査装置の位置制御方法
JP2006105892A (ja) * 2004-10-08 2006-04-20 Sumitomo Metal Ind Ltd 超音波探触子、超音波探傷方法及び超音波探傷装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116791A1 (ja) 2009-03-30 2010-10-14 住友金属工業株式会社 管端部の超音波探傷装置
JP2010256339A (ja) * 2009-03-30 2010-11-11 Sumitomo Metal Ind Ltd 管端部の超音波探傷装置及び探触子ホルダーの初期位置設定方法
US8667847B2 (en) 2009-03-30 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing apparatus for pipe or tube end portion
WO2012033001A1 (ja) 2010-09-09 2012-03-15 住友金属工業株式会社 管端部の超音波探傷装置及び探触子ホルダーの初期位置設定方法
JP2012058077A (ja) * 2010-09-09 2012-03-22 Sumitomo Metal Ind Ltd 管端部の超音波探傷装置
US9442096B2 (en) 2010-09-09 2016-09-13 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing apparatus for pipe or tube end portion and method of setting initial position of probe holder
JP2014062781A (ja) * 2012-09-20 2014-04-10 Daido Steel Co Ltd 超音波探傷装置

Also Published As

Publication number Publication date
EP2088427B1 (en) 2018-02-07
WO2008068972A1 (ja) 2008-06-12
AR064080A1 (es) 2009-03-11
US8104349B2 (en) 2012-01-31
BRPI0720180B1 (pt) 2018-06-26
JP4842784B2 (ja) 2011-12-21
US20100126278A1 (en) 2010-05-27
EP2088427A4 (en) 2017-03-22
BRPI0720180A2 (pt) 2014-04-15
EP2088427A1 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4842784B2 (ja) 管の探傷用追従装置及びこれを用いた管の自動探傷装置
KR20100131452A (ko) 가변 곡률반경에서의 연장형 가공물의 연속 절곡용 롤러 벤딩 머신의 검사 및 제어방법, 및 그 제어 머신
RU2688970C2 (ru) Зажимное устройство
JP6616226B2 (ja) 溶接鋼管の真円度測定方法および真円度測定装置
US10746527B2 (en) Method and system for detecting bend in rotating shaft of magnetic bearing
JP2001033233A (ja) 管状および棒状被検査物の検査方法
JP2010071778A (ja) 大径管の外径測定装置
JP6634629B2 (ja) 渦流探傷装置
JP7028080B2 (ja) 管の溶接部の超音波探傷方法
JP5523923B2 (ja) プローブ駆動装置、及びこの装置を備えた内挿型探傷装置
JP2008190921A (ja) 厚鋼板の表面欠陥検出方法およびその装置
JP5510117B2 (ja) Uo鋼管溶接部ビード位置検出装置及び検出方法
JP2018072324A (ja) 検査プローブ
JP5510068B2 (ja) 被加工物の加工表面の欠陥検出装置
JP2018136272A (ja) 渦電流探傷装置
KR20140003797A (ko) 레이저 용접 장치
JP3140493B2 (ja) スポット溶接機
JP2020019039A (ja) 溶接装置及び溶接装置の板厚検査方法
JP2010145308A (ja) 磁気測定装置
JP2018179617A (ja) エンコーダ
EP2278263A1 (en) Device for measuring metal wires of rectangular cross-section
JP5416000B2 (ja) 対向する回転軸を具備した加工機の測定装置および測定方法
JPH07280544A (ja) ストリップ幅測長装置
JP2011007548A (ja) 内周面検査装置の測定ヘッド
JP2005238394A (ja) 倣い装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250