WO2008038593A1 - Cu-Ni-Si ALLOY - Google Patents

Cu-Ni-Si ALLOY Download PDF

Info

Publication number
WO2008038593A1
WO2008038593A1 PCT/JP2007/068420 JP2007068420W WO2008038593A1 WO 2008038593 A1 WO2008038593 A1 WO 2008038593A1 JP 2007068420 W JP2007068420 W JP 2007068420W WO 2008038593 A1 WO2008038593 A1 WO 2008038593A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
alloy
rolling
stress relaxation
Prior art date
Application number
PCT/JP2007/068420
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Hatano
Original Assignee
Nippon Mining & Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining & Metals Co., Ltd. filed Critical Nippon Mining & Metals Co., Ltd.
Priority to US12/311,401 priority Critical patent/US20100000637A1/en
Priority to CN2007800326042A priority patent/CN101512026B/en
Priority to KR1020087031101A priority patent/KR101056973B1/en
Publication of WO2008038593A1 publication Critical patent/WO2008038593A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a Cu—Ni—Si based alloy suitable for use in various electronic components such as lead frames, connectors, pins, terminals, relays, and switches.
  • the present invention also relates to a method for producing the alloy. Furthermore, this invention relates to the electronic component using this alloy.
  • Copper alloys for electronic materials used in electronic parts and the like are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics.
  • bending workability, stress relaxation characteristics, heat resistance, adhesive properties such as heat release, solder wettability, etching workability, press punching properties, and corrosion resistance are also required.
  • Cu-Ni-Si alloys are copper alloys with relatively high electrical conductivity and strength, and are one of the alloys that are currently being actively developed in the industry. It is. In this copper alloy, strength and electrical conductivity are increased by the precipitation of fine Ni-Si intermetallic particles in the copper matrix.
  • Patent Document 1 discloses a Cu—Ni—Si alloy that achieves both high strength and bending workability.
  • the sum of the cold rolling processing ratios before and after the aging treatment should be 40% or less, and in the solution treatment, the recrystallized grains have a particle size of 5 to 15 m and heated to 15 m. It is disclosed that the conditions should be selected and that the aging treatment should be 30 to 300 minutes at 440 to 500 ° C.
  • the copper alloy specifically disclosed in this document does not generate cracks due to W-bending, and the conductivity is low. At the highest 53% IACS, the tensile strength is 520 MPa, and when the tensile strength is the highest, 710 MPa, the conductivity is 46% IACS (see Table 2 in the Examples).
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-207229
  • Fe, and / or Zr, Cr, Ti, and Mo are added to the Cu-Ni-Si alloy to adjust the components, and Mg, Zn, Sn, Al, P, It is described that inclusion of Mn, Ag, or Be can provide a material suitable as a copper alloy for electronic materials.
  • the copper alloy specifically disclosed in this document does not generate cracks when bent at 90 ° (not 180 °), and has a tensile strength of 640 MPa at 56% IACS, which has the highest conductivity.
  • the electrical conductivity is 44% IACS at the highest tensile strength of 698 MPa (see Table 1 in the Examples).
  • the working degree of cold rolling performed before and after aging treatment is set to 60% and 35.5% (97.5% in total), respectively.
  • Patent Document 3 describes a Cu having a conductivity of 60% IACS or higher, high strength, excellent stiffness strength, repeated bendability, and high heat resistance.
  • Ni—Si alloys are disclosed.
  • This document contains Mn: 0.02-1.0 wt%, Zn: 0.1—5.0 wt%, Mg: 0.001—0.01 wt% as additive elements, and Cr, Ti, Zr. It is stated that one or two or more selected from among them should be contained in an amount of 0.0001-0.01 wt% .
  • the tensile strength is 51.0 kgf / mm 2 (500 MPa), the electrical conductivity. 67. 0% IACS data and tensile strength 62.0 kgf / mm 2 (593 MPa), conductivity 60.0% IACS data and data are disclosed! /, (See Table 2).
  • the Cu-Ni-Si alloy is cold-rolled from 10 mm after hot rolling to 0.25 mm without recrystallization annealing.
  • the rolling degree is remarkably high at 97.5%, and it is assumed that the bending workability is extremely deteriorated.
  • annealing is performed at 450 ° C during and after cold rolling. In the case of Cu-Ni-Si alloys, this temperature is used. Although the precipitation reaction proceeds, recrystallization does not proceed! /.
  • Patent Document 4 a specific amount of Sn, Mg, or further Zn is added, the S and O contents are limited, and the crystal grain size exceeds 1 ⁇ m.
  • a Cu—Ni—Si alloy having excellent mechanical properties, conductivity, stress relaxation properties and bending workability is disclosed.
  • the document also states that recrystallization should be performed at 700 to 920 ° C after cold working in order to adjust the crystal grain size to the above range.
  • a Cu—Ni—Si-based alloy capable of 180 ° tight bending with a tensile strength of 610 to 710 MPa is disclosed.
  • the conductivity of this alloy is 31-42% IACS, and the stress relaxation rate when heated at 150 ° C for 1000 hours is 14-22%.
  • Patent Document 5 Japanese Patent No. 3520034 (Patent Document 5) includes a specific amount of Mg, Sn, Zn, S, a crystal grain size of more than 0.001 mm and less than 0.025 mm, and final plastic working.
  • the ratio (a / b) of the major axis a of the crystal grain in the cross section parallel to the direction to the major axis b of the crystal grain in the cross section perpendicular to the final plastic working direction is 0.8 or more and 1.5 or less.
  • a Cu-Ni-Si alloy characterized by excellent stress relaxation properties is disclosed.
  • non-patent documents 1 and 2 etc. have reported a technique for improving strength and bendability by focusing on the precipitation-free zone (PFZ). ing.
  • the non-precipitation zone is a band-like region that is formed in the vicinity of a grain boundary by grain boundary reaction type precipitation (discontinuous precipitation) during aging and does not have fine precipitates. Since there are no fine precipitates that contribute to strength, when no external force is applied, the precipitate-free zone preferentially undergoes plastic deformation, leading to a decrease in tensile strength and bending workability.
  • Non-Patent Document 1 the addition of P and Sn and two-stage aging are effective in suppressing the precipitation-free zone. Regarding the latter, it is described that the strength was greatly increased without impairing the elongation by adding the pre-aging of 250 ° CX 48h before the normal aging of 450 ° CX 16h. Specifically, an 11 ⁇ 31 series alloy having a tensile strength of 770 to 900 MPa and an electrical conductivity of 34 to 36% 1 to 3 is disclosed.
  • Non-Patent Document 2 describes that the width of PFZ increases as the aging time increases.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-260442
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-207229
  • Patent Document 3 Japanese Patent Laid-Open No. 61-194158
  • Patent Document 4 JP-A-11 222641
  • Patent Document 5 Japanese Patent No. 3520034
  • Non-Patent Document 1 Chihiro Watanabe, Masaru Miyakoshi, Fumiya Nishijima, Ryoichi Monzen: "Cu 4. Omass% Ni-0. 95mass% Si-0. 02mass% P alloy improved mechanical properties", copper and copper alloy, Japan Copper and Brass Association, 2006, Vol. 45, No. 1, p. 16-22
  • Non-Patent Document 2 Goro Ito, Toshiaki Suzuki, A To T Keihei, Yamamoto Yoshinori, Ito Nobuhide, "Effects of Ni, Si content and aging conditions on the bending workability of Cu-Ni Si alloy sheet", copper Copper Alloy, Japan Copper and Brass Association, 2006, Vol. 45, No. 1, p. 71-75
  • is the temperature rise
  • J is the current
  • E is the conductivity
  • H is the thermal conductivity
  • L and S are the length and cross-sectional area of the current-carrying part, respectively. Since H is proportional to E, the temperature rise is inversely proportional to the square of conductivity.
  • an object of the present invention is to provide a Cu—Ni—Si based alloy for electronic materials that does not contain other alloy elements as much as possible and has improved conductivity, strength, bendability and stress relaxation characteristics. Is to provide.
  • Another object of the present invention is to provide a method for producing the Cu—Ni—Si based alloy. Still another object of the present invention is to provide an elongation using the Cu—Ni—Si based alloy. To provide copper products and electronic components.
  • the present inventor has intensively studied to solve the above-mentioned problems.
  • the rate of temperature increase in aging treatment the maximum temperature reached by the material, and the aging It has excellent electrical conductivity, tensile strength, stress relaxation resistance and bendability by giving special conditions to the time and further optimizing the solution treatment conditions and the rolling degree before and after the aging treatment.
  • Cu-Ni-Si alloys can be obtained.
  • the present invention completed on the basis of the above knowledge is: 1. 2 to 3.5 mass% Ni, Ni concentration (mass%) 1/6 to; 1/4 concentration (mass%)
  • Ni concentration (mass%) 1/6 to; 1/4 concentration (mass%)
  • This is a Cu-Ni-Si alloy characterized in that it contains Si and the balance is composed of Cu and impurities of 0.05 mass% or less in total, and has the following characteristics.
  • Zn when Zn is added to the above alloy, the electrical conductivity is slightly reduced, but since the effect of improving the heat-resistant peelability of Sn plating is great, the above alloy is particularly desirable when seeking good heat-resistant peelability of Sn plating.
  • Zn may be added up to an upper limit of 0.5 mass%! /.
  • 1.2 to 3.5 mass% Ni, Ni concentration (mass% ) With a concentration (mass%) of l / 6 to l / 4, Zn of 0.5 mass% or less, with the balance being Cu and a total amount of impurities of 0.05 mass% or less. It is a Cu-Ni-Si alloy characterized by having the above characteristics.
  • the copper alloy according to the present invention has a cross-sectional metallographic structure parallel to the rolling surface, the average grain size in the direction perpendicular to the rolling direction of the crystal grains is a, the direction parallel to the rolling direction When the average particle size of b is b,
  • the average width of the precipitation-free zone in the metal structure is 10 to 100 nm.
  • electronic components such as a lead frame, a connector, a pin, a terminal, a relay, a switch, and a foil material for a secondary battery using the copper alloy.
  • the method for producing a Cu-Ni-Si-based alloy including sequentially performing the steps of solution treatment, cold rolling, aging treatment, and cold rolling,
  • the above-mentioned Cu—Ni—Si alloy production method is characterized in that the process is performed under the following conditions. (Solution treatment)
  • the average crystal grain size is adjusted to a range of !! to 15 m.
  • the maximum temperature of the material during the heat treatment is 550 ° C or lower, and the material is kept in the temperature range of 450 to 550 ° C for 5 to 15 hours.
  • the average heating rate of the material in each temperature zone of 200 to 250 ° C, 250 to 300 ° C, and 300 to 350 ° C in the temperature rising process shall be 50 ° C / h or less.
  • Cold rolling The sum of the rolling work in cold rolling before aging and the rolling work in cold rolling after aging is 5-40%.
  • the Si concentration (mass%) is in the range of 1/6 to 1/4 of the Ni concentration (mass%). This is because good conductivity (for example, 55% IACS or more) cannot be obtained if Si is out of this range.
  • a preferred Si range is 1 / 5.5-1 / 4.2 of Ni, and a more preferred Si range is 1/5 ⁇ 2 ⁇ 1 / 4 ⁇ 5 of Ni.
  • Ni is 1.2 to 3.5 mass%. When Ni is less than 1.2% by mass, good tensile strength (eg, 550 MPa or more) cannot be obtained. If Ni exceeds 3.5 mass%, good bending workability cannot be obtained (for example, cracking occurs in 180-degree contact bending).
  • a preferable Ni concentration is 1.4 to 2.5% by mass, and a more preferable range of Ni is 1.5 to 2.0% by mass.
  • the total amount of impurities is controlled to 0.05% by mass or less, preferably 0.02% by mass or less, more preferably 0.01% by mass or less. Therefore, in a preferred embodiment of the present invention, alloy elements other than Ni and Si are not present in the Cu—Ni—Si alloy except for inevitable impurities.
  • Zn has a relatively small effect on electrical conductivity, it has a large effect on improving the heat-resistant peelability of Sn plating. May be.
  • the decrease in conductivity per 1% by mass of ZnO is about 0.5% IACS.
  • the Zn force SO. Exceeds 5% by mass, it becomes difficult to obtain a sufficient conductivity (for example, 55% IACS or more), and when the Zn content is less than 0.05% by mass, the heat resistance of the Sn plating is improved. There is almost no improvement effect. Therefore, the preferable Zn concentration is 0.05 to 0.5% by mass, A more preferable Zn concentration is 0.;! To 0.3% by mass.
  • b / a When b / a is less than 1.05, good tensile strength cannot be obtained (for example, less than 550 MPa). On the other hand, if b / a exceeds 1.67, good bendability cannot be obtained (for example, cracking occurs due to 180 degree contact bending).
  • the average width of the precipitation-free zone in the metal structure is 10 to! OOnm. If the width of the precipitation-free zone is increased, sufficient bendability, stress relaxation resistance and tensile strength cannot be obtained. When the width of the precipitation-free zone exceeds lOOnm, good bendability cannot be obtained (for example, cracking occurs by 180 ° contact bending), and good stress relaxation rate cannot be obtained (for example, more than 30%).
  • the width of the precipitation-free zone is preferably as narrow as possible.
  • a preferable average width of the precipitation-free zone for improving the conductivity, bending workability and stress relaxation resistance in a well-balanced manner is 20 to 90 nm, and a more preferable average width of the precipitation-free zone is 30 to 80 nm.
  • the copper alloy according to the present invention has the following characteristics.
  • the copper alloy according to the present invention has the following characteristics.
  • the copper alloy according to the present invention has the following characteristics:
  • the copper alloy according to the present invention to which Zn is added is another preferred! /, And in the embodiment, the following characteristics can be achieved at the same time.
  • the "Sn plating heat-resistant peeling test” refers to a method for evaluating the Sn plating peeling of a test piece in the following manner.
  • the copper alloy according to the present invention has the same composition and is comparable to the copper alloy according to the present invention, that is, conductivity, strength, bending workability and stress relaxation characteristics. No example has been achieved in a balanced manner up to the level of the present invention.
  • Ni and Si compounds dissolved in the solution treatment are precipitated as fine particles by heating at a temperature range of about 350 to about 550 ° C for lh or more.
  • This aging treatment increases strength and conductivity.
  • cold rolling may be performed before and / or after aging.
  • strain relief annealing low temperature annealing
  • overaging may be performed.
  • good conductivity eg, about 60% IACS
  • the compressive force, pliable force, and tensile strength decrease (for example, up to about 500 MPa), which causes deterioration of stress relaxation resistance and bendability rather than force and glue.
  • the tensile strength recovers to about 600 MPa, the bendability is significantly deteriorated due to processing strain, and the stress relaxation resistance cannot be improved.
  • Conventional high-conductivity Cu-Ni-Si alloys disclosed in Patent Document 3 etc. were basically technologies that applied this overaging.
  • the present inventor has made studies in order to improve the electrical conductivity, strength, bendability and stress relaxation resistance in a well-balanced manner. As a result, in the manufacturing process of a Cu-Ni-Si alloy with as few impurities as possible. Excellent electrical conductivity is achieved by applying special conditions to the rate of temperature rise in aging treatment, the highest temperature reached for the material, and the aging time, and further optimizing the solution treatment conditions and the degree of rolling before and after the aging treatment. The present inventors have found that a Cu-Ni-Si based alloy having tensile strength, stress relaxation resistance and bendability can be obtained.
  • the rate of temperature rise, the maximum material temperature, the time during which the material is maintained at a temperature of 450 to 550 ° C, and the rate of temperature rise of the material are specified.
  • the average heating rate of the material in each temperature range of C must be 50 ° C / h or less. From the viewpoint of production efficiency, the average rate of temperature rise is preferably 10 ° C / h or more. Typically, the average heating rate is 20-40. C / h.
  • the method of temperature increase rate control of the present invention is an industrially extremely effective method that hardly reduces the production efficiency.
  • the temperature is preferably 530 ° C or lower, more preferably 500 ° C or lower.
  • the maximum temperature is preferably 450 ° C or more, more preferably 480 ° C or more.
  • the width of the precipitate-free zone becomes narrow (for example, less than lOnm), but sufficient conductivity cannot be obtained even if the rate of temperature rise is suppressed. If it exceeds 15 hours, the width of the precipitation-free zone becomes wider (for example, more than 100 nm). A more preferable time considering production efficiency is 6 to 10 hours.
  • the heating temperature and heating conditions of the solution treatment for obtaining the above crystal grain size are well known, and can be appropriately set by those skilled in the art.
  • the material is heated to an appropriate temperature of 700 to 800 ° C.
  • the crystal grain size is obtained by holding for an appropriate time of 5 to 600 seconds and then quickly cooling with air or water.
  • the total workability of intermediate rolling and final rolling is 5-40%.
  • the total workability is less than 5%, the b / a required from the metal structure of the product is less than 1.05, and when the total workability exceeds 40%, the b / a exceeds 1.67.
  • strain relief annealing may be performed for the purpose of improving the spring limit value and the like.
  • the strain relief annealing may be performed at a low temperature for a long time (for example, 300 ° C x 30 minutes) !, or at a high temperature for a short time (for example, 500 ° C for 30 seconds). If the temperature is too high or the time is too long, the decrease in tensile strength will increase. It is preferable to select the conditions with a decrease in tensile strength of 10 to 50 MPa.
  • the maximum temperature of the material during heat treatment is 550 ° C or less, and the material is kept in the temperature range of 450-550 ° C for 5 to 15 days. C, 250-300.
  • steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.
  • the Cu-Ni-Si alloy of the present invention is applied to various copper products such as plates, strips, tubes, rods and wires. Furthermore, the Cu Ni Si-based copper alloy according to the present invention is particularly suitable as a lead frame material for semiconductor devices such as conductive spring materials such as connectors, terminals, relays and switches, transistors and integrated circuits. Can be used.
  • the concentration in the ingot was determined by the semi-quantitative analysis of all elements by glow discharge mass spectrometry, and the total amount was about 0.01% by mass.
  • Fe (0.005 mass%), S (0.001 mass%), and C (0.001 mass%) were elements with relatively high concentrations.
  • the ingot was heated at 950 ° C for 3 hours and then hot-rolled to a thickness of 8 mm, and the oxidized scale on the surface was removed with a grinder. Thereafter, cold rolling, solution treatment, cold rolling (intermediate rolling), aging treatment, cold rolling (final rolling), and strain relief annealing were performed in this order. The degree of processing in each rolling and the thickness during heat treatment were adjusted so that the final rolled thickness would be 0.25 mm. After solution treatment, aging treatment and strain relief annealing, pickling with 10% sulfuric acid 1% hydrogen peroxide solution and mechanical polishing with # 1200 emery paper to remove surface oxide film generated by heat treatment Were sequentially performed.
  • the sample was inserted into an electric furnace adjusted to a predetermined temperature for a predetermined time, then immediately removed from the electric furnace and air-cooled.
  • the sample was heated under various temperature conditions using an electric furnace.
  • the sample temperature was measured by bringing the sample into contact with a thermocouple.
  • strain relief annealing the sample was placed in a 300 ° C electric furnace for 30 minutes, then removed from the electric furnace and air-cooled. If final rolling is not performed, this strain relief annealing was not performed.
  • an EBSP Electro Backscattering Pattern
  • the vicinity of the grain boundary of the product was observed with a transmission electron microscope at a magnification of about 100,000 times, and the average width of the precipitation-free zone (average value at any 30 power points) was obtained.
  • the electrical conductivity of the product was measured by the 4-terminal method in accordance with JIS H 0505.
  • the JIS 13 B test piece was produced using the press so that the tensile direction might be parallel to the rolling direction.
  • a tensile test was performed on the specimen in accordance with JIS-Z2241 to determine the tensile strength.
  • a strip-shaped test piece having a width of 10 mm and a length of 100 mm was taken from the product so that the longitudinal direction of the test piece was parallel to the rolling direction.
  • the specimen is given yo deflection and is 0.2% resistant (measured in accordance with JIS Z2241). Stress corresponding to% ( ⁇ ⁇ ) was applied.
  • yo was obtained from the following equation.
  • E Young's modulus
  • t the thickness of the sample.
  • Plating bath composition copper sulfate 200g / L, sulfuric acid 60g / L
  • 'Plating bath composition stannous oxide 41g / L, phenolsulfonic acid 268g / L, surfactant 5g / L
  • the composition of the sample was Cu-1.60 mass% Ni—0.35 mass% 31 alloy, and it was processed into a product by changing solution treatment conditions, aging treatment conditions, and rolling conditions.
  • Figure 2 is a typical aging treatment temperature chart. The broken line indicates the temperature of the atmosphere in contact with the sample, and the solid line indicates the sample temperature.
  • the material was placed in an electric furnace adjusted to 200 ° C and held for 1 hour, and then the furnace temperature was increased from 200 ° C to 350 ° C over 5 hours. Next, the furnace temperature is raised to 500 ° C over 1 hour and held for 8 hours, then taken out of the electric furnace and air cooled.
  • the material was placed in an electric furnace adjusted to 200 ° C and held for 1 hour, then the furnace temperature was increased from 200 ° C to 250 ° C over 3 hours, and over 2 hours. The temperature was raised to 300 ° C and raised to 350 ° C over 1 hour. Next, the furnace temperature was raised to 490 ° C over 1 hour and held for 10 hours, after which it was removed from the electric furnace and air-cooled.
  • (c) shows the case where the material was put into an electric furnace adjusted to 500 ° C, taken out of the electric furnace after 9 hours and air-cooled. This corresponds to a conventional heat treatment procedure.
  • Fig. 2 Nichiera effect turn ⁇ , 200 ⁇ 250 ° C, 250 ⁇ 300 ° C and 300 ⁇ 350 ° C (average heating rate, maximum material temperature, 450-550 ° The retention time was determined in the temperature range of C.
  • the product was processed under the solution treatment conditions and rolling conditions of the present invention, and the structure and properties were investigated.
  • (A) (b) (c) in Fig. 2 These correspond to No. 1, 2, and 3 in Table 1, respectively.
  • Nos. 1 and 2 produced under the conditions of the present invention satisfy the metal structure and properties of the product defined by the present invention.
  • the temperature increase rate of No. 3 which is a conventional example is larger than the range of the present invention, and other conditions are the same as No. 1. Since the precipitation-free zone greatly exceeded lOOnm, the tensile strength was less than 550 MPa, cracking occurred at 180 ° contact bending, and the stress relaxation rate exceeded 30%.
  • No. 4 is also a conventional example.
  • the rolling degree is increased.
  • the precipitation-free zone exceeded lOOnm, so the 180 degree contact bending resulted in severe cracking at the level at which the specimen broke, and the stress relaxation exceeded 30%.
  • No. 5 is a conventional general Cu-Ni-Si alloy. Peak aging is performed and properties are created with priority given to tensile strength. The bendability and stress relaxation resistance are good. The power conductivity is less than 50% IACS.
  • Table 2 shows the data when No. 1 is heated at different aging rates. It can be seen that the width of the precipitation-free zone becomes smaller by slowing the heating rate. As the width of the precipitation-free zone becomes smaller, the tensile strength, bendability, and stress relaxation resistance are improved. In Comparative Example No. 9.10, the rate of temperature rise exceeded 50 ° C / h in any temperature zone, so the width of the precipitation-free zone exceeded 10 Onm, the tensile strength was less than 550 MPa, 180 degrees Cracks occurred due to close contact bending, and the stress relaxation rate exceeded 30%.
  • Table 3 shows the data for No. 2 when the maximum temperature at aging and the holding time at 450 to 550 ° C were changed.
  • Table 4 shows the data when the degree of rolling is changed for No.1.
  • the b / a obtained from the metal structure of the product increases and the tensile strength increases.
  • No. 17 b / a is less than 1.05 and the total strength of intermediate rolling and final rolling is less than 5%, and the tensile strength is less than 550 MPa.
  • the b / a of No. 23 the sum of the intermediate rolling and final rolling degrees exceeding 40%, was greater than 1.67, the tensile strength exceeded 700 MPa, and cracking occurred in 180 degree contact bending.
  • Table 5 shows the data for No. 2 when the crystal grain size after solution treatment was changed. As the crystal grain size after solution treatment increases, a obtained from the metal structure of the product increases and the stress relaxation rate decreases. The crystal grain size after solution treatment was less than 1 ⁇ m. No. 24's a was less than 1 Hm, the stress relaxation rate exceeded 30%, and the tensile strength was less than 3 ⁇ 450 MPa due to insufficient solutionization. In the case of No. 29 where the crystal grain size after solution treatment exceeded 15 m, No. a exceeded 15 m, and cracking occurred at 180 ° contact bending.
  • Table 6 shows the data when Ni is fixed at 1.60 mass% and the Si concentration is changed.
  • No. 1 and No. 5 are the same as the samples in Table 1.
  • No. 5 is a conventional alloy whose conductivity is less than 55% IACS, and its manufacturing conditions are different from those of other alloys.
  • the conductivity will be less than 55% IACS. ing. Also, the force that increases the tensile strength as the Ni concentration / Si concentration ratio decreases. This is because the amount of Ni Si deposited increases as the Si concentration increases.
  • the Sn plating heat release resistance evaluation result of the alloy of the present invention was ⁇ (dot-like peeling).
  • the evaluation results of No. 5 and 34 are X. This is because solute Si reduces the heat-resistant peelability. In other words, in No. 5, the amount of Ni Si deposited was small, and in No. 34, Si was excessively added to Ni, so the amount of dissolved Si increased.
  • Table 7 shows the data obtained by changing the Ni concentration while maintaining the Ni concentration / Si concentration ratio within the range of the present invention.
  • the tensile strength was less than 3 ⁇ 450 MPa.
  • the tensile strength exceeded 700 MPa, and cracking occurred at 180 ° close contact bending.
  • Table 8 shows the data when various concentrations of Zn were added to No. 1 as the effect of Zn addition. Addition of 0.05 mass% or more of Zn resulted in a Sn plating heat release resistance evaluation result of ⁇ (no peeling). On the other hand, the conductivity decreased as the Zn content increased. Zn force SO. Conductivity of 55% IACS or higher was obtained in the range of 5 mass% or less.
  • Table 9 shows data obtained by increasing the No. 43 impurity as impurities.
  • the total amount of impurities is changed by adding Sn, assuming the inclusion of Sn-plated copper material, and adding Mg, assuming the presence of deoxidizing elements during dissolution.
  • Conductivity is less than 55% IACS when impurities exceed 0.05% by mass.
  • FIG. 2 is a diagram showing a temperature chart of aging treatment ((a) and (b) are invention examples, and (c) is a conventional example).

Abstract

A Cu-Ni-Si alloy for electronic material that with the addition of other alloy elements minimized, simultaneously exhibits enhanced electric conductivity, strength, flexure and stress relaxation performance. There is provided a Cu-Ni-Si alloy comprising 1.2 to 3.5 mass% Ni, Si in a concentration (mass%) of 1/6 to 1/4 of the Ni concentration (mass%) and the balance Cu and impurities whose total amount is 0.05 mass% or less, the Cu-Ni-Si alloy having its configuration of crystal grains and width of nonprecipitation zone regulated so as to fall within appropriate ranges through controlling of solution treatment conditions, aging treatment conditions and degree of roll working. Thus, there can be provided a copper alloy strip of 55 to 62% IACS electric conductivity and 550 to 700 MPa tensile strength, being free from cracking at 180° contact bending and exhibiting a stress relaxation ratio, as measured upon heating at 150°C for 1000 hr, of 30% or below.

Description

明 細 書  Specification
Cu— Ni— Si系合金  Cu—Ni—Si alloy
技術分野  Technical field
[0001] 本発明は、リードフレーム、コネクタ、ピン、端子、リレー、スィッチ等の各種電子部 品に用いるのに好適な Cu— Ni— Si系合金に関する。また、本発明は該合金の製造 方法に関する。更に、本発明は該合金を利用した電子部品に関する。  The present invention relates to a Cu—Ni—Si based alloy suitable for use in various electronic components such as lead frames, connectors, pins, terminals, relays, and switches. The present invention also relates to a method for producing the alloy. Furthermore, this invention relates to the electronic component using this alloy.
背景技術  Background art
[0002] 電子部品等に使用される電子材料用銅合金には、基本特性として高い強度及び 高い導電性(又は熱伝導性)を両立させることが要求される。また、曲げ加工性、耐応 力緩和特性、耐熱性、耐熱剥離などのめつき特性、半田濡れ性、エッチング加工性 、プレス打ち抜き性、耐食性等も求められる。  [0002] Copper alloys for electronic materials used in electronic parts and the like are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics. In addition, bending workability, stress relaxation characteristics, heat resistance, adhesive properties such as heat release, solder wettability, etching workability, press punching properties, and corrosion resistance are also required.
[0003] このような背景の下、近年では電子材料用銅合金として従来のりん青銅、黄銅等に 代表される固溶強化型銅合金に替わり、強度、導電率、応力緩和特性において固溶 強化型銅合金よりも優れてレ、る時効硬化型の銅合金の使用量が増加して!/、る。時効 硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微 細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量 が減少し導電性が向上する。  [0003] Under these circumstances, in recent years, as a copper alloy for electronic materials, solid solution strengthened copper alloys represented by phosphor bronze, brass and the like have been replaced by solid solution strengthening in strength, conductivity and stress relaxation characteristics. The amount of age-hardening type copper alloys is superior to copper-type copper alloys. In an age-hardening type copper alloy, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed to increase the strength of the alloy and at the same time reduce the amount of solid-solution elements in copper. And conductivity is improved.
[0004] 時効硬化型銅合金のうち、 Cu— Ni— Si系合金は比較的高い導電性と強度を有す る銅合金であり、業界において現在活発に開発が行われている合金の一つである。 この銅合金では、銅マトリックス中に微細な Ni— Si系金属間化合物粒子が析出する ことにより強度と導電率が上昇する。  [0004] Of the age-hardening copper alloys, Cu-Ni-Si alloys are copper alloys with relatively high electrical conductivity and strength, and are one of the alloys that are currently being actively developed in the industry. It is. In this copper alloy, strength and electrical conductivity are increased by the precipitation of fine Ni-Si intermetallic particles in the copper matrix.
[0005] 例えば、特開 2002— 266042号公報(特許文献 1)には高強度と曲げ加工性の両 立を図った Cu— Ni— Si系合金が開示されている。該銅合金の製造にあたっては時 効処理の前後における冷間圧延の加工率の和を 40%以下とすべきこと、溶体化処 理では再結晶粒の粒径が 5〜; 15 mとなる加熱条件を選択すべきこと、時効処理は 440〜500°Cで 30〜300分とすべきことカ開示されている。  [0005] For example, Japanese Patent Application Laid-Open No. 2002-260442 (Patent Document 1) discloses a Cu—Ni—Si alloy that achieves both high strength and bending workability. In the production of the copper alloy, the sum of the cold rolling processing ratios before and after the aging treatment should be 40% or less, and in the solution treatment, the recrystallized grains have a particle size of 5 to 15 m and heated to 15 m. It is disclosed that the conditions should be selected and that the aging treatment should be 30 to 300 minutes at 440 to 500 ° C.
該文献に具体的に開示されている銅合金は W曲げで割れが発生せず、導電率が 最も高い 53%IACSのときで引張強さが 520MPaであり、引張り強さが最も高い 710 MPaのときで導電率が 46%IACSである(実施例の表 2参照)。 The copper alloy specifically disclosed in this document does not generate cracks due to W-bending, and the conductivity is low. At the highest 53% IACS, the tensile strength is 520 MPa, and when the tensile strength is the highest, 710 MPa, the conductivity is 46% IACS (see Table 2 in the Examples).
[0006] 特開 2001— 207229号公報(特許文献 2)には強度、導電性に加え、良好な曲げ 加工性を有する Cu— Ni— Si系合金の開発を試みた例が記載されている。該文献に は、合金中の Niと Siの重量比を金属間化合物である Ni Siの濃度に近づけることに より、すなわち Niと Siの重量比を Ni/Si = 3〜7とすることにより良好な導電性が得ら れること力記載されている。また、 Cu— Ni— Si系合金に Fe及び/又は Zr、 Cr、 Ti、 Moのいずれか一種以上を添加し成分調整を行った上で、必要に応じ Mg、 Zn、 Sn 、 Al、 P、 Mn、 Agまたは Beを含有させることにより電子材料用銅合金として好適な素 材を提供できることが記載されてレ、る。  [0006] Japanese Patent Application Laid-Open No. 2001-207229 (Patent Document 2) describes an example of an attempt to develop a Cu—Ni—Si alloy having good bending workability in addition to strength and conductivity. According to the literature, the weight ratio of Ni and Si in the alloy is made closer to the concentration of NiSi, which is an intermetallic compound, that is, the weight ratio of Ni and Si is made Ni / Si = 3-7. It is described that it is possible to obtain high conductivity. In addition, Fe, and / or Zr, Cr, Ti, and Mo are added to the Cu-Ni-Si alloy to adjust the components, and Mg, Zn, Sn, Al, P, It is described that inclusion of Mn, Ag, or Be can provide a material suitable as a copper alloy for electronic materials.
該文献に具体的に開示されている銅合金は 90° 曲げ(180° 曲げではない)でク ラックが発生せず、導電率が最も高い 56%IACSのときで引張強さが 640MPaであ り、引張り強さが最も高い 698MPaのときで導電率が 44%IACSである(実施例の表 1参照)。また、該文献の実施例では時効処理前及び後に行う冷間圧延の加工度を それぞれ 60%及び 37· 5% (合計で 97· 5%)としている。  The copper alloy specifically disclosed in this document does not generate cracks when bent at 90 ° (not 180 °), and has a tensile strength of 640 MPa at 56% IACS, which has the highest conductivity. The electrical conductivity is 44% IACS at the highest tensile strength of 698 MPa (see Table 1 in the Examples). In the examples of this document, the working degree of cold rolling performed before and after aging treatment is set to 60% and 35.5% (97.5% in total), respectively.
[0007] 特開昭 61— 194158号公報(特許文献 3)には、 60%IACS以上の導電率を有し、 高強度であり、スティフネス強度、繰り返し曲げ性に優れ、高耐熱性を有する Cu— Ni — Si系合金が開示されている。該文献には添加元素として Mn : 0. 02-1. 0wt%、 Zn : 0. 1— 5. 0wt%、 Mg : 0. 001—0. 01wt%を含有し、さらに Cr、 Ti、 Zrのうち から選んだ 1種又は 2種以上を 0. 001-0. 01wt%含有すべきことが記載されてい 該文献の実施例には、引張強さ 51. 0kgf/mm2 (500MPa)、導電率 67. 0%IA CSのデータ及び引張強さ 62· 0kgf/mm2 (593MPa)、導電率 64· 0%IACSのデ ータ及びが開示されて!/、る (表 2参照)。 [0007] Japanese Laid-Open Patent Publication No. 61-194158 (Patent Document 3) describes a Cu having a conductivity of 60% IACS or higher, high strength, excellent stiffness strength, repeated bendability, and high heat resistance. — Ni—Si alloys are disclosed. This document contains Mn: 0.02-1.0 wt%, Zn: 0.1—5.0 wt%, Mg: 0.001—0.01 wt% as additive elements, and Cr, Ti, Zr. It is stated that one or two or more selected from among them should be contained in an amount of 0.0001-0.01 wt% .In the examples of this document, the tensile strength is 51.0 kgf / mm 2 (500 MPa), the electrical conductivity. 67. 0% IACS data and tensile strength 62.0 kgf / mm 2 (593 MPa), conductivity 60.0% IACS data and data are disclosed! /, (See Table 2).
該 Cu— Ni— Si系合金は熱間圧延上がりの 10mmから、途中で再結晶焼鈍を施す ことなく、 0. 25mmまで冷間圧延されている。この場合の圧延加工度は 97. 5%と著 しく高く、曲げ加工性が極度に悪化していることが推察される。なお、冷間圧延の途 中及び後に 450°Cの焼鈍を行っているが、 Cu— Ni— Si系合金の場合、この温度で 析出反応は進行するものの再結晶は進行しな!/、。 The Cu-Ni-Si alloy is cold-rolled from 10 mm after hot rolling to 0.25 mm without recrystallization annealing. In this case, the rolling degree is remarkably high at 97.5%, and it is assumed that the bending workability is extremely deteriorated. Note that annealing is performed at 450 ° C during and after cold rolling. In the case of Cu-Ni-Si alloys, this temperature is used. Although the precipitation reaction proceeds, recrystallization does not proceed! /.
[0008] 特開平 11 222641号公報(特許文献 4)には、 Sn、 Mg、或いは更に Znを特定 量添加し、 S、 O含有量を制限して、かつ結晶粒度を 1 μ mを超え 25 m以下とした ことにより、優れた機械的特性、伝導性、応力緩和特性と曲げ加工性を兼ね備えた C u— Ni— Si系合金が開示されている。また、該文献には結晶粒度を上記範囲に調整 するためには冷間加工後に再結晶処理を 700〜920°Cで行うべきことが記載されて いる。 [0008] In JP-A-11 222641 (Patent Document 4), a specific amount of Sn, Mg, or further Zn is added, the S and O contents are limited, and the crystal grain size exceeds 1 μm. A Cu—Ni—Si alloy having excellent mechanical properties, conductivity, stress relaxation properties and bending workability is disclosed. The document also states that recrystallization should be performed at 700 to 920 ° C after cold working in order to adjust the crystal grain size to the above range.
該文献の実施例では、引張強さが 610〜710MPaで 180度密着曲げが可能な Cu — Ni— Si系合金が開示されている。この合金の導電率は 31〜42%IACSであり、 1 50°Cで 1000時間加熱したときの応力緩和率は 14〜22%である。  In the examples of this document, a Cu—Ni—Si-based alloy capable of 180 ° tight bending with a tensile strength of 610 to 710 MPa is disclosed. The conductivity of this alloy is 31-42% IACS, and the stress relaxation rate when heated at 150 ° C for 1000 hours is 14-22%.
[0009] 特許第 3520034号公報(特許文献 5)には、 Mg、 Sn、 Zn、 Sを特定量含有し、結 晶粒径が 0. 001mmを超え 0. 025mm以下であり、かつ最終塑性加工方向と平行 な断面における結晶粒の長径 aと最終塑性加工方向と直角な断面における結晶粒の 長径 bの比(a/b)が 0. 8以上 1. 5以下であって、曲げ加工性及び応力緩和特性が 優れることを特徴とする Cu— Ni— Si系合金が開示されている。  [0009] Japanese Patent No. 3520034 (Patent Document 5) includes a specific amount of Mg, Sn, Zn, S, a crystal grain size of more than 0.001 mm and less than 0.025 mm, and final plastic working. The ratio (a / b) of the major axis a of the crystal grain in the cross section parallel to the direction to the major axis b of the crystal grain in the cross section perpendicular to the final plastic working direction is 0.8 or more and 1.5 or less. A Cu-Ni-Si alloy characterized by excellent stress relaxation properties is disclosed.
該文献の実施例では、引張強さ力 85〜710MPa、導電率が 32〜40%IACSで あり、 180度密着曲げが可能な Cu— Ni— Si系合金が開示されている。  In the examples of this document, a Cu—Ni—Si alloy having a tensile strength of 85 to 710 MPa, an electrical conductivity of 32 to 40% IACS, and capable of 180 ° adhesion bending is disclosed.
[0010] また、 Cu— Ni— Si系合金の特性改良に関する最近の研究として、無析出帯 (PFZ )に着目し強度及び曲げ性を改善する技術が、非特許文献 1及び 2等に報告されて いる。無析出帯とは、時効の際の粒界反応型析出(不連続析出)によって結晶粒界 近傍に形成される、微細析出物が存在しない帯状の領域である。強度に寄与する微 細析出物が存在しないため、外力が加わるとこの無析出帯が優先的に塑性変形を起 こし、引張強さや曲げ加工性の低下を招く。  [0010] In addition, as a recent study on improving the properties of Cu-Ni-Si alloys, non-patent documents 1 and 2 etc. have reported a technique for improving strength and bendability by focusing on the precipitation-free zone (PFZ). ing. The non-precipitation zone is a band-like region that is formed in the vicinity of a grain boundary by grain boundary reaction type precipitation (discontinuous precipitation) during aging and does not have fine precipitates. Since there are no fine precipitates that contribute to strength, when no external force is applied, the precipitate-free zone preferentially undergoes plastic deformation, leading to a decrease in tensile strength and bending workability.
非特許文献 1によれば、無析出帯の抑制には P、 Snの添加及び二段時効が有効 である。後者に関しては、 450°C X 16hの通常時効の前に、 250°C X 48hの予備時 効を付加することで伸びを損なうことなく強度が大きく増加したことが記載されている。 具体的には引張強さが 770〜900MPa、導電率が34〜36%1八じ3のじ11 ^ 31 系合金が開示されている。 非特許文献 2には、時効時間の増加に伴い PFZの幅が増加することが記載されて いる。 According to Non-Patent Document 1, the addition of P and Sn and two-stage aging are effective in suppressing the precipitation-free zone. Regarding the latter, it is described that the strength was greatly increased without impairing the elongation by adding the pre-aging of 250 ° CX 48h before the normal aging of 450 ° CX 16h. Specifically, an 11 ^ 31 series alloy having a tensile strength of 770 to 900 MPa and an electrical conductivity of 34 to 36% 1 to 3 is disclosed. Non-Patent Document 2 describes that the width of PFZ increases as the aging time increases.
特許文献 1 :特開 2002— 266042号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-260442
特許文献 2:特開 2001— 207229号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-207229
特許文献 3:特開昭 61— 194158号公報  Patent Document 3: Japanese Patent Laid-Open No. 61-194158
特許文献 4 :特開平 11 222641号公報  Patent Document 4: JP-A-11 222641
特許文献 5:特許第 3520034号公報  Patent Document 5: Japanese Patent No. 3520034
非特許文献 1 :渡邊千尋、宮腰勝、西嶋文哉、門前亮一:" Cu 4. Omass%Ni-0 . 95mass%Si-0. 02mass%P合金の機械的特性の改善"、銅と銅合金、 日本伸 銅協会、 2006年、第 45巻、第 1号、 p. 16 - 22  Non-Patent Document 1: Chihiro Watanabe, Masaru Miyakoshi, Fumiya Nishijima, Ryoichi Monzen: "Cu 4. Omass% Ni-0. 95mass% Si-0. 02mass% P alloy improved mechanical properties", copper and copper alloy, Japan Copper and Brass Association, 2006, Vol. 45, No. 1, p. 16-22
非特許文献 2 :伊藤吾朗、鈴木俊亮、 Aとう T慶平、山本佳紀、伊藤伸英、 "Cu-Ni Si系合金板材の曲げ加工性に及ぼす Ni、 Si量と時効条件の影響"、銅と銅合金、 日本伸銅協会、 2006年、第 45巻、第 1号、 p. 71 - 75  Non-Patent Document 2: Goro Ito, Toshiaki Suzuki, A To T Keihei, Yamamoto Yoshinori, Ito Nobuhide, "Effects of Ni, Si content and aging conditions on the bending workability of Cu-Ni Si alloy sheet", copper Copper Alloy, Japan Copper and Brass Association, 2006, Vol. 45, No. 1, p. 71-75
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 上記のように、 Cu— Ni— Si系合金の特性改善に関しては種々の手法が開発され ている力 これまでは他の合金元素を添加することによって特性改善を図ろうとする 手法が主体であった。し力、しながら、近年ではリサイクル性の問題から合金への添カロ 元素を減らすことが要請されつつある。 [0011] As described above, various methods have been developed for improving the characteristics of Cu-Ni-Si alloys. Until now, the main method has been to improve the characteristics by adding other alloy elements. Met. However, in recent years, there has been a demand for reducing the amount of elements added to alloys due to recyclability problems.
[0012] また、近年の電子部品の高集積化及び小型化 ·薄肉化の進展に伴い、 Cu— Ni— Si系合金の導電率の改善が求められている。これは通電部位の断面積が小さくなる ことにより、ジュール熱による部品の温度上昇が大きくなるためである。 [0012] Further, with the recent progress of high integration, miniaturization, and thinning of electronic components, improvement in the electrical conductivity of Cu-Ni-Si alloys is required. This is because the temperature rise of the component due to Joule heat increases due to the reduced cross-sectional area of the energized part.
AT=J2-L2/ (2 -E-H- S ) AT = J 2 -L 2 / (2 -EH- S)
ここで、 ΔΤは温度上昇、 Jは電流、 Eは導電率、 Hは熱伝導率、 L及び Sはそれぞ れ通電部の長さ及び断面積である。 Hは Eと比例関係にあるので、温度上昇は導電 率の二乗と反比例することになる。  Where ΔΤ is the temperature rise, J is the current, E is the conductivity, H is the thermal conductivity, and L and S are the length and cross-sectional area of the current-carrying part, respectively. Since H is proportional to E, the temperature rise is inversely proportional to the square of conductivity.
一方、部品の断面積が減少すると、コネクタ等の用途においてばね力が低下する ため、引張強さ、耐応力緩和性といったばね力に関わる特性も重視される。したがつ て、導電率向上の代わりに引張強さゃ耐応力緩和性を低下させることは許容され難 い。同様に、部品の小型化に伴い部品の加工が複雑になるため、曲げ性の低下も許 容され難い。 On the other hand, when the cross-sectional area of a part decreases, the spring force decreases in applications such as connectors. Therefore, the characteristics related to spring force such as tensile strength and stress relaxation resistance are also emphasized. Gatsutsu Therefore, it is difficult to reduce the stress relaxation resistance if the tensile strength is used instead of improving the conductivity. Similarly, since the processing of parts becomes complicated as parts become smaller, it is difficult to tolerate a decrease in bendability.
[0013] そこで、本発明の課題は、他の合金元素を極力添加せず、しかも改善された導電 率、強度、曲げ性及び応力緩和特性を兼備する電子材料用の Cu— Ni— Si系合金 を提供することである。  Accordingly, an object of the present invention is to provide a Cu—Ni—Si based alloy for electronic materials that does not contain other alloy elements as much as possible and has improved conductivity, strength, bendability and stress relaxation characteristics. Is to provide.
また、本発明の別の課題は、該 Cu— Ni— Si系合金の製造方法を提供することであ また、本発明の更に別の課題は、該 Cu— Ni— Si系合金を用いた伸銅品及び電子 部品を提供することである。  Another object of the present invention is to provide a method for producing the Cu—Ni—Si based alloy. Still another object of the present invention is to provide an elongation using the Cu—Ni—Si based alloy. To provide copper products and electronic components.
課題を解決するための手段  Means for solving the problem
[0014] 本発明者は上記課題を解決するために鋭意研究したところ、不純物を極力抑えた Cu— Ni— Si系合金の製造過程において、時効処理の昇温速度、材料の最高到達 温度及び時効時間に特殊な条件を付与し、更に溶体化処理条件及び時効処理前 後の圧延加工度を適正化することにより、優れた導電率、引張強さ、耐応力緩和特 性及び曲げ性を兼ね備えた Cu— Ni— Si系合金が得られることを見出した。  [0014] The present inventor has intensively studied to solve the above-mentioned problems. As a result, in the manufacturing process of a Cu-Ni-Si alloy with as few impurities as possible, the rate of temperature increase in aging treatment, the maximum temperature reached by the material, and the aging It has excellent electrical conductivity, tensile strength, stress relaxation resistance and bendability by giving special conditions to the time and further optimizing the solution treatment conditions and the rolling degree before and after the aging treatment. We have found that Cu-Ni-Si alloys can be obtained.
[0015] 上記知見を基礎として完成した本発明は一側面において、 1. 2〜3. 5質量%の Ni 、 Ni濃度(質量%)に対し 1/6〜; 1/4の濃度(質量%)の Siを含有し、残部が Cu及 び総量で 0. 05質量%以下の不純物より構成され、次の特性を兼ね備えたことを特 徴とする Cu— Ni— Si系合金である。  [0015] In one aspect, the present invention completed on the basis of the above knowledge is: 1. 2 to 3.5 mass% Ni, Ni concentration (mass%) 1/6 to; 1/4 concentration (mass%) This is a Cu-Ni-Si alloy characterized in that it contains Si and the balance is composed of Cu and impurities of 0.05 mass% or less in total, and has the following characteristics.
(A)導電率: 55〜62%IACS  (A) Conductivity: 55-62% IACS
(B)引張強さ: 550〜700MPa  (B) Tensile strength: 550 ~ 700MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 30%以下  (D) Stress relaxation resistance: 30% or less of stress relaxation rate when heated at 150 ° C for 1000 hours
[0016] また、上記合金に Znを添加すると導電率が若干低下するが、 Snめっきの耐熱剥離 性改善への効果が大きいので、特に良好な Snめっきの耐熱剥離性を求める場合に は上記合金に 0. 5質量%を上限として Znを添加してもよ!/、。 [0016] In addition, when Zn is added to the above alloy, the electrical conductivity is slightly reduced, but since the effect of improving the heat-resistant peelability of Sn plating is great, the above alloy is particularly desirable when seeking good heat-resistant peelability of Sn plating. Zn may be added up to an upper limit of 0.5 mass%! /.
従って、本発明は別の一側面において、 1. 2〜3. 5質量%の Ni、 Ni濃度(質量% )に対し l/6〜l/4の濃度(質量%)の Si、 0. 5質量%以下の Znを含有し、残部が Cu及び総量で 0. 05質量%以下の不純物より構成され、次の特性を兼ね備えたこと を特徴とする Cu— Ni— Si系合金である。 Accordingly, in another aspect of the present invention, 1.2 to 3.5 mass% Ni, Ni concentration (mass% ) With a concentration (mass%) of l / 6 to l / 4, Zn of 0.5 mass% or less, with the balance being Cu and a total amount of impurities of 0.05 mass% or less. It is a Cu-Ni-Si alloy characterized by having the above characteristics.
(A)導電率: 55〜62%IACS  (A) Conductivity: 55-62% IACS
(B)引張強さ: 550〜700MPa  (B) Tensile strength: 550 ~ 700MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 30%以下 (D) Stress relaxation resistance: 30% or less of stress relaxation rate when heated at 150 ° C for 1000 hours
(E)耐熱剥離性: Snめっき耐熱剥離試験後にめっき剥離が認められなレ、 (E) Heat Peeling Resistance: No plating peeling is observed after Sn plating heat peeling test
[0017] また、本発明に係る銅合金は一実施形態において、圧延面に平行な断面の金属 組織において、結晶粒の圧延方向と直交する方向の平均粒径を a、圧延方向と平行 な方向の平均粒径を bとしたときに、  [0017] In addition, in one embodiment, the copper alloy according to the present invention has a cross-sectional metallographic structure parallel to the rolling surface, the average grain size in the direction perpendicular to the rolling direction of the crystal grains is a, the direction parallel to the rolling direction When the average particle size of b is b,
a = 1~15 ^ m、 b/ a = 1. 05〜1. D I  a = 1 ~ 15 ^ m, b / a = 1. 05 ~ 1. D I
であり、さらに金属組織中の無析出帯の平均幅が 10〜100nmである。  Furthermore, the average width of the precipitation-free zone in the metal structure is 10 to 100 nm.
[0018] また、本発明は更に別の一側面において、上記銅合金を用いた伸銅品である。  [0018] Further, according to another aspect of the present invention, there is provided a rolled copper product using the copper alloy.
[0019] また、本発明は更に別の一側面において、上記銅合金を用いたリードフレーム、コ ネクタ、ピン、端子、リレー、スィッチ、二次電池用箔材等の電子部品である。  [0019] Further, according to another aspect of the present invention, there are provided electronic components such as a lead frame, a connector, a pin, a terminal, a relay, a switch, and a foil material for a secondary battery using the copper alloy.
[0020] また、本発明は更に別の一側面において、溶体化処理、冷間圧延、時効処理、冷 間圧延の工程を順次行うことを含む Cu— Ni— Si系合金の製造方法において、各ェ 程を次の条件で行うことを特徴とする上記 Cu— Ni— Si系合金の製造方法である。 (溶体化処理)平均結晶粒径を;!〜 15 mの範囲に調整する。  [0020] Further, in yet another aspect of the present invention, in the method for producing a Cu-Ni-Si-based alloy including sequentially performing the steps of solution treatment, cold rolling, aging treatment, and cold rolling, The above-mentioned Cu—Ni—Si alloy production method is characterized in that the process is performed under the following conditions. (Solution treatment) The average crystal grain size is adjusted to a range of !! to 15 m.
(時効処理)熱処理中の材料の最高温度を 550°C以下とし、材料を 450〜550°Cの 温度範囲で 5〜; 15時間保持する。また、昇温過程において 200〜250°C、 250-30 0°C及び 300〜350°Cの各温度区間における材料の平均昇温速度を 50°C/h以下 とする。  (Aging treatment) The maximum temperature of the material during the heat treatment is 550 ° C or lower, and the material is kept in the temperature range of 450 to 550 ° C for 5 to 15 hours. In addition, the average heating rate of the material in each temperature zone of 200 to 250 ° C, 250 to 300 ° C, and 300 to 350 ° C in the temperature rising process shall be 50 ° C / h or less.
(冷間圧延)時効前の冷間圧延における圧延加工度と時効後の冷間圧延における圧 延加工度との合計を 5〜40%とする。  (Cold rolling) The sum of the rolling work in cold rolling before aging and the rolling work in cold rolling after aging is 5-40%.
発明の効果  The invention's effect
[0021] 本発明により、 Ni及び Si以外の合金元素が添加されておらず、又は Ni、 Si及び Zn 以外の合金元素が添加されておらず、しかも、改善された導電率、強度、曲げ性及 び応力緩和特性を兼備する電子材料用の Cu— Ni— Si系合金を提供することが可 能となる。 [0021] According to the present invention, no alloying elements other than Ni and Si are added, or Ni, Si and Zn. It is possible to provide Cu-Ni-Si alloys for electronic materials that have no added alloying elements and that have improved conductivity, strength, bendability and stress relaxation properties. Become.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 合金組成 [0022] Alloy composition
本発明に係る銅合金においては、 Si濃度(質量%)は、 Ni濃度(質量%)の 1/6〜 1/4の範囲とする。 Siがこの範囲から外れると、良好な導電率(例えば 55%IACS 以上)が得られないからである。好ましい Siの範囲は Niの 1/5. 5〜1/4. 2であり、 より好ましい Siの範囲は Niの 1/5· 2〜1/4· 5である。  In the copper alloy according to the present invention, the Si concentration (mass%) is in the range of 1/6 to 1/4 of the Ni concentration (mass%). This is because good conductivity (for example, 55% IACS or more) cannot be obtained if Si is out of this range. A preferred Si range is 1 / 5.5-1 / 4.2 of Ni, and a more preferred Si range is 1/5 · 2˜1 / 4 · 5 of Ni.
[0023] また、 Niは 1. 2〜3. 5質量%とする。 Niが 1. 2質量%を下回ると良好な引張強さ( 例えば 550MPa以上)が得られない。 Niが 3. 5質量%を超えると良好な曲げ加工性 が得られない(例えば 180度密着曲げで割れが発生する)。好ましい Ni濃度は 1. 4 〜2. 5質量%であり、より好ましい Niの範囲は 1. 5〜2. 0質量%である。  [0023] Ni is 1.2 to 3.5 mass%. When Ni is less than 1.2% by mass, good tensile strength (eg, 550 MPa or more) cannot be obtained. If Ni exceeds 3.5 mass%, good bending workability cannot be obtained (for example, cracking occurs in 180-degree contact bending). A preferable Ni concentration is 1.4 to 2.5% by mass, and a more preferable range of Ni is 1.5 to 2.0% by mass.
[0024] 従来は Cu— Ni— Si系合金に各種の合金元素を添加することにより合金特性の改 善を行なうものが主体であつたが、本発明の目的に従って他の合金元素(本発明で は不純物ともいう。)を極力排除する。また、他の合金元素が有意に含まれる場合に は充分な導電率が得られない傾向にあり、強度、導電率、曲げ性及び応力緩和特性 を兼備する Cu— Ni— Si系合金を得ることは困難であることも分かった。そこで、本発 明においては不純物の総量を 0. 05質量%以下、好ましくは 0. 02質量%以下、より 好ましくは 0. 01質量%以下に制御する。従って、本発明の好ましい実施形態にお いては、 Cu— Ni— Si系合金中に Ni及び Si以外の合金元素が不可避的不純物を除 いて存在しない。  Conventionally, mainly the improvement of the alloy characteristics by adding various alloy elements to the Cu—Ni—Si alloy, but other alloy elements (in the present invention) Is also called an impurity). In addition, when other alloy elements are significantly included, sufficient conductivity tends not to be obtained, and a Cu-Ni-Si alloy having strength, conductivity, bendability and stress relaxation characteristics is obtained. Proved to be difficult. Therefore, in the present invention, the total amount of impurities is controlled to 0.05% by mass or less, preferably 0.02% by mass or less, more preferably 0.01% by mass or less. Therefore, in a preferred embodiment of the present invention, alloy elements other than Ni and Si are not present in the Cu—Ni—Si alloy except for inevitable impurities.
[0025] 但し、 Znについては導電率への影響が比較的小さぐ Snめっきの耐熱剥離性改善 への効果が大きいため、特に良好な Snめっきの耐熱剥離性を求める場合には Znを 添加してもよい。 ZnO. 1質量%あたりの導電率低下は 0. 5%IACS程度である。しか しながら、 Zn力 SO. 5質量%を超えると充分な導電率(例えば 55%IACS以上)を得る ことが難しくなり、 Znが 0. 05質量%未満の場合は Snめっきの耐熱剥離性の改善効 果がほとんど認められない。従って、好ましい Zn濃度は 0. 05-0. 5質量%であり、 より好ましい Zn濃度は 0. ;!〜 0. 3質量%である。 [0025] However, since Zn has a relatively small effect on electrical conductivity, it has a large effect on improving the heat-resistant peelability of Sn plating. May be. The decrease in conductivity per 1% by mass of ZnO is about 0.5% IACS. However, when the Zn force SO. Exceeds 5% by mass, it becomes difficult to obtain a sufficient conductivity (for example, 55% IACS or more), and when the Zn content is less than 0.05% by mass, the heat resistance of the Sn plating is improved. There is almost no improvement effect. Therefore, the preferable Zn concentration is 0.05 to 0.5% by mass, A more preferable Zn concentration is 0.;! To 0.3% by mass.
[0026] 金属組織 [0026] Metallographic structure
圧延面に平行な断面の金属組織において、結晶粒の圧延方向と直交する方向の 平均粒径を a、圧延方向と平行な方向の平均粒径を bとしたときに、  In the metal structure of the cross section parallel to the rolling surface, when the average grain size in the direction perpendicular to the rolling direction of the crystal grains is a, and the average grain size in the direction parallel to the rolling direction is b,
a = 1 ~ 15 ^ m、 b/ a = 1. 05〜1. D I  a = 1 to 15 ^ m, b / a = 1.05 to 1.D I
とする。 aが; 1 m未満になると、良好な応力緩和率が得られない (例えば 30%を超 える)。また、時効時に析出する Ni2Siが不足し、良好な引張強さが得られない。一方 、 aが 15 111を超えると、良好な曲げ加工性が得られない(例えば 180度密着曲げで 割れが発生する)。好ましくは a = 2〜; !O ^ mであり、曲げ性を重視する場合には a = 2〜5 111がより好ましぐ強度ゃ耐応力緩和特性を重視する場合には a = 5〜; 10 mがより好ましい。 And If a is less than 1 m, good stress relaxation rate cannot be obtained (for example, more than 30%). Also, Ni 2 Si that precipitates during aging is insufficient, and good tensile strength cannot be obtained. On the other hand, when a exceeds 15 111, good bending workability cannot be obtained (for example, cracking occurs in 180-degree contact bending). Preferably, a = 2 to;! O ^ m, and when importance is placed on bendability, a = 2 to 5111 is more preferable. 10 m is more preferable.
b/aが 1. 05未満になると良好な引張強さが得られない(例えば 550MPaを下回る )。一方、 b/aが 1. 67を超えると良好な曲げ性が得られない(例えば 180度密着曲 げで割れが発生する)。好ましくは b/a = l . 10〜1. 40であり、より好ましくは b/a = 1. 20—1. 30である。  When b / a is less than 1.05, good tensile strength cannot be obtained (for example, less than 550 MPa). On the other hand, if b / a exceeds 1.67, good bendability cannot be obtained (for example, cracking occurs due to 180 degree contact bending). Preferably, b / a = 1.10 to 1.40, and more preferably b / a = 1.20—1.30.
[0027] また、圧延面に平行な断面の金属組織において、金属組織中の無析出帯の平均 幅は 10〜; !OOnmとする。無析出帯の幅が大きくなると、充分な曲げ性、耐応力緩和 性及び引張強さが得られない。無析出帯の幅が lOOnmを超えると、良好な曲げ性 が得られず (例えば 180度密着曲げで割れが発生する)、良好な応力緩和率も得ら れない(例えば 30%を超える)。無析出帯の幅は狭いほど好ましいが、これを 10nm 未満に抑えようとすると、後に説明する本発明の特徴的な時効処理を施したとしても 良好な導電率 (例えば 55%IACS以上)が得られない。従って、導電率、曲げ加工性 及び耐応力緩和性をバランス良く向上させるための好ましい無析出帯の平均幅は 2 0〜90nmであり、より好ましい無析出帯の平均幅は 30〜80nmである。  [0027] Further, in the metal structure having a cross section parallel to the rolling surface, the average width of the precipitation-free zone in the metal structure is 10 to! OOnm. If the width of the precipitation-free zone is increased, sufficient bendability, stress relaxation resistance and tensile strength cannot be obtained. When the width of the precipitation-free zone exceeds lOOnm, good bendability cannot be obtained (for example, cracking occurs by 180 ° contact bending), and good stress relaxation rate cannot be obtained (for example, more than 30%). The width of the precipitation-free zone is preferably as narrow as possible. However, if it is attempted to suppress this to less than 10 nm, good conductivity (for example, 55% IACS or more) can be obtained even if the characteristic aging treatment of the present invention described later is applied. I can't. Therefore, a preferable average width of the precipitation-free zone for improving the conductivity, bending workability and stress relaxation resistance in a well-balanced manner is 20 to 90 nm, and a more preferable average width of the precipitation-free zone is 30 to 80 nm.
[0028] なお、上記組織に調整することにより、強度上昇に寄与する nmオーダーの粒径を 有する微細な Ni— Si系金属間化合物粒子も高い頻度で析出する。  [0028] It should be noted that by adjusting to the above structure, fine Ni-Si intermetallic compound particles having a particle size on the order of nm contributing to an increase in strength are also precipitated at a high frequency.
[0029] 合金特性  [0029] Alloy properties
本発明に係る銅合金は一実施形態において、以下の特性を兼備する。 (A)導電率: 55〜62%IACS In one embodiment, the copper alloy according to the present invention has the following characteristics. (A) Conductivity: 55-62% IACS
(B)引張強さ: 550〜700MPa  (B) Tensile strength: 550 ~ 700MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 30%以下(例 示的には 15〜30%)  (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C for 1000 hours is 30% or less (for example, 15-30%)
[0030] 本発明に係る銅合金は好ましい一実施形態において、以下の特性を兼備する。  [0030] In a preferred embodiment, the copper alloy according to the present invention has the following characteristics.
(A)導電率: 56〜60%IACS  (A) Conductivity: 56-60% IACS
(B)引張強さ: 600〜660MPa  (B) Tensile strength: 600 ~ 660MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 25%以下(例 示的には 15〜25%)  (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C for 1000 hours is 25% or less (for example, 15-25%)
[0031] 本発明に係る銅合金は別の好ましい一実施形態において、以下の特性を兼備する [0031] In another preferred embodiment, the copper alloy according to the present invention has the following characteristics:
Yes
(A)導電率: 60〜62%IACS  (A) Conductivity: 60-62% IACS
(B)引張強さ: 600〜610MPa  (B) Tensile strength: 600 ~ 610MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 25%以下(例 示的には 20〜25%)  (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C for 1000 hours is 25% or less (for example, 20-25%)
[0032] 本発明に係る銅合金で Znを添加したものは別の一実施形態において、以下の特 性を同時に達成することができる。  [0032] In another embodiment of the copper alloy according to the present invention to which Zn is added, the following characteristics can be achieved at the same time.
(A)導電率: 55〜62%IACS  (A) Conductivity: 55-62% IACS
(B)引張強さ: 550〜700MPa  (B) Tensile strength: 550 ~ 700MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 30%以下(例 示的には 15〜30%)  (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C for 1000 hours is 30% or less (for example, 15-30%)
(E)耐熱剥離性: Snめっき耐熱剥離試験後にめっき剥離が認められなレ、  (E) Heat Peeling Resistance: No plating peeling is observed after Sn plating heat peeling test
[0033] 本発明に係る銅合金で Znを添加したものは好ましい実施形態において、以下の特 性を同時に達成することができる。 (A)導電率: 56〜60%IACS [0033] In a preferred embodiment of the copper alloy according to the present invention to which Zn is added, the following characteristics can be achieved at the same time. (A) Conductivity: 56-60% IACS
(B)引張強さ: 600〜660MPa  (B) Tensile strength: 600 ~ 660MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 25%以下(例 示的には 15〜25%)  (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C for 1000 hours is 25% or less (for example, 15-25%)
(E)耐熱剥離性: Snめっき耐熱剥離試験後にめっき剥離が認められなレ、  (E) Heat Peeling Resistance: No plating peeling is observed after Sn plating heat peeling test
[0034] 本発明に係る銅合金で Znを添加したものは別の好まし!/、実施形態にお!/、て、以下 の特性を同時に達成することができる。  [0034] The copper alloy according to the present invention to which Zn is added is another preferred! /, And in the embodiment, the following characteristics can be achieved at the same time.
(A)導電率: 56〜60%IACS  (A) Conductivity: 56-60% IACS
(B)引張強さ: 640~660MPa  (B) Tensile strength: 640 ~ 660MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 20%以下(例 示的には 15〜20%)  (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C for 1000 hours is 20% or less (for example, 15-20%)
(E)耐熱剥離性: Snめっき耐熱剥離試験後にめっき剥離が認められなレ、  (E) Heat Peeling Resistance: No plating peeling is observed after Sn plating heat peeling test
[0035] なお、上記「Snめっき耐熱剥離試験」とは、以下の要領で試験片の Snめっき剥離 を評価する方法のことを!/、う。  [0035] The "Sn plating heat-resistant peeling test" refers to a method for evaluating the Sn plating peeling of a test piece in the following manner.
厚さ 0· 3 mの Cu下地めつき及び厚さ 1 の Snめっきを試験片に施し、リフロー処 理として 300°Cで 20秒間加熱する。  Apply a 0-3 m thick Cu undercoat and a 1-thick Sn plating to the test piece, and heat at 300 ° C for 20 seconds as a reflow treatment.
その後、 Good Way(GW、曲げ軸が圧延方向と直行する方向)に曲げ半径 0. 5 mmの 90° 曲げと曲げ戻し(90° 曲げを往復一回)を行ってから、曲げ内周部表面 に粘着テープ (メツキ用マスキングテープ、基材:ポリエステル、接着力: 3. 49N/c m (180° ピール)、例:住友 3M製 # 851A)を貼って引き剥がす。  Then, 90 ° bend with 90mm bend radius and bend back (one round of 90 ° bend) in the good way (GW, the direction in which the bend axis is perpendicular to the rolling direction), then the inner surface of the bend Adhesive tape (Masking masking tape, base material: polyester, adhesive strength: 3. 49 N / cm (180 ° peel), ex: Sumitomo 3M # 851A) is applied and peeled off.
曲げ内周部表面を光学顕微鏡 (倍率 20倍)で観察し、めっき剥離の有無を評価す  Observe the inner surface of the bend with an optical microscope (magnification 20 times) and evaluate the presence or absence of plating peeling.
[0036] 本発明者の知る限り、本発明に係る銅合金と同一組成を有し、且つ、本発明に係る 銅合金に匹敵する特性、すなわち、導電率、強度、曲げ加工性及び応力緩和特性 を本発明のレベルにまでバランス良く達成した例はこれまで存在しない。 [0036] As far as the inventor is aware, the copper alloy according to the present invention has the same composition and is comparable to the copper alloy according to the present invention, that is, conductivity, strength, bending workability and stress relaxation characteristics. No example has been achieved in a balanced manner up to the level of the present invention.
[0037] 鍵造方法 Cu— Ni— Si系銅合金の一般的な製造プロセスでは、まず大気溶解炉を用い、木 炭被覆下で、電気銅、 Ni、 Si等の原料を溶解し、この溶湯をインゴットに铸造する。 その後、熱間圧延を行ない、冷間圧延と熱処理を繰り返して、所望の厚み及び特性 を有する条ゃ箔(例えば 0. 08-0. 64mmの厚み)に仕上げる。熱処理には溶体化 処理と時効処理がある。溶体化処理では、約 700〜約 1000°Cの高温で加熱して、 铸造時などに生じた粗大な Ni— Si系化合物を Cu母地中に固溶させ、同時に Cu母 地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、約 350〜約 550°Cの温度範囲で lh以上加熱し、溶体化処理で固溶させた Ni及び Siの 化合物を微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より 高い強度を得るために、時効前及び/又は時効後に冷間圧延を行なうことがある。ま た、時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍 (低温焼鈍)を行 なうことがある。 [0037] Key Making Method In the general manufacturing process of Cu-Ni-Si-based copper alloys, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni and Si under charcoal coating, and this molten metal is formed into an ingot. Then, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a foil having a desired thickness and characteristics (for example, a thickness of 0.08-0.64 mm). Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of about 700 to about 1000 ° C, and the coarse Ni-Si compound generated during fabrication is dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. . The solution treatment may be combined with hot rolling. In the aging treatment, Ni and Si compounds dissolved in the solution treatment are precipitated as fine particles by heating at a temperature range of about 350 to about 550 ° C for lh or more. This aging treatment increases strength and conductivity. In order to obtain higher strength, cold rolling may be performed before and / or after aging. In addition, when cold rolling is performed after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.
[0038] 時効処理にお!/、て、加熱温度を一定とし加熱時間を変化させると、導電率は時間と ともに単調に上昇する。一方、引張強さはある時間で極大となり、その後は時間ととも に低下するのが一般的である。時間一定で温度を変化させた場合でも、導電率は温 度上昇と共に単調に上昇し、引張強さは極大値を示した後低下する。引張強さが極 大となる条件で行なう時効はピーク時効と呼ばれ、時間または温度とともに引張強さ が低下する領域で行なう時効は過時効と呼ばれる。  [0038] In the aging treatment, when the heating temperature is kept constant and the heating time is changed, the conductivity increases monotonically with time. On the other hand, the tensile strength generally reaches a maximum at a certain time and then decreases with time. Even when the temperature is changed at a constant time, the conductivity increases monotonically with increasing temperature, and the tensile strength decreases after showing a maximum value. Aging performed under conditions where the tensile strength is maximized is called peak aging, and aging performed in a region where the tensile strength decreases with time or temperature is called overaging.
Cu— Ni— Si系合金の導電率を高めるためには過時効を行なえばよい。すなわち 適当な時効時間と温度を選択すれば、良好な導電率 (例えば 60%IACS程度)は比 較的容易に得られることとなる。し力、しな力 、引張強さは低下 (例えば 500MPa程 度まで)し、それば力、りではなく耐応力緩和特性や曲げ性の劣化も生じる。その後、 高加工度の冷間圧延を行なえば引張強さは 600MPa程度まで回復する力 S、加工歪 により曲げ性が著しく劣化し、耐応力緩和特性の向上も望めない。特許文献 3等に開 示されている従来の高導電性 Cu— Ni— Si系合金は、基本的にはこの過時効を応用 した技術であった。  In order to increase the electrical conductivity of Cu-Ni-Si alloys, overaging may be performed. In other words, if an appropriate aging time and temperature are selected, good conductivity (eg, about 60% IACS) can be obtained relatively easily. The compressive force, pliable force, and tensile strength decrease (for example, up to about 500 MPa), which causes deterioration of stress relaxation resistance and bendability rather than force and glue. After that, if cold rolling is performed at a high workability, the tensile strength recovers to about 600 MPa, the bendability is significantly deteriorated due to processing strain, and the stress relaxation resistance cannot be improved. Conventional high-conductivity Cu-Ni-Si alloys disclosed in Patent Document 3 etc. were basically technologies that applied this overaging.
[0039] 本発明者は導電率、強度、曲げ性及び耐応力緩和特性をバランス良く改善するた めに検討を重ねたところ、不純物を極力抑えた Cu— Ni— Si系合金の製造過程にお いて、時効処理の昇温速度、材料の最高到達温度及び時効時間に特殊な条件を付 与し、更に溶体化処理条件及び時効処理前後の圧延加工度を適正化することにより 、優れた導電率、引張強さ、耐応力緩和特性及び曲げ性を兼ね備えた Cu— Ni— Si 系合金が得られることを見出した。 [0039] The present inventor has made studies in order to improve the electrical conductivity, strength, bendability and stress relaxation resistance in a well-balanced manner. As a result, in the manufacturing process of a Cu-Ni-Si alloy with as few impurities as possible. Excellent electrical conductivity is achieved by applying special conditions to the rate of temperature rise in aging treatment, the highest temperature reached for the material, and the aging time, and further optimizing the solution treatment conditions and the degree of rolling before and after the aging treatment. The present inventors have found that a Cu-Ni-Si based alloy having tensile strength, stress relaxation resistance and bendability can be obtained.
[0040] 従って、本発明に係る銅合金を製造するには溶体化処理の後の工程、すなわち、 冷間圧延(中間圧延)、時効処理、冷間圧延 (最終圧延)において一連の特徴的な 流れが必要となる。とりわけ特徴的な時効処理を施すことが肝要である。  [0040] Therefore, in order to produce the copper alloy according to the present invention, a series of characteristic features in the steps after the solution treatment, that is, cold rolling (intermediate rolling), aging treatment, and cold rolling (final rolling). A flow is required. In particular, it is important to apply a characteristic aging treatment.
[0041] (時効処理)  [0041] (Aging treatment)
時効条件として、昇温速度、材料の最高到達温度、材料が 450〜550°Cの温度に 保持される時間及び材料の昇温速度を規定する。  As aging conditions, the rate of temperature rise, the maximum material temperature, the time during which the material is maintained at a temperature of 450 to 550 ° C, and the rate of temperature rise of the material are specified.
(ァ)昇温速度:材料を緩やかに昇温すると、昇温過程にお!/、て結晶粒内に微細な析 出核が生成し、その後の粒界反応型析出すなわち無析出帯の成長が抑制される。 そのため、高導電率を得るために長時間の時効を行っても、無析出帯がそれほど成 長せず、したがって機械的特性(強度、曲げ、応力緩和など)の低下も生じない。す なわち、従来、機械的特性改善のために時効時間を短くして無析出帯を抑制すると 、高い導電率が得られなかった。また、導電率改善のために時効時間を長くすると、 無析出帯が成長し良好な機械的特性が得られなかった。本発明は斯力、る相反する 特性を両立させた点に大きな意義を有するといえる。なお、本発明で推定する上記メ 力ニズムについては、本発明を限定するものではない。  (A) Rate of temperature rise: When the temperature of the material is raised slowly, fine precipitation nuclei are formed in the crystal grains during the temperature rise process, and the subsequent growth of grain boundary reaction type precipitation, that is, no precipitation zone Is suppressed. Therefore, even if aging is performed for a long time in order to obtain high conductivity, the precipitation-free zone does not grow so much, and therefore mechanical properties (strength, bending, stress relaxation, etc.) do not deteriorate. In other words, conventionally, when the aging time was shortened to suppress the precipitation-free zone in order to improve the mechanical properties, high conductivity could not be obtained. In addition, when the aging time was increased to improve conductivity, no precipitate zone grew and good mechanical properties could not be obtained. It can be said that the present invention has a great significance in satisfying such conflicting characteristics. The above mechanism estimated by the present invention is not intended to limit the present invention.
具体的には、 200〜250。C、 250〜300。C及び 300〜350。Cの各温度区間におけ る材料の平均昇温速度を 50°C/h以下にする必要がある。なお生産効率の点より、 平均昇温速度は 10°C/h以上とすることが好ましい。典型的には該平均昇温速度は 20〜40。C/hである。  Specifically, 200-250. C, 250-300. C and 300-350. The average heating rate of the material in each temperature range of C must be 50 ° C / h or less. From the viewpoint of production efficiency, the average rate of temperature rise is preferably 10 ° C / h or more. Typically, the average heating rate is 20-40. C / h.
ここで、非特許文献 1で記載されている 250°C X 48hの予備熱処理の付加によって も、ある程度の無析出帯の抑制効果は得られるが、予備熱処理の付加により生産効 率が著しく低下する。本発明の昇温速度制御の手法は、生産効率をほとんど低下さ せず、工業的に極めて有効な方法である。  Here, even if the preliminary heat treatment at 250 ° C. × 48 h described in Non-Patent Document 1 is added, a certain degree of precipitation-free zone suppression effect can be obtained, but the production efficiency is significantly reduced by the addition of the preliminary heat treatment. The method of temperature increase rate control of the present invention is an industrially extremely effective method that hardly reduces the production efficiency.
[0042] (ィ)材料の最高到達温度: 550°C以下とする。 550°Cを超えると、如何に昇温速度を 制御したとしても無析出帯の幅が広くなつてしまうからである(例えば lOOnmを超える )。好ましくは 530°C以下であり、より好ましくは 500°C以下である。一方、最高到達温 度が 450°C未満だと良好な導電率が得られないことから、最高到達温度は 450°C以 上とするのが好ましぐより好ましくは 480°C以上とする。 [0042] (ii) Maximum material temperature: 550 ° C or less. When the temperature exceeds 550 ° C, This is because the width of the precipitation-free zone becomes wide even if controlled (for example, exceeding lOOnm). The temperature is preferably 530 ° C or lower, more preferably 500 ° C or lower. On the other hand, good electrical conductivity cannot be obtained when the maximum temperature is less than 450 ° C. Therefore, the maximum temperature is preferably 450 ° C or more, more preferably 480 ° C or more.
[0043] (ゥ) 450〜550°Cでの保持時間: 5〜; 15時間とする。 5時間未満の加熱では無析出 帯の幅は狭くなるが(例えば lOnm未満)、昇温速度を抑えたとしても充分な導電率 が得られなくなる。 15時間を越えると、無析出帯の幅が広くなつてしまう(例えば 100 nmを超える)。生産効率をも考慮したより好ましい時間は 6〜; 10時間である。  [0043] (C) Holding time at 450 to 550 ° C .: 5 to 15 hours. When heating for less than 5 hours, the width of the precipitate-free zone becomes narrow (for example, less than lOnm), but sufficient conductivity cannot be obtained even if the rate of temperature rise is suppressed. If it exceeds 15 hours, the width of the precipitation-free zone becomes wider (for example, more than 100 nm). A more preferable time considering production efficiency is 6 to 10 hours.
[0044] (溶体化処理)  [0044] (Solution treatment)
溶体化処理では、平均結晶粒径を;!〜 15 ^ 111の範囲に調整する。溶体化処理後 の平均結晶粒径は上で規定した製品段階の aと実質的に等しくなるため、ここでの平 均結晶粒径が 1 β m未満になると、製品の金属組織より求められる aが 1 m未満とな り、ここでの平均結晶粒径が 15 mを超えると aが 15 mを超える。より好ましい平均 結晶粒径は 2〜 10 μ mであり、 a = 2〜; 10 mが得られる。  In the solution treatment, the average crystal grain size is adjusted to a range of !!-15 ^ 111. Since the average crystal grain size after solution treatment is substantially equal to a in the product stage specified above, if the average crystal grain size here is less than 1 β m, it is obtained from the metal structure of the product. Is less than 1 m, and if the average grain size here exceeds 15 m, a exceeds 15 m. A more preferable average crystal grain size is 2 to 10 μm, and a = 2 to 10 m is obtained.
上記結晶粒径をえるための溶体化処理の加熱温度及び加熱条件自体は公知であ り、当業者であれば適宜設定することができる力 例えば、材料を 700〜800°Cの適 当な温度において、 5〜600秒の適当な時間保持し、その後速やかに空冷または水 冷することにより、上記結晶粒径が得られる。  The heating temperature and heating conditions of the solution treatment for obtaining the above crystal grain size are well known, and can be appropriately set by those skilled in the art.For example, the material is heated to an appropriate temperature of 700 to 800 ° C. In the above, the crystal grain size is obtained by holding for an appropriate time of 5 to 600 seconds and then quickly cooling with air or water.
[0045] (冷間圧延)  [0045] (Cold rolling)
中間圧延の加工度と最終圧延の加工度の合計を 5〜40%とする。合計加工度が 5 %未満になると、製品の金属組織より求められる b/aが 1. 05未満となり、合計加工 度が 40%を超えると b/aが 1. 67を超える。より好ましい合計加工度は 10〜25%で あり、 b/a = l . 10〜; 1. 40力 S得られる。なお、中間圧延及び最終圧延のうち一方の 圧延加工度をゼロにしても問題ない。  The total workability of intermediate rolling and final rolling is 5-40%. When the total workability is less than 5%, the b / a required from the metal structure of the product is less than 1.05, and when the total workability exceeds 40%, the b / a exceeds 1.67. A more preferable total workability is 10 to 25%, and b / a = l. There is no problem even if the rolling degree of one of intermediate rolling and final rolling is zero.
加工度 Rは、 R (%) = (to— t) /to X 100 (to:圧延前の厚み、 t:圧延後の厚み)の 式で定義される。「加工度の合計 R (%)」は、中間圧延で厚みを tから とし、最終 sum 0 1 圧延で t力、ら tとしたときには、 R (%) = (to -t ) /to X 100 + (t -t ) /t X 100 The working degree R is defined by the following formula: R (%) = (to—t) / to X 100 (to: thickness before rolling, t: thickness after rolling). “Total R (%) of workability” is R (%) = (to -t) / to X 100 when the thickness is from t in intermediate rolling and t force in the final sum 0 1 rolling. + (t -t) / t X 100
1 2 sum 1 1 2 1 で与えられる。 [0046] (歪取焼鈍) 1 2 sum 1 1 2 1 [0046] (Strain relief annealing)
最終冷間圧延の後、ばね限界値等を改善する目的で歪取焼鈍を行っても良い。歪 取焼鈍は低温長時間(例えば 300°C X 30分)で行っても良!/、し、高温短時間(例え ば 500°C X 30秒)で行っても良い。温度が高すぎるまたは時間が長すぎると、引張 強さの低下が大きくなる。引張強さの低下量を 10〜50MPaとし、条件を選定すること が好ましい。  After the final cold rolling, strain relief annealing may be performed for the purpose of improving the spring limit value and the like. The strain relief annealing may be performed at a low temperature for a long time (for example, 300 ° C x 30 minutes) !, or at a high temperature for a short time (for example, 500 ° C for 30 seconds). If the temperature is too high or the time is too long, the decrease in tensile strength will increase. It is preferable to select the conditions with a decrease in tensile strength of 10 to 50 MPa.
[0047] また、本発明に係る銅合金にすずめつきや金メッキなどの表面処理を施しても、本 発明の効果は維持される。  [0047] The effect of the present invention is maintained even when the copper alloy according to the present invention is subjected to a surface treatment such as sparrowing or gold plating.
[0048] 従って、本発明に係る銅合金の製造方法の好適な一実施形態では、  Therefore, in a preferred embodiment of the method for producing a copper alloy according to the present invention,
1. 2〜3. 5質量%の Ni、 Ni濃度(質量%)に対し 1/6〜; 1/4の濃度(質量%) の Si、及び随意成分としての 0. 5質量%以下の Znを含有し、残部が Cu及び総量で 0. 05質量%以下の不純物より構成されるインゴットを溶解铸造する工程と、  1. 2 to 3.5 mass% Ni, 1/6 to Ni concentration (mass%); 1/4 concentration (mass%) Si, and optional 0.5 mass% or less Zn A step of dissolving and forging an ingot containing the remaining amount of Cu and impurities in a total amount of 0.05% by mass or less,
熱間圧延工程と、  Hot rolling process,
冷間圧延工程と、  Cold rolling process,
平均結晶粒径を;!〜 15 mの範囲に調整する溶体化処理工程と、 加工度 0〜40%で行なう冷間圧延工程と、  A solution treatment step for adjusting the average grain size to a range of! ~ 15 m, a cold rolling step performed at a working degree of 0 to 40%,
熱処理中の材料の最高温度を 550°C以下とし、材料を 450〜550°Cの温度範囲 で 5〜; 15日寺 r ^保持し、昇温過程 ίこおレヽて 200〜250。C、 250〜300。C及び 300〜3 50°Cの各温度区間における材料の平均昇温速度を 50°C/h以下とする時効処理 工程と、  The maximum temperature of the material during heat treatment is 550 ° C or less, and the material is kept in the temperature range of 450-550 ° C for 5 to 15 days. C, 250-300. An aging treatment process in which the average heating rate of the material in each temperature section of C and 300 to 50 ° C is 50 ° C / h or less;
加工度 0〜40%で行なう冷間圧延工程 (但し時効処理前に行なう冷間圧延との 加工度の合計を 5〜40%とする。)と、  Cold rolling process performed at a working degree of 0 to 40% (however, the total degree of working with the cold rolling performed before the aging treatment is 5 to 40%);
随意的な歪取焼鈍工程と、  An optional strain relief annealing process,
をこの順に行なうことを含む。  Are performed in this order.
[0049] なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のた めの研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できる だろう。 [0049] It should be understood by those skilled in the art that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.
[0050] 本発明の Cu— Ni— Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加 ェすること力 Sでき、更に、本発明による Cu Ni Si系銅合金はコネクタ、端子、リレ 一、スィッチ等の導電性ばね材ゃトランジスタや集積回路等の半導体機器のリードフ レーム材として特に好適に用いることができる。 [0050] The Cu-Ni-Si alloy of the present invention is applied to various copper products such as plates, strips, tubes, rods and wires. Furthermore, the Cu Ni Si-based copper alloy according to the present invention is particularly suitable as a lead frame material for semiconductor devices such as conductive spring materials such as connectors, terminals, relays and switches, transistors and integrated circuits. Can be used.
[0051] 以下、本発明及びその利点をより良く理解するための実施例を記載する力 本発 明はこれらに限定されるものではない。 [0051] In the following, the ability to describe examples for better understanding of the present invention and its advantages. The present invention is not limited to these.
実施例  Example
[0052] 高周波誘導炉用い、内径 60mm、深さ 200mmの黒鉛るつぼ中で 2kgの電気銅を 溶解した。溶湯表面を木炭片で覆った後、所定量の Ni、 Si及び必要に応じて Znを 添加し、溶湯温度を 1200°Cに調整した。次に、溶湯を金型に铸込み、幅 60mm、厚 み 30mmのインゴットを製造した。 Ni、 Si及び Zn以外の元素すなわち不純物につき 、インゴット中の濃度をグロ一放電 質量分析法の全元素半定量分析により求めたと ころ、合計で約 0. 01質量%であった。比較的濃度が高い元素として、 Fe (0. 005質 量%)、 S (0. 001質量%)、 C (0. 001質量%)があった。  [0052] Using a high-frequency induction furnace, 2 kg of electrolytic copper was melted in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the surface of the molten metal with charcoal pieces, a predetermined amount of Ni, Si, and Zn as necessary were added, and the molten metal temperature was adjusted to 1200 ° C. Next, the molten metal was poured into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm. Regarding the elements other than Ni, Si and Zn, that is, impurities, the concentration in the ingot was determined by the semi-quantitative analysis of all elements by glow discharge mass spectrometry, and the total amount was about 0.01% by mass. Fe (0.005 mass%), S (0.001 mass%), and C (0.001 mass%) were elements with relatively high concentrations.
インゴットを 950°Cで 3時間加熱した後、厚さ 8mmまで熱間圧延し、表面の酸化ス ケールをグラインダーで研肖 I」、除去した。その後、冷間圧延、溶体化処理、冷間圧延 (中間圧延)、時効処理、冷間圧延(最終圧延)、歪取焼鈍の順で加工 ·熱処理を施 した。最終圧延上がりの板厚が 0. 25mmになるように、各圧延での加工度及び熱処 理時の板厚を調整した。溶体化処理後、時効処理後及び歪取焼鈍後には、熱処理 で生じた表面酸化膜を除去するために、 10質量%硫酸 1質量%過酸化水素溶液 による酸洗及び # 1200エメリー紙による機械研磨を順次行なった。  The ingot was heated at 950 ° C for 3 hours and then hot-rolled to a thickness of 8 mm, and the oxidized scale on the surface was removed with a grinder. Thereafter, cold rolling, solution treatment, cold rolling (intermediate rolling), aging treatment, cold rolling (final rolling), and strain relief annealing were performed in this order. The degree of processing in each rolling and the thickness during heat treatment were adjusted so that the final rolled thickness would be 0.25 mm. After solution treatment, aging treatment and strain relief annealing, pickling with 10% sulfuric acid 1% hydrogen peroxide solution and mechanical polishing with # 1200 emery paper to remove surface oxide film generated by heat treatment Were sequentially performed.
[0053] 溶体化処理では、試料を所定温度に調整した電気炉中に所定時間挿入した後、 電気炉から直ちに取り出し空冷した。 In the solution treatment, the sample was inserted into an electric furnace adjusted to a predetermined temperature for a predetermined time, then immediately removed from the electric furnace and air-cooled.
時効処理では、電気炉を用い種々の温度条件で試料を加熱した。時効処理中、試 料に熱電対を接触させ試料温度の変化を測定した。  In the aging treatment, the sample was heated under various temperature conditions using an electric furnace. During the aging treatment, the sample temperature was measured by bringing the sample into contact with a thermocouple.
歪取焼鈍では、試料を 300°Cの電気炉中に 30分間揷入した後、電気炉から取り出 し空冷した。なお最終圧延を行なわない場合には、この歪取焼鈍は行なわな力 た In strain relief annealing, the sample was placed in a 300 ° C electric furnace for 30 minutes, then removed from the electric furnace and air-cooled. If final rolling is not performed, this strain relief annealing was not performed.
Yes
[0054] 得られた試料につき、以下の評価を行った。 (1)結晶粒形状 [0054] The following evaluations were performed on the obtained samples. (1) Grain shape
溶体化処理上がりの試料及び歪取焼鈍後(歪取焼鈍を行なわないものについては 最終圧延後)の試料 (以下、製品とする)にっき、圧延面と平行な断面の組織を観察 した。圧延面を機械研磨と電解研磨により鏡面に仕上げた後、エッチングにより結晶 粒界を現出させ、組織写真を撮影した。エッチング液には、アンモニア水と過酸化水 素水を混合した水溶液を用い、組織写真の撮影には光学顕微鏡または走査型電子 顕微鏡を適宜用いた。一方、結晶粒径が小さくエッチングによる結晶粒界判別が困 難な場合は、電解研磨上がりの鏡面試料を用いて EBSP (Electron Backscatteri ng Pattern)法により方位マップ像を撮影し、この像を用い結晶粒形状の測定を行 つた。  We examined the structure of the cross-section parallel to the rolling surface of the sample after solution treatment and the sample after strain-relief annealing (after final rolling for those not subjected to strain-relief annealing) (hereinafter referred to as product). The rolled surface was mirror-finished by mechanical polishing and electrolytic polishing, and crystal grain boundaries were revealed by etching, and a structure photograph was taken. As the etching solution, an aqueous solution in which ammonia water and hydrogen peroxide water were mixed was used, and an optical microscope or a scanning electron microscope was appropriately used for taking a tissue photograph. On the other hand, if it is difficult to discriminate grain boundaries by etching because of the small crystal grain size, an EBSP (Electron Backscattering Pattern) method is used to take an orientation map image using a mirror-finished sample after electropolishing. The particle shape was measured.
上記組織写真上において、圧延方向と直行する方向に直線を任意に 3本引き、直 線によって切断される結晶粒の個数を求めた。そして、直線の長さをこの結晶粒個数 で割った値を aとした。同様に、圧延方向と平行方向に直線を任意に 3本引き、直線 によって切断される結晶粒の個数を求め、直線の長さをこの結晶粒個数で割った値 を bとした。  On the above structure photograph, three straight lines were drawn arbitrarily in the direction perpendicular to the rolling direction, and the number of crystal grains cut by the straight line was determined. The value obtained by dividing the length of the straight line by the number of crystal grains was defined as a. Similarly, three arbitrary straight lines were drawn in the direction parallel to the rolling direction, the number of crystal grains cut by the straight line was determined, and the value obtained by dividing the length of the straight line by the number of crystal grains was defined as b.
溶体化処理上がりの試料では、(a + b) /2の値を求め、これを平均結晶粒径とした 。また、製品では b/aの値を求めた。  For the sample after solution treatment, the value of (a + b) / 2 was determined and this was taken as the average crystal grain size. For products, the value of b / a was calculated.
(2)無析出帯の幅 (2) width of precipitation-free zone
圧延面と平行な断面について、製品の結晶粒界近傍を透過型電子顕微鏡により 1 0万倍程度の倍率で観察し、無析出帯の平均幅 (任意の 30力所の平均値)を求めた  For the cross section parallel to the rolling surface, the vicinity of the grain boundary of the product was observed with a transmission electron microscope at a magnification of about 100,000 times, and the average width of the precipitation-free zone (average value at any 30 power points) was obtained.
(3)導電率 (3) Conductivity
製品について、 JIS H 0505に準拠し、 4端子法で導電率を測定した。  The electrical conductivity of the product was measured by the 4-terminal method in accordance with JIS H 0505.
(4)引張強さ  (4) Tensile strength
製品について、引張方向が圧延方向と平行になるように、プレス機を用いて JIS 13 B号試験片を作製した。 JIS— Z2241に従ってこの試験片の引張試験を行ない、引 張強さを求めた。  About the product, the JIS 13 B test piece was produced using the press so that the tensile direction might be parallel to the rolling direction. A tensile test was performed on the specimen in accordance with JIS-Z2241 to determine the tensile strength.
(5)曲げ加工性 製品より幅 10mmの短冊形試料を採取し、 JIS Z 2248に準拠し、 Good Way ( GW、曲げ軸が圧延方向と直行する方向)及び Bad Way(BW、曲げ軸が圧延方向 と平行な方向)に、 180度密着曲げ試験を行った。曲げ後の試料につき、曲げ部の 表面及び断面から割れの有無を観察し、割れが観察されなかった場合を〇、割れが 認められた場合を Xと評価した。なお、深さが 10 inを超える亀裂を割れとみなした (5) Bending workability A strip-shaped sample with a width of 10 mm is taken from the product and conforms to JIS Z 2248. Good Way (GW, the direction in which the bending axis is perpendicular to the rolling direction) and Bad Way (BW, the direction in which the bending axis is parallel to the rolling direction) In addition, a 180 degree contact bending test was conducted. For the sample after bending, the presence or absence of cracks was observed from the surface and cross section of the bent part. The case where no cracks were observed was evaluated as ◯ and the case where cracks were observed was evaluated as X. A crack with a depth exceeding 10 in was regarded as a crack.
(6)応力緩和率 (6) Stress relaxation rate
製品より幅 10mm、長さ 100mmの短冊形状の試験片を、試験片の長手方向が圧 延方向と平行になるように採取した。図 1—Aのように、 l = 25mmの位置を作用点と して、試験片に yoのたわみを与え、 0. 2%耐カ(圧延方向、 JIS— Z2241に準拠して 測定)の 80%に相当する応力( σ ο)を負荷した。 yoは次式により求めた。  A strip-shaped test piece having a width of 10 mm and a length of 100 mm was taken from the product so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in Fig. 1-A, with the position of l = 25 mm as the working point, the specimen is given yo deflection and is 0.2% resistant (measured in accordance with JIS Z2241). Stress corresponding to% (σ ο) was applied. yo was obtained from the following equation.
yo= (2/3) -l2- a o/ (E-t) yo = (2/3) -l 2 -ao / (Et)
ここで、 Eはヤング率であり、 tは試料の厚みである。 150°Cにて 1000時間加熱後 に除荷し、図 1—Bのように永久変形量(高さ y)を測定し、応力緩和率(%)として、 y /yo X 100の値を算出した。  Here, E is Young's modulus, and t is the thickness of the sample. Unload after 1000 hours of heating at 150 ° C, measure the amount of permanent deformation (height y) as shown in Fig. 1-B, and calculate y / yo X 100 as the stress relaxation rate (%) did.
(7) Snめっき耐熱剥離試験  (7) Sn plating heat-resistant peeling test
アルカリ脱脂及び 10%硫酸による酸洗を行った後、厚さ 0. 3 111の Cu下地めつき を施してから、厚さ 1 inの Snめっきを施し、リフ口—処理として 300°Cで 20秒間加 熱した。めっき条件は次の通りである。  After performing alkaline degreasing and pickling with 10% sulfuric acid, apply 0.3 111 thick Cu undercoat, then apply 1-inch thick Sn plating, and perform riffling-treatment at 300 ° C for 20 ° C. Heated for 2 seconds. The plating conditions are as follows.
(Cu下地めつき) (Cu base plating)
•めっき浴組成:硫酸銅 200g/L、硫酸 60g/L  • Plating bath composition: copper sulfate 200g / L, sulfuric acid 60g / L
•めっき浴温度: 25°C  • Plating bath temperature: 25 ° C
•電流密度: 5A/dm2 • Current density: 5A / dm 2
(Snめっき) (Sn plating)
'めっき浴組成:酸化第一錫 41g/L、フエノールスルホン酸 268g/L、界面活性 剤 5g/L  'Plating bath composition: stannous oxide 41g / L, phenolsulfonic acid 268g / L, surfactant 5g / L
•めっき浴温度: 50°C  • Plating bath temperature: 50 ° C
•電流密度: 9A/dm2 リフロー後の試料より幅 10mmの短冊試験片を採取し、 150°Cの温度で大気中 10 00時間加熱した。その後、 Good Way(GW,曲げ軸が圧延方向と直行する方向) に曲げ半径 0. 5mmの 90° 曲げと曲げ戻し(90° 曲げを往復一回)を行ない、さら に曲げ内周部表面に粘着テープ (住友 3M製 # 851A)を貼って引き剥がした。そし て、曲げ内周部表面を光学顕微鏡 (倍率 20倍)で観察し、めっき剥離の有無を調べ た。めっき剥離が全く認められない場合を〇と評価した。めっきが面状に剥離した場 合を Xと評価した。めっきが局部的に点状に剥離した場合を△と評価した。コネクタ 等の用途にぉレヽて、実用上は△のレベルでも問題なレ、。 • Current density: 9A / dm 2 A strip test piece having a width of 10 mm was taken from the sample after reflow and heated in the atmosphere at a temperature of 150 ° C. for 100 hours. After that, perform 90 ° bending and unbending (90 ° bending once and again) in the Good Way (GW, the direction in which the bending axis is perpendicular to the rolling direction), and further on the inner surface of the bending. Adhesive tape (Sumitomo 3M # 851A) was applied and peeled off. Then, the surface of the inner periphery of the bend was observed with an optical microscope (magnification 20 times) to examine the presence or absence of plating peeling. The case where plating peeling was not recognized at all was evaluated as ◯. The case where the plating peeled off in a plane was evaluated as X. The case where the plating peeled off locally was evaluated as Δ. For applications such as connectors, there is a problem even at the △ level for practical use.
[0056] 試験例 1 [0056] Test Example 1
製造条件が製品の金属組織及び特性に及ぼす影響を説明する。試料の成分は C u- 1. 60質量%Ni— 0. 35質量%31合金とし、溶体化処理条件、時効処理条件及 び圧延条件を変えて、製品に加工した。  Explain the effect of manufacturing conditions on the microstructure and properties of products. The composition of the sample was Cu-1.60 mass% Ni—0.35 mass% 31 alloy, and it was processed into a product by changing solution treatment conditions, aging treatment conditions, and rolling conditions.
(代表的発明例と従来例)  (Representative invention example and conventional example)
図 2は代表的な時効処理の温度チャートであり、破線は試料が接する雰囲気の温 度を示し、実線は試料温度を示す。  Figure 2 is a typical aging treatment temperature chart. The broken line indicates the temperature of the atmosphere in contact with the sample, and the solid line indicates the sample temperature.
(a)では、温度を 200°Cに調整した電気炉中に材料を揷入して 1時間保持した後、炉 温を 200°Cから 5時間かけて 350°Cまで上げている。次に、 1時間かけて炉温を 500 °Cまで上げて 8時間保持した後、電気炉から取り出し空冷している。  In (a), the material was placed in an electric furnace adjusted to 200 ° C and held for 1 hour, and then the furnace temperature was increased from 200 ° C to 350 ° C over 5 hours. Next, the furnace temperature is raised to 500 ° C over 1 hour and held for 8 hours, then taken out of the electric furnace and air cooled.
(b)では、温度を 200°Cに調整した電気炉中に材料を揷入して 1時間保持した後、炉 温を 200°Cから 3時間かけて 250°Cまで上げ、 2時間かけて 300°Cまで上げ、 1時間 かけて 350°Cまで上げている。次に、 1時間かけて炉温を 490°Cまで上げて 10時間 保持した後、電気炉から取り出し空冷している。  In (b), the material was placed in an electric furnace adjusted to 200 ° C and held for 1 hour, then the furnace temperature was increased from 200 ° C to 250 ° C over 3 hours, and over 2 hours. The temperature was raised to 300 ° C and raised to 350 ° C over 1 hour. Next, the furnace temperature was raised to 490 ° C over 1 hour and held for 10 hours, after which it was removed from the electric furnace and air-cooled.
(c)は温度を 500°Cに調整した電気炉中に材料を揷入し、 9時間経過後に電気炉か ら取り出し空冷した場合である。これは従来の熱処理手順に相当する。  (c) shows the case where the material was put into an electric furnace adjusted to 500 ° C, taken out of the electric furnace after 9 hours and air-cooled. This corresponds to a conventional heat treatment procedure.
[0057] 図 2の各日寺効ノ ターン ίこっき、 200→250°C、 250→300°C及び 300→350°C(こ おける平均昇温速度、材料の最高到達温度、 450〜550°Cの温度範囲における保 持時間を求めた。また本発明の溶体化処理条件及び圧延条件で製品に加工し、組 織及び特性を調査した。この結果を表 1の No. ;!〜 3に示す。図 2の(a) (b) (c)がそ れぞれ表 1の No. 1、 2、 3に対応する。 [0057] Fig. 2 Nichiera effect turn ί, 200 → 250 ° C, 250 → 300 ° C and 300 → 350 ° C (average heating rate, maximum material temperature, 450-550 ° The retention time was determined in the temperature range of C. The product was processed under the solution treatment conditions and rolling conditions of the present invention, and the structure and properties were investigated. (A) (b) (c) in Fig. 2 These correspond to No. 1, 2, and 3 in Table 1, respectively.
[0058] 本発明の条件で製造された No. 1、 2は、本発明が規定する製品の金属組織及び 特性を満たしている。 [0058] Nos. 1 and 2 produced under the conditions of the present invention satisfy the metal structure and properties of the product defined by the present invention.
従来例である No. 3の昇温速度は本発明範囲より大きぐそれ以外の条件は No. 1 と同じである。無析出帯が lOOnmを大きく超えたため、引張強さが 550MPaを下回り 、 180度密着曲げで割れが発生し、応力緩和率は 30%を超えた。  The temperature increase rate of No. 3 which is a conventional example is larger than the range of the present invention, and other conditions are the same as No. 1. Since the precipitation-free zone greatly exceeded lOOnm, the tensile strength was less than 550 MPa, cracking occurred at 180 ° contact bending, and the stress relaxation rate exceeded 30%.
No. 4も従来例であり、 No. 3の引張強さを 550MPa以上にするために、圧延加工 度を高くしたものである。加工度が高いことに加え、無析出帯が lOOnmを超えている ため、 180度密着曲げでは試料が破断するレベルの激しい割れが発生し、また応力 緩和が 30%を超えた。  No. 4 is also a conventional example. In order to make the tensile strength of No. 3 higher than 550 MPa, the rolling degree is increased. In addition to the high degree of processing, the precipitation-free zone exceeded lOOnm, so the 180 degree contact bending resulted in severe cracking at the level at which the specimen broke, and the stress relaxation exceeded 30%.
No. 5は従来の一般的な Cu— Ni— Si系合金である。ピーク時効を行ない、引張強 さを優先した特性作りこみを行っている。曲げ性と耐応力緩和性は良好である力 導 電率は 50%IACSにも満たない。  No. 5 is a conventional general Cu-Ni-Si alloy. Peak aging is performed and properties are created with priority given to tensile strength. The bendability and stress relaxation resistance are good. The power conductivity is less than 50% IACS.
[0059] (時効での昇温速度) [0059] (Temperature increase rate during aging)
No. 1に対し時効での昇温速度を変化させたときのデータを表 2に示す。昇温速度 を遅くすることで、無析出帯の幅が小さくなることがわかる。無析出帯の幅が小さくな ると、引張強さ、曲げ性、耐応力緩和性が向上している。比較例 No. 9. 10では、い ずれかの温度区間において昇温速度が 50°C/hを超えたため、無析出帯の幅が 10 Onmを超え、引張強さが 550MPaを下回り、 180度密着曲げで割れが発生し、応力 緩和率が 30%を超えた。  Table 2 shows the data when No. 1 is heated at different aging rates. It can be seen that the width of the precipitation-free zone becomes smaller by slowing the heating rate. As the width of the precipitation-free zone becomes smaller, the tensile strength, bendability, and stress relaxation resistance are improved. In Comparative Example No. 9.10, the rate of temperature rise exceeded 50 ° C / h in any temperature zone, so the width of the precipitation-free zone exceeded 10 Onm, the tensile strength was less than 550 MPa, 180 degrees Cracks occurred due to close contact bending, and the stress relaxation rate exceeded 30%.
[0060] (時効での最高到達温度及び 450〜550°Cでの保持時間) [0060] (Maximum temperature at aging and holding time at 450-550 ° C)
No. 2に対し時効での最高到達温度及び 450〜550°Cでの保持時間を変化させ たときのデータを表 3に示す。  Table 3 shows the data for No. 2 when the maximum temperature at aging and the holding time at 450 to 550 ° C were changed.
450〜550°Cでの保持時間が長くなると、導電率が上昇するものの、無析出帯が広 くなつている。時効時間が 5時間に満たない比較例 No. 11では、無析出帯が 10nm 未満であり、導電率が 55%IACSに達していない。時効時間が 15時間を超えた比較 例 No. 14では、無析出帯の幅が lOOnmを超え、引張強さが 550MPaを下回り、 18 0度密着曲げで割れが発生し、応力緩和率が 30%を超えた。 最高到達温度が高くなると、導電率が上昇するものの、無析出帯の幅が広くなつて いる。時効時間力 ¾50°Cを超えた比較例 No. 16では、無析出帯の幅が lOOnmを超 え、引張強さが 550MPaを下回り、 180度密着曲げで割れが発生し、応力緩和率が 30%を超えた。 When the holding time at 450 to 550 ° C becomes longer, the conductivity increases, but the precipitation-free zone becomes wider. In Comparative Example No. 11, where the aging time is less than 5 hours, the precipitation-free zone is less than 10 nm and the conductivity does not reach 55% IACS. In comparative example No. 14, where the aging time exceeded 15 hours, the width of the precipitation-free zone exceeded lOOnm, the tensile strength was less than 550 MPa, cracking occurred at 180 ° adhesion bending, and the stress relaxation rate was 30%. Exceeded. As the maximum temperature rises, the conductivity increases, but the width of the precipitation-free zone becomes wider. In comparative example No. 16 where the aging time force exceeded ¾50 ° C, the width of the precipitation-free zone exceeded lOOnm, the tensile strength was less than 550 MPa, cracking occurred at 180 ° contact bending, and the stress relaxation rate was 30 % Exceeded.
[0061] (圧延加工度)  [0061] (Rolling degree)
No. 1に対し圧延加工度を変化させたときのデータを表 4に示す。加工度が高くな るに従い、製品の金属組織から求めた b/aが大きくなり、引張強さが増加している。 中間圧延加工度と最終圧延加工度の合計が 5%に満たない No. 17の b/aは 1. 05 未満であり、引張強さは 550MPaに満たない。中間圧延加工度と最終圧延加工度の 合計が 40%を超えた No. 23の b/aは 1. 67より大きく、引張強さは 700MPaを超え 、 180度密着曲げで割れが発生した。  Table 4 shows the data when the degree of rolling is changed for No.1. As the degree of processing increases, the b / a obtained from the metal structure of the product increases and the tensile strength increases. No. 17 b / a is less than 1.05 and the total strength of intermediate rolling and final rolling is less than 5%, and the tensile strength is less than 550 MPa. The b / a of No. 23, the sum of the intermediate rolling and final rolling degrees exceeding 40%, was greater than 1.67, the tensile strength exceeded 700 MPa, and cracking occurred in 180 degree contact bending.
[0062] (溶体化処理上がりの結晶粒径)  [0062] (Grain size after solution treatment)
No. 2に対し溶体化処理上がりの結晶粒径を変化させたときのデータを表 5に示す 。溶体化処理上がりの結晶粒径が大きくなるに従い、製品の金属組織から求めた aが 大きくなり、応力緩和率は小さくなつている。溶体化処理上がりの結晶粒径が 1 μ m に満たない No. 24の aは 1 H m未満であり、応力緩和率が 30%を超え、溶体化不足 により引張強さ力 ¾50MPaを下回った。溶体化処理上がりの結晶粒径が 15 mを超 えた No. 29の aは 15 mを超え、 180度密着曲げで割れが発生した。  Table 5 shows the data for No. 2 when the crystal grain size after solution treatment was changed. As the crystal grain size after solution treatment increases, a obtained from the metal structure of the product increases and the stress relaxation rate decreases. The crystal grain size after solution treatment was less than 1 μm. No. 24's a was less than 1 Hm, the stress relaxation rate exceeded 30%, and the tensile strength was less than ¾50 MPa due to insufficient solutionization. In the case of No. 29 where the crystal grain size after solution treatment exceeded 15 m, No. a exceeded 15 m, and cracking occurred at 180 ° contact bending.
[0063] 試験例 2  [0063] Test Example 2
合金成分が製品の金属組織及び特性に及ぼす影響を説明する。種々の成分の C u— Ni— Si系合金を前述した発明例 No. 1と同じ製造条件で製品に加工した。なお 、溶体化処理を 750°C X 60秒の条件で行なったところ、成分により結晶粒径が若干 変化したものの、全試料の結晶粒径とも本発明の好ましレ、範囲に入った。  The influence of alloy components on the microstructure and properties of products will be explained. Cu—Ni—Si based alloys having various components were processed into products under the same production conditions as in Invention Example No. 1 described above. When the solution treatment was performed under the conditions of 750 ° C. × 60 seconds, although the crystal grain size slightly changed depending on the components, the crystal grain sizes of all the samples were within the preferred range of the present invention.
[0064] (Ni濃度/ Si濃度比の影響) [0064] (Influence of Ni concentration / Si concentration ratio)
Niを 1. 60質量%に固定し Si濃度を変化させたときのデータを表 6に示す。 No. 1 及び No. 5は、表 1の試料と同じものである。ここで、 No. 5は導電率が 55%IACSに 満たない従来合金であり、その製造条件は他のものと異なる。  Table 6 shows the data when Ni is fixed at 1.60 mass% and the Si concentration is changed. No. 1 and No. 5 are the same as the samples in Table 1. Here, No. 5 is a conventional alloy whose conductivity is less than 55% IACS, and its manufacturing conditions are different from those of other alloys.
Ni濃度/ Si濃度比が 4〜6の範囲から外れると、導電率が 55%IACS未満になつ ている。また、 Ni濃度/ Si濃度比が減少すると、引張強さが上昇している力 これは Si濃度の増加により Ni Siの析出量が増えたためである。 If the Ni concentration / Si concentration ratio is outside the range of 4-6, the conductivity will be less than 55% IACS. ing. Also, the force that increases the tensile strength as the Ni concentration / Si concentration ratio decreases. This is because the amount of Ni Si deposited increases as the Si concentration increases.
本発明合金の Snめっき耐熱剥離性評価結果は△ (点状剥離)であった。一方、 No . 5、 34の評価結果は Xとなっている。これは、固溶 Siが耐熱剥離性を低下させるた めである。すなわち、 No. 5では Ni Siの析出量が少ないため、また No. 34では Niに 対し Siが過剰に添加されているため、固溶 Siが増えたのである。  The Sn plating heat release resistance evaluation result of the alloy of the present invention was Δ (dot-like peeling). On the other hand, the evaluation results of No. 5 and 34 are X. This is because solute Si reduces the heat-resistant peelability. In other words, in No. 5, the amount of Ni Si deposited was small, and in No. 34, Si was excessively added to Ni, so the amount of dissolved Si increased.
[0065] (Niの影響) [0065] (Influence of Ni)
Ni濃度/ Si濃度比を本発明範囲に保ちながら、 Ni濃度を変化させたデータを表 7 に示す。 Ni濃度が 1. 2質量%を下回った No. 35では、引張強さ力 ¾50MPa未満と なった。 Ni濃度が 3. 5質量%を超えた No. 41では、引張強さが 700MPaを超え、 1 80度密着曲げで割れが発生した。  Table 7 shows the data obtained by changing the Ni concentration while maintaining the Ni concentration / Si concentration ratio within the range of the present invention. In No. 35 where the Ni concentration was less than 1.2% by mass, the tensile strength was less than ¾50 MPa. In No. 41, where the Ni concentration exceeded 3.5 mass%, the tensile strength exceeded 700 MPa, and cracking occurred at 180 ° close contact bending.
[0066] (Znの影響) [0066] (Influence of Zn)
Zn添加の影響として、 No. 1に種々の濃度の Znを添加したときのデータを表 8に示 す。 0. 05質量%以上の Znを添加することにより、 Snめっき耐熱剥離性評価結果が 〇(剥離なし)になった。一方、 Znが増加するに従い導電率が低下した力 Zn力 SO. 5 質量%以下の範囲では 55%IACS以上の導電率が得られた。  Table 8 shows the data when various concentrations of Zn were added to No. 1 as the effect of Zn addition. Addition of 0.05 mass% or more of Zn resulted in a Sn plating heat release resistance evaluation result of ◯ (no peeling). On the other hand, the conductivity decreased as the Zn content increased. Zn force SO. Conductivity of 55% IACS or higher was obtained in the range of 5 mass% or less.
[0067] (不純物の影響)  [0067] (Influence of impurities)
不純物として、 No. 43の不純物を増加させたデータを表 9に示す。 Snめっきした銅 材料の混入を想定し Snを添加し、また溶解時の脱酸元素の残留を想定して Mgを添 加することにより、不純物の総量を変化させている。不純物が 0. 05質量%を超えた ものでは導電率が 55%IACS未満となっている。  Table 9 shows data obtained by increasing the No. 43 impurity as impurities. The total amount of impurities is changed by adding Sn, assuming the inclusion of Sn-plated copper material, and adding Mg, assuming the presence of deoxidizing elements during dissolution. Conductivity is less than 55% IACS when impurities exceed 0.05% by mass.
[0068] [表 1]
Figure imgf000023_0001
[0068] [Table 1]
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0001
丽 ¾ 92 〜 丽 ¾ 92 ~
Figure imgf000025_0001
Figure imgf000025_0001
〔〕 D¾〕00703
Figure imgf000026_0001
[] D¾] 00703
Figure imgf000026_0001
u D007 l
Figure imgf000027_0001
u D007 l
Figure imgf000027_0001
sa0072. (Niノ Si比 比の 〉 sa0072. (Ni-Si ratio ratio>
Figure imgf000028_0001
Figure imgf000028_0001
sU D¾ S307 (Niの影響) sU D¾ S307 (Influence of Ni)
Figure imgf000029_0001
Figure imgf000029_0001
¾U D S074 (Ζπの影響) ¾U D S074 (Influence of Ζπ)
Figure imgf000030_0001
Figure imgf000030_0001
ffi^0750 (不純物の影響) ffi ^ 0750 (Influence of impurities)
Figure imgf000031_0001
Figure imgf000031_0001
0076 図面の簡単な説明 0076 Brief Description of Drawings
園 1]応力緩和試験方法を説明する図である。 1] It is a diagram for explaining a stress relaxation test method.
[図 2]時効処理の温度チャート((a)及び (b)は発明例であり、 (c)は従来例)を示す 図である。  FIG. 2 is a diagram showing a temperature chart of aging treatment ((a) and (b) are invention examples, and (c) is a conventional example).

Claims

請求の範囲 The scope of the claims
[1] 1. 2〜3· 5質量%の Ni、 Ni濃度(質量%)に対し 1/6〜; 1/4の濃度(質量%)の Siを含有し、残部が Cu及び総量で 0. 05質量%以下の不純物より構成され、次の特 性を兼ね備えたことを特徴とする Cu— Ni— Si系合金。  [1] 1. 2 to 3.5 · 5% by mass of Ni, 1/6 to 1% of Ni concentration (% by mass); 1/4 concentration (% by mass) of Si, the balance being Cu and the total amount 0 A Cu-Ni-Si alloy composed of impurities of less than 05% by mass and having the following characteristics.
(A)導電率: 55〜62%IACS  (A) Conductivity: 55-62% IACS
(B)引張強さ: 550〜700MPa  (B) Tensile strength: 550 ~ 700MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 30%以下  (D) Stress relaxation resistance: 30% or less of stress relaxation rate when heated at 150 ° C for 1000 hours
[2] 1. 2〜3. 5質量%の Ni、 Ni濃度(質量%)に対し 1/6〜; 1/4の濃度(質量%)の[2] 1. 2 to 3.5 mass% of Ni, Ni concentration (mass%) 1/6 or more; 1/4 concentration (mass%)
Si、 0. 5質量%以下の Znを含有し、残部が Cu及び総量で 0. 05質量%以下の不純 物より構成され、次の特性を兼ね備えたことを特徴とする Cu— Ni— Si系合金。 Si, containing 0.5% by mass or less of Zn, the balance being composed of Cu and impurities of 0.05% by mass or less in total, Cu-Ni-Si system characterized by the following characteristics alloy.
(A)導電率: 55〜62%IACS  (A) Conductivity: 55-62% IACS
(B)引張強さ: 550〜700MPa  (B) Tensile strength: 550 ~ 700MPa
(C)曲げ性: 180度密着曲げで割れが発生しない  (C) Bendability: No cracking caused by 180 degree contact bending
(D)耐応力緩和性: 150°Cで 1000時間加熱したときの応力緩和率が 30%以下 (D) Stress relaxation resistance: 30% or less of stress relaxation rate when heated at 150 ° C for 1000 hours
(E)耐熱剥離性: Snめっき耐熱剥離試験後にめっき剥離が認められなレ、 (E) Heat Peeling Resistance: No plating peeling is observed after Sn plating heat peeling test
[3] 1. 2〜3. 5質量%の Ni、 Ni濃度(質量0 /0)に対し 1/6〜; 1/4の濃度(質量0 /0)の Si、 0. 5質量%以下の随意成分としての Znを含有し、残部が Cu及び総量で 0. 05 質量%以下の不純物より構成され、圧延面に平行な断面の金属組織において、結 晶粒の圧延方向と直交する方向の平均粒径を a、圧延方向と平行な方向の平均粒 径を bとしたときに、 . [3] 1.2 to 3 5% by weight of Ni, Ni concentration (mass 0/0) to 1 /. 6 to; Si 1/4 concentration (mass 0/0), 0.5 wt% or less Zn is included as an optional component, and the balance is composed of Cu and impurities in a total amount of 0.05% by mass or less. In the metal structure of the cross section parallel to the rolling surface, the direction perpendicular to the rolling direction of the crystal grains When the average particle size is a and the average particle size in the direction parallel to the rolling direction is b,
a = 1~15 ^ m、 b/ a = 1. 05〜1. D I  a = 1 ~ 15 ^ m, b / a = 1. 05 ~ 1. D I
であり、さらに金属組織中の無析出帯の平均幅が 10〜; !OOnmである Cu— Ni— Si 系合金。  In addition, Cu—Ni—Si-based alloys in which the average width of the precipitation-free zone in the metal structure is 10 to;! OOnm.
[4] 請求項 1〜3の何れか一項に記載の Cu— Ni— Si系合金を用いた伸銅品。  [4] A rolled copper product using the Cu—Ni—Si alloy according to any one of claims 1 to 3.
[5] 請求項 1〜3の何れか一項に記載の Cu— Ni— Si系合金を用いた電子部品。 [5] An electronic component using the Cu—Ni—Si alloy according to any one of claims 1 to 3.
[6] 溶体化処理、冷間圧延、時効処理、冷間圧延の工程を順次行なうことを含む Cu— Ni— Si系合金の製造方法において、各工程を次の条件で行なうことを特徴とする請 求項 1〜3の何れか一項に記載の Cu— Ni— Si系合金の製造方法。 [6] In a method for producing a Cu—Ni—Si alloy including sequentially performing the steps of solution treatment, cold rolling, aging treatment, and cold rolling, each step is performed under the following conditions: Contract A method for producing a Cu—Ni—Si based alloy according to any one of claims 1 to 3.
(溶体化処理)平均結晶粒径を;!〜 15 mの範囲に調整する。  (Solution treatment) The average crystal grain size is adjusted to a range of !! to 15 m.
(時効処理)熱処理中の材料の最高温度を 550°C以下とし、材料を 450〜550°Cの 温度範囲で 5〜; 15時間保持する。また、昇温過程において 200〜250°C、 250-30 (Aging treatment) The maximum temperature of the material during the heat treatment is 550 ° C or lower, and the material is kept in the temperature range of 450 to 550 ° C for 5 to 15 hours. In the temperature rising process, 200-250 ° C, 250-30
0°C及び 300〜350°Cの各温度区間における材料の平均昇温速度を 50°C/h以下 とする。 The average heating rate of the material in each temperature zone of 0 ° C and 300-350 ° C shall be 50 ° C / h or less.
(冷間圧延)時効前の冷間圧延における圧延加工度と時効後の冷間圧延における圧 延加工度との合計を 5〜40%とする。  (Cold rolling) The sum of the rolling work in cold rolling before aging and the rolling work in cold rolling after aging is 5-40%.
PCT/JP2007/068420 2006-09-25 2007-09-21 Cu-Ni-Si ALLOY WO2008038593A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/311,401 US20100000637A1 (en) 2006-09-25 2007-09-21 Cu-ni-si system alloy
CN2007800326042A CN101512026B (en) 2006-09-25 2007-09-21 Cu-ni-si alloy
KR1020087031101A KR101056973B1 (en) 2006-09-25 2007-09-21 Cu-Ni-Si alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006259294A JP4143662B2 (en) 2006-09-25 2006-09-25 Cu-Ni-Si alloy
JP2006-259294 2006-09-25

Publications (1)

Publication Number Publication Date
WO2008038593A1 true WO2008038593A1 (en) 2008-04-03

Family

ID=39230028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068420 WO2008038593A1 (en) 2006-09-25 2007-09-21 Cu-Ni-Si ALLOY

Country Status (6)

Country Link
US (1) US20100000637A1 (en)
JP (1) JP4143662B2 (en)
KR (1) KR101056973B1 (en)
CN (1) CN101512026B (en)
TW (1) TW200823302A (en)
WO (1) WO2008038593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130014861A1 (en) * 2010-04-02 2013-01-17 JX Nippon Mining & Metal Corporation Cu-ni-si alloy for electronic material

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256219A4 (en) * 2008-02-18 2012-06-27 Furukawa Electric Co Ltd Copper alloy material
JP5468798B2 (en) * 2009-03-17 2014-04-09 古河電気工業株式会社 Copper alloy sheet
JP2010255042A (en) * 2009-04-24 2010-11-11 Hitachi Cable Ltd Copper alloy and method for producing copper alloy
JP4885332B2 (en) * 2009-12-02 2012-02-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
KR101419145B1 (en) 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP5476149B2 (en) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability
JP5319578B2 (en) * 2010-03-01 2013-10-16 Jx日鉱日石金属株式会社 Manufacturing method of titanium copper for electronic parts
JP4630387B1 (en) * 2010-04-07 2011-02-09 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
EP2557187A1 (en) 2010-04-07 2013-02-13 Furukawa Electric Co., Ltd. Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
KR101703679B1 (en) * 2010-07-07 2017-02-07 미츠비시 신도 가부시키가이샤 Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
CN103080347A (en) * 2010-08-27 2013-05-01 古河电气工业株式会社 Copper alloy sheet and method for producing same
JP4824124B1 (en) * 2010-09-17 2011-11-30 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
CN102021359B (en) * 2010-11-03 2013-01-02 西安理工大学 Cu-Ni-Si alloy with high Ni and Si content and preparation method thereof
JP5192536B2 (en) * 2010-12-10 2013-05-08 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JP5180283B2 (en) * 2010-12-24 2013-04-10 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
KR20140025607A (en) 2011-08-04 2014-03-04 가부시키가이샤 고베 세이코쇼 Copper alloy
TWI461549B (en) * 2012-02-14 2014-11-21 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method
US10002684B2 (en) * 2012-07-26 2018-06-19 Ngk Insulators, Ltd. Copper alloy and method for manufacturing the same
KR101274063B1 (en) 2013-01-22 2013-06-12 한국기계연구원 A metal matrix composite with two-way shape precipitation and method for manufacturing thereof
EP3004408B1 (en) * 2013-06-07 2017-08-09 VDM Metals International GmbH Method for producing a metal film
JP6301618B2 (en) * 2013-09-17 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
CN107119247B (en) * 2017-06-08 2018-10-30 西安交通大学 It is a kind of improve in high tonnage melting CuNiSiCr alloy property stability heat treatment method
CN112813368B (en) * 2020-12-25 2022-05-13 大连交通大学 High-performance Cu-Ni-Si alloy plate strip and production process thereof
CN113249666A (en) * 2021-05-14 2021-08-13 太原晋西春雷铜业有限公司 Preparation method for reducing heat shrinkage rate of Cu-Ni-Si alloy
CN115029581B (en) * 2022-06-10 2022-12-09 中铁建电气化局集团轨道交通器材有限公司 Silicon bronze forging and integral forging and pressing and heat treatment method without internal stress
CN115627380B (en) * 2022-11-11 2023-07-25 安徽鑫科铜业有限公司 Low-concentration copper-nickel-silicon alloy material and preparation method thereof
CN115613043A (en) * 2022-11-11 2023-01-17 安徽鑫科铜业有限公司 Copper-nickel-silicon alloy strip surface treatment solution and copper-nickel-silicon alloy strip surface treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162553A (en) * 1989-11-22 1991-07-12 Nippon Mining Co Ltd Manufacture of high strength and high conductivity copper alloy having good bendability
JPH05279825A (en) * 1992-03-30 1993-10-26 Mitsubishi Shindoh Co Ltd Copper alloy bar scarcely causing wear to stamping die
JP2006176886A (en) * 2006-03-10 2006-07-06 Furukawa Electric Co Ltd:The Copper alloy material for terminal or connector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207229A (en) 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd Copper alloy for electronic material
CN1195395C (en) * 2001-01-30 2005-03-30 日鉱金属股份有限公司 Copper alloy foil for integrated board
JP2004315940A (en) * 2003-04-18 2004-11-11 Nikko Metal Manufacturing Co Ltd Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP4255330B2 (en) * 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics
JP4100629B2 (en) * 2004-04-16 2008-06-11 日鉱金属株式会社 High strength and high conductivity copper alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162553A (en) * 1989-11-22 1991-07-12 Nippon Mining Co Ltd Manufacture of high strength and high conductivity copper alloy having good bendability
JPH05279825A (en) * 1992-03-30 1993-10-26 Mitsubishi Shindoh Co Ltd Copper alloy bar scarcely causing wear to stamping die
JP2006176886A (en) * 2006-03-10 2006-07-06 Furukawa Electric Co Ltd:The Copper alloy material for terminal or connector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130014861A1 (en) * 2010-04-02 2013-01-17 JX Nippon Mining & Metal Corporation Cu-ni-si alloy for electronic material
US9005521B2 (en) * 2010-04-02 2015-04-14 Jx Nippon Mining & Metals Corporation Cu—Ni—Si alloy for electronic material

Also Published As

Publication number Publication date
JP2008075172A (en) 2008-04-03
CN101512026B (en) 2011-03-09
US20100000637A1 (en) 2010-01-07
KR20090016485A (en) 2009-02-13
TW200823302A (en) 2008-06-01
TWI355426B (en) 2012-01-01
KR101056973B1 (en) 2011-08-16
CN101512026A (en) 2009-08-19
JP4143662B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP4143662B2 (en) Cu-Ni-Si alloy
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP4830035B2 (en) Cu-Si-Co alloy for electronic materials and method for producing the same
JP4494258B2 (en) Copper alloy and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
WO2013018228A1 (en) Copper alloy
JPWO2010013790A1 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP2006009137A (en) Copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP6111028B2 (en) Corson alloy and manufacturing method thereof
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP2011219860A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP2010236029A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032604.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087031101

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12311401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807751

Country of ref document: EP

Kind code of ref document: A1