JP5225787B2 - Cu-Ni-Si alloy plate or strip for electronic materials - Google Patents

Cu-Ni-Si alloy plate or strip for electronic materials Download PDF

Info

Publication number
JP5225787B2
JP5225787B2 JP2008214053A JP2008214053A JP5225787B2 JP 5225787 B2 JP5225787 B2 JP 5225787B2 JP 2008214053 A JP2008214053 A JP 2008214053A JP 2008214053 A JP2008214053 A JP 2008214053A JP 5225787 B2 JP5225787 B2 JP 5225787B2
Authority
JP
Japan
Prior art keywords
copper alloy
strength
residual stress
strip
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008214053A
Other languages
Japanese (ja)
Other versions
JP2010007174A (en
Inventor
光浩 大久保
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2008214053A priority Critical patent/JP5225787B2/en
Publication of JP2010007174A publication Critical patent/JP2010007174A/en
Application granted granted Critical
Publication of JP5225787B2 publication Critical patent/JP5225787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は電子材料用Cu−Ni−Si系合金板又は条に関し、とりわけリードフレーム材として適したCu−Ni−Si系合金板又は条に関する。   The present invention relates to a Cu—Ni—Si alloy plate or strip for electronic materials, and more particularly to a Cu—Ni—Si alloy plate or strip suitable as a lead frame material.

リードフレームは半導体デバイスの内部配線として使われる金属の薄板である。リードフレームの材料としては、導電性と熱放散性の観点から従来のFe系素材(Fe−42%Niなど)に代わり銅合金が多用されている。リードフレームに使用される銅合金には、高強度及び高導電率という基本的特性に加えて、繰り返し曲げ性、プレス加工性、エッチング性、半田付け性、平坦性及びめっき性等に優れていることが要求される。   The lead frame is a thin metal plate used as an internal wiring of a semiconductor device. As a lead frame material, a copper alloy is often used instead of a conventional Fe-based material (Fe-42% Ni or the like) from the viewpoint of conductivity and heat dissipation. Copper alloys used in lead frames are excellent in repeated bendability, press workability, etching properties, solderability, flatness, plating properties, etc. in addition to the basic properties of high strength and high electrical conductivity. Is required.

従来、このような特性を向上させるべくリードフレーム用の銅合金の製品開発が行われてきた。以下にその例を挙げる。   Conventionally, copper alloy products for lead frames have been developed to improve such characteristics. Examples are given below.

特公昭62−31059号公報(特許文献1)の請求項1には、Ni:1.0〜3.5wt%、Si:0.2〜0.9wt%、Mn:0.02〜1.0wt%、Zn:0.1〜5.0wt%、Sn:0.1〜2.0wt%、Mg:0.001〜0.01wt%を含有し、さらに、Cr、Ti、Zrのうちから選んだ1種または2種以上を0.001〜0.01wt%含有し、残部実質的にCuからなることを特徴とする半導体用リードフレーム材が開示されている。
該文献の請求項2には、上記のリードフレーム材の製造方法として、上記組成を有する銅合金の鋳塊を熱間圧延後、600℃以上の温度から5℃/秒以上の速度で冷却し、冷間加工後400〜600℃の温度で5分〜4時間の焼鈍を行った後、調質仕上圧延を行ってから、400〜600℃の温度で5〜60秒の短時間の焼鈍を行う方法が開示されている。最終工程の400〜600℃の温度で5〜60秒の短時間の焼鈍は、圧延により低下した伸びを回復させると共に残留応力を低減し、かつ、均一化するためであるとされる。
該文献によれば、上記のリードフレーム材は高い強度及び高いスティフネス強度を有し、さらに、優れた半田の耐熱剥離性を有し、その上、熱間加工性にも優れているとされる。
Claim 1 of Japanese Patent Publication No. Sho 62-31059 (Patent Document 1) includes Ni: 1.0 to 3.5 wt%, Si: 0.2 to 0.9 wt%, and Mn: 0.02 to 1.0 wt. %, Zn: 0.1-5.0 wt%, Sn: 0.1-2.0 wt%, Mg: 0.001-0.01 wt%, and further selected from Cr, Ti, Zr There is disclosed a lead frame material for a semiconductor characterized by containing one or two or more of 0.001 to 0.01 wt% and the balance being substantially made of Cu.
According to claim 2 of this document, as a method for producing the lead frame material, a copper alloy ingot having the above composition is hot-rolled and then cooled from a temperature of 600 ° C. or more to a rate of 5 ° C./second or more. After the cold working, annealing is performed at a temperature of 400 to 600 ° C. for 5 minutes to 4 hours, and then temper finish rolling is performed, and then annealing at a temperature of 400 to 600 ° C. for 5 to 60 seconds is performed. A method of performing is disclosed. The short-time annealing at a temperature of 400 to 600 ° C. for 5 to 60 seconds in the final step is considered to recover the elongation lowered by rolling, reduce the residual stress, and make it uniform.
According to this document, the above lead frame material has high strength and high stiffness strength, and further has excellent heat-resistant peelability of solder, and is also excellent in hot workability. .

特開平7−258805号公報(特許文献2)には、Cu−Cr−Zr合金にTi及びFeを添加するか、更にはZn,Sn,In,Mn,P,MgあるいはSiの1種又は2種以上をも添加すると共に、それら各成分の含有量割合を厳密に調整した銅合金を素材とし、その溶体化処理条件を規制して結晶粒径を制御した上で、更に特定条件での冷間加工,時効,最終冷間加工及び最終焼鈍を施すと、強度,導電率,曲げ加工性,ばね特性,Agめっき性,半田接合部の信頼性等の諸性質が一段と改善された材料を得ることができることが記載されている(段落0009)。
そして、その請求項1には、重量割合にてCr:0.05〜0.40%,Zr:0.03〜0.25%,Fe:0.10〜1.80%,Ti:0.10〜0.80%を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti重量比が0.66〜2.6を満足し、また「0.60%<Ti≦0.80%」ではFe/Ti重量比が1.1〜2.6を満足していて残部がCu及び不可避的不純物から成る銅合金の素材に、1)950℃未満の温度での溶体化処理,2)50〜90%の加工度での冷間加工,3)300〜580℃の温度での時効処理,4)16〜83%の加工度での冷間加工,5)350〜700℃の温度での焼鈍をこの順に順次施すことを特徴とする、電子機器用高力高導電性銅合金材の製造方法が記載されている。5)は歪取り焼鈍であり、最終冷間加工の後、ばね性を向上させると共に延性を回復させることが記載されている。
In JP-A-7-258805 (Patent Document 2), Ti and Fe are added to a Cu—Cr—Zr alloy, or one or two of Zn, Sn, In, Mn, P, Mg, or Si are added. In addition to adding more than seeds, the raw material is a copper alloy in which the content ratio of each component is strictly adjusted, and the crystal grain size is controlled by regulating the solution treatment conditions, and further cooling under specific conditions is performed. When cold working, aging, final cold working and final annealing are performed, materials with improved properties such as strength, electrical conductivity, bending workability, spring characteristics, Ag plating properties, and solder joint reliability are obtained. (Paragraph 0009).
In the first aspect, Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.00. 10 to 0.80%, and “0.10% ≦ Ti ≦ 0.60%” satisfies the Fe / Ti weight ratio of 0.66 to 2.6, and “0.60% <Ti ≦ 0.80% ”, a copper alloy material satisfying an Fe / Ti weight ratio of 1.1 to 2.6 with the balance being Cu and inevitable impurities. 1) Solution at a temperature below 950 ° C. 2) Cold working at a working degree of 50-90%, 3) Aging treatment at a temperature of 300-580 ° C., 4) Cold working at a working degree of 16-83%, 5) 350- A method for producing a high-strength, high-conductivity copper alloy material for electronic equipment is described, which is characterized by sequentially performing annealing at a temperature of 700 ° C. in this order. 5) is strain relief annealing, and it is described that after the final cold working, the spring property is improved and the ductility is restored.

特開2003−286527号公報(特許文献3)は、十分な寸法精度と形状特性を兼ね備えた銅又は銅合金を提供することを目的として、銅又は銅合金をその焼鈍温度で加熱処理したときの、該加熱処理の前後における収縮率が0.01%以下であり、且つ板形状であって急峻度(平坦度を表すパラメータ)が0.5%以下であることを特徴とする銅又は銅合金を開示している(請求項1)。
該銅又は銅合金の製造工程として、一般の銅及び銅基合金と同様にして最終板厚まで圧延後、必要に応じてテンションレベラー等による形状矯正を行い、その後連続焼鈍炉による低温焼鈍を行うが、その際の炉内張力が連続焼鈍炉通板前の材料の0.2%耐力の1.0〜8.5%の範囲で設定し、通板を行うことが記載されている(段落0020)。
特公昭62−31059号公報 特開平7−258805号公報 特開2003−286527号公報
JP 2003-286527 A (Patent Document 3) has a purpose of providing copper or a copper alloy having sufficient dimensional accuracy and shape characteristics when the copper or copper alloy is heat-treated at its annealing temperature. The copper or copper alloy is characterized by having a shrinkage ratio of 0.01% or less before and after the heat treatment, and having a plate shape and a steepness (parameter indicating flatness) of 0.5% or less. (Claim 1).
As a manufacturing process of the copper or copper alloy, after rolling to the final plate thickness in the same manner as general copper and copper-based alloys, if necessary, correct the shape with a tension leveler, etc., and then perform low-temperature annealing with a continuous annealing furnace However, it is described that the in-furnace tension is set in the range of 1.0 to 8.5% of the 0.2% proof stress of the material before passing through the continuous annealing furnace (paragraph 0020). ).
Japanese Patent Publication No.62-31059 JP 7-258805 A JP 2003-286527 A

半導体デバイスの高集積化や小型化の進展に伴い、リードフレームの材料として使用される銅合金に対する要求レベルが高度化している。ファインピッチ(例えば200ピン程度の多ピン)のリードフレームを成形する場合、インナーリード部の幅及びピッチが極めて狭いためプレス加工(打ち抜き加工)時に残留応力の影響を受けやすく、リード変形が生じやすい。そこで従来は、銅合金板又は条をプレス加工した後に、インナーリードの平坦性を確保する目的で残留応力を除去する歪取り焼鈍が行われていた。
しかしながら、このプレス加工後の歪取り焼鈍はリードフレームのリードタイムにおいて大きな比率を占めていることから、歪取り焼鈍に要する時間の短い素材が望ましい。
With the progress of high integration and miniaturization of semiconductor devices, the level of demand for copper alloys used as materials for lead frames is becoming higher. When forming a lead frame with a fine pitch (for example, about 200 pins), the width and pitch of the inner lead part are extremely narrow, so that they are easily affected by residual stress during press working (punching) and lead deformation is likely to occur. . Therefore, conventionally, after the copper alloy plate or strip is pressed, strain relief annealing for removing the residual stress has been performed for the purpose of ensuring the flatness of the inner lead.
However, since the strain relief annealing after the press working occupies a large proportion in the lead frame lead time, a material having a short time required for the strain relief annealing is desirable.

そこで、本発明はリードフレームのリード変形が生じにくく、且つ、プレス加工後の歪取り焼鈍に要する時間の短い銅合金板又は条を提供することを課題とする。   Accordingly, it is an object of the present invention to provide a copper alloy plate or strip that does not easily cause lead deformation of a lead frame and that requires a short time for strain relief annealing after press working.

本発明者は上記課題を解決するために鋭意検討を重ねたところ、銅合金板又は条の最終製造段階で行われる歪取り焼鈍によって表面の残留応力を除去した後にも、一定程度の強度を有する素材が上記課題の解決に有利であることを見出した。この素材を用いてリードフレームを製造した場合、リード変形が生じにくく、また、プレス加工後の歪取り焼鈍も短時間で実施できることが分かった。   The present inventor has made extensive studies to solve the above problems, and has a certain degree of strength even after the residual stress on the surface is removed by strain relief annealing performed in the final manufacturing stage of the copper alloy plate or strip. The present inventors have found that the material is advantageous for solving the above problems. It has been found that when a lead frame is manufactured using this material, lead deformation is unlikely to occur, and strain relief annealing after press working can be performed in a short time.

上記知見を基に完成した本発明は一側面において、Ni:0.4〜6.0質量%、Si:0.1〜2.0質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金板又は条であって、表面から1μmの深さにおける残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下する銅合金板又は条である。   The present invention completed on the basis of the above knowledge includes, in one aspect, Ni: 0.4 to 6.0% by mass, Si: 0.1 to 2.0% by mass, the balance being Cu and inevitable impurities. A copper alloy plate or strip for electronic materials, the absolute value of the residual stress at a depth of 1 μm from the surface is 50 MPa or less, and the tensile strength is 40 MPa or more by heat treatment heated at a temperature of 500 ° C. for 1 minute. It is a copper alloy plate or strip that decreases.

本発明に係る銅合金板又は条の一実施形態においては、残留応力の絶対値が0〜50MPaであり、且つ、500℃の温度で1分間加熱する熱処理前後の引張強さの差が40〜100MPaである。   In one embodiment of the copper alloy plate or strip according to the present invention, the absolute value of the residual stress is 0 to 50 MPa, and the difference in tensile strength before and after the heat treatment heated at 500 ° C. for 1 minute is 40 to 40 ° C. 100 MPa.

本発明に係る銅合金板又は条の別の一実施形態においては、粒径が10〜1000nmの範囲にある第二相粒子の平均粒径が100〜200nmである。   In another embodiment of the copper alloy plate or strip according to the present invention, the average particle size of the second phase particles having a particle size in the range of 10 to 1000 nm is 100 to 200 nm.

本発明に係る銅合金板又は条の別の一実施形態においては、引張強さ(TS)が750〜850MPaである。   In another embodiment of the copper alloy plate or strip according to the present invention, the tensile strength (TS) is 750 to 850 MPa.

本発明に係る銅合金板又は条の更に別の一実施形態においては、更に、Cr、Co、Mg、Mn、Fe、Sn、Zn、Al及びPから選択される1種又は2種以上を合計で2.0質量%まで含有する。   In yet another embodiment of the copper alloy sheet or strip according to the present invention, one or more selected from Cr, Co, Mg, Mn, Fe, Sn, Zn, Al and P are further added. Up to 2.0% by mass.

本発明に係る銅合金板又は条の更に別の一実施形態においては、電子材料がリードフレームである。   In yet another embodiment of the copper alloy plate or strip according to the present invention, the electronic material is a lead frame.

従来の素材では、銅合金板又は条の製造工程の最終段階で行われる歪取り焼鈍によって残留応力を除去すると、平坦性等の特性は向上するものの強度が落ち込んでしまい、この状態でプレス加工を行うとリード部分にねじれなどの変形が生じやすかった。しかしながら、今回開発した素材では、プレス加工時にも高い強度が保持されるために良好な打ち抜き性を有する。   In the case of conventional materials, when residual stress is removed by strain relief annealing performed at the final stage of the copper alloy sheet or strip manufacturing process, the flatness and other properties are improved, but the strength falls, and in this state, pressing is performed. As a result, deformation such as twisting was likely to occur in the lead portion. However, the newly developed material has good punchability because it retains high strength even during press working.

また、今回開発した素材は、従来の素材に比べてプレス加工後のリードフレームの平坦化のために実施される歪取り焼鈍に要する時間を短縮することができる。換言すれば、同一の条件で歪取り焼鈍を行ったときの強度低下の度合いが大きくなる。   In addition, the newly developed material can shorten the time required for strain relief annealing performed for flattening the lead frame after press working, compared to the conventional material. In other words, the degree of strength reduction when the strain relief annealing is performed under the same conditions increases.

本発明に係る銅合金はコルソン系合金と一般に呼ばれるCu−Ni−Si系合金である。Cu−Ni−Si系合金は析出硬化型銅合金の一種であり、溶体化処理された過飽和固溶体を時効処理することにより、微細なNi−Si系金属間化合物粒子を均一に分散し、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   The copper alloy according to the present invention is a Cu—Ni—Si alloy generally called a Corson alloy. Cu-Ni-Si-based alloy is a kind of precipitation-hardening type copper alloy, and by aging the solution-treated supersaturated solid solution, fine Ni-Si-based intermetallic compound particles are uniformly dispersed, At the same time as the strength increases, the amount of solid solution elements in the copper decreases, and the electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

Ni及びSiの添加量
Ni及びSiは、適当な熱処理を施すことにより金属間化合物としてNi−Si化合物粒子(Ni2Si等)を形成し、導電率を劣化させずに高強度化が図れる。
SiやNi添加量は少なすぎると所望の強度が得られず、多すぎると高強度化は図れるが導電率が著しく低下し、熱間加工性が低下する。また、Ni中には水素が固溶することがあり、溶解鋳造時のブローホールの原因となったりするため、Ni添加量を多くすると中間の加工において破断の原因となる可能性がある。SiはCと反応したり、Oと反応したりするため、添加量が多いと極めて多くの介在物を形成し、曲げの際に破断の原因になる。
Addition amounts of Ni and Si Ni and Si form Ni—Si compound particles (Ni 2 Si or the like) as an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating the conductivity.
If the amount of Si or Ni added is too small, the desired strength cannot be obtained. If it is too large, the strength can be increased, but the electrical conductivity is remarkably lowered, and the hot workability is lowered. In addition, hydrogen may be dissolved in Ni, which may cause blowholes during melt casting, so increasing the amount of Ni added may cause breakage in intermediate processing. Since Si reacts with C and reacts with O, if the addition amount is large, a very large amount of inclusions are formed, which causes breakage during bending.

そこで、適切なSi添加量は0.1〜2.0質量%であり、好ましくは0.2〜1.5%である。適切なNi添加量は0.4〜6.0質量%であり、好ましくは1.0〜5.0%質量%である。   Therefore, an appropriate Si addition amount is 0.1 to 2.0% by mass, preferably 0.2 to 1.5%. A suitable Ni addition amount is 0.4 to 6.0% by mass, preferably 1.0 to 5.0% by mass.

Ni−Si化合物粒子の析出物は化学量論組成で一般に構成されており、NiとSiの質量比を金属間化合物であるNi2Siの質量組成比(Niの原子量×2:Siの原子量×1)に近づけることにより、すなわちNiとSiの質量比をNi/Si=3〜7、好ましくは3.5〜5とすることにより良好な電気伝導性が得られる。Niの比率が上記質量組成比よりも高いと導電率が低下しやすく、Siの比率が上記質量組成比よりも高いと粗大なNi−Si晶出物により熱間加工性が劣化しやすい。 The precipitate of Ni—Si compound particles is generally composed of a stoichiometric composition, and the mass ratio of Ni and Si is the mass composition ratio of Ni 2 Si which is an intermetallic compound (Ni atomic weight × 2: Si atomic weight × By bringing the ratio closer to 1), that is, by setting the mass ratio of Ni and Si to Ni / Si = 3 to 7, preferably 3.5 to 5, good electrical conductivity can be obtained. If the Ni ratio is higher than the mass composition ratio, the electrical conductivity tends to decrease, and if the Si ratio is higher than the mass composition ratio, hot workability is likely to be deteriorated due to coarse Ni-Si crystallized products.

その他の元素の添加量
本発明に係る銅合金板又は条は、Ni及びSiに加えて、Cr、Co、Mg、Mn、Fe、Sn、Zn、Al及びPから選択される1種又は2種以上を合計で1.0質量%含有することができ、必要に応じて2.0質量%まで含有することもできる。以下、各元素の作用及び好適な含有量について説明する。
Addition amount of other elements The copper alloy sheet or strip according to the present invention is one or two selected from Cr, Co, Mg, Mn, Fe, Sn, Zn, Al and P in addition to Ni and Si. The above can be contained in a total of 1.0 mass%, and can be contained up to 2.0 mass% if necessary. Hereinafter, the action of each element and the preferred content will be described.

(1)Cr、Co
Cr、CoはCu中に固溶し、溶体化処理時の結晶粒の粗大化を抑制する。また合金強度が底上げされる。時効処理時にはシリサイドを形成して析出し、強度及び導電率の改善に寄与することもできる。これらの添加元素は導電率をほとんど低下しないことから積極的に添加しても良いが、添加量が多い場合は逆に特性を損なう恐れがある。そこで、Cr及びCoは一方又は両方を合計で1.0質量%まで添加するのがよく、0.005〜1.0質量%添加するのが好ましい。
(2)Mg、Mn
MgやMnはOと反応するため溶湯の脱酸効果が得られる。また、一般的に合金強度を向上させる元素として添加される元素である。最も有名な効果としては応力緩和特性の向上であり、いわゆる耐クリープ特性である。近年、電子機器の高集積化にともない、高電流が流れ、またBGAタイプのような熱放散性が低い半導体パッケージにおいては、熱により素材が劣化する恐れがあり、故障の原因となる。特に、車載する場合はエンジンまわりの熱による劣化が懸念され、耐熱性は重要な課題である。これらの理由で積極的に添加しても良い元素である。ただし、添加量が多すぎると曲げ加工性への悪影響が無視できなくなる。そこで、Mg及びMnは一方又は両方を合計で0.5質量%まで添加するのがよく、0.005〜0.4質量%添加するのが好ましい。
(3)Sn
SnはMgと同様の効果がある。しかしMgと異なり、Cu中に固溶する量が多いため、より耐熱性が必要な場合に添加される。しかしながら、量が増えれば導電率は著しく低下する。よって、Snは0.5質量%まで添加するのがよく、0.1〜0.4質量%添加するのが好ましい。ただし、MgとSnを共に添加するときは導電率への悪影響を抑えるために両者の合計濃度を1.0質量%までとし、好ましくは0.8質量%までとするのが望ましい。
(4)Zn
Znははんだ脆化を抑制する効果がある。ただし、添加量が多いと導電率が低下するので、0.5質量%まで添加するのがよく、0.1〜0.4質量%添加するのが好ましい。
(5)Fe、Al、P
これらの元素も合金強度を向上させることのできる元素である。必要に応じて添加すればよい。ただし、添加量が多いと添加元素に応じて特性が悪化するので、0.5質量%まで添加するのがよく、0.005〜0.4質量%添加するのが好ましい。
(1) Cr, Co
Cr and Co are dissolved in Cu to suppress the coarsening of crystal grains during the solution treatment. Also, the alloy strength is raised. During the aging treatment, silicide is formed and deposited, which can contribute to improvement in strength and conductivity. These additive elements may be positively added because they do not substantially lower the electrical conductivity. However, if the added amount is large, the characteristics may be adversely affected. Therefore, one or both of Cr and Co are preferably added up to a total of 1.0% by mass, preferably 0.005 to 1.0% by mass.
(2) Mg, Mn
Since Mg and Mn react with O, the deoxidation effect of the molten metal can be obtained. In general, it is an element added as an element for improving the alloy strength. The most famous effect is the improvement of stress relaxation characteristics, so-called creep resistance. In recent years, with the high integration of electronic devices, a high current flows, and in a semiconductor package with low heat dissipation such as a BGA type, the material may be deteriorated by heat, which causes a failure. In particular, when mounted on a vehicle, there is a concern about deterioration due to heat around the engine, and heat resistance is an important issue. For these reasons, it is an element that may be positively added. However, if the amount added is too large, the adverse effect on bending workability cannot be ignored. Therefore, it is preferable to add one or both of Mg and Mn to 0.5% by mass in total, and it is preferable to add 0.005 to 0.4% by mass.
(3) Sn
Sn has the same effect as Mg. However, unlike Mg, the amount dissolved in Cu is large, so it is added when more heat resistance is required. However, the conductivity decreases significantly as the amount increases. Therefore, Sn is preferably added up to 0.5% by mass, and preferably 0.1 to 0.4% by mass. However, when adding both Mg and Sn, in order to suppress the adverse effect on the electrical conductivity, the total concentration of both is up to 1.0 mass%, preferably up to 0.8 mass%.
(4) Zn
Zn has an effect of suppressing solder embrittlement. However, if the amount added is large, the electrical conductivity decreases, so it is preferable to add up to 0.5% by mass, and preferably 0.1 to 0.4% by mass.
(5) Fe, Al, P
These elements are also elements that can improve the alloy strength. What is necessary is just to add as needed. However, if the addition amount is large, the characteristics deteriorate depending on the added element. Therefore, it is preferable to add up to 0.5% by mass, and it is preferable to add 0.005 to 0.4% by mass.

上記のCr、Co、Mg、Mn、Sn、Zn、Fe、Al及びPは合計で2.0質量%を超えると製造性を損ないやすいので、好ましくはこれらの合計は2.0質量%以下とし、より好ましくは1.0質量%以下とし、更により好ましくは0.5質量%以下とする。   The above Cr, Co, Mg, Mn, Sn, Zn, Fe, Al, and P tend to impair manufacturability when the total exceeds 2.0% by mass. Therefore, the total is preferably 2.0% by mass or less. More preferably, it is 1.0 mass% or less, More preferably, it is 0.5 mass% or less.

残留応力
本発明では銅合金の残留応力を規定する。残留応力は外力や熱勾配のない状態で素材の内部に存在している応力である。残留応力は熱処理や冷間加工などによる不均一な変形の結果発生する。残留応力が残っていると、平坦な条や板を得ることが困難となる。平坦性が損なわれるとプレス加工したときの寸法精度に悪影響を与える。一般的には圧延材の内部に広く残留応力が分布しており、圧延材の場合はごく表層付近の残留応力の勾配が高いことが多い。
そこで、本発明では表面から1μmの深さにおける残留応力の絶対値を50MPa以下に規定している。残留応力の絶対値は好ましくは30MPa以下であり、より好ましくは20MPa以下である。従って、本発明に係る銅合金は、例えば0〜50、典型的には5〜50MPaの残留応力の絶対値を有する。絶対値としたのは、残留応力は引張りと圧縮の二つがあるためであり、その絶対値が小さいほど平坦性が向上する。
Residual stress In the present invention, the residual stress of the copper alloy is defined. Residual stress is the stress that exists in the material without external force or thermal gradient. Residual stress occurs as a result of non-uniform deformation due to heat treatment or cold working. If residual stress remains, it becomes difficult to obtain a flat strip or plate. If the flatness is impaired, the dimensional accuracy when pressed is adversely affected. In general, the residual stress is widely distributed inside the rolled material, and in the case of the rolled material, the gradient of the residual stress in the vicinity of the surface layer is often high.
Therefore, in the present invention, the absolute value of the residual stress at a depth of 1 μm from the surface is regulated to 50 MPa or less. The absolute value of the residual stress is preferably 30 MPa or less, more preferably 20 MPa or less. Therefore, the copper alloy according to the present invention has an absolute value of residual stress of, for example, 0 to 50, typically 5 to 50 MPa. The absolute value is used because there are two types of residual stress: tension and compression. The smaller the absolute value, the better the flatness.

本発明において、「表面から1μmの深さにおける残留応力の絶対値」とは以下の方法で測定したものをいうこととする。まず、銅合金板又は条から大きさ幅20mm×長さ200mmの試験板を切り出す。圧延方向を長手方向にする。試験片の片面の表層をエッチング液を用いて徐々に除去しながら、各深さにおける残部試験片の長さ方向(x)及び幅方向(y)の曲率φx、φyを測定する。これを板厚が半分になるまで繰り返し実施する。曲率は試験片の反りを測定することで求める。試験片の反りを円周の一部と考え、この円に相当する半径の逆数を曲率とする。曲率は弦の長さと高さを測定すれば数学的に容易に求められる。その後、エッチング深さaと曲率の関係を図にプロットし、以下の式によって表面からa=1μmのエッチング深さにおける圧延方向(x)の残留応力の絶対値σx(a)を測定する。本方法はTreuting−Read法と呼ばれるよく知られた方法であり、例えば下記の参考文献に記載されている。
参考文献:米谷茂、「残留応力の発生と対策」、株式会社養賢堂、p.54−56、1975年
In the present invention, the “absolute value of residual stress at a depth of 1 μm from the surface” means that measured by the following method. First, a test plate having a size of width 20 mm × length 200 mm is cut out from a copper alloy plate or strip. The rolling direction is the longitudinal direction. While gradually removing the surface layer on one side of the test piece using an etching solution, the curvatures φ x and φ y in the length direction (x) and the width direction (y) of the remaining test piece at each depth are measured. This is repeated until the plate thickness is halved. The curvature is obtained by measuring the warpage of the specimen. The curvature of the test piece is considered as a part of the circumference, and the reciprocal of the radius corresponding to this circle is the curvature. The curvature can be easily obtained mathematically by measuring the length and height of the strings. Thereafter, the relationship between the etching depth a and the curvature is plotted in the figure, and the absolute value σ x (a) of the residual stress in the rolling direction (x) at the etching depth a = 1 μm from the surface is measured by the following formula. This method is a well-known method called the “Truting-Read method”, and is described in, for example, the following references.
References: Shigeru Yoneya, “Generation and Countermeasures for Residual Stress”, Yokendo Co., Ltd., p. 54-56, 1975

Figure 0005225787
Figure 0005225787

熱処理による強度の低下
本発明では更に、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下することを規定する。「500℃の温度で1分間加熱する熱処理」とはプレス加工後の歪取り焼鈍を想定した熱処理条件である。この熱処理は、本発明では、試験対象となる銅合金板又は条を500℃に加熱されたアルゴン雰囲気の炉に1分間放置し、その後、炉から取り出して空冷する方法で行うこととする。本発明において引張強さ(TS)とは、圧延平行方向での引っ張り試験をJIS Z 2241に準拠して行ったときの値である。
Strength reduction by heat treatment In the present invention, it is further specified that the tensile strength is reduced by 40 MPa or more by heat treatment heated at 500 ° C. for 1 minute. “Heat treatment that is heated at a temperature of 500 ° C. for 1 minute” is a heat treatment condition that assumes strain relief annealing after press working. In the present invention, this heat treatment is performed by a method in which a copper alloy plate or strip to be tested is left in an argon atmosphere furnace heated to 500 ° C. for 1 minute, and then removed from the furnace and air-cooled. In the present invention, the tensile strength (TS) is a value obtained when a tensile test in the rolling parallel direction is performed according to JIS Z 2241.

残留応力が50MPa以下にまで低減されている場合、従来の銅合金であれば歪み硬化によって得られた強度の大部分は失われて軟化しており、更に500℃の温度で1分間加熱する熱処理を行っても、それほど強度は低下せず、しかも強度が低下するときの速度(℃/s)が遅い。一方、プレス加工に有利な強度を残した場合、従来の銅合金であれば残留応力もかなりの大きさで残存してしまうため、所望の平坦性が確保できない。   When the residual stress is reduced to 50 MPa or less, the conventional copper alloy loses most of the strength obtained by strain hardening and is softened, and further heat treatment at a temperature of 500 ° C. for 1 minute. However, the strength does not decrease so much, and the rate (° C./s) when the strength decreases is slow. On the other hand, if strength that is advantageous for press working is left, a conventional copper alloy will have a residual stress with a considerable magnitude, so that the desired flatness cannot be ensured.

ところが、本発明に係る銅合金では後述するように、製造条件に工夫を施したことによって、残留応力が50MPa以下と小さい状態にありながら、更に500℃の温度で1分間加熱する熱処理を行うと、40MPa以上も強度が低下するという特性を有する。残留応力除去後にも歪み硬化による強度が残留しているということであり、プレス加工時の剪断性を向上させる。500℃の温度で1分間加熱する熱処理前後の強度の低下は好ましくは50MPa以上であり、より好ましくは55MPa以上であり、更により好ましくは60MPa以上である。但し、強度低下の差を大きくしようとすると、熱処理前の内部の歪も大きくしなければならず、この場合、残留応力も高くなってしまう。そこで、強度の低下は100MPa以下とするのが好ましく、70MPa以下とするのがより好ましい。   However, in the copper alloy according to the present invention, as described later, when the heat treatment is further performed at a temperature of 500 ° C. for 1 minute while the residual stress is in a small state of 50 MPa or less by devising the manufacturing conditions. , 40 MPa or more has the characteristic that the strength decreases. This means that the strength due to strain hardening remains even after the residual stress is removed, which improves the shearability during press working. The decrease in strength before and after the heat treatment heated at a temperature of 500 ° C. for 1 minute is preferably 50 MPa or more, more preferably 55 MPa or more, and even more preferably 60 MPa or more. However, if the difference in strength reduction is to be increased, the internal strain before the heat treatment must also be increased, and in this case, the residual stress also increases. Therefore, the decrease in strength is preferably 100 MPa or less, and more preferably 70 MPa or less.

プレス加工後の歪取り焼鈍における強度の低下が大きい、すなわち歪みが低減される程度が大きいということは、プレス加工後のリードフレームが平坦化しやすいことを意味する。また、本発明に係る銅合金において、歪取り焼鈍における強度の低下が大きいにも拘わらずこれが短時間で達成されるというのは驚くべき結果といえる。理論によって本発明が限定されることを意図しないが、これは以下の理由によると考えられる。
プレス加工後の材料中には、プレス加工による残留応力が発生している。このため、熱処理によって残留応力を除去しない限り、材料には反りが発生してしまう。熱処理による残留応力の除去は、熱処理前の歪の程度が大きければ大きいほど短時間で除去される。なぜならば、熱処理による転位の移動、合体及び消滅は、転位密度が高いほど効率よく行われると考えられるからである。単純に言えば、転位が移動する際に別の転位と遭遇する率が高いからと考えられる。従って、プレス加工に導入される転位の他に、プレス加工前の歪(転位)が存在することによって熱処理による残留応力の除去が効果的になる。本発明においては、残留応力を除去しつつも、強度低下を抑制したことによって、プレス加工前の歪(転位)が従来と比較して大きく、従ってプレス加工後の熱処理による歪み除去が極めて短時間になされたと考えられる。歪みが除去されることによって内部応力は低減し、平坦な素材が得られる。
A large decrease in strength in the strain relief annealing after press working, that is, a large degree of reduction in strain means that the lead frame after press working is easily flattened. In addition, in the copper alloy according to the present invention, it can be said that it is a surprising result that this is achieved in a short time despite the great decrease in strength in the strain relief annealing. Although it is not intended that the present invention be limited by theory, it is believed that this is due to the following reasons.
Residual stress is generated by pressing in the material after pressing. For this reason, unless the residual stress is removed by heat treatment, the material is warped. The residual stress is removed by heat treatment in a shorter time as the degree of strain before heat treatment is larger. This is because the movement, coalescence, and annihilation of dislocations due to heat treatment are considered to be performed more efficiently as the dislocation density is higher. Simply put, it is thought that the rate of encountering another dislocation is high when the dislocation moves. Therefore, in addition to the dislocations introduced into the press work, the presence of distortion (dislocations) before the press work effectively removes the residual stress by heat treatment. In the present invention, since the strength reduction is suppressed while removing the residual stress, the strain (dislocation) before the press working is larger than the conventional one, so that the strain removal by the heat treatment after the press working is extremely short. It is thought that it was made. By removing the strain, the internal stress is reduced and a flat material is obtained.

第二相粒子
本発明に係る銅合金板又は条の一実施形態においては、粒径が10〜1000nmの範囲にある第二相粒子の平均粒径が20〜200nmである。第二相粒子の平均粒径を斯かる範囲に設定することによって、析出硬化による強度向上の効果を十分に享受することができる。また、斯かる粒径範囲の第二相粒子は転移の移動を抑制することができるので、銅合金板又は条を製造する最終段階で行われる歪取り焼鈍における強度低下を抑制する効果がある。但し、粒径が小さい析出物があまり多くなるとプレス加工後に行う歪取り焼鈍での時間短縮効果が低下しやすいので、粒径が10〜1000nmの範囲にある第二相粒子の平均粒径は好ましくは100〜200nmである。
Second Phase Particles In one embodiment of the copper alloy plate or strip according to the present invention, the average particle size of the second phase particles having a particle size in the range of 10 to 1000 nm is 20 to 200 nm. By setting the average particle size of the second phase particles in such a range, the effect of improving the strength by precipitation hardening can be fully enjoyed. In addition, since the second phase particles having such a particle size range can suppress the movement of the transition, there is an effect of suppressing the strength reduction in the strain relief annealing performed at the final stage of manufacturing the copper alloy plate or strip. However, the average particle size of the second phase particles having a particle size in the range of 10 to 1000 nm is preferred because the effect of shortening the time in the strain relief annealing performed after the press working tends to be reduced when the precipitate having a small particle size is excessive. Is 100-200 nm.

本発明において、第二相粒子とは主にシリサイドを指すが、これに限られるものではなく、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言う。平均粒径を算出する際に使用する第二相粒子の粒径の範囲を10〜1000nmに限定したのは、10nm未満の粒子はカウントするのが困難であり、また、1000nm(1μm)を超える粗大な晶出物や析出物は数が少なく、析出による強度向上効果も小さく、また、偶然混入した粗大な外来物までカウントしかねないからである。   In the present invention, the second phase particle mainly refers to silicide, but is not limited to this. Crystallized substances generated in the solidification process of melt casting and precipitates generated in the subsequent cooling process, after hot rolling It refers to precipitates generated in the cooling process, precipitates generated in the cooling process after solution treatment, and precipitates generated in the aging process. The reason why the range of the particle size of the second phase particles used for calculating the average particle size is limited to 10 to 1000 nm is that it is difficult to count particles less than 10 nm, and more than 1000 nm (1 μm). This is because the number of coarse crystallized substances and precipitates is small, the effect of improving the strength by precipitation is small, and even coarse foreign substances mixed by chance may be counted.

第二相粒子の粒径や個数は、材料の圧延方向に対して平行な断面をエッチング後、SEM観察により測定することができる。本発明において第二相粒子の粒径とは、かかる条件でSEM観察したときの、該粒子を取り囲む最小円の直径のことを指す。   The particle size and number of the second phase particles can be measured by SEM observation after etching a cross section parallel to the rolling direction of the material. In the present invention, the particle size of the second phase particles refers to the diameter of the smallest circle surrounding the particles when observed by SEM under such conditions.

引張強さ(TS)
引張強さ(TS)を大きくし過ぎると残留応力を所望のレベルに抑えることが困難となる。この場合、銅合金板又は条の製造工程の最終段階で行われる歪取り焼鈍において残留応力が除去しきれず、平坦な素材が得られにくくなる。一方、引張強さを小さくし過ぎると残留応力は低いものの、打ち抜きによる変形が大きく、寸法精度が劣り、プレス加工性が悪くなる。本発明に係る銅合金板又は条の一実施形態においては、引張強さ(TS)が750〜850MPaであり、典型的には750〜800MPaである。この程度の引張強さ(TS)があれば、プレス加工時に良好な打ち抜き性を示すことができる。
Tensile strength (TS)
If the tensile strength (TS) is increased too much, it becomes difficult to suppress the residual stress to a desired level. In this case, the residual stress cannot be removed in the strain relief annealing performed at the final stage of the manufacturing process of the copper alloy sheet or strip, and it becomes difficult to obtain a flat material. On the other hand, if the tensile strength is too small, the residual stress is low, but the deformation due to punching is large, the dimensional accuracy is inferior, and the press workability is deteriorated. In one embodiment of the copper alloy plate or strip according to the present invention, the tensile strength (TS) is 750 to 850 MPa, typically 750 to 800 MPa. If there is this level of tensile strength (TS), good punchability can be exhibited during press working.

製造方法
次に本発明に係る銅合金板又は条の製造方法に関して説明する。
本発明に係る銅合金板又は条は一部の工程に工夫を加える他は、コルソン系合金板又は条の慣例の製造工程を採用することで製造可能である。
Manufacturing Method Next, a method for manufacturing a copper alloy plate or strip according to the present invention will be described.
The copper alloy plate or strip according to the present invention can be manufactured by adopting a conventional manufacturing process for a Corson alloy plate or strip, except that some steps are devised.

コルソン系銅合金板又は条の慣例的な製造工程を概説する。まず大気溶解炉を用い、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、Ni−Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では溶体化処理で固溶させたNi及びSiの化合物を微細粒子として析出させる。この時効処理で強度と導電率が上昇する。時効後に冷間圧延を行ない、その後、歪取り焼鈍を行なう。上記各工程の合間には適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等が適宜行なわれる。   An outline of a conventional manufacturing process of a Corson-based copper alloy sheet or strip will be outlined. First, using an atmospheric melting furnace, raw materials such as electrolytic copper, Ni, and Si are melted to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, the Ni—Si compound is dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, the Ni and Si compounds dissolved in the solution treatment are precipitated as fine particles. This aging treatment increases strength and conductivity. Cold rolling is performed after aging, and then strain relief annealing is performed. Between the above steps, grinding, polishing, shot blast pickling and the like for removing oxide scale on the surface are appropriately performed.

本発明に係る銅合金板又は条を製造する上では、最終段階で行われる歪取り焼鈍の前段階において、高い強度を作り込みながら残留応力の原因となる操作をできるだけ回避することが重要である。こうすることで、歪取り焼鈍時には僅かの残留応力を除去するだけでよいので歪取り焼鈍後にも所望の強度を残存させることができる。歪取り焼鈍の前段階で所望の強度を確保しながら残留応力の発生を抑えるためには、例えば、歪取り焼鈍前の冷間圧延は1パス毎の圧下率をできるだけ小さくするのがよい。1パス毎の圧下率30%以下とするのが好ましく、より好ましくは25%以下である。圧下率を小さくすることで、発生する残留応力の分布が均一化するという効果もある。ただし、1パス毎の圧下率をあまり小さくすると生産性が悪化するので、発生する残留応力との関係で適宜調節するのがよい。歪取り焼鈍前の冷間圧延全体の圧下率は、時効処理条件との兼ね合いにもよるが、十分な強度を得るには25%以上とするのが好ましく、30%以上とするのがより好ましい。   In producing a copper alloy sheet or strip according to the present invention, it is important to avoid operations that cause residual stress as much as possible while creating high strength in the pre-stage of strain relief annealing performed in the final stage. . By doing so, it is only necessary to remove a slight residual stress at the time of the strain relief annealing, so that a desired strength can be left even after the strain relief annealing. In order to suppress the occurrence of residual stress while ensuring a desired strength in the pre-stage of strain relief annealing, for example, in cold rolling before strain relief annealing, the rolling reduction per pass is preferably as small as possible. The rolling reduction per pass is preferably 30% or less, more preferably 25% or less. By reducing the rolling reduction, there is also an effect that the distribution of the generated residual stress becomes uniform. However, if the rolling reduction per pass is too small, the productivity will deteriorate, so it is preferable to adjust it appropriately in relation to the residual stress generated. Although the reduction ratio of the entire cold rolling before the stress relief annealing depends on the balance with the aging treatment conditions, it is preferably 25% or more, more preferably 30% or more in order to obtain sufficient strength. .

また、最終段階で行われる歪取り焼鈍は昇温速度を遅くし、冷却速度を高くすることが有利である。これによって、表面の残留応力が均一に低減され、残留応力の偏在が防止される。その結果、平坦性も向上する。また、昇温速度が高すぎる場合には、残留応力の低減には有効であるが、材料中の転位が容易に移動して強度の低下が大きくなる。冷却速度が低すぎる場合にも、冷却中の転位の移動が抑制できず、強度が低下してしまう。
よって、材料温度が25℃から400℃まで上昇する際の平均昇温速度を80〜200℃/秒とするのが好ましく、80〜100℃/秒とするのがより好ましい。また、材料温度が500℃から200℃まで冷却する際の平均冷却速度を10℃/秒以上とするのが好ましく、15℃/秒とするのがより好ましい。
このような冷却速度は板厚が0.3mm以下程度であれば空冷で達成できるが、水冷するのがなお良い。ただし、あまり冷却速度を高くしても製品の形状が悪くなるので30℃/秒以下とするのが好ましく、20℃/秒以下とするのがより好ましい。歪取り焼鈍の保持温度は、高すぎる場合は材料の表面が酸化してしまい、エッチング特性やめっき特性に悪影響を及ぼす一方で、低すぎる場合は残留応力が除去できない。そこで、保持温度は好ましくは400〜600℃、より好ましくは450〜550℃である。保持温度における保持時間は、あまり短いと残留応力を除去できない一方で、あまり長くなると強度の低下が大きくなることから、好ましくは5〜30秒、より好ましくは5〜20秒である。
Further, in the strain relief annealing performed in the final stage, it is advantageous to slow the temperature increase rate and increase the cooling rate. Thereby, the residual stress on the surface is uniformly reduced, and uneven distribution of the residual stress is prevented. As a result, flatness is also improved. In addition, when the rate of temperature increase is too high, it is effective for reducing the residual stress, but dislocations in the material easily move and the strength decreases greatly. Even when the cooling rate is too low, the movement of dislocations during cooling cannot be suppressed, and the strength decreases.
Therefore, the average rate of temperature rise when the material temperature rises from 25 ° C. to 400 ° C. is preferably 80 to 200 ° C./second, and more preferably 80 to 100 ° C./second. Further, the average cooling rate when the material temperature is cooled from 500 ° C. to 200 ° C. is preferably 10 ° C./second or more, and more preferably 15 ° C./second.
Such a cooling rate can be achieved by air cooling if the plate thickness is about 0.3 mm or less, but water cooling is still better. However, even if the cooling rate is increased too much, the shape of the product is deteriorated, so that it is preferably 30 ° C./second or less, and more preferably 20 ° C./second or less. If the holding temperature of the strain relief annealing is too high, the surface of the material is oxidized, which adversely affects the etching characteristics and plating characteristics, whereas if it is too low, the residual stress cannot be removed. Therefore, the holding temperature is preferably 400 to 600 ° C, more preferably 450 to 550 ° C. The holding time at the holding temperature is preferably 5 to 30 seconds, more preferably 5 to 20 seconds because the residual stress cannot be removed if the holding time is too short, but the strength decreases greatly if it is too long.

本発明に係る銅合金板又は条においては、第二相粒子の平均粒径も規定しているが、第二相粒子の微細化手段については当業者に知られた各種の方法を採用すれば達成可能である。以下に例示的な制御方法を記載する。   In the copper alloy plate or strip according to the present invention, the average particle size of the second phase particles is also defined, but various means known to those skilled in the art can be adopted as means for refining the second phase particles. Achievable. An exemplary control method is described below.

第二相粒子の粗大化を防止するためには熱間圧延と溶体化処理の条件を制御することが重要である。鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が不可避的に生成する。そのため、その後の工程においてこれらの第二相粒子を母相中に固溶する必要がある。   In order to prevent the coarsening of the second phase particles, it is important to control the conditions of hot rolling and solution treatment. Coarse crystals are inevitably produced during the solidification process during casting, and coarse precipitates are inevitably produced during the cooling process. Therefore, in the subsequent process, it is necessary to dissolve these second phase particles in the matrix phase.

熱間圧延は850℃以上で1時間以上保持後に行うのがよい。固溶しにくいCoやCrを添加した場合にはより高い温度を設定すればよいが、1050℃を超えると材料が溶解する可能性がある。熱間圧延終了時の温度は600℃以上の高い温度で終了してもよいが、後の工程において溶体化が困難となる場合は、より低い温度で終了する方が有効である。熱間圧延終了後の冷却過程では冷却速度をできるだけ速くし、第二相粒子の析出を抑制するのがよい。冷却を速くする方法としては水冷が最も効果的である。   Hot rolling is preferably performed after holding at 850 ° C. or higher for 1 hour or longer. When Co or Cr, which is hard to dissolve, is added, a higher temperature may be set. However, if it exceeds 1050 ° C., the material may be dissolved. The temperature at the end of hot rolling may end at a high temperature of 600 ° C. or higher. However, when it is difficult to form a solution in a later step, it is more effective to end at a lower temperature. In the cooling process after completion of hot rolling, it is preferable to suppress the precipitation of the second phase particles by increasing the cooling rate as much as possible. Water cooling is the most effective method for speeding up the cooling.

溶体化処理においても同様に、溶体化処理温度を850℃〜1050℃にすることで第二相粒子を固溶することができる。溶体化処理後の冷却も速くするのがよい。   Similarly, in the solution treatment, the second phase particles can be dissolved by setting the solution treatment temperature to 850 ° C. to 1050 ° C. Cooling after the solution treatment should be fast.

時効処理の条件は析出物の微細化に有用であるとして慣用的に行われている条件で構わないが、析出物が粗大化しないように温度及び時間を設定することに留意する。時効処理の条件の一例を挙げると、375〜625℃の温度範囲で0.5〜50時間であり、より好ましくは400〜600℃の温度範囲で1〜40時間である。なお、時効処理後の冷却速度は析出物の大小にほとんど影響を与えない。   The conditions for the aging treatment may be those conventionally used as useful for refining the precipitates, but note that the temperature and time are set so that the precipitates do not become coarse. If an example of the conditions of an aging treatment is given, it will be 0.5 to 50 hours in the temperature range of 375-625 degreeC, More preferably, it is 1 to 40 hours in the temperature range of 400-600 degreeC. The cooling rate after the aging treatment hardly affects the size of the precipitates.

本発明に係る銅合金板又は条はリードフレームの他にも、高い強度及び高い電気伝導性(又は熱伝導性)を両立させることが要求されるコネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品に使用することができる。   In addition to the lead frame, the copper alloy plate or strip according to the present invention requires connectors having high strength and high electrical conductivity (or thermal conductivity), pins, terminals, relays, switches, secondary It can be used for electronic equipment parts such as battery foil materials.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

例1
Ni:2.5質量%、Si:0.55質量%を含有し、残部Cuおよび不可避的不純物から構成される銅合金を、高周波溶解炉において1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で1時間加熱後、板厚10mmまで熱間圧延し(熱間圧延終了時の材料温度は500℃)、速やかに水中冷却を行った。表面のスケール除去のため厚さ8mmまで面削を施した後、中間の冷間圧延を行った。次に溶体化処理を800℃×1時間の条件で実施した後、室温まで水中冷却した。次に表1に示す各条件でアルゴン雰囲気中において時効処理を施し、厚さ0.15mmまで冷間圧延した。このとき、1パスの圧下率が残留応力へ与える影響を調査するため、試験板によってパス毎の最大圧下率を変化させ、それぞれの総圧下率は30%以上とした(表1)。
最後に歪取り焼鈍を実施した。アルゴン雰囲気中で対流型熱処理炉を用いて実施した。この際、試験板温度が25℃から400℃まで上昇する際の平均昇温速度、保持温度、保持温度での保持時間、試験板温度が500から200℃まで下降する際の平均冷却速度を試験板によって変化させた(表1)。
Example 1
A copper alloy containing 2.5% by mass of Ni and 0.55% by mass of Si and composed of the balance Cu and inevitable impurities is melted at 1300 ° C. in a high-frequency melting furnace to form a 30 mm thick ingot. Casted. Next, the ingot was heated at 1000 ° C. for 1 hour, and then hot-rolled to a plate thickness of 10 mm (the material temperature at the end of hot rolling was 500 ° C.) and rapidly cooled in water. After surface chamfering to a thickness of 8 mm for removing scale on the surface, intermediate cold rolling was performed. Next, solution treatment was performed under conditions of 800 ° C. × 1 hour, and then cooled to room temperature in water. Next, an aging treatment was performed in an argon atmosphere under each condition shown in Table 1, and cold rolled to a thickness of 0.15 mm. At this time, in order to investigate the effect of the rolling reduction of one pass on the residual stress, the maximum rolling reduction for each pass was changed by the test plate, and the total rolling reduction was set to 30% or more (Table 1).
Finally, strain relief annealing was performed. It implemented using the convection type heat processing furnace in argon atmosphere. At this time, the average heating rate when the test plate temperature is raised from 25 ° C. to 400 ° C., the holding temperature, the holding time at the holding temperature, and the average cooling rate when the test plate temperature is lowered from 500 to 200 ° C. are tested. Varies with the plate (Table 1).

特性評価は以下の方法で行った。
強度については圧延平行方向での引っ張り試験をJIS Z 2241に準拠して行い、引張り強さ(TS)及び0.2%耐力を測定した。
導電率(%IACS)についてはダブルブリッジによる体積抵抗率測定により求めた。
第二相粒子の平均粒径は、圧延方向に平行な断面に対して、透過型電子顕微鏡(HITACHI−H−9000)により10視野観察して粒径が10〜1000nmの範囲にある第二相粒子について、その数及び粒径を求めて算出した。
残留応力は、先述した方法により求めた。
500℃の温度で1分間加熱する熱処理前後の引張強さの低下は、先述した方法により求めた。
The characteristic evaluation was performed by the following method.
Regarding the strength, a tensile test in the rolling parallel direction was performed according to JIS Z 2241, and the tensile strength (TS) and 0.2% proof stress were measured.
The electrical conductivity (% IACS) was determined by volume resistivity measurement using a double bridge.
The average particle size of the second phase particles is a second phase in which the particle size is in the range of 10 to 1000 nm by observing 10 fields of view with a transmission electron microscope (HITACHI-H-9000) on a cross section parallel to the rolling direction. The number and particle size of the particles were calculated.
The residual stress was determined by the method described above.
The decrease in the tensile strength before and after the heat treatment heated at 500 ° C. for 1 minute was determined by the method described above.

Figure 0005225787
Figure 0005225787

Figure 0005225787
Figure 0005225787

No.1、2、3、7及び8は、冷間圧延及び歪取り焼鈍の条件が共に適切であったため、残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理前後の引張強さの差が40MPa以上となった。
No.4は、歪取り焼鈍を過剰に行い、強度が好ましくないレベルまで低下してしまった。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.5は、歪取り焼鈍前に残留応力が十分に制御できていなかった。歪取り焼鈍によって使用可能なレベルまで残留応力を低減したところ、強度が好ましくないレベルまで低下した。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.6は、No.5と同様に歪取り焼鈍前に残留応力が十分に制御できていなかった。望ましい強度が残るような条件で歪取り焼鈍を行った結果、残留応力の低減が不十分となった。
No.9は、歪取り焼鈍時の昇温速度が高すぎたため、No.10は焼鈍時の冷却速度が低すぎたため、No.11は歪取り焼鈍時の保持時間が長すぎたため、それぞれ強度が好ましくないレベルまで低下した。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.12は保持時間が短すぎたため、歪取り焼鈍後の残留応力が高くなってしまった。
No.13は保持温度が高すぎたため、強度が好ましくないレベルまで低下してしまった。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.14は保持温度が低すぎたため、歪取り焼鈍後の残留応力が高くなってしまった。
No. 1, 2, 3, 7, and 8, since the conditions of cold rolling and stress relief annealing were both appropriate, the absolute value of the residual stress was 50 MPa or less, and heat treatment was performed at a temperature of 500 ° C. for 1 minute. The difference between the tensile strengths before and after became 40 MPa or more.
No. In No. 4, strain relief annealing was performed excessively, and the strength was lowered to an unfavorable level. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. In No. 5, the residual stress was not sufficiently controlled before the strain relief annealing. When the residual stress was reduced to a usable level by strain relief annealing, the strength decreased to an undesirable level. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. 6 is No.6. Similar to 5, residual stress was not sufficiently controlled before strain relief annealing. As a result of strain relief annealing under conditions where desirable strength remains, the residual stress was not sufficiently reduced.
No. No. 9 had a temperature increase rate during strain relief annealing that was too high. No. 10 had a cooling rate during annealing that was too low. Since No. 11 was too long for the strain relief annealing, the strength was lowered to an unfavorable level. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. Since the holding time of No. 12 was too short, the residual stress after stress relief annealing became high.
No. Since the holding temperature of No. 13 was too high, the strength decreased to an unfavorable level. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. Since the holding temperature of No. 14 was too low, the residual stress after strain relief annealing became high.

例2
合金組成を表3のように変えた他は、No.1と同様の製造条件で各試験板を製造し、同様に特性を調べた。結果を表4に示す。種々の添加元素を加えても本発明の効果が得られることが分かる。
Example 2
Except for changing the alloy composition as shown in Table 3, no. Each test plate was manufactured under the same manufacturing conditions as in No. 1, and the characteristics were examined in the same manner. The results are shown in Table 4. It can be seen that the effects of the present invention can be obtained even when various additive elements are added.

Figure 0005225787
Figure 0005225787

Figure 0005225787
Figure 0005225787

例3
更に、合金組成を表5のように変えて試験を行った。各試験板の製造条件は、表6に記載した条件以外はNo.1と同様とした。特性を表7に示す。結果を表7に示す。例2と同様に、本発明の効果が得られた。
Example 3
Further, the test was conducted by changing the alloy composition as shown in Table 5. The manufacturing conditions of each test plate were No. except for the conditions described in Table 6. Same as 1. The characteristics are shown in Table 7. The results are shown in Table 7. As in Example 2, the effect of the present invention was obtained.

Figure 0005225787
Figure 0005225787

Figure 0005225787
Figure 0005225787

Figure 0005225787
Figure 0005225787

例4(比較)
更に、合金組成を表8のように変えて試験を行った。合金組成に関して、No.36はNo.25に、No.37はNo.26に、No.38はNo.27に、No.39はNo.31に、No.40及びNo.41はNo.34に、No.42及びNo.43はNo.35にそれぞれ等しい。各試験板の製造条件は、表9に記載した条件以外はNo.1と同様とした。特性を表10に示す。
Example 4 (comparison)
Further, the test was performed by changing the alloy composition as shown in Table 8. Regarding the alloy composition, no. No. 36 is No. 36. 25, no. 37 is No. 37. 26, no. 38 is No. 38. 27, no. 39 is No. 39. No. 31, no. 40 and no. 41 is No. 41. 34, no. 42 and no. 43 is No. 43. Each is equal to 35. The manufacturing conditions of each test plate are No. except for the conditions described in Table 9. Same as 1. The characteristics are shown in Table 10.

Figure 0005225787
Figure 0005225787

Figure 0005225787
Figure 0005225787

Figure 0005225787
Figure 0005225787

No.36及びNo.37は、歪取り焼鈍前に残留応力が十分に制御できていなかった。そのため、歪取り焼鈍後にも残留応力がかなり残存してしまった。また、No.36は、歪取り焼鈍によって強度が低下しすぎた。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.38は、歪取り焼鈍時の昇温速度が高すぎたため、No.39は歪取り焼鈍時の冷却速度が低すぎたため、No.40は歪取り焼鈍時の保持時間が長すぎたため、それぞれ強度が低下しすぎた。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.41は保持時間が短すぎたため、歪取り焼鈍後の残留応力が高くなってしまった。
No.42は保持温度が高すぎたため、歪取り焼鈍によって強度が低下しすぎた。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.43は保持温度が低すぎたため、歪取り焼鈍後の残留応力が高くなってしまった。
No. 36 and no. In No. 37, the residual stress was not sufficiently controlled before the strain relief annealing. Therefore, a considerable residual stress remained even after the strain relief annealing. No. No. 36 was too weak in strength due to strain relief annealing. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. No. 38 has a temperature rise rate during strain relief annealing that is too high. No. 39 had a cooling rate that was too low during strain relief annealing. Since the holding time at the time of strain relief annealing was too long for 40, the strength decreased too much. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. Since the holding time of No. 41 was too short, the residual stress after strain relief annealing became high.
No. Since the holding temperature of No. 42 was too high, the strength was reduced too much by strain relief annealing. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. Since the holding temperature of No. 43 was too low, the residual stress after strain relief annealing became high.

Claims (6)

Ni:0.4〜6.0質量%、Si:0.1〜2.0質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金板又は条であって、表面から1μmの深さにおける残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下する銅合金板又は条。   A copper alloy plate or strip for an electronic material containing Ni: 0.4 to 6.0% by mass, Si: 0.1 to 2.0% by mass, the balance being Cu and inevitable impurities, To 1 μm depth of the residual stress is 50 MPa or less, and a copper alloy plate or strip whose tensile strength is reduced by 40 MPa or more by heat treatment at a temperature of 500 ° C. for 1 minute. 残留応力の絶対値が0〜50MPaであり、且つ、500℃の温度で1分間加熱する熱処理前後の引張強さの差が40〜100MPaである請求項1記載の銅合金板又は条。   2. The copper alloy sheet or strip according to claim 1, wherein the absolute value of the residual stress is 0 to 50 MPa, and the difference in tensile strength between before and after the heat treatment is heated at a temperature of 500 ° C. for 1 minute is 40 to 100 MPa. 粒径が10〜1000nmの範囲にある第二相粒子の平均粒径が20〜200nmである請求項1又は2記載の銅合金板又は条。   The copper alloy sheet or strip according to claim 1 or 2, wherein the average particle size of the second phase particles having a particle size in the range of 10 to 1000 nm is 20 to 200 nm. 引張強さ(TS)が750〜850MPaである請求項1〜3何れか一項記載の銅合金板又は条。   The copper alloy sheet or strip according to any one of claims 1 to 3, wherein the tensile strength (TS) is 750 to 850 MPa. 更に、Cr、Co、Mg、Mn、Fe、Sn、Zn、Al及びPから選択される1種又は2種以上を合計で2.0質量%まで含有する請求項1〜4何れか一項記載の銅合金板又は条。   Furthermore, 1 type or 2 types or more selected from Cr, Co, Mg, Mn, Fe, Sn, Zn, Al, and P are contained to 2.0 mass% in total. Copper alloy plate or strip. 電子材料がリードフレームである請求項1〜5何れか一項記載の銅合金板又は条。   The copper alloy plate or strip according to any one of claims 1 to 5, wherein the electronic material is a lead frame.
JP2008214053A 2008-05-29 2008-08-22 Cu-Ni-Si alloy plate or strip for electronic materials Active JP5225787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214053A JP5225787B2 (en) 2008-05-29 2008-08-22 Cu-Ni-Si alloy plate or strip for electronic materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008141278 2008-05-29
JP2008141278 2008-05-29
JP2008214053A JP5225787B2 (en) 2008-05-29 2008-08-22 Cu-Ni-Si alloy plate or strip for electronic materials

Publications (2)

Publication Number Publication Date
JP2010007174A JP2010007174A (en) 2010-01-14
JP5225787B2 true JP5225787B2 (en) 2013-07-03

Family

ID=41587982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214053A Active JP5225787B2 (en) 2008-05-29 2008-08-22 Cu-Ni-Si alloy plate or strip for electronic materials

Country Status (1)

Country Link
JP (1) JP5225787B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312920B2 (en) * 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 Copper alloy plate or strip for electronic materials
KR20120130342A (en) 2010-04-02 2012-11-30 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy for electronic material
US20130333812A1 (en) * 2010-12-13 2013-12-19 Tohoku Techno Arch Co., Ltd. Copper alloy and process for producing copper alloy
US9476474B2 (en) 2010-12-13 2016-10-25 Nippon Seisen Co., Ltd. Copper alloy wire and copper alloy spring
JP5684022B2 (en) * 2011-03-28 2015-03-11 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in stress relaxation resistance, fatigue resistance after bending and spring characteristics, and method for producing the same
JP6696720B2 (en) * 2013-07-11 2020-05-20 古河電気工業株式会社 Copper alloy sheet and method for producing the same
JP6166414B1 (en) * 2016-03-30 2017-07-19 株式会社神戸製鋼所 Copper or copper alloy strip for vapor chamber
WO2017168803A1 (en) 2016-03-31 2017-10-05 Dowaメタルテック株式会社 Cu-ni-si copper alloy sheet and manufacturing method
JP6355672B2 (en) * 2016-03-31 2018-07-11 Jx金属株式会社 Cu-Ni-Si based copper alloy and method for producing the same
JP6887399B2 (en) * 2018-03-30 2021-06-16 Jx金属株式会社 Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP7430502B2 (en) 2019-09-19 2024-02-13 Jx金属株式会社 Copper alloy wire and electronic equipment parts
CN114381622A (en) * 2021-12-31 2022-04-22 西安斯瑞先进铜合金科技有限公司 Preparation method of vacuum induction melting high-strength high-elasticity wear-resistant CuNiSn alloy material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225733B2 (en) * 2001-03-27 2009-02-18 日鉱金属株式会社 Terminal, connector, lead frame material plate
JP4255330B2 (en) * 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics
JP4423054B2 (en) * 2004-01-30 2010-03-03 日鉱金属株式会社 Material for electronic parts with excellent press punchability
JP4494258B2 (en) * 2005-03-11 2010-06-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
JP4247922B2 (en) * 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same

Also Published As

Publication number Publication date
JP2010007174A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP4440313B2 (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
JP4494258B2 (en) Copper alloy and manufacturing method thereof
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2008038593A1 (en) Cu-Ni-Si ALLOY
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5619389B2 (en) Copper alloy material
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP2018162510A (en) Copper alloy for electronic material, and electronic component
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
JP4175920B2 (en) High strength copper alloy
JP2022042515A (en) Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5225787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250