JP4824124B1 - Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material - Google Patents

Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material Download PDF

Info

Publication number
JP4824124B1
JP4824124B1 JP2010289514A JP2010289514A JP4824124B1 JP 4824124 B1 JP4824124 B1 JP 4824124B1 JP 2010289514 A JP2010289514 A JP 2010289514A JP 2010289514 A JP2010289514 A JP 2010289514A JP 4824124 B1 JP4824124 B1 JP 4824124B1
Authority
JP
Japan
Prior art keywords
copper alloy
sulfide
wrought material
mass
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010289514A
Other languages
Japanese (ja)
Other versions
JP2012140645A (en
Inventor
秀雄 金子
高橋  功
千綱 鎌田
義弘 山本
健作 小田
和夫 倉橋
和宏 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010289514A priority Critical patent/JP4824124B1/en
Application granted granted Critical
Publication of JP4824124B1 publication Critical patent/JP4824124B1/en
Publication of JP2012140645A publication Critical patent/JP2012140645A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】被削性および展伸性に優れ、環境負荷を軽減しつつ、高強度ないしは高導電性を必要とする用途に最適な銅合金展伸材を提供する。
【解決手段】Niを1.5〜7.0mass%、Siを0.3〜2.3mass%、Sを0.02〜1.0mass%含有し、残部がCuおよび不可避的不純物からなる銅合金展伸材であって、展伸方向に平行した断面の硫化物の面積率が40%以上マトリクスの結晶内に存在し、展伸方向に平行した断面のアスペクト比が1:1〜1:100の硫化物がマトリクスに分散しており、かつ、引張強さが500MPa以上、導電率が25%IACS以上である銅合金展伸材。
【選択図】なし
The present invention provides a copper alloy wrought material that is excellent in machinability and stretchability, and that is optimal for applications that require high strength or high conductivity while reducing environmental burden.
A copper alloy containing 1.5 to 7.0 mass% of Ni, 0.3 to 2.3 mass% of Si and 0.02 to 1.0 mass% of S, with the balance being Cu and inevitable impurities. It is a wrought material, and the area ratio of the sulfide in the cross section parallel to the extension direction is 40% or more in the matrix crystal, and the aspect ratio of the cross section parallel to the extension direction is 1: 1 to 1: 100. A copper alloy wrought material in which the sulfide is dispersed in a matrix, the tensile strength is 500 MPa or more, and the electrical conductivity is 25% IACS or more.
[Selection figure] None

Description

本発明は、電子機器、精密機械、自動車等に使用される金属部品、特に切削加工により製造される銅合金部品に関し、さらにこの銅合金部品に適する銅合金展伸材およびその製造方法に関するものである。   The present invention relates to metal parts used in electronic equipment, precision machines, automobiles, etc., particularly copper alloy parts produced by cutting, and further relates to a copper alloy wrought material suitable for the copper alloy parts and a method for producing the same. is there.

金属部品を製造する方法として旋削、穿孔などの切削加工がある。切削加工は、特に複雑な形状を持つ部品や高い寸法精度を要する部品の製造には有効な加工方法である。切削加工を行う場合、被削性がしばしば問題となる。被削性には切削屑処理、工具寿命、切削抵抗、切削面粗さなどの項目があり、これらが向上するように材料に改良が施されている。   Cutting methods such as turning and drilling are methods for producing metal parts. Cutting is an effective processing method particularly for manufacturing parts having complicated shapes and parts requiring high dimensional accuracy. When cutting, machinability is often a problem. The machinability includes items such as cutting waste treatment, tool life, cutting resistance, and cutting surface roughness, and the material has been improved to improve them.

銅合金は、強度が高い、導電性・熱伝導性に優れる、耐食性に優れる、色調に優れるなどの理由から多くの金属部品に使用されている。切削による加工も多く実施されており、例えば水道の蛇口、バルブ、歯車、装飾品などの用途があり、黄銅(Cu−Zn系)、青銅(Cu−Sn系)、アルミ青銅(Cu−Al系)、洋白に被削性を向上させるために鉛を添加した合金が使用されている。これらはいずれも一般に高強度または高導電性を必要としない用途である。   Copper alloys are used in many metal parts for reasons such as high strength, excellent electrical conductivity and thermal conductivity, excellent corrosion resistance, and excellent color tone. There are also many cutting processes, such as taps, valves, gears, ornaments, etc., brass (Cu-Zn), bronze (Cu-Sn), aluminum bronze (Cu-Al). ), An alloy added with lead to improve machinability is used. These are generally applications that do not require high strength or high conductivity.

高強度または高導電性を必要とする用途、例えば同軸コネクタのピン材等の用途には、りん青銅やベリリウム銅に鉛を添加した快削りん青銅(特許文献1参照)、快削ベリリウム銅(特許文献2参照)が使用されている。これらはNC旋盤等の精密な工作機械で切削加工され、電子機器用途等の信頼性の高い部品に使用されている。   For applications that require high strength or high conductivity, such as pin materials for coaxial connectors, for example, free-cutting phosphor bronze (see Patent Document 1) in which lead is added to phosphor bronze or beryllium copper, free-cutting beryllium copper ( Patent Document 2) is used. These are cut by a precision machine tool such as an NC lathe and used for highly reliable parts such as electronic devices.

このように銅合金の被削性を向上させるために、一般的には鉛が添加されている。これは、鉛が銅合金に固溶しないため材料内に微細に分散し、切削加工時に切削屑がその部分で分断されやすくなることによる。しかし、鉛は人体や環境に影響を及ぼすとされていることから使用が制限されつつあり、鉛を含有せずに被削性を向上させた材料の要求が高まっている。鉛を含有する銅合金の代替材料として、黄銅や青銅にビスマスを添加した銅合金が知られている(特許文献3,4参照)。また黄銅では、亜鉛濃度を高くして銅−亜鉛系化合物であるβ相やγ相を形成させるか、あるいはケイ素を添加して銅−ケイ素系化合物であるκ相を形成させるかして、これらの化合物を切削屑分断の起点として作用させることで被削性を向上させることも知られている(特許文献5,6)。さらに、青銅において硫黄を添加して硫化物を形成させて切削屑分断の起点として作用させる方法があり(特許文献7)、硫化物を切削屑分断の起点として作用させるものでは、他に銅−ジルコニウム系、銅−チタン系の時効析出型合金に関する方法が知られている(特許文献8)。
しかし、特許文献1、2に記載の技術では、前述のとおり被削性を向上させるための添加元素として鉛を用いており、環境への負荷が懸念される。特に特許文献2に記載の技術では、快削ベリリウム銅の被削性を向上させるための添加元素として鉛に代替するものはなく、またベリリウムそのものも環境に影響を与える元素の一つとして挙げられており、鉛を添加した銅合金の代替材のみならずベリリウム銅の代替材を望む声も高まっている。
Thus, in order to improve the machinability of a copper alloy, lead is generally added. This is because lead does not dissolve in the copper alloy, so it is finely dispersed in the material, and the cutting waste is easily divided at that portion during cutting. However, the use of lead is being restricted because it is believed to affect the human body and the environment, and there is an increasing demand for materials that have improved machinability without containing lead. As an alternative material for a copper alloy containing lead, a copper alloy obtained by adding bismuth to brass or bronze is known (see Patent Documents 3 and 4). In brass, the zinc concentration is increased to form a β-phase or γ-phase that is a copper-zinc compound, or silicon is added to form a κ-phase that is a copper-silicon compound. It is also known that machinability is improved by causing the above compound to act as a starting point for cutting waste cutting (Patent Documents 5 and 6). Furthermore, there is a method in which sulfur is added to bronze to form a sulfide to act as a starting point for cutting waste cutting (Patent Document 7). A method related to a zirconium-based and copper-titanium-based aging precipitation type alloy is known (Patent Document 8).
However, in the techniques described in Patent Documents 1 and 2, as described above, lead is used as an additive element for improving the machinability, and there is a concern about the burden on the environment. In particular, in the technique described in Patent Document 2, there is no substitute for lead as an additive element for improving the machinability of free-cutting beryllium copper, and beryllium itself is listed as one of the elements affecting the environment. In addition, there is a growing demand for a beryllium copper substitute as well as a lead-added copper alloy substitute.

また、特許文献3、4に記載の技術では、ビスマスを添加すると被削性は改善されるが、加工中に割れやすくなり、特に熱間加工が困難となる。すなわち、熱間加工性の改善を図ることが改めて必要となる。特許文献5、6に記載されている合金で形成される化合物は黄銅系特有のものであり、他の合金系に適用することは事実上困難である。特許文献7は鋳物に関する技術であり、鋳物を直接切削する場合には好適であるが、棒材や板材などの展伸材(塑性加工された材料)を得るための技術としての開示はない。特許文献8に記載の技術で得られる材料は一般に強度が低く、例えば同軸コネクタのピン材などの高強度を必要とする用途には不十分であり、他の技術を適用する必要がある。   In addition, in the techniques described in Patent Documents 3 and 4, machinability is improved when bismuth is added, but cracking is likely to occur during processing, and particularly hot processing becomes difficult. That is, it is necessary to improve the hot workability. The compounds formed by the alloys described in Patent Documents 5 and 6 are unique to the brass system, and are practically difficult to apply to other alloy systems. Patent Document 7 is a technique related to a casting, and is suitable for direct cutting of a casting, but there is no disclosure as a technique for obtaining a stretched material (plastically processed material) such as a bar or a plate. The material obtained by the technique described in Patent Document 8 is generally low in strength, and is insufficient for applications that require high strength, such as a pin material of a coaxial connector, and other techniques need to be applied.

特開昭50−066423号公報Japanese Patent Laid-Open No. 50-066423 特開昭52−117244号公報JP 52-117244 A 特開2001−059123号公報JP 2001-059123 A 特開2000−336442号公報JP 2000-336442 A 特開2000−319737号公報JP 2000-319737 A 特開2004−183056号公報JP 2004-183056 A 特開2006−152373号公報JP 2006-152373 A 特開2001−240923号公報JP 2001-240923 A 特開2008−75172号公報JP 2008-75172 A 特開平6−212374号公報JP-A-6-212374 特開平7−90520号公報JP-A-7-90520

本発明者らは、上記高強度または高導電性を必要とする用途に対し、銅にニッケルとケイ素を添加した合金系(Cu−Ni−Si系:いわゆるコルソン合金)を用いることを検討した。しかし、Cu−Ni−Si系銅合金材は、展伸加工性(熱間加工性)が悪く、展伸性を良好にするための大幅な改質が求められる。特に、Cu−Ni−Si系合金において被削性を高める検討は十分になされておらず、被削性と展伸性の両方に優れた銅合金材料とするためには、さらなる検討が必要である。
上記特許文献1〜8に開示されたものはコルソン合金(Cu−Ni−Si系銅合金)ではなく、そもそも参考にならない。特開2008−75172号公報(前記特許文献9)には、他の合金元素を極力添加せず、しかも改善された導電率、強度、曲げ性及び応力緩和特性を兼備する電子材料用のCu−Ni−Si系合金を提供することが開示されている。しかし展伸性と被削性との両立に関する開示はなく、硫黄濃度の調整についても触れられていない。特開平6−212374号公報(前記特許文献10)、特開平7−90520号公報(前記特許文献11)には展伸性を考慮したコルソン合金が開示されているが、いずれもそのために硫黄濃度を20ppm(0.002%)以下に規制している。
The present inventors examined using an alloy system in which nickel and silicon are added to copper (Cu—Ni—Si system: so-called Corson alloy) for the use requiring the high strength or high conductivity. However, the Cu—Ni—Si based copper alloy material has poor stretch workability (hot workability) and is required to be greatly modified to improve the stretchability. In particular, studies on increasing machinability have not been made sufficiently in Cu-Ni-Si alloys, and further studies are necessary to obtain a copper alloy material excellent in both machinability and extensibility. is there.
What is disclosed in the above Patent Documents 1 to 8 is not a Corson alloy (Cu—Ni—Si based copper alloy) and is not helpful in the first place. Japanese Patent Laid-Open No. 2008-75172 (the above-mentioned Patent Document 9) discloses Cu- for an electronic material that does not contain other alloy elements as much as possible and has improved conductivity, strength, bendability and stress relaxation characteristics. It is disclosed to provide a Ni-Si based alloy. However, there is no disclosure regarding compatibility between extensibility and machinability, and there is no mention of adjusting the sulfur concentration. Japanese Laid-Open Patent Publication No. 6-212374 (Patent Document 10) and Japanese Laid-Open Patent Publication No. 7-90520 (Patent Document 11) disclose Corson alloys in consideration of the extensibility. Is regulated to 20 ppm (0.002%) or less.

本発明はこのような問題に鑑みなされたもので、被削性および展伸性に優れ、環境負荷を軽減しつつ、高強度ないしは高導電性を必要とする用途に最適な銅合金展伸材を提供することを課題とするものである。さらに本発明は前記銅合金展伸材を切削加工して得られる銅合金部品及び上記展伸材の製造方法を提供することを課題とするものである。   The present invention has been made in view of such problems, and is an excellent copper alloy wrought material that is excellent in machinability and stretchability, and is suitable for applications that require high strength or high conductivity while reducing environmental burden. It is a problem to provide. Furthermore, this invention makes it a subject to provide the manufacturing method of the copper alloy component obtained by cutting the said copper alloy wrought material, and the said wrought material.

本発明者らは鋭意検討した結果、特定の組成の時効析出型銅合金においてマトリクスに硫化物を形成し、且つこの硫化物の40%以上が展伸方向に平行した断面のマトリクスの結晶粒内に存在させ、展伸方向に平行した断面のアスペクト比が1:1〜1:100の硫化物をマトリクスに分散させることによって、展伸性(熱間・冷間の加工性)および被削性に優れ、さらに強度および導電性に優れる銅合金展伸材が得られることを見出した。また上記の硫化物を得るための組成および製造方法を見出し、さらに熱間加工性、冷間加工性にも優れる組成、組織、製造方法を見出した。本発明はこの知見に基づきなされるに至ったものである。   As a result of intensive studies, the present inventors have found that a sulfide is formed in the matrix in an aging precipitation type copper alloy having a specific composition, and more than 40% of the sulfide is contained in the crystal grains of the matrix having a cross section parallel to the extending direction. By dispersing sulfides having an aspect ratio of 1: 1 to 1: 100 in a cross-section parallel to the extension direction in a matrix, the extensibility (hot / cold workability) and machinability It has been found that a copper alloy wrought material having excellent strength and conductivity can be obtained. In addition, the present inventors have found a composition and a production method for obtaining the above sulfide, and further found a composition, a structure, and a production method that are excellent in hot workability and cold workability. The present invention has been made based on this finding.

本発明の課題は、以下の手段によって解決することができる。
(1)Niを1.5〜7.0mass%、Siを0.3〜2.3mass%、Sを0.02〜1.0mass%含有し、残部がCuおよび不可避的不純物からなる銅合金展伸材であって、
展伸方向に平行断面において硫化物面積率40%以上マトリクスの結晶内に存在し、前記硫化物は展伸方向に平行断面においてアスペクト比が1:1〜1:100マトリクスに分散しており、かつ
引張強さが500MPa以上、導電率が25%IACS以上であることを特徴とする銅合金展伸材。
(2)さらに、Sn、Mn、Co、Zr、Ti、Fe、Cr、Al、PおよびZnからなる群から選ばれる少なくとも1種を総量で0.05〜2.0mass%含有することを特徴とする(1)に記載の銅合金展伸材。
(3)前記硫化物は、Cu−S、Mn−S、Zr−S、Ti−S、Fe−S、Al−S、Cr−SおよびZn−S系のいずれかの硫化物から選ばれる1種類以上である、(1)または(2)に記載の銅合金展伸材。
(4)(1)〜(3)のいずれか1項に記載の銅合金展伸材を切削加工して形成された銅合金部品。
(5)電子機器部品、構造部品、又は要素部品用途に用いられる、(4)に記載の銅合金部品。
(6)(1)〜(3)のいずれか1項に記載の銅合金展伸材を製造する方法であって、
Niを1.5〜7.0mass%、Siを0.3〜2.3mass%、Sを0.02〜1.0mass%含有し、残部がCuおよび不可避的不純物からなる銅合金組成物を加工するにあたり、
(a)(b)のいずれか一方の工程を施し、その後、
0%〜95%の減面加工を施し
350〜600℃で時効処理することを特徴とする銅合金展伸材の製造方法。
(a)熱間加工後に急冷する。
(b)熱間加工後、冷間加工と温度600℃〜1000℃の熱処理を1回以上繰り返し、最終冷間加工前に溶体化処理を施す。
(7)さらに、Sn、Mn、Co、Zr、Ti、Fe、Cr、Al、PおよびZnからなる群から選ばれる少なくとも1種を総量で0.05〜2.0mass%含有することを特徴とする、(6)に記載の銅合金展伸材の製造方法。
ここで、展伸方向に平行断面において硫化物面積率40%以上マトリクスの結晶内に存在するとは、マトリクスに分散した硫化物が結晶粒界内に40%以上であることを言う。また、展伸方向に平行した断面の硫化物のアスペクト比が1:1〜1:100に分散しているとは、マトリクスに分散した全ての硫化物のアスペクト比が1:1〜1:100の範囲であることを言う。ここでマトリクスとは合金組織において結晶粒界に囲まれた個々の領域ないしその集合をいい、典型的には結晶粒界に囲まれてそれぞれが任意の形態で互いに隣接する島状になって存在する。
The problems of the present invention can be solved by the following means.
(1) A copper alloy exhibit containing 1.5 to 7.0 mass% of Ni, 0.3 to 2.3 mass% of Si, 0.02 to 1.0 mass% of S, and the balance of Cu and inevitable impurities Stretched material,
Sulfide in a cross section parallel to the wrought direction is present in the matrix of the crystal in the area of 40% or more, an aspect ratio in the sulfide cross section parallel to the wrought direction 1: 1 to 1: matrix 100 A copper alloy wrought material which is dispersed, has a tensile strength of 500 MPa or more, and an electrical conductivity of 25% IACS or more.
(2) Further, it contains 0.05 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Mn, Co, Zr, Ti, Fe, Cr, Al, P and Zn. The copper alloy wrought material according to (1).
(3) The sulfide is selected from any of sulfides of Cu-S, Mn-S, Zr-S, Ti-S, Fe-S, Al-S, Cr-S and Zn-S. The copper alloy wrought material according to (1) or (2), which is more than one type.
(4) A copper alloy part formed by cutting the copper alloy wrought material according to any one of (1) to (3).
(5) electronic components, used in applications of structural parts or component parts, the copper alloy component according to (4).
(6) A method for producing the copper alloy wrought material according to any one of (1) to (3),
Machining a copper alloy composition containing 1.5 to 7.0 mass% of Ni, 0.3 to 2.3 mass% of Si, 0.02 to 1.0 mass% of S, and the balance of Cu and inevitable impurities In doing
(A) Perform one step of (b), and then
Subjected to a reduction process of the 0% to 95%,
A method for producing a copper alloy wrought material, characterized by performing an aging treatment at 350 to 600 ° C.
(A) Rapid cooling after hot working.
(B) After hot working, cold working and heat treatment at a temperature of 600 ° C. to 1000 ° C. are repeated one or more times, and a solution treatment is performed before the final cold working.
(7) Further, it contains 0.05 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Mn, Co, Zr, Ti, Fe, Cr, Al, P and Zn. The method for producing a copper alloy wrought material according to (6).
Here, a sulfide in a cross section parallel to the wrought direction is present in the matrix of the crystal at an area ratio of 40% or more refers to sulfide dispersed in the matrix is 40% or more in the crystal grain boundaries. Further, the aspect ratio of the sulfide having a cross section parallel to the extending direction is dispersed in the range of 1: 1 to 1: 100 means that the aspect ratio of all the sulfides dispersed in the matrix is 1: 1 to 1: 100. Say that it is in the range. Here, the matrix refers to an individual region or a set thereof surrounded by a grain boundary in an alloy structure, and is typically surrounded by a grain boundary and is in the form of islands adjacent to each other in any form. To do.

本発明の銅合金展伸材は、引張強さおよび導電性に優れ、さらに鉛やベリリウムなどの環境負荷物質を利用することなく、被削性および展伸性に優れたものとなる。例えば、コネクタピン材に要求される挿抜力の低下を防止するには、ベリリウム銅同等に引張強さが高い事で挿抜力の低下が抑止できる。本発明は、引張強さ500MPa以上でベリリウム銅同等で挿抜力低下が抑制できる。また、引張強さないしは導電性が望まれる電子機器等の部品では、導電率25%IACS以上であることから、ベリリウム銅より導電性に優れ優位なものである。また、本発明の銅合金展伸材は、切削加工により製造される電子機器等の部品用材料として好適である。本発明の銅合金部品は切削加工で精度よく製造することができ、かつ、電子機器等の部品として必要な特性を十分に有している。   The copper alloy wrought material of the present invention is excellent in tensile strength and electrical conductivity, and further in machinability and extensibility without using environmentally hazardous substances such as lead and beryllium. For example, in order to prevent a decrease in the insertion / removal force required for the connector pin material, a decrease in the insertion / removal force can be suppressed by having a tensile strength as high as that of beryllium copper. In the present invention, the tensile strength is 500 MPa or more, and it is equivalent to beryllium copper. In addition, parts such as electronic devices that do not require tensile strength or conductivity are more excellent in conductivity than beryllium copper because they have a conductivity of 25% IACS or more. Moreover, the copper alloy wrought material of the present invention is suitable as a material for parts such as electronic equipment manufactured by cutting. The copper alloy part of the present invention can be manufactured with high precision by cutting, and has sufficient characteristics required for parts such as electronic equipment.

銅合金棒を展伸方向に平行に見た側面(a)及び断面(b)を模式的に示した図である。It is the figure which showed typically the side surface (a) and cross section (b) which looked at the copper alloy rod in parallel with the extending direction. 銅合金棒を、展伸方向に平行に電子顕微鏡(SEM)で見た断面組織を模式的に示したもので、結晶粒界と硫化物の全体像である。A cross-sectional structure of a copper alloy rod viewed with an electron microscope (SEM) in parallel with the extending direction is schematically shown, and is an overall image of crystal grain boundaries and sulfides. 銅合金棒を、展伸方向に平行に電子顕微鏡(SEM)で見た断面組織を模式的に示したもので、図2に対して結晶粒界上にある硫化物を除いて示した図である。FIG. 2 schematically shows a cross-sectional structure of a copper alloy bar viewed with an electron microscope (SEM) in parallel with the direction of extension, and is a view showing FIG. 2 excluding sulfides on grain boundaries. is there. 図2の一部を拡大し示した硫化物のアスペクト比を説明する図である。It is a figure explaining the aspect-ratio of the sulfide which expanded and showed a part of FIG. 実施例3で作製したコネクタピンの一方の形状を模式的に示す側面図である。6 is a side view schematically showing one shape of a connector pin produced in Example 3. FIG. 実施例3で作製したコネクタピンの他の形状を模式的に示す側面図である。FIG. 10 is a side view schematically showing another shape of the connector pin produced in Example 3.

本発明の銅合金展伸材の好ましい実施の態様について、詳細に説明する。まず、各合金元素の作用効果とその含有量の範囲について説明する。
なお、本明細書において、「銅合金」とは形状の概念を含まないものをいい、「銅合金材料」や「銅合金展伸材」などは、形状の概念を含むものをいう。
A preferred embodiment of the copper alloy wrought material of the present invention will be described in detail. First, the effect of each alloy element and the range of its content will be described.
In this specification, “copper alloy” refers to a material that does not include the concept of shape, and “copper alloy material”, “copper alloy stretched material”, and the like refer to materials that include the concept of shape.

<Ni,Si>
本発明の銅合金展伸材の好ましい実施の態様におけるニッケル(Ni)とケイ素(Si)は、NiとSiの含有比を制御することにより金属生地(マトリクス)中にNi−Si析出物(NiSi)を形成させて析出強化を行い、銅合金展伸材の強度および導電性を向上させるために添加する。このNi−Si析出物(NiSi:析出強化のための析出物)は、被削性の向上にはあまり寄与しない。
<Ni, Si>
Nickel (Ni) and silicon (Si) in a preferred embodiment of the copper alloy wrought material of the present invention are formed by Ni-Si precipitates (Ni) in the metal cloth (matrix) by controlling the content ratio of Ni and Si. 2 Si) is formed to enhance precipitation, and is added to improve the strength and conductivity of the copper alloy wrought material. This Ni—Si precipitate (Ni 2 Si: precipitate for strengthening precipitation) does not contribute much to the improvement of machinability.

本発明の銅合金展伸材の好ましい実施の態様においては、硫黄(S)の添加によりマトリクス中に被削性向上に寄与する硫化物を形成させる。この硫化物が、切削加工を行った時の切削屑分断の起点として作用することで切削屑が細かく分断され易くなり、被削性が向上する。硫化物は、鋳造時に形成されるが、形成されたときは結晶粒界に多く存在しており熱間加工性および冷間加工性(すなわち展伸性)を悪化させる。そこで、鋳塊(ケークまたはビレット)に形成された硫化物を、展伸加工および熱処理により、展伸方向に平行した断面の硫化物の面積率が40%以上マトリクスの結晶内に存在し、展伸方向に平行した断面の展伸方向からみたアスペクト比が1:1〜1:100の硫化物を、好ましくはアスペクト比が1:1〜1:50の硫化物をマトリクスに分散させることで、切削屑分断性が向上し、さらに熱間および冷間における加工性を損なわなくなることにより、押出、圧延、引抜きなどの展伸加工が可能となる。本発明の銅合金は、ニッケル(Ni)とケイ素(Si)が固溶した状態あるいはNi−Si析出物が形成された状態で熱間または冷間加工が施されるが、何れの状態でも一般に展伸加工性は悪く、加工中に割れ、破損等が生じやすい。この銅合金中に硫化物が形成されると展伸加工性は更に悪化し加工が困難となる。展伸加工性には、硫化物の存在する位置が大きく影響し、硫化物を結晶内に多く存在させることで、展伸性が良好となる。本発明では、硫化物の結晶粒内に存在する面積率を規定している。   In a preferred embodiment of the copper alloy wrought material of the present invention, a sulfide that contributes to improvement of machinability is formed in the matrix by adding sulfur (S). The sulfide acts as a starting point for cutting waste when cutting is performed, so that the cutting waste is easily finely divided and machinability is improved. Sulfide is formed at the time of casting, but when it is formed, it is present in a large amount at the grain boundary and deteriorates hot workability and cold workability (that is, stretchability). Therefore, the sulfide formed in the ingot (cake or billet) is present in the matrix crystal with an area ratio of sulfide of 40% or more in the cross-section parallel to the extension direction by extension processing and heat treatment. By dispersing a sulfide having an aspect ratio of 1: 1 to 1: 100, preferably an aspect ratio of 1: 1 to 1:50, as viewed from the extending direction of a cross section parallel to the extending direction, in a matrix, By improving the cutting property of cutting waste and not impairing the workability in hot and cold conditions, it becomes possible to perform extension processing such as extrusion, rolling and drawing. The copper alloy of the present invention is hot-worked or cold-worked in a state where nickel (Ni) and silicon (Si) are in a solid solution or a Ni-Si precipitate is formed. The stretch workability is poor, and cracking, breakage, etc. are likely to occur during processing. When sulfides are formed in this copper alloy, the stretch workability is further deteriorated and the processing becomes difficult. The position at which sulfide is present has a great influence on the stretch workability, and the presence of a large amount of sulfide in the crystal improves the stretchability. In the present invention, the area ratio existing in the crystal grains of sulfide is defined.

Niの含有量は1.5〜7.0mass%(質量%)であり、1.7〜6.5mass%であることが好ましい。Ni量が少なすぎると、Ni−Si析出物による析出硬化量が小さく強度が不足する。Ni量が多すぎると、過剰であるため強度向上に寄与するNi−Si析出物量が増加しないだけでなく、溶解鋳造時にNi−Si晶出物が多く形成して熱間加工性および冷間加工性(すなわち展伸性)を悪化させるため好ましくない。   The content of Ni is 1.5 to 7.0 mass% (mass%), and preferably 1.7 to 6.5 mass%. If the amount of Ni is too small, the amount of precipitation hardening due to Ni-Si precipitates is small and the strength is insufficient. If the amount of Ni is too large, not only does the amount of Ni-Si precipitates contributing to strength improvement increase, but also a large amount of Ni-Si crystallized material is formed during melt casting, resulting in hot workability and cold work. This is not preferable because it deteriorates the property (ie, extensibility).

Siの含有量は、Ni−Si析出物(NiSi)の形成においては、質量%で計算するとNi含有量の約1/5〜1/3の量が必要となる。このことから、本発明において、Siの含有量は0.3〜2.3質量%であり、0.34〜2.2質量%であることが好ましい。 When the Si content is calculated by mass% in the formation of Ni-Si precipitates (Ni 2 Si), an amount of about 1/5 to 1/3 of the Ni content is required. For this reason, in the present invention, the Si content is 0.3 to 2.3 mass%, preferably 0.34 to 2.2 mass%.

<S>
本発明の銅合金展伸材においては、形成された硫化物の面積率の40%以上が展伸方向に平行な断面マトリクスの結晶内に存在し、展伸方向に平行した断面の硫化物のアスペクト比を上記比率にする必要がある。それを達成するために、Sの含有量が0.02〜1.0mass%とされており、好ましくは0.03〜0.8mass%である。これが、少なすぎると、十分な切削屑分断性が得られない。Sの含有量が多すぎると、熱間加工性および冷間加工性(すなわち展伸性)が悪化する。形成され分散した硫化物の面積率の50%以上がマトリクスの結晶内に存在するのが好ましい。
従来、コルソン合金においてはSの量を極微量に規制することが知られている(前記特許文献10、11)。本発明においては、これを敢えて大幅に増量させその他の添加元素を特定の範囲として、好ましくはその加工処理を特定の条件で行うことにより、硫化物が所定の展伸方向のアスペクト比を有する銅合金展伸材とし、被削性と展伸性との両立を達成した。
<S>
In the copper alloy wrought material of the present invention, 40% or more of the area ratio of the formed sulfide exists in the crystal of the cross-sectional matrix parallel to the extension direction, and the sulfide having a cross-section parallel to the extension direction. The aspect ratio needs to be the above ratio. In order to achieve this, the S content is 0.02 to 1.0 mass%, preferably 0.03 to 0.8 mass%. If the amount is too small, sufficient cutting waste separation property cannot be obtained. When there is too much content of S, hot workability and cold workability (namely, extensibility) will deteriorate. Preferably, 50% or more of the area ratio of the formed and dispersed sulfide is present in the matrix crystals.
Conventionally, it is known that the amount of S is regulated to a very small amount in a Corson alloy (Patent Documents 10 and 11). In the present invention, the amount of this additive is increased drastically and the other additive elements are in a specific range, preferably by performing the processing under specific conditions, so that the sulfide has an aspect ratio in a predetermined extension direction. An alloy wrought material that achieves both machinability and extensibility.

<その他の添加元素>
さらに、本発明の銅合金展伸材には、錫(Sn)、マンガン(Mn)、コバルト(Co)、ジルコニウム(Zr)、チタン(Ti)、鉄(Fe)、クロム(Cr)、アルミニウム(Al)、りん(P)、亜鉛(Zn)の1種または2種以上を特定の量含有させてもよい。これらの元素は、固溶または析出物を形成することでCu−Ni−Si合金の強度を向上させ、あるいは硫化物を形成して被削性を向上させる。含有させる場合には、Sn、Mn、Co、Zr、Ti、Fe、Cr、Al、P、Znの中から選ばれる1種または2種以上を総量で0.05〜2.0mass%含有させることが好ましい。含有量が0.05mass%より少ない場合は、強度向上や被削性改善の効果がこれらの元素を含有しない場合と変わらなくなる。また、含有量が2.0mass%より多い場合は、強度および被削性向上の効果が飽和するだけでなく、導電率が低下するため得策ではない。硫化物の成分としてはCu−S、Mn−S、Zr−S、Ti−S、Fe−S、Al−S、Cr−S、Zn−S系などがあり特にCu−S系硫化物が有効である。更に不可避的不純物とSとの硫化物もある。
<Other additive elements>
Further, the copper alloy wrought material of the present invention includes tin (Sn), manganese (Mn), cobalt (Co), zirconium (Zr), titanium (Ti), iron (Fe), chromium (Cr), aluminum ( A specific amount of one or more of Al), phosphorus (P), and zinc (Zn) may be contained. These elements improve the strength of the Cu—Ni—Si alloy by forming a solid solution or a precipitate, or improve the machinability by forming a sulfide. In the case of inclusion, 0.05 to 2.0 mass% in total of one or more selected from Sn, Mn, Co, Zr, Ti, Fe, Cr, Al, P, Zn is contained. Is preferred. When the content is less than 0.05 mass%, the effects of improving the strength and improving the machinability are not different from the case of not containing these elements. Moreover, when there is more content than 2.0 mass%, since not only the effect of intensity | strength and a machinability improvement is saturated, but electrical conductivity falls, it is not a policy. The sulfide component includes Cu-S, Mn-S, Zr-S, Ti-S, Fe-S, Al-S, Cr-S, Zn-S, etc., and Cu-S sulfide is particularly effective. It is. There are also sulfides of unavoidable impurities and S.

<硫化物に関する規定>
次に、被削性向上に寄与する化合物である硫化物の展伸方向に平行した断面のマトリクスの結晶内に存在する割合と、硫化物のアスペクト比の規定、並びに特徴について述べる。硫化物は、切削加工時に発生する切削屑を細かく分断する作用があり、それにより被削性が向上する。しかし、硫化物の存在する位置により展伸性(熱間加工性、冷間加工性)に大きく影響する。硫化物のマトリクスの結晶粒内に存在する割合とは、展伸方向に平行した断面を電子顕微鏡で観察して、1視野に観察される全ての硫化物の数をカウントし、その各々の硫化物を円形換算してその直径を求め、平均して、その平均直径から面積を求めて硫化物数を乗じて1視野に見られる全ての硫化物の総面積を求めた後、結晶粒内と結晶粒界を跨いだ硫化物のみの数をカウントし、その各々の硫化物を円形換算してその直径を求め、平均して、その平均直径から面積を求めて硫化物数を乗じて結晶粒内と結晶粒界を跨いだ硫化物の総面積を求め、1視野に見られた全ての硫化物総面積で除した値である。この割合は、結晶粒内と結晶粒界を跨いだ硫化物が40%以上あればよい。40%以下になると、展伸性が悪くなる。なお、この時の硫化物の面積率は、0.1%〜20%、好ましくは0.1〜10%の範囲にある。硫化物の面積率は、1視野に見られた硫化物の総面積を1視野の総面積で除した値である。
<Rules related to sulfides>
Next, the ratio of the sulfide present in the matrix in the cross section parallel to the extending direction of the sulfide, which is a compound contributing to the improvement of machinability, the definition of the aspect ratio of the sulfide, and the characteristics will be described. Sulfide has the effect | action which cuts up the cutting waste generated at the time of cutting finely, and, thereby, machinability improves. However, the position where sulfide is present greatly affects the stretchability (hot workability, cold workability). The ratio existing in the crystal grains of the sulfide matrix is to observe the cross section parallel to the stretching direction with an electron microscope, count the number of all sulfides observed in one field of view, Calculate the diameter in terms of a circle, average, calculate the area from the average diameter and multiply by the number of sulfides to determine the total area of all sulfides seen in one field of view, then within the crystal grains and the crystal grains Count the number of sulfides only across the boundary, calculate the diameter of each sulfide by converting it to a circle, average it, find the area from the average diameter, multiply by the number of sulfides, and This is a value obtained by obtaining the total area of sulfides straddling the crystal grain boundary and dividing by the total area of all sulfides seen in one field of view. This ratio should be 40% or more of the sulfide straddling the crystal grain and the crystal grain boundary. If it is 40% or less, the extensibility deteriorates. In addition, the area ratio of the sulfide at this time is in the range of 0.1% to 20%, preferably 0.1 to 10%. The area ratio of sulfide is a value obtained by dividing the total area of sulfide seen in one field of view by the total area of one field of view.

硫化物は軟らかいため、熱間加工や冷間加工の加工度に応じて長手方向に伸ばされ、且つ、分断されマトリクス中に分散する。分散した硫化物のアスペクト比とは、この断面を電子顕微鏡で観察して、展伸方向に垂直方向の長さtを1とした場合、展伸方向に平行に伸ばされた硫化物長さtの比(t/t)とする。1:100を超えるものは、規定のSの含有量を満たさない可能性があり、切削加工時に切削屑が細かく分断しなくなる。なお、硫化物が展伸方向に直線状でない場合も上記の定義に変わりはなく、図4に示したように、その領域を占める部分の展伸方向の長さt及びそれに直交する方向の長さtを求め、評価する。 Since sulfide is soft, it is elongated in the longitudinal direction according to the degree of hot working or cold working, and is divided and dispersed in the matrix. The aspect ratio of the dispersed sulfide, the cross section was observed with an electron microscope, if the vertical length t 1 and 1 in the wrought direction, sulfides was stretched parallel to the wrought direction length and the ratio of t 2 (t 2 / t 1 ). If it exceeds 1: 100, there is a possibility that the prescribed S content is not satisfied, and the cutting waste is not finely divided during the cutting process. Even when the sulfide is not linear in the extending direction, the above definition remains unchanged, and as shown in FIG. 4, the length t 2 of the extending direction of the portion occupying the region and the direction orthogonal thereto determine the length t 1, to evaluate.

硫化物の測定例
図1(a)は銅合金棒10を展伸方向Rに平行に見た正面図であり(b)は断面図であり10aは断面を示し、模式的に示したものである。
図2は、展伸方向に平行にした断面の電子顕微鏡観察の模式図で、1視野に観察される、結晶粒界21と硫化物状態を示し、図中21は結晶粒界、22は結晶粒界にある硫化物、23は結晶粒内硫化物を示す。ここで、1視野に観察される全ての硫化物の総面積を求める。
次に図3は銅合金棒を、展伸方向に平行に電子顕微鏡(SEM)で見た断面組織を模式的に示したもので、結晶粒界と、図2の結晶粒界にある硫化物を除いた、結晶粒内にある硫化物である。同図に示す結晶粒内にある硫化物の総面積を求め、1視野に見られる硫化物と結晶粒内にある硫化物の割合を求める。この場合の結晶粒内にある硫化物の面積率は61%である。
硫化物のアスペクト比とは、図4に示すように硫化物の展伸方向に垂直方向の長さtを1とした場合、これに対する展伸方向に平行に伸ばされた硫化物長さtの比(図中下方の例の場合は13)をいう。
Measurement Example of Sulfide FIG. 1A is a front view of a copper alloy rod 10 viewed in parallel with the extending direction R, FIG. 1B is a cross-sectional view, and FIG. is there.
FIG. 2 is a schematic diagram of an electron microscope observation of a cross section parallel to the extension direction, showing a crystal grain boundary 21 and a sulfide state observed in one field of view, in which 21 is a crystal grain boundary, and 22 is a crystal A sulfide at the grain boundary, 23 indicates an intracrystalline grain sulfide. Here, the total area of all sulfides observed in one field of view is obtained.
Next, FIG. 3 schematically shows a cross-sectional structure of a copper alloy rod viewed with an electron microscope (SEM) in parallel to the extending direction. The grain boundaries and the sulfides at the grain boundaries in FIG. It is a sulfide in the crystal grains excluding. The total area of the sulfides in the crystal grains shown in the figure is obtained, and the ratio of the sulfides in one field of view to the sulfides in the crystal grains is obtained. In this case, the area ratio of the sulfide in the crystal grains is 61%.
As shown in FIG. 4, the aspect ratio of the sulfide is that the length t 1 in the direction perpendicular to the extension direction of the sulfide is 1, and the length t of the sulfide stretched in parallel to the extension direction with respect to this. The ratio of 2 (13 in the lower example in the figure).

<機械的性質及び製造条件>
次いで、本発明の好ましい実施の態様における銅合金展伸材の機械的性質について述べる。
本発明における銅合金は、鉛を含有するりん青銅やベリリウム銅の代替、すなわち環境負荷物質を含有する銅合金の代替を目指すものであり、これらの合金と同等の強度を要する。そのため、実用上問題とならない強度および導電性として、引張強さ500MPa以上、導電率がIACS(International Annealed Copper Standard)で25%以上であることが必要である。本発明における銅合金は時効析出型であり、前述のようにNiSiを形成させることで強度、導電性を向上させており、そのために、Niを1.5〜7.0mass%、Siを0.3〜2.3mass%含有することが必要となる。また、製造工程における溶体化熱処理温度は750〜1000℃の範囲が好ましく、時効熱処理温度は350〜600℃の範囲が好ましい。
<Mechanical properties and manufacturing conditions>
Next, the mechanical properties of the copper alloy wrought material in a preferred embodiment of the present invention will be described.
The copper alloy in the present invention aims to replace lead-containing phosphor bronze and beryllium copper, that is, a copper alloy containing environmentally hazardous substances, and requires the same strength as these alloys. Therefore, the strength and conductivity that do not cause a problem in practical use are required to be a tensile strength of 500 MPa or more and an electrical conductivity of 25% or more in IACS (International Annealed Copper Standard). The copper alloy in the present invention is an aging precipitation type, and as described above, Ni 2 Si is formed to improve strength and conductivity. For this purpose, Ni is 1.5 to 7.0 mass%, Si is added. It is necessary to contain 0.3 to 2.3 mass%. Moreover, the solution heat treatment temperature in a manufacturing process has the preferable range of 750-1000 degreeC, and the aging heat treatment temperature has the preferable range of 350-600 degreeC.

本発明の銅合金展伸材の製造方法においては、鋳造時に粒界に多く存在する硫化物を、展伸加工および熱処理により、展伸方向に平行した断面の硫化物の面積率で40%以上マトリクスの結晶内に存在させ、展伸方向に平行した断面の硫化物のアスペクト比を1:1〜1:100の範囲に分散させることを、主な特徴としている。
上記展伸加工および熱処理の好ましい例として、以下の例が挙げられる。
(a)熱間加工後に急冷し、0%〜95%(さらに好ましくは30〜90%)の減面加工を施し、最終時効処理する。
(b)熱間加工後、冷間加工と温度600℃〜1000℃の熱処理を1回以上繰り返し、最終冷間加工前に溶体化処理を施した後、0%〜95%(さらに好ましくは30〜90%)の減面加工を施し、最終時効処理する。
ここで、冷間加工と温度600℃〜1000℃の熱処理をそれぞれ1回行う場合は、冷間加工は最終冷間加工、温度600℃〜1000℃の熱処理は溶体化処理とする。
また、減面加工は冷間加工であり、0%の減面加工とは、減面加工を行わないことを意味する。また、最終時効処理時の温度は、好ましくは350〜600℃、より好ましくは400℃〜550℃である。
また、温度600℃〜1000℃の熱処理の目的は、展伸材の加工性を向上させることにある。前記温度域は、好ましくは800℃〜1000℃、より好ましくは900℃〜1000℃である。また、熱処理の時間は好ましくは1時間から3時間である。また、冷却条件は事実上任意であり、徐冷でも急冷でも差し支えない。冷却速度は0.1〜1000℃/秒の範囲にあれば十分である。
前記減面加工の直前の工程は、展伸方向に平行した断面の硫化物のアスペクト比を1:1に近づけ、減面加工による硫化物の形状および分散状態の制御を適切に行う観点から、熱間加工または溶体化処理であることが好ましい。この場合、熱間加工または溶体化処理の温度は、好ましくは750℃〜1000℃であり、より好ましくは850℃〜1000℃であり、さらに好ましくは900℃〜1000℃である。
なお、熱間加工(熱間圧延、熱間伸線、熱間押出等)の直後に急冷(水中焼入れ等)を行うことで、溶体化処理と同等の効果を得ることができる。
本発明の銅合金展伸材は、時効析出型銅合金の展伸材であるため、少なくとも銅合金原料の溶解鋳造工程の後に時効処理工程は好適に採用される前提となるが、熱間加工工程、焼鈍工程、溶体化処理工程、温度600℃〜1000℃の熱処理工程は、銅合金展伸材を得るための工程のほかは、必要に応じて行うこととなる。例えば、熱間加工工程に関しては、通常の、ビレットの熱間押出、鋳塊の熱間鍛造、あるいは連続鋳造などの製造方法のいずれでも本発明の銅合金展伸材を製造することが可能である。また、製品の形状は特に制約はなく、後工程である切削工程により最終形態である銅合金部品を得やすい形状としておくことが好ましい。すなわち、銅合金部品の用途により線、棒、条、板、管などの所定の形状の銅合金展伸材として製造し、使い分ければよい。例えば、最終形態の銅合金部品がねじやリベットなどである場合は、銅合金展伸材の形状は丸棒状であることが好ましい。
In the method for producing a copper alloy wrought material according to the present invention, the sulfide present in the grain boundary at the time of casting is 40% or more in terms of the area ratio of the sulfide having a cross section parallel to the extending direction by the drawing process and heat treatment. The main feature is to disperse the aspect ratio of the sulfide having a cross section parallel to the extending direction in the range of 1: 1 to 1: 100.
The following examples are given as preferred examples of the stretching and heat treatment.
(A) After hot working, it is rapidly cooled, subjected to 0% to 95% (more preferably 30 to 90%) surface reduction, and a final aging treatment.
(B) After hot working, cold working and heat treatment at a temperature of 600 ° C. to 1000 ° C. are repeated once or more, and after a solution treatment before the final cold working, 0% to 95% (more preferably 30%). (~ 90%) and a final aging treatment.
Here, when the cold working and the heat treatment at a temperature of 600 ° C. to 1000 ° C. are each performed once, the cold working is the final cold working, and the heat treatment at a temperature of 600 ° C. to 1000 ° C. is a solution treatment.
Further, the surface reduction processing is cold processing, and 0% surface reduction processing means that the surface reduction processing is not performed. The temperature at the final aging treatment is preferably 350 to 600 ° C, more preferably 400 to 550 ° C.
The purpose of the heat treatment at a temperature of 600 ° C. to 1000 ° C. is to improve the workability of the wrought material. The temperature range is preferably 800 ° C to 1000 ° C, more preferably 900 ° C to 1000 ° C. The heat treatment time is preferably 1 to 3 hours. Further, the cooling conditions are virtually arbitrary, and may be slow cooling or rapid cooling. A cooling rate in the range of 0.1 to 1000 ° C./second is sufficient.
From the viewpoint of the step immediately before the surface-reduction processing, the aspect ratio of the sulfide in a cross section parallel to the extending direction is brought close to 1: 1, and the shape and dispersion state of the sulfide by the surface-reduction processing are appropriately controlled. Hot working or solution treatment is preferred. In this case, the temperature of the hot working or solution treatment is preferably 750 ° C to 1000 ° C, more preferably 850 ° C to 1000 ° C, and further preferably 900 ° C to 1000 ° C.
In addition, the effect equivalent to a solution treatment can be acquired by performing rapid cooling (quenching in water etc.) immediately after hot processing (hot rolling, hot wire drawing, hot extrusion, etc.).
Since the copper alloy wrought material of the present invention is a wrought material of an aging precipitation type copper alloy, it is a premise that the aging treatment step is preferably employed at least after the melt casting step of the copper alloy raw material, but hot working The process, the annealing process, the solution treatment process, and the heat treatment process at a temperature of 600 ° C. to 1000 ° C. are performed as necessary except for the process for obtaining the copper alloy wrought material. For example, regarding the hot working process, the copper alloy wrought material of the present invention can be produced by any of the usual production methods such as hot extrusion of billets, hot forging of ingots, or continuous casting. is there. Moreover, there is no restriction | limiting in particular in the shape of a product, It is preferable to set it as the shape which is easy to obtain the copper alloy component which is a last form by the cutting process which is a post process. That is, depending on the use of the copper alloy part, it may be produced as a copper alloy wrought material having a predetermined shape such as a wire, a rod, a strip, a plate, or a tube, and may be used properly. For example, when the copper alloy part in the final form is a screw or a rivet, the shape of the copper alloy wrought material is preferably a round bar shape.

銅合金部品としては、現在、鉛入りのりん青銅やベリリウム銅が使用されている同軸コネクタのオスピン、メスピンや、ICソケットやバッテリ端子コネクタに使用されるプローブのバレルおよびプランジャー材、オーディオケーブルのコネクタ端子などの電子機器部品、アンテナのヒンジ、ファスナー、ベアリング、ガイドレール、抵抗溶接機、時計などの構造部品や歯車、軸受け、金型のイジェクトピンなどの要素部品のように、強度、電気伝導性、熱伝導性、耐摩耗性を必要とし、複雑な形状で主に切削加工で製造される部品が挙げられる。   Copper alloy parts include male connector and male pins for coaxial connectors that currently use lead-containing phosphor bronze and beryllium copper, as well as probe barrels and plunger materials used in IC sockets and battery terminal connectors, and audio cable components. Strength, electrical conduction, such as electronic parts such as connector terminals, structural parts such as antenna hinges, fasteners, bearings, guide rails, resistance welders, watches, and parts such as gears, bearings, and eject pins of molds Parts that require heat resistance, heat conductivity, and wear resistance, and are manufactured in a complicated shape mainly by cutting.

以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
表1の合金成分で示される組成の銅合金を高周波溶解炉にて溶解し、各ビレットを鋳造した。前記ビレットを温度950℃で熱間押出して、直ちに水中焼入れを行い、直径20mmの丸棒を得た。次いで前記丸棒を冷間にて引抜きを行い、直径10mmの丸棒を製造し、さらに温度450℃で2時間時効熱処理を行った。
Example 1
A copper alloy having the composition shown in Table 1 was melted in a high-frequency melting furnace, and each billet was cast. The billet was hot extruded at a temperature of 950 ° C. and immediately quenched in water to obtain a round bar having a diameter of 20 mm. Next, the round bar was drawn out cold to produce a round bar having a diameter of 10 mm, and further subjected to aging heat treatment at a temperature of 450 ° C. for 2 hours.

このようにして得られた各々の銅合金展伸材(丸棒)のサンプルについて、[1]引張強さ、[2]導電率、[3]被削性を下記方法により調べた。各評価項目の測定方法は以下の通りである。
[1]引張強さ
JIS Z 2241に準じて3本測定しその平均値(MPa)を示した。
[2]導電率
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試料について2本ずつ測定し、その平均値(%IACS)を示した。
[3]被削性
汎用旋盤を用いて丸棒の外径の段付き切削加工を行い、太径部の直径9.6mm、細径部の直径8mmのリベットを作製して発生した切削屑の形態を観察した。切削屑が長さ5mm以下に分断されるものは良、切削屑が分断されるがその長さが5mm以上10mm以下は可、切削屑が螺旋状につながっているものは不良とした。実用上問題が生じないのは良および可である。なお切削条件は、回転数1010rpm、送り速度を1回転あたり0.1mm、切り込み代0.2mm、とした。バイトは超硬製のものを用い、切削油は不使用とした。
[1] Tensile strength, [2] Electrical conductivity, and [3] Machinability of each of the copper alloy wrought materials (round bars) obtained in this manner were examined by the following methods. The measurement method for each evaluation item is as follows.
[1] Tensile strength Three were measured according to JIS Z 2241 and the average value (MPa) was shown.
[2] Conductivity Using a four-terminal method, two samples were measured for each sample in a thermostatic chamber controlled at 20 ° C. (± 1 ° C.), and the average value (% IACS) was shown.
[3] Machinability Using a general-purpose lathe, cut the outer diameter of a round bar with a stepped cut to produce a rivet with a diameter of 9.6 mm for the large diameter part and a diameter of 8 mm for the small diameter part. The morphology was observed. The cutting swarf was divided into 5 mm or less, and the cutting swarf was divided, but the length was 5 mm or more and 10 mm or less. It is good and good that there is no practical problem. The cutting conditions were a rotation speed of 1010 rpm, a feed rate of 0.1 mm per rotation, and a cutting allowance of 0.2 mm. The tool was made of cemented carbide and no cutting oil was used.

また、展伸方向に平行した断面の硫化物がマトリクスの結晶内に存在する面積率は、直径10mmの丸棒のサンプルの任意の3か所の展伸方向に平行した断面について、走査型電子顕微鏡(SEM)を用いてそれぞれ3視野について組織観察を行うことにより求めた。1視野に観察される全ての硫化物の数をカウントし、その各々の硫化物を円形換算してその直径を求め、平均して、その平均直径から面積を求めて硫化物数を乗じて1視野に見られる全ての硫化物の総面積を求めた後、結晶粒内と結晶粒界を跨いだ硫化物のみの数をカウントし、その各々の硫化物を円形換算してその直径を求め、平均して、その平均直径から面積を求めて硫化物数を乗じて結晶粒内と結晶粒界を跨いだ硫化物の総面積を求め、1視野に見られた全ての硫化物総面積で除することで求めた。また、硫化物の成分を、SEMに付随するエネルギー分散型蛍光X線分析装置(EDX)を用いて調査した。なお、表中には示していないが本発明例のものは、いずれもアスペクト比が1:1〜1:100の範囲にあった。   Moreover, the area ratio in which the sulfide of the cross section parallel to the extending direction is present in the crystal of the matrix is determined by the scanning electron for the cross section parallel to the extending direction at any three locations of the round bar sample having a diameter of 10 mm. It calculated | required by performing structure | tissue observation about 3 visual fields each using a microscope (SEM). Count the number of all sulfides observed in one field of view, calculate the diameter of each sulfide by circular conversion, determine the average, determine the area from the average diameter, and multiply by the number of sulfides in one field of view. After determining the total area of all the sulfides that can be seen, count the number of sulfides only within the crystal grains and across the crystal grain boundaries, calculate the diameter by converting each sulfide into a circle, and average Find the area from the average diameter and multiply by the number of sulfides to obtain the total area of sulfides across the crystal grains and grain boundaries, and divide by the total area of all sulfides seen in one field of view. I asked for it. Moreover, the component of sulfide was investigated using the energy dispersive X-ray fluorescence spectrometer (EDX) attached to SEM. Although not shown in the table, all of the examples of the present invention had an aspect ratio in the range of 1: 1 to 1: 100.

表1に結果を示す。本発明例1〜25は、成分が本発明の範囲内であり、何れも引張強さ500MPa以上、導電率25%IACS以上を満足している。また、展伸方向に平行した断面の硫化物の40%以上がマトリクスの結晶内に存在しており、材料加工中の割れはなく、被削性も満足している。   Table 1 shows the results. In inventive examples 1 to 25, the components are within the scope of the present invention, and all satisfy the tensile strength of 500 MPa or more and the electrical conductivity of 25% IACS or more. Further, 40% or more of the sulfide having a cross section parallel to the extending direction is present in the crystal of the matrix, there is no cracking during material processing, and machinability is also satisfied.

比較例1〜9は、合金組成が本発明の範囲外での例である。比較例1および3はNi濃度およびSi濃度が低すぎるので、引張強さの不十分なものしか得られなかった。比較例2はNi濃度およびSi濃度が高すぎて、導電率が劣っている。比較例4はNi濃度およびSi濃度が高すぎ、冷間加工時に割れが生じた。比較例5はS濃度が低く展伸方向に平行した断面の硫化物の40%以上がマトリクスの結晶内に存在しているが被削性が劣った。比較例6および7はS濃度が高く展伸方向に平行した断面の硫化物の40%以上がマトリクスの結晶内存在しておらず、熱間加工時に割れが発生した。比較例8および9は、Sn、Mn、Co、Zr、Ti、Fe、Cr、Al、P、Znの総量が2.0mass%を越え、導電率が劣った。
従来例1、2は快削りん青銅および快削ベリリウム銅である。本発明例の銅合金展伸材は、従来例1、2の材料のような環境負荷物質を含有することなく、従来例1、2と同等以上の特性を得ることができる。
Comparative Examples 1-9 are examples in which the alloy composition is outside the scope of the present invention. In Comparative Examples 1 and 3, since the Ni concentration and the Si concentration were too low, only those having insufficient tensile strength were obtained. In Comparative Example 2, the Ni concentration and the Si concentration are too high and the conductivity is inferior. In Comparative Example 4, the Ni concentration and the Si concentration were too high, and cracks occurred during cold working. In Comparative Example 5, 40% or more of the sulfide having a low S concentration and parallel to the extending direction was present in the matrix crystal, but the machinability was inferior. In Comparative Examples 6 and 7, 40% or more of the sulfide having a high S concentration and a cross section parallel to the extending direction was not present in the matrix crystal, and cracking occurred during hot working. In Comparative Examples 8 and 9, the total amount of Sn, Mn, Co, Zr, Ti, Fe, Cr, Al, P, and Zn exceeded 2.0 mass%, and the conductivity was inferior.
Conventional examples 1 and 2 are free-cutting phosphor bronze and free-cutting beryllium copper. The copper alloy wrought material of the example of the present invention can obtain characteristics equal to or higher than those of Conventional Examples 1 and 2 without containing environmentally hazardous substances like the materials of Conventional Examples 1 and 2.

Figure 0004824124
Figure 0004824124

(実施例2)
表1の本発明例1、6、16と比較例5の組成の銅合金を高周波溶解炉にて溶解し、直径300mmの各ビレットを、冷却速度1℃/秒で鋳造した。前記ビレットを温度950℃で熱間押出して、直ちに水中焼入れを行い、直径30mmの丸棒を得た。その後冷間引抜き加工で直径20mmまで加工し、温度950℃で溶体化処理して直径20mmの丸棒を得た。
この丸棒を減面加工し、直径20mm(減面加工0%)、直径16mm(減面加工36.0%)、直径10mm(減面加工75.0%)、直径4.5mm(減面加工94.9%)、直径3.5mm(減面加工96.9%)の丸棒をそれぞれ製造した。さらに、直径20mmは500℃で2時間、直径16mmは480℃で2時間、直径10mmは450℃で2時間、直径4.5mm及び3.6mmは430℃で2時間時効処理を行った。このようにして得られた各々の銅合金展伸材(丸棒)のサンプルについて、[1]引張強さ、[2]導電率を前記実施例1と同様の方法により調べ、[3]被削性を下記方法により調べた。
[3]被削性
汎用旋盤を用いて各直径の材料を、外削加工し直径3mmの丸棒を製造し、丸棒の外径の段付き切削加工を行った。発生した切削屑の形態を観察し、切削屑が長さ5mm以下に分断されるものは良、切削屑が分断されるがその長さが5mm以上10mm以下のものは可、切削屑が螺旋状につながっているものは不良とした。実用上問題が生じないのは良および可である。なお切削条件は、回転数1010rpm、送り速度を1回転あたり0.1mm、切り込み代0.2mm、とした。バイトは超硬製のものを用い、切削油は不使用とした。
(Example 2)
The copper alloys having the compositions of Invention Examples 1, 6, and 16 in Table 1 and Comparative Example 5 were melted in a high-frequency melting furnace, and each billet having a diameter of 300 mm was cast at a cooling rate of 1 ° C./second. The billet was hot extruded at a temperature of 950 ° C. and immediately quenched in water to obtain a round bar having a diameter of 30 mm. Thereafter, it was processed to a diameter of 20 mm by cold drawing, and a solution treatment was performed at a temperature of 950 ° C. to obtain a round bar having a diameter of 20 mm.
This round bar is surface-reduced, diameter 20mm (area reduction 0%), diameter 16mm (area reduction 36.0%), diameter 10mm (area reduction 75.0%), diameter 4.5mm (area reduction) A round bar having a diameter of 94.9% and a diameter of 3.5 mm (reducing area 96.9%) was produced. Furthermore, 20 mm in diameter was subjected to aging treatment at 500 ° C. for 2 hours, 16 mm in diameter at 480 ° C. for 2 hours, 10 mm in diameter at 450 ° C. for 2 hours, and 4.5 mm and 3.6 mm in diameter at 430 ° C. for 2 hours. For each sample of the copper alloy wrought material (round bar) thus obtained, [1] tensile strength and [2] conductivity were examined by the same method as in Example 1, and [3] covered The machinability was examined by the following method.
[3] Machinability Using a general-purpose lathe, materials of each diameter were externally machined to produce a round bar having a diameter of 3 mm, and stepped cutting of the round bar with an outer diameter was performed. Observe the shape of the generated cutting waste. Good if the cutting waste is divided into lengths of 5 mm or less. Good if the cutting waste is divided, but the length is 5 mm or more and 10 mm or less. Those that led to are considered bad. It is good and good that there is no practical problem. The cutting conditions were a rotation speed of 1010 rpm, a feed rate of 0.1 mm per rotation, and a cutting allowance of 0.2 mm. The tool was made of cemented carbide and no cutting oil was used.

展伸方向に平行した断面の硫化物がマトリクスの結晶内に存在する面積率は、直径20、16、10、4.5、3.5mmの丸棒のサンプルの任意の3か所の展伸方向に平行した断面について、走査型電子顕微鏡(SEM)を用いてそれぞれ3視野について組織観察を行い、前記の方法により求めた。また、硫化物のアスペクト比は、上述の電子顕微鏡で観察される硫化物の展伸方向に垂直方向を1とし、展伸方向に平行に伸ばされた硫化物の長さの比から求めた。   The area ratio in which the sulfide having a cross section parallel to the extension direction exists in the crystal of the matrix is the extension at any three locations of the round bar samples having diameters of 20, 16, 10, 4.5, and 3.5 mm. About the cross section parallel to the direction, the structure | tissue observation was performed about 3 visual fields each using the scanning electron microscope (SEM), and it calculated | required by the said method. The aspect ratio of the sulfide was determined from the ratio of the lengths of the sulfides stretched parallel to the extension direction, with the direction perpendicular to the extension direction of the sulfide observed with the electron microscope described above being 1.

Figure 0004824124
Figure 0004824124

表2の本発明例26〜37は本発明例1、6、16と同じ合金成分で、本発明の範囲内の減面加工を施したものである。何れも引張強さ500MPa以上、導電率25%IACS以上を満足している。また、展伸方向に平行した断面の硫化物の40%以上がマトリクスの結晶内に存在し、展伸方向に平行した断面の硫化物のアスペクト比が1:1〜1:100に分散しており、材料加工中の割れはなく、被削性も満足している。
比較例10〜12は、本発明の範囲内の合金組成であるが、減面加工率が本発明の範囲外であり、冷間加工時に割れが生じた。比較例13〜16は、比較例5と同じ合金成分である。比較例13〜15は本発明の範囲内の減面加工であるが、S濃度が低いため、展伸方向に平行した断面の硫化物の40%以上がマトリクスの結晶内に存在しているが被削性が劣った。比較例16は、本発明の範囲外の減面加工で展伸方向に平行した断面の硫化物の40%以上がマトリクスの結晶内に存在し、割れは生じないが、展伸方向に平行した断面の硫化物のアスペクト比が1:100を超えて分散し被削性が劣った。
Invention Examples 26 to 37 in Table 2 are the same alloy components as Invention Examples 1, 6, and 16 and are subjected to surface reduction within the scope of the present invention. All satisfy tensile strength of 500 MPa or more and conductivity of 25% IACS or more. Further, 40% or more of the sulfide having a cross section parallel to the extending direction is present in the crystal of the matrix, and the aspect ratio of the sulfide having a cross section parallel to the extending direction is dispersed to 1: 1 to 1: 100. Therefore, there are no cracks during material processing, and the machinability is satisfactory.
Comparative Examples 10 to 12 are alloy compositions within the scope of the present invention, but the area reduction rate is outside the scope of the present invention, and cracks occurred during cold working. Comparative Examples 13 to 16 are the same alloy components as Comparative Example 5. Comparative Examples 13 to 15 are surface reduction processes within the scope of the present invention. However, since the S concentration is low, 40% or more of the sulfide having a cross section parallel to the extending direction is present in the matrix crystal. The machinability was inferior. In Comparative Example 16, 40% or more of the sulfide having a cross section parallel to the extension direction was present in the matrix crystal in the area reduction processing outside the scope of the present invention, and cracks did not occur, but parallel to the extension direction. The aspect ratio of the sulfide in the cross section was dispersed exceeding 1: 100 and the machinability was poor.

(実施例3)
表1の本発明例6および本発明例16の合金組成にて、実施例1の方法でφ2mmおよびφ7mmの丸棒を作製した。これらの丸棒について、NC旋盤を用いて図5および図6に示す様なコネクタピンを各1000個作製した。図5において50はコネクタピンを、51はスリットを示す。図6において60は別の態様のコネクタピンを、61はスリットを、62はテーパー部を示す。
その結果、コネクタピンを各1000個作製したが切削屑の加工部品への絡み付きや、工具磨耗による寸法変化がなく、部品の加工ができた。なお切削条件は、外径加工について、回転数を3000rpm、送り速度を1回転あたり0.02mmとし、穴あけ加工について、回転数を2500rpm、送り速度を1回転あたり0.03mmとし、切削油を使用した。
図5の形状のコネクタピンについて、ピン材の特性として必要である挿抜性を評価した。評価方法は、加工後のピンにφ0.92mmのピンゲージを差し込んで挿抜力を測定し(初期値T0)、続いて同じピンを繰り返し500回の抜き差しを行った後に、再度挿抜力を測定し(T1)、初期値に対する割合T1/T0を求めた。T1/T0が大きい方が挿抜力の低下が小さく、良いコネクタピンであると言える。評価は5本のピンについて行い、平均値を求めた。比較のため、表1の従来例1および2の材料についても評価を行った。結果を表3に示す。
表3より本発明例は従来例2の快削ベリリウム銅と同等の挿抜性を示し、優れたコネクタピンであることが分かる。従来例1の快削りん青銅の挿抜性は、本発明例よりも劣っている。
(Example 3)
With the alloy compositions of Invention Example 6 and Invention Example 16 in Table 1, round bars of φ2 mm and φ7 mm were produced by the method of Example 1. With respect to these round bars, 1000 connector pins as shown in FIGS. 5 and 6 were produced using an NC lathe. In FIG. 5, 50 indicates a connector pin, and 51 indicates a slit. In FIG. 6, 60 is a connector pin according to another embodiment, 61 is a slit, and 62 is a tapered portion.
As a result, 1000 connector pins were produced, but there was no entanglement of cutting scraps on the processed parts and no dimensional change due to tool wear, and the parts could be processed. The cutting conditions are as follows: for outer diameter processing, the rotational speed is 3000 rpm, the feed rate is 0.02 mm per revolution, and for drilling, the rotational speed is 2500 rpm, the feed rate is 0.03 mm per revolution, and cutting oil is used. did.
About the connector pin of the shape of FIG. 5, the insertion / extraction property required as a characteristic of a pin material was evaluated. The evaluation method is to insert a φ0.92 mm pin gauge into the processed pin and measure the insertion / extraction force (initial value T0), and after repeating the same pin repeatedly 500 times, measure the insertion / extraction force again ( T1), the ratio T1 / T0 with respect to the initial value was obtained. When T1 / T0 is large, the drop in the insertion / extraction force is small and it can be said that it is a good connector pin. Evaluation was performed on five pins, and an average value was obtained. For comparison, the materials of Conventional Examples 1 and 2 in Table 1 were also evaluated. The results are shown in Table 3.
From Table 3, it can be seen that the present invention example is an excellent connector pin, showing the same insertability as the free-cutting beryllium copper of Conventional Example 2. The insertability of the free-cutting phosphor bronze of Conventional Example 1 is inferior to that of the present invention.

Figure 0004824124
Figure 0004824124

10 銅合金棒
10’展伸方向に切断した銅合金棒
10a 展伸方向に平行な断面
R 展伸方向
21 結晶粒界
22 結晶粒界にある硫化物
23 結晶粒内硫化物
24 硫化物の展伸方向に垂直方向の長さ
25 硫化物の展伸方向に平行方向の長さ
50,60 コネクタピン
51,61 スリット
62 テーパー部
DESCRIPTION OF SYMBOLS 10 Copper alloy rod 10 'Copper alloy rod 10a cut | disconnected in extension direction Cross section R parallel to extension direction Extension direction 21 Grain boundary 22 Sulfide in a crystal grain boundary 23 Intragranular sulfide 24 Exhibit of sulfide Length in the direction perpendicular to the extending direction 25 Length in the direction parallel to the extending direction of sulfide 50, 60 Connector pins 51, 61 Slit 62 Tapered portion

Claims (7)

Niを1.5〜7.0mass%、Siを0.3〜2.3mass%、Sを0.02〜1.0mass%含有し、残部がCuおよび不可避的不純物からなる銅合金展伸材であって、
展伸方向に平行断面において硫化物面積率40%以上マトリクスの結晶内に存在し、前記硫化物は展伸方向に平行断面においてアスペクト比が1:1〜1:100マトリクスに分散しており、かつ
引張強さが500MPa以上、導電率が25%IACS以上であることを特徴とする銅合金展伸材。
A copper alloy wrought material containing 1.5 to 7.0 mass% of Ni, 0.3 to 2.3 mass% of Si, 0.02 to 1.0 mass% of S, and the balance of Cu and inevitable impurities. There,
Sulfide in a cross section parallel to the wrought direction is present in the matrix of the crystal in the area of 40% or more, an aspect ratio in the sulfide cross section parallel to the wrought direction 1: 1 to 1: matrix 100 A copper alloy wrought material which is dispersed, has a tensile strength of 500 MPa or more, and an electrical conductivity of 25% IACS or more.
さらに、Sn、Mn、Co、Zr、Ti、Fe、Cr、Al、PおよびZnからなる群から選ばれる少なくとも1種を総量で0.05〜2.0mass%含有することを特徴とする請求項1に記載の銅合金展伸材。   Furthermore, it contains 0.05 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Mn, Co, Zr, Ti, Fe, Cr, Al, P and Zn. The copper alloy wrought material according to 1. 前記硫化物は、Cu−S、Mn−S、Zr−S、Ti−S、Fe−S、Al−S、Cr−SおよびZn−S系のいずれかの硫化物から選ばれる1種類以上である、請求項1又は2に記載の銅合金展伸材。   The sulfide is one or more selected from any of sulfides of Cu-S, Mn-S, Zr-S, Ti-S, Fe-S, Al-S, Cr-S, and Zn-S. The copper alloy wrought material according to claim 1 or 2. 請求項1〜3のいずれか1項に記載の銅合金展伸材を切削加工して形成された銅合金部品。   A copper alloy part formed by cutting the copper alloy wrought material according to any one of claims 1 to 3. 電子機器部品、構造部品、又は要素部品用途に用いられる、請求項4に記載の銅合金部品。 Electronic equipment parts, used in the structural parts, or the component parts applications, copper alloy part of claim 4. 請求項1〜3のいずれか1項に記載の銅合金展伸材を製造する方法であって、
Niを1.5〜7.0mass%、Siを0.3〜2.3mass%、Sを0.02〜1.0mass%含有し、残部がCuおよび不可避的不純物からなる銅合金組成物を加工するにあたり、
以下の(a)(b)のいずれか一方の工程を施し、その後、
0%〜95%の減面加工を施し
350〜600℃で時効処理することを特徴とする銅合金展伸材の製造方法。
(a)熱間加工後に急冷する。
(b)熱間加工後、冷間加工と温度600℃〜1000℃の熱処理を1回以上繰り返し、最終冷間加工前に溶体化処理を施す。
A method for producing the copper alloy wrought material according to any one of claims 1 to 3,
Machining a copper alloy composition containing 1.5 to 7.0 mass% of Ni, 0.3 to 2.3 mass% of Si, 0.02 to 1.0 mass% of S, and the balance of Cu and inevitable impurities In doing
Apply one of the following steps (a) and (b), then
Subjected to a reduction process of the 0% to 95%,
A method for producing a copper alloy wrought material, characterized by performing an aging treatment at 350 to 600 ° C.
(A) Rapid cooling after hot working.
(B) After hot working, cold working and heat treatment at a temperature of 600 ° C. to 1000 ° C. are repeated one or more times, and a solution treatment is performed before the final cold working.
さらに、Sn、Mn、Co、Zr、Ti、Fe、Cr、Al、PおよびZnからなる群から選ばれる少なくとも1種を総量で0.05〜2.0mass%含有することを特徴とする請求項6に記載の銅合金展伸材の製造方法。
Furthermore, it contains 0.05 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Mn, Co, Zr, Ti, Fe, Cr, Al, P and Zn. 6. A method for producing a copper alloy wrought material according to item 6.
JP2010289514A 2010-09-17 2010-12-27 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material Expired - Fee Related JP4824124B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289514A JP4824124B1 (en) 2010-09-17 2010-12-27 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010210201 2010-09-17
JP2010210201 2010-09-17
JP2010280946 2010-12-16
JP2010280946 2010-12-16
JP2010289514A JP4824124B1 (en) 2010-09-17 2010-12-27 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material

Publications (2)

Publication Number Publication Date
JP4824124B1 true JP4824124B1 (en) 2011-11-30
JP2012140645A JP2012140645A (en) 2012-07-26

Family

ID=45327110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289514A Expired - Fee Related JP4824124B1 (en) 2010-09-17 2010-12-27 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material

Country Status (1)

Country Link
JP (1) JP4824124B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652135A (en) * 2022-10-26 2023-01-31 浙江惟精新材料股份有限公司 High-strength high-precision copper-nickel-silicon alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240923A (en) * 2000-02-29 2001-09-04 Kiyohito Ishida Easily workable high-tensile alloy and its production method
JP2006152373A (en) * 2004-11-29 2006-06-15 Shiga Valve Cooperative Lead-free copper alloy for casting having excellent pressure resistance
WO2007126006A1 (en) * 2006-04-28 2007-11-08 Kaibara Corporation Copper alloy for sliding maerial which has excellent bearing properties
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY
JP2009052097A (en) * 2007-08-28 2009-03-12 Keiichi Araki Damping member
JP2010106363A (en) * 2008-10-03 2010-05-13 Furukawa Electric Co Ltd:The Age precipitation type copper alloy, copper alloy material, copper alloy component and method for producing copper alloy material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240923A (en) * 2000-02-29 2001-09-04 Kiyohito Ishida Easily workable high-tensile alloy and its production method
JP2006152373A (en) * 2004-11-29 2006-06-15 Shiga Valve Cooperative Lead-free copper alloy for casting having excellent pressure resistance
WO2007126006A1 (en) * 2006-04-28 2007-11-08 Kaibara Corporation Copper alloy for sliding maerial which has excellent bearing properties
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY
JP2009052097A (en) * 2007-08-28 2009-03-12 Keiichi Araki Damping member
JP2010106363A (en) * 2008-10-03 2010-05-13 Furukawa Electric Co Ltd:The Age precipitation type copper alloy, copper alloy material, copper alloy component and method for producing copper alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652135A (en) * 2022-10-26 2023-01-31 浙江惟精新材料股份有限公司 High-strength high-precision copper-nickel-silicon alloy and preparation method thereof
CN115652135B (en) * 2022-10-26 2023-08-29 浙江惟精新材料股份有限公司 High-strength high-precision copper-nickel-silicon alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2012140645A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5456927B2 (en) High-strength, high-conductivity copper rod
JP5916464B2 (en) Copper alloy wrought material, method for producing copper alloy wrought material, and method for producing copper alloy parts
KR101213801B1 (en) High strength and high conductivity copper alloy pipe, rod, or wire
WO2011125264A1 (en) Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
JP6795872B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
KR20190028373A (en) Aluminum alloy materials and conductive members, battery members, fastening parts, spring parts and structural parts using the same
KR102305301B1 (en) A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
JP4630387B1 (en) Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
JP2008214760A (en) Lead-free free-cutting brass alloy and its manufacturing method
JP4824124B1 (en) Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
JP2012246530A (en) Copper alloy wrought material
JP5607460B2 (en) Copper alloy ingot and copper alloy material excellent in machinability, and copper alloy parts using the same
JP6796355B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
JP4391382B2 (en) Copper alloy for coaxial connector excellent in machinability and method for producing the same
WO2020014582A1 (en) Copper-nickel-silicon alloys with high strength and high electrical conductivity

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R151 Written notification of patent or utility model registration

Ref document number: 4824124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees