WO2008035499A1 - Method of producing electrode for secondary battery, and secondary battery - Google Patents

Method of producing electrode for secondary battery, and secondary battery Download PDF

Info

Publication number
WO2008035499A1
WO2008035499A1 PCT/JP2007/063655 JP2007063655W WO2008035499A1 WO 2008035499 A1 WO2008035499 A1 WO 2008035499A1 JP 2007063655 W JP2007063655 W JP 2007063655W WO 2008035499 A1 WO2008035499 A1 WO 2008035499A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
porous film
electrode
active material
material layer
Prior art date
Application number
PCT/JP2007/063655
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Fujita
Tsuyoshi Hatanaka
Hidenori Takahashi
Kenichi Nishibata
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/377,340 priority Critical patent/US20100216000A1/en
Publication of WO2008035499A1 publication Critical patent/WO2008035499A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing

Definitions

  • the present invention relates to a method for manufacturing an electrode for a secondary battery having a tabless structure, and a secondary battery.
  • lithium ion secondary batteries have high energy density or high output density. Because they can be made smaller and lighter, it is possible to achieve higher output from conventional power sources for mobile phones and personal computers. Applications are expanding to power tools and power supplies for hybrid vehicles, and higher output performance is required.
  • FIG. 4 (a) is a cross-sectional view showing the general configuration of a lithium ion secondary battery employing a tabless structure. As shown in FIG. 4 (a), a positive electrode having a positive electrode active material layer 102 formed on a positive electrode current collector 101 and a negative electrode force separator 105 having a negative electrode active material layer 104 formed on a negative electrode current collector 103. And is housed in the battery case 108.
  • the end portions 101a and 103a of the current collectors 101 and 103 are exposed without forming the active material layers 102 and 104, and are joined to the positive electrode current collector plate 106 and the negative electrode current collector plate 107, respectively, by welding or the like. Yes. In this way, by connecting the entire end portions of the positive electrode and the negative electrode to the current collector plates 106 and 107, the current collection resistance of the electrode plate can be reduced, and the output of the lithium ion secondary battery can be increased. it can.
  • the area of the positive electrode is designed to be smaller than the area of the negative electrode as shown in FIG.
  • the positive electrode current collector 101 is formed at the end of the positive electrode current collector 101 opposite to the end 101a where the active material layer 102 is not formed.
  • conductive burr 111 may occur on the end face of positive electrode active material layer 102.
  • the cut burr 111 breaks through the separator 105 and comes into contact with the opposing negative electrode active material layer 104, a short circuit occurs between the positive electrode current collector 101 and the negative electrode active material layer 104.
  • the negative electrode active material containing an active material such as graphite Since the material layer 104 has conductivity, a large current flows between the positive electrode current collector 101 and the negative electrode active material layer 104, and as a result, there is a possibility that the battery may generate heat.
  • Patent Document 1 discloses a technique for forming a heat-resistant porous film on the surface of an active material layer as a method for preventing the occurrence of such an internal short circuit.
  • FIG. 5 is a cross-sectional view showing the configuration of an electrode group when this technology is applied to a tabless structure. As shown in FIG. 5, by forming the porous film 120 on the surface of the negative electrode active material layer 104 formed on the negative electrode current collector 103, the cut burr 111 generated on the end face of the positive electrode active material layer 102 is separated from the separator. Breaking through 105 and reaching the negative electrode active material layer 104b can be prevented.
  • Patent Document 1 JP-A-7-220759
  • Patent Document 2 Japanese Patent Laid-Open No. 9-298058
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-55537
  • the porous film 120 formed on the negative electrode active material layer 104 is preferably as thin as possible from the viewpoint of securing the capacity of the battery. For this reason, the porous film 120 is formed using a method such as Daravia printing (see, for example, Patent Document 2).
  • the end face of the negative electrode active material layer 104 at the end opposite to the exposed portion 103a of the negative electrode current collector 103 is, as shown in FIG. It is difficult to form the porous film 120. Therefore, when the exposed portion 101a of the positive electrode current collector 101 is bent by an external pressure, the positive electrode current collector 101 and the negative electrode active material layer 104 may be short-circuited due to contact with the end surface of the negative electrode active material layer 104. .
  • Patent Document 3 a technique for forming an insulating material on the end face of the active material layer is described in Patent Document 3.
  • these insulating materials are formed by thermal spraying ceramics or affixing insulating tape, and there is a problem in applying them to mass production processes that are difficult to form with good controllability.
  • There is also a problem in terms of manufacturing cost because it requires a separate process from the process of forming the porous film on the surface of the active material layer.
  • the present invention has been made in view of the strong point, and the main object of the present invention is a method for manufacturing a high safety, tabless structure secondary battery electrode in a simple method, and safety. Excellent It is providing the secondary battery provided with the electrode of the breath structure.
  • the exposed portion of the current collector in which the active material layer is not formed becomes a “formation allowance” for forming a porous film on the end surface of the active material layer.
  • the narrow end of the porous film as the “formation allowance” is formed at the opposite end.
  • the method for producing an electrode for a secondary battery according to the present invention includes a step (a) of forming an active material layer on a current collector so that both ends of the current collector are exposed, and a current collector. And (b) forming a porous film so as to cover the active material layer on the body, and in the step (a), the first unformed portion of the active material layer at one end of the current collector The width is formed narrower than the width of the second unformed part at the other end, and in step (b), the porous film covers the end surface of the active material layer at the first unformed part and It is characterized in that it is formed so as to expose a part of the current collector in the unformed part.
  • a porous film is formed on a current collector by providing a narrow first unformed part (formation allowance) at one end of the current collector by such a method, At the same time as the surface of the material layer, a porous film can be formed on the end surface of the active material layer, whereby an electrode with a high safety and a tabless structure that prevents the occurrence of an internal short circuit can be obtained.
  • the porous film is preferably formed so as to cover all the first unformed portions.
  • the width of the first unformed portion can be minimized, and the battery capacity can be sufficiently secured.
  • the porous film is preferably formed by applying a porous film slurry onto a current collector by printing. This makes it possible to obtain a highly safe electrode structure in a simple manner.
  • the secondary battery according to the present invention is a secondary battery including an electrode group in which a positive electrode and a negative electrode each having an active material layer formed on a current collector are wound or stacked with a separator interposed therebetween. Therefore, the active material layer is covered on the current collector of at least one of the positive electrode and the negative electrode.
  • a current collector having a porous film formed thereon is formed on both ends of the current collector, and an active material layer is formed on both ends of the current collector.
  • the width of the first unformed part is narrower than the width of the second unformed part, and the active material layer in the first unformed part
  • the end face is covered with a porous film, and a part of the current collector in the second unformed part is covered with the porous film.
  • a porous film is formed on the surface and the end face of the active material layer by providing the narrow first unformed part (formation allowance) at one end of the current collector. Accordingly, it is possible to provide a highly safe electrode having a tabless structure that prevents the occurrence of an internal short circuit, and a secondary battery including the same.
  • FIG. 1 is a cross-sectional view schematically showing an electrode structure of a secondary battery in an embodiment of the present invention.
  • FIGS. 2 (a) to 2 (b) are process diagrams showing a method for producing an electrode for a secondary battery in an embodiment of the present invention.
  • FIGS. 3 (a) to 3 (d) are process diagrams showing a method for producing an electrode for a secondary battery in an embodiment of the present invention.
  • FIG. 4 is a diagram showing the configuration of a conventional lithium ion secondary battery, where (a) is a cross-sectional view of the whole battery, (b) is a partial cross-sectional view of an electrode group, and (c) is an electrode plate.
  • FIG. 4 is a diagram showing the configuration of a conventional lithium ion secondary battery, where (a) is a cross-sectional view of the whole battery, (b) is a partial cross-sectional view of an electrode group, and (c) is an electrode plate.
  • FIG. 5 is a cross-sectional view showing the structure of a conventional tabless structure electrode group.
  • FIG. 1 is a cross-sectional view schematically showing an electrode structure of a secondary battery in an embodiment of the present invention.
  • a negative electrode in which an active material layer 2 is formed on a negative electrode current collector 1
  • a positive electrode force S in which an active material layer 6 is formed on a positive electrode current collector 5, and a separator 4.
  • the electrode group is formed by winding or stacking them.
  • a porous film 3 is further formed on the negative electrode current collector 1 so as to cover the negative electrode active material layer 2.
  • the negative electrode current collector 1 formed with the porous film 3 has a first unformed portion la and a second unformed portion lb where the negative electrode active material layer 2 is not formed at both ends thereof.
  • the width of the first unformed portion la is formed narrower than the width of the second unformed portion lb.
  • the end surface of the negative electrode active material layer 2 in the first unformed part la is covered with the porous film 3, and part of the negative electrode current collector 1 in the second unformed part lb is covered with the porous film 3. Absent.
  • the surface of the negative electrode active material layer 2 formed on the negative electrode current collector 1 and the end surface of the negative electrode active material layer 2 in the first unformed portion la are covered with the porous film 3.
  • the positive electrode current collector 5 and the negative electrode active material layer 2 are caused by cutting burrs generated at the end face of the positive electrode active material layer 6 or bending due to pressing of the exposed portion 5 b of the positive electrode current collector 5. Can prevent an internal short circuit from occurring, whereby a secondary battery with a highly safe tabless structure can be realized.
  • the second unformed part lb is joined to a current collector plate connected to an electrode terminal (external terminal), and is a force provided in a conventional tabless structure electrode.
  • the first unformed portion la is not present in the conventional tabless electrode.
  • the end of the current collector opposite to the second unformed part lb is cut together with the active material layer formed on the surface. The end face of the substrate and the end face of the active material layer were flush with each other.
  • the first unformed portion la in the present invention is the second unformed portion as the “forming allowance” of the porous membrane 3 at the end opposite to the second unformed portion lb.
  • An unformed part narrower than the formed part lb is separately provided.
  • the porous membrane 3 is formed by applying a slurry containing a porous membrane material (hereinafter referred to as “porous membrane slurry”) onto a current collector by a method such as printing.
  • the porous film slurry is applied to the non-formed part la with the formation part la as the “formation allowance”, and the slurry flows into the end face of the active material layer, thereby forming the porous film 3 on the end face of the negative electrode active material layer 2 be able to.
  • the first unformed part la only needs to have a minimum width that acts as a "forming allowance".
  • the porous membrane 3 is preferably formed so as to cover the entire first unformed portion la. If formed in this way, the width of the first unformed portion la can be minimized, so that a sufficient battery capacity can be secured.
  • the width of the remaining first unformed portion la exceeds the minimum width as “formation allowance”, it does not affect the effects of the invention achieved by the present invention.
  • the width of the first unformed portion la is set to 3 mm or less, more preferably lmm or less, a highly safe secondary battery can be realized while suppressing a substantial decrease in battery capacity.
  • the width of the second non-formed part lb is set to 5 mm or more, for example, the joining to the current collector plate can be ensured.
  • the porous membrane 3 is set to a thickness of, for example, about 2 to 30 xm (typically 2 to 10 zm), the secondary membrane is highly safe while suppressing a substantial decrease in battery capacity. A battery can be realized.
  • the slurry produced by mixing the porous film material with the solvent is applied onto the negative electrode current collector 1 having the negative electrode active material layer 2 formed on the surface by a printing method. It is preferable to form them.
  • the porous film material preferably contains, for example, a powdered inorganic oxide (filler) such as alumina or silica.
  • a powdered inorganic oxide such as alumina or silica.
  • the binder for forming the filler as the porous film 3 it is preferable to use, for example, a rubbery polymer containing a polyacrylonitrile group which is amorphous and has high heat resistance and rubber elasticity.
  • porous membrane 3 containing these materials has excellent heat resistance and is electrochemically stable, it is possible to effectively prevent the occurrence of an internal short circuit.
  • a printing method of porous film slurry gravure printing, screen printing, etc. can be used, for example.
  • the electrode group having the structure shown in FIG. 1 is housed in a battery case and the second electrode of the negative electrode current collector 1 is the same as the conventional secondary battery having the tabless structure shown in FIG.
  • the unformed portion lb and the exposed portion 5b of the positive electrode current collector 5 are joined to the negative electrode current collector plate and the positive electrode current collector plate, respectively, by welding or the like to constitute a secondary battery.
  • the porous film 3 is composed of the force negative electrode and the positive electrode formed only on the negative electrode side. Of course, they may be formed only on both sides or on the positive electrode side.
  • the negative electrode will be described as an example.
  • both ends of the negative electrode current collector 1 are provided on both sides.
  • the negative electrode active material layer 2 is formed so that is exposed.
  • the negative electrode active material layer 2 can be formed, for example, by applying a slurry containing a negative electrode active material such as graphite on the negative electrode current collector 1.
  • the unformed portions where the negative electrode active material layer 2 is not formed at both ends of the negative electrode current collector 1 are respectively represented by IIa_IIa line and IIb_IIb line. Cut along. At this time, the width of the first unformed part la at one end of the negative electrode current collector 1 is formed narrower than the width of the second unformed part lb at the other end.
  • FIGS. 3 (a) and 3 (b) a normal gravure printing method as shown in FIGS. 3 (a) and 3 (b).
  • FIG. 3A is a side sectional view of the gravure printing apparatus
  • FIG. 3B is a front sectional view of the apparatus.
  • a gravure roll 7 having a plurality of grooves formed on its peripheral surface is immersed in a porous membrane slurry whose lower peripheral surface is stored in a liquid tank 9. Arrange so that. Then, the porous film supplied into the groove of the gravure roll 7 is rotated by rotating the gravure roll 7 in a direction opposite to the traveling direction of the negative electrode plate 8 while contacting the negative roll 7 with the traveling negative plate 8. The slurry can be transferred to the surface of the negative electrode plate 8. The porous film slurry transferred to the surface of the negative electrode plate 8 is then dried.
  • FIGS. 3 (c) and 3 (d) are enlarged views showing states at the end portions A and B of the negative electrode plate 8.
  • the narrow first unformed portion la is brought into contact with the gravure roll 7 to form a porous film (not shown) on the end face of the negative electrode active material layer 2 as well. Can be formed.
  • a part of the second unformed part lb is obtained by applying the tape 12 to a part including the tip of the wide second unformed part lb. Does not form a porous membrane A region (a portion to be joined to the current collector plate) can be secured. Alternatively, the porous film is not formed by arranging the gravure roll 7 so as not to contact the region, or by forming the groove of the gravure roll 7 contacting the region deeper than the other region. The ability to secure an area is possible.
  • the groove of the gravure roll 7 is formed so as to be inclined with respect to the peripheral surface of the gravure roll 7, and the inclination direction and Z or the inclination angle thereof are adjusted, so that the first unformed portion la is formed.
  • the thickness of the porous film formed on the end face of the negative electrode active material layer 2 can be optimized.
  • the scraping blade 10 in the figure is provided along the gravure roll 7 so as to scrape off excess porous film slurry adhering to the surface other than the groove of the gravure roll 7. is there.
  • the positive electrode, the negative electrode, and the separator constituting the secondary battery in the present invention the following materials and forming methods can be preferably used.
  • lithium cobaltate and modified products thereof such as those obtained by eutectic aluminum and magnesium
  • lithium nickelate and modified products thereof partially nickel was substituted with cobalt or aluminum
  • Composite oxides such as lithium manganate and modified products thereof.
  • acetylene black, ketjen black, or a combination of various types of graphite is used.
  • polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVd F), or the like is used as the binder.
  • a kneader Using a kneader, these materials are mixed with a thickener as necessary, and kneaded with water or an organic solvent to prepare a positive electrode mixture slurry. Then, using a die coating device or the like on the aluminum current collector, the slurry is applied and dried to form an active material layer on the current collector.
  • a positive electrode active material layer is formed at both ends of the positive electrode in the longitudinal direction to continuously form a layer, an unformed portion, and an unformed portion. Thereafter, pressing is performed as necessary to form a porous film, and slitting is performed in a state where an unformed part having a width necessary for forming the porous film is left, thereby producing a positive electrode base material.
  • the negative electrode active material various natural graphites, artificial graphites, alloy composition materials, and the like can be used.
  • the binder styrene butadiene rubber (SBR), polyvinylidene fluoride (PVdF), or the like can be used.
  • SBR styrene butadiene rubber
  • PVdF polyvinylidene fluoride
  • a kneader Using a kneader, these materials are mixed with a thickener as necessary, and kneaded with water or an organic solvent to prepare a negative electrode mixture slurry. Thereafter, a die coating apparatus or the like is used on the copper current collector, and the slurry is applied and dried to form an active material layer on the current collector.
  • the non-formed part in which the negative electrode active material layer is not formed is continuously formed at both ends in the negative electrode longitudinal direction. Thereafter, pressing is performed as necessary to form a porous film, and slits are made while leaving an unformed portion having a width necessary for forming the porous film, thereby producing a negative electrode substrate.
  • separator it is possible to use a separator made of a microporous film that is stable at any potential of the positive electrode and the negative electrode, which have a high holding power of the electrolytic solution.
  • a separator include those made of polypropylene, those made of polyethylene, those made of polyimide, and those made of polyamide.
  • the electrode group is produced by winding the positive electrode and the negative electrode produced by the above procedure through a separator, or processing and laminating these materials to necessary dimensions. After that, the current collector part exposed at both ends of the electrode group is welded to the current collector plate connected to the external terminal, inserted into the battery case, non-aqueous electrolyte is injected, and the necessary parts are sealed. By doing so, a secondary battery is obtained.
  • the battery shape is not particularly limited, such as a cylindrical shape or a square shape.
  • the obtained nickel hydroxide had an average particle size of about 10 zm.
  • Ni Co Al (OH) was heat-treated at 900 ° C for 10 hours in the atmosphere.
  • Lithium nickel monohydrate represented by the composition formula LiNi Co Al O is obtained by holding lithium hydroxide monohydrate so that the number of dipoles is equal and performing heat treatment at 800 ° C for 10 hours in dry air.
  • a composite oxide was obtained as a positive electrode active material. And after the pulverization and classification treatment, the positive electrode active material powder The end.
  • the average particle size was 9 ⁇ 5 ⁇ , and the specific surface area was 0.4 ⁇ m 2 / g.
  • the electrode plate width is 124 mm
  • the mixture coating width is 110 mm
  • the uncoated width on one side is l lmm
  • the uncoated width on the opposite side is 3 mm as the formation margin for the porous film. It was slit so that a positive electrode was produced.
  • the electrode plate width is 128mm
  • the mixture coating width is 114mm
  • the uncoated width on one side is l lmm
  • the uncoated width on the opposite side is 3mm as the formation margin for the porous film. In this way, the negative electrode was produced.
  • a porous membrane slurry was prepared by kneading alumina lOOOOg with a median diameter of 0.3 ⁇ m and 375 g of polyacrylonitrile-modified rubber binder (solid content 8 wt%) together with an appropriate amount of NMP solvent.
  • porous film forming apparatus As the porous film forming apparatus, a gravure coating apparatus was used. The porous film slurry is continuously applied to the 1 mm unformed part on one side of the positive electrode from the edge of the active material layer to a position 6 mm outside, and the porous film at the edge of the mixture and the exposed part for external current collection with a width of 5 mm. Formed. On the opposite side, a porous film with a width of 3 mm is formed by forming a porous film on the entire surface, applying a porous film slurry to the entire surface of both ends of the active material layer and the flat surface, and then drying continuously formed. The solvent in the slurry was dried in an oven.
  • porous film slurry is coated and dried in the same way on the other positive electrode surface side to form a porous film on the entire surface of the positive electrode mixture flat part and the end cross section, and for collecting current of 5 mm width on one side.
  • a positive electrode plate having an exposed portion was produced.
  • the porous film was formed using gravure printing so that the film thickness on the active material layer was about 10 zm. In this example, negative No porous film was formed on the electrode.
  • the positive electrode coated with the porous film and the negative electrode not coated with the porous film are wound into a square shape through a polyethylene separator so that the positive electrode and the negative electrode current collector are exposed at both ends.
  • An electrode group was prepared. External current collector terminals are resistance-welded to both ends of this electrode group, both terminals protrude in the opposite direction, inserted into a square aluminum case, and the parts other than the liquid stopper are sealed, and ethylene carbonate (EC) is placed inside the case.
  • EC ethylene carbonate
  • LiPF Lithium hexafluorophosphate
  • EMC ethylmethyl carbonate
  • the final liquid stopper was sealed to produce a secondary battery with a nominal capacity of 5 Ah.
  • the case was equipped with a safety valve that opened at 10 atm to prevent rupture due to an increase in battery internal pressure. This battery is called battery A.
  • a battery was fabricated in the same manner as in Example 1 except that instead of forming the porous film on the positive electrode in Example 1, a porous film was formed on the negative electrode. This battery is called battery B.
  • a battery was fabricated in the same manner as in Example 1 except that a porous film was formed on the negative electrode in the same manner as the positive electrode in Example 1, and a porous film was formed on both the positive electrode and the negative electrode.
  • This battery is called battery C.
  • the electrode plate width is 121 mm
  • the mixture coating width is 110 mm
  • the uncoated width of 3 mm on the other side is slit so that there is no uncoated width of 3 mm.
  • a porous membrane was formed. At this time, no porous film was formed at the end of the positive electrode mixture opposite to the current collector.
  • the negative electrode before forming the porous film of Example 1 the negative electrode was prepared by slitting the uncoated width of 3 mm on the opposite side so that the electrode plate width was 125 mm, the mixture coating width was 114 mm, and the uncoated width was 11 mm on one side. did.
  • a battery was fabricated in the same manner as in Example 1 except for this. This battery is called battery D. At this time, no porous film was formed at the end of the positive electrode mixture opposite to the current collector.
  • a battery was fabricated in the same manner as the battery of Comparative Example 1 except that a porous film was formed on both the positive electrode of Comparative Example 1 and the negative electrode of Comparative Example 2, and both were used. .
  • This battery is called battery F.
  • a battery was fabricated in the same manner as the battery of Example 1 except that the porous film was not formed on the positive electrode of Example 1. This battery is called battery G.
  • a voltage of 50 V was applied across the terminals, and the presence or absence of leakage current at that time was confirmed. After that, when there was no short circuit, the external terminal was resistance-welded to the negative electrode end side, and a similar short-circuit inspection was performed.
  • Table 1 shows the batteries of each example and the evaluation results. As for battery capacity, a nominal capacity of around 5Ah was obtained. The result of the crush test is that of the two batteries tested. The result of the battery with the higher battery arrival temperature is shown.
  • the "active material layer” refers to a layer containing at least an active material, and includes, in addition to the active material, materials such as a binder, a conductive agent, and a thickener. It doesn't matter whether or not.
  • the present invention is useful for a highly safe tabless structure electrode and a secondary battery including the electrode, and can be applied to a drive power source of a notebook computer, a mobile phone, a digital still camera, an electric tool, an electric vehicle, and the like. .

Abstract

An active material layer (2) is applied to a current collector (1) so as to expose the current collector. The width of a first non-formed portion (1a) at one end of the current collector (1) is less than the width of a second non-formed portion (1b) at the other end. Then, a porous membrane (3) is formed on the current collector (1) so as to cover the active material layer (2). The porous membrane (3) is formed so as to cover that end face of the active material layer (2) that is at the first non-formed portion (1a) and to expose that portion of the current collector (1) that is at the second non-formed portion (1b).

Description

明 細 書  Specification
二次電池用電極の製造方法及び二次電池  Manufacturing method of secondary battery electrode and secondary battery
技術分野  Technical field
[0001] 本発明は、タブレス構造の二次電池用電極の製造方法、及び二次電池に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing an electrode for a secondary battery having a tabless structure, and a secondary battery.
背景技術  Background art
[0002] 一般に、リチウムイオン二次電池は、エネルギー密度あるいは出力密度が大きぐ 機器の小型化 ·軽量ィヒが可能であることから、従来の携帯電話やパソコン用の電源 から、さらに高出力が要求される電動工具あるいはハイブリッド自動車用の電源まで 適用が拡大しており、より高出力性能が要求されている。  [0002] In general, lithium ion secondary batteries have high energy density or high output density. Because they can be made smaller and lighter, it is possible to achieve higher output from conventional power sources for mobile phones and personal computers. Applications are expanding to power tools and power supplies for hybrid vehicles, and higher output performance is required.
[0003] リチウムイオン二次電池の高出力化を図るためには、電池の内部抵抗を小さくする 必要がある。その対策の一つとして、極板の集電抵抗の低減を図るために、いわゆる タブレス構造の集電構造が採用されている。図 4 (a)は、タブレス構造を採用したリチ ゥムイオン二次電池の一般的な構成を示した断面図である。図 4 (a)に示すように、 正極集電体 101上に正極活物質層 102が形成された正極、及び負極集電体 103上 に負極活物質層 104が形成された負極力 セパレータ 105を介して捲回されて、電 池ケース 108内に収容されている。そして、各集電体 101、 103の端部 101a、 103a は、活物質層 102、 104が形成されずに露出し、それぞれ正極集電板 106及び負極 集電板 107に溶接等で接合されている。このように、正極及び負極の端部全体を集 電板 106、 107に接合することによって、極板の集電抵抗を低減することができ、リチ ゥムイオン二次電池の高出力化を図ることができる。  [0003] In order to increase the output of a lithium ion secondary battery, it is necessary to reduce the internal resistance of the battery. As one of the countermeasures, a so-called tabless current collecting structure is adopted in order to reduce the current collecting resistance of the electrode plate. Fig. 4 (a) is a cross-sectional view showing the general configuration of a lithium ion secondary battery employing a tabless structure. As shown in FIG. 4 (a), a positive electrode having a positive electrode active material layer 102 formed on a positive electrode current collector 101 and a negative electrode force separator 105 having a negative electrode active material layer 104 formed on a negative electrode current collector 103. And is housed in the battery case 108. The end portions 101a and 103a of the current collectors 101 and 103 are exposed without forming the active material layers 102 and 104, and are joined to the positive electrode current collector plate 106 and the negative electrode current collector plate 107, respectively, by welding or the like. Yes. In this way, by connecting the entire end portions of the positive electrode and the negative electrode to the current collector plates 106 and 107, the current collection resistance of the electrode plate can be reduced, and the output of the lithium ion secondary battery can be increased. it can.
[0004] ところで、リチウムイオン二次電池の容量は、一般に、正極容量で決まるため、図 4 ( b)に示すように、正極の面積は負極の面積よりも小さく設計されている。また、正極を 例にとれば、図 4 (c)に示すように、正極集電体 101の活物質層 102が形成されてい ない端部 101aと反対側の端部において、正極集電体 101の切断時に、正極活物質 層 102の端面に導電性のバリ 111が発生する場合がある。この切断バリ 111が、セパ レータ 105を突き破って、対向する負極の活物質層 104に接触すると、正極集電体 1 01と負極活物質層 104との短絡が生じる。このとき、黒鉛等の活物質を含む負極活 物質層 104は、導電性を有するため、正極集電体 101と負極活物質層 104との間に 大電流が流れ、その結果、電池の発熱に至るおそれがある。 [0004] Incidentally, since the capacity of a lithium ion secondary battery is generally determined by the positive electrode capacity, the area of the positive electrode is designed to be smaller than the area of the negative electrode as shown in FIG. Taking the positive electrode as an example, as shown in FIG. 4 (c), the positive electrode current collector 101 is formed at the end of the positive electrode current collector 101 opposite to the end 101a where the active material layer 102 is not formed. When cutting, conductive burr 111 may occur on the end face of positive electrode active material layer 102. When the cut burr 111 breaks through the separator 105 and comes into contact with the opposing negative electrode active material layer 104, a short circuit occurs between the positive electrode current collector 101 and the negative electrode active material layer 104. At this time, the negative electrode active material containing an active material such as graphite Since the material layer 104 has conductivity, a large current flows between the positive electrode current collector 101 and the negative electrode active material layer 104, and as a result, there is a possibility that the battery may generate heat.
[0005] このような内部短絡の発生を防止する方法として、活物質層の表面に耐熱性の多 孔膜を形成する技術が、特許文献 1に記載されている。図 5は、この技術をタブレス 構造に適用した場合の電極群の構成を示した断面図である。図 5に示すように、負極 集電体 103上に形成された負極活物質層 104の表面に多孔膜 120を形成すること によって、正極活物質層 102の端面に生じた切断バリ 111が、セパレータ 105を突き 破って、負極活物質層 104bに達することを阻止することができる。 [0005] Patent Document 1 discloses a technique for forming a heat-resistant porous film on the surface of an active material layer as a method for preventing the occurrence of such an internal short circuit. FIG. 5 is a cross-sectional view showing the configuration of an electrode group when this technology is applied to a tabless structure. As shown in FIG. 5, by forming the porous film 120 on the surface of the negative electrode active material layer 104 formed on the negative electrode current collector 103, the cut burr 111 generated on the end face of the positive electrode active material layer 102 is separated from the separator. Breaking through 105 and reaching the negative electrode active material layer 104b can be prevented.
特許文献 1 :特開平 7— 220759号公報  Patent Document 1: JP-A-7-220759
特許文献 2:特開平 9一 298058号公報  Patent Document 2: Japanese Patent Laid-Open No. 9-298058
特許文献 3:特開 2004— 55537号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-55537
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、負極活物質層 104上に形成する多孔膜 120は、電池の容量を確保する 観点からは、できるだけ薄い方が好ましい。そのため、多孔膜 120の形成には、ダラ ビア印刷等の方法が用いられる(例えば、特許文献 2を参照)。  [0006] By the way, the porous film 120 formed on the negative electrode active material layer 104 is preferably as thin as possible from the viewpoint of securing the capacity of the battery. For this reason, the porous film 120 is formed using a method such as Daravia printing (see, for example, Patent Document 2).
[0007] し力、しながら、グラビア印刷等の方法では、図 5に示すように、負極集電体 103の露 出部 103aと反対側の端部における負極活物質層 104の端面には、多孔膜 120を形 成することが難しい。そのため、正極集電体 101の露出部 101aが外圧によって折れ 曲がった場合、負極活物質層 104の端面と接触することによって、正極集電体 101と 負極活物質層 104とが短絡するおそれがある。  However, in the method such as gravure printing, the end face of the negative electrode active material layer 104 at the end opposite to the exposed portion 103a of the negative electrode current collector 103 is, as shown in FIG. It is difficult to form the porous film 120. Therefore, when the exposed portion 101a of the positive electrode current collector 101 is bent by an external pressure, the positive electrode current collector 101 and the negative electrode active material layer 104 may be short-circuited due to contact with the end surface of the negative electrode active material layer 104. .
[0008] 一方、活物質層の端面に絶縁材料を形成する技術が、特許文献 3に記載されてレ、 る。し力しながら、これらの絶縁材料は、セラミックスの溶射や、絶縁テープの貼り付け によって形成されるもので、制御性よく形成することは難しぐ量産工程に適用するに は問題がある。カロえて、活物質層の表面に多孔膜を形成する工程とは別の工程を要 するため、製造コストの面でも問題がある。  On the other hand, a technique for forming an insulating material on the end face of the active material layer is described in Patent Document 3. However, these insulating materials are formed by thermal spraying ceramics or affixing insulating tape, and there is a problem in applying them to mass production processes that are difficult to form with good controllability. There is also a problem in terms of manufacturing cost because it requires a separate process from the process of forming the porous film on the surface of the active material layer.
[0009] 本発明は、力かる点に鑑みなされたもので、その主な目的は、簡単な方法で、安全 性の高レ、タブレス構造の二次電池用電極を製造する方法、及び安全性に優れたタ ブレス構造の電極を備えた二次電池を提供することにある。 [0009] The present invention has been made in view of the strong point, and the main object of the present invention is a method for manufacturing a high safety, tabless structure secondary battery electrode in a simple method, and safety. Excellent It is providing the secondary battery provided with the electrode of the breath structure.
課題を解決するための手段  Means for solving the problem
[0010] 本願発明者等は、タブレス構造の電極において、活物質層が形成されていない集 電体の露出部が、活物質層の端面に多孔膜を形成するための「形成代」になること に着目して、集電体端部の未形成部 (集電板に接合される部分)とは別に、それとは 反対側の端部に、多孔膜の「形成代」としての幅狭の未形成部を別途設けることによ つて、当該未形成部 (形成代)における活物質層の端面に多孔膜を形成することを可 肯 にした。  [0010] The inventors of the present application, in the electrode of the tabless structure, the exposed portion of the current collector in which the active material layer is not formed becomes a “formation allowance” for forming a porous film on the end surface of the active material layer. Paying attention to this, apart from the unformed part of the current collector end (the part to be joined to the current collector plate), the narrow end of the porous film as the “formation allowance” is formed at the opposite end. By providing a non-formed part separately, it was confirmed that a porous film was formed on the end face of the active material layer in the non-formed part (formation allowance).
[0011] すなわち、本発明に係わる二次電池用電極の製造方法は、集電体上に該集電体 の両端部が露出するように活物質層を形成する工程 (a)と、集電体上に活物質層を 覆うように多孔膜を形成する工程 (b)とを有し、工程 (a)において、集電体の一方の 端部における活物質層の第 1の未形成部の幅は、他方の端部における第 2の未形成 部の幅よりも狭く形成され、工程 (b)において、多孔膜は第 1の未形成部における活 物質層の端面を覆うとともに、第 2の未形成部における集電体の一部を露出するよう に形成されることを特徴とする。  [0011] That is, the method for producing an electrode for a secondary battery according to the present invention includes a step (a) of forming an active material layer on a current collector so that both ends of the current collector are exposed, and a current collector. And (b) forming a porous film so as to cover the active material layer on the body, and in the step (a), the first unformed portion of the active material layer at one end of the current collector The width is formed narrower than the width of the second unformed part at the other end, and in step (b), the porous film covers the end surface of the active material layer at the first unformed part and It is characterized in that it is formed so as to expose a part of the current collector in the unformed part.
[0012] このような方法により、集電体の一方の端部に、幅狭の第 1の未形成部(形成代)を 設けることによって、集電体上に多孔膜を形成する際、活物質層の表面と同時に、活 物質層の端面にも多孔膜を形成することができ、これにより、内部短絡の発生を防止 した、安全性の高レ、タブレス構造の電極を得ることができる。  [0012] When a porous film is formed on a current collector by providing a narrow first unformed part (formation allowance) at one end of the current collector by such a method, At the same time as the surface of the material layer, a porous film can be formed on the end surface of the active material layer, whereby an electrode with a high safety and a tabless structure that prevents the occurrence of an internal short circuit can be obtained.
[0013] ここで、上記多孔膜は、第 1の未形成部を全て覆うように形成されることが好ましい。  [0013] Here, the porous film is preferably formed so as to cover all the first unformed portions.
これにより、第 1の未形成部の幅を最小限にすることができ、電池の容量を十分に確 保すること力 Sできる。  As a result, the width of the first unformed portion can be minimized, and the battery capacity can be sufficiently secured.
[0014] また、上記多孔膜は、多孔膜スラリーを印刷により集電体上に塗布することによって 形成されることが好ましい。これにより、簡単な方法で、安全性の高い電極構造を得 ること力 Sできる。  [0014] The porous film is preferably formed by applying a porous film slurry onto a current collector by printing. This makes it possible to obtain a highly safe electrode structure in a simple manner.
[0015] 本発明に係わる二次電池は、集電体上に活物質層がそれぞれ形成された正極及 び負極を、セパレータを介して捲回または積層された電極群を備えた二次電池であ つて、正極または負極の少なくとも一方の電極の集電体上には、活物質層を覆う多 孔膜がさらに形成されており、多孔膜が形成された集電体は、該集電体の両端部に ぉレ、て、活物質層が形成されてレ、なレ、第 1の未形成部及び第 2の未形成部を有し、 第 1の未形成部の幅は、第 2の未形成部の幅よりも狭く形成されており、第 1の未形 成部における活物質層の端面は多孔膜で覆われ、第 2の未形成部における集電体 の一部は多孔膜で覆われてレ、なレ、ことを特徴とする。 [0015] The secondary battery according to the present invention is a secondary battery including an electrode group in which a positive electrode and a negative electrode each having an active material layer formed on a current collector are wound or stacked with a separator interposed therebetween. Therefore, the active material layer is covered on the current collector of at least one of the positive electrode and the negative electrode. A current collector having a porous film formed thereon is formed on both ends of the current collector, and an active material layer is formed on both ends of the current collector. And the second unformed part, the width of the first unformed part is narrower than the width of the second unformed part, and the active material layer in the first unformed part The end face is covered with a porous film, and a part of the current collector in the second unformed part is covered with the porous film.
[0016] このような構成により、集電体端部に設けられた幅狭の第 1の未形成部における活 物質層の端面を多孔膜で覆うことによって、内部短絡の発生を防止した、安全性の 高いタブレス構造を備えた二次電池を得ることができる。 [0016] With such a configuration, the end face of the active material layer in the first unformed narrow portion provided at the end of the current collector is covered with a porous film, thereby preventing an internal short circuit from occurring. A secondary battery having a highly tabular structure can be obtained.
発明の効果  The invention's effect
[0017] 本発明によれば、集電体の一方の端部に、幅狭の第 1の未形成部(形成代)を設け ることによって、活物質層の表面及び端面に多孔膜を形成することができ、これにより 、内部短絡の発生を防止した、安全性の高いタブレス構造の電極、及びそれを備え た二次電池を提供することができる。  [0017] According to the present invention, a porous film is formed on the surface and the end face of the active material layer by providing the narrow first unformed part (formation allowance) at one end of the current collector. Accordingly, it is possible to provide a highly safe electrode having a tabless structure that prevents the occurrence of an internal short circuit, and a secondary battery including the same.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]図 1は、本発明の実施形態における二次電池の電極構造を模式的に示した断 面図である。  FIG. 1 is a cross-sectional view schematically showing an electrode structure of a secondary battery in an embodiment of the present invention.
[図 2]図 2 (a)〜(b)は、本発明の実施形態における二次電池用電極の製造方法を示 した工程図である。  [FIG. 2] FIGS. 2 (a) to 2 (b) are process diagrams showing a method for producing an electrode for a secondary battery in an embodiment of the present invention.
[図 3]図 3 (a)〜(d)は、本発明の実施形態における二次電池用電極の製造方法を示 した工程図である。  [FIG. 3] FIGS. 3 (a) to 3 (d) are process diagrams showing a method for producing an electrode for a secondary battery in an embodiment of the present invention.
[図 4]図 4は、従来のリチウムイオン二次電池の構成を示した図で、(a)は電池全体の 断面図、(b)は電極群の部分断面図、 (c)は極板の部分拡大図である。  [FIG. 4] FIG. 4 is a diagram showing the configuration of a conventional lithium ion secondary battery, where (a) is a cross-sectional view of the whole battery, (b) is a partial cross-sectional view of an electrode group, and (c) is an electrode plate. FIG.
[図 5]図 5は、従来のタブレス構造の電極群の構成を示した断面図である。  FIG. 5 is a cross-sectional view showing the structure of a conventional tabless structure electrode group.
符号の説明  Explanation of symbols
[0019] 1 負極集電体 [0019] 1 Negative electrode current collector
la 第 1の未形成部  la first unformed part
lb 第 2の未形成部  lb second unformed part
2 負極活物質層 3 多孔膜 2 Negative electrode active material layer 3 Porous membrane
4 セパレータ  4 Separator
5 正極集電体  5 Positive current collector
5b 露出部  5b Exposed area
6 正極活物質層  6 Positive electrode active material layer
7 グラビアローノレ  7 Gravure Ronole
8 負極板  8 Negative electrode plate
9 液槽  9 Liquid tank
10 ブレード  10 blade
12 テープ  12 tapes
101 正極集電体  101 Positive current collector
101a 正極集電体端部  101a Positive current collector edge
102 正極活物質  102 Cathode active material
103 負極集電体  103 Negative electrode current collector
103a 負極集電体端部  103a Negative electrode current collector edge
104 負極活物質層  104 Negative electrode active material layer
105 セパレータ  105 Separator
106 正極集電板  106 Positive current collector
107 負極集電体  107 Negative electrode current collector
108 電池ケース  108 Battery case
111 バリ  111 Bali
120 多孔膜  120 porous membrane
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面 においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一 の参照符号で示す。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. In addition, this invention is not limited to the following embodiment.
[0021] 図 1は、本発明の実施形態における二次電池の電極構造を模式的に示した断面図 である。 [0022] 図 1に示すように、負極集電体 1上に活物質層 2が形成された負極、及び正極集電 体 5上に活物質層 6が形成された正極力 S、セパレータ 4を介して捲回または積層され て電極群を構成している。さらに、負極集電体 1上には、負極活物質層 2を覆う多孔 膜 3がさらに形成されている。多孔膜 3が形成された負極集電体 1は、その両端部に おいて、負極活物質層 2が形成されていない第 1の未形成部 la及び第 2の未形成部 lbを有しており、第 1の未形成部 laの幅は、第 2の未形成部 lbの幅よりも狭く形成さ れている。そして、第 1の未形成部 laにおける負極活物質層 2の端面は多孔膜 3で 覆われるとともに、第 2の未形成部 lbにおける負極集電体 1の一部は多孔膜 3で覆 われていない。 FIG. 1 is a cross-sectional view schematically showing an electrode structure of a secondary battery in an embodiment of the present invention. As shown in FIG. 1, a negative electrode in which an active material layer 2 is formed on a negative electrode current collector 1, a positive electrode force S in which an active material layer 6 is formed on a positive electrode current collector 5, and a separator 4. The electrode group is formed by winding or stacking them. Furthermore, a porous film 3 is further formed on the negative electrode current collector 1 so as to cover the negative electrode active material layer 2. The negative electrode current collector 1 formed with the porous film 3 has a first unformed portion la and a second unformed portion lb where the negative electrode active material layer 2 is not formed at both ends thereof. In addition, the width of the first unformed portion la is formed narrower than the width of the second unformed portion lb. The end surface of the negative electrode active material layer 2 in the first unformed part la is covered with the porous film 3, and part of the negative electrode current collector 1 in the second unformed part lb is covered with the porous film 3. Absent.
[0023] 本実施形態において、負極集電体 1上に形成された負極活物質層 2の表面、及び 第 1の未形成部 laにおける負極活物質層 2の端面を多孔膜 3で覆うことによって、例 えば、正極活物質層 6の端面で発生した切断バリ、若しくは正極集電体 5の露出部 5 bの押圧による屈曲等に起因して、正極集電体 5と負極活物質層 2とが内部短絡を起 こすことを防止することができ、これにより、安全性の高いタブレス構造を備えた二次 電池を実現することができる。  In the present embodiment, the surface of the negative electrode active material layer 2 formed on the negative electrode current collector 1 and the end surface of the negative electrode active material layer 2 in the first unformed portion la are covered with the porous film 3. For example, the positive electrode current collector 5 and the negative electrode active material layer 2 are caused by cutting burrs generated at the end face of the positive electrode active material layer 6 or bending due to pressing of the exposed portion 5 b of the positive electrode current collector 5. Can prevent an internal short circuit from occurring, whereby a secondary battery with a highly safe tabless structure can be realized.
[0024] ここで、第 2の未形成部 lbは、電極端子 (外部端子)に接続された集電板に接合さ れるもので、従来のタブレス構造の電極において設けられていたものである力 第 1 の未形成部 laは、従来のタブレス構造の電極においてはなかったものである。すな わち、従来のタブレス構造の電極においては、第 2の未形成部 lbと反対側の集電体 の端部は、表面に形成された活物質層とともに切断されるため、集電体の端面と活 物質層の端面とは面一になつていた。  [0024] Here, the second unformed part lb is joined to a current collector plate connected to an electrode terminal (external terminal), and is a force provided in a conventional tabless structure electrode. The first unformed portion la is not present in the conventional tabless electrode. In other words, in the conventional tabless structure electrode, the end of the current collector opposite to the second unformed part lb is cut together with the active material layer formed on the surface. The end face of the substrate and the end face of the active material layer were flush with each other.
[0025] これに対して、本発明における第 1の未形成部 laは、第 2の未形成部 lbとは反対 側の端部に、多孔膜 3の「形成代」として、第 2の未形成部 lbよりも幅狭の未形成部を 別途設けたものである。多孔膜 3は、多孔膜材料を含むスラリー(以下、「多孔膜スラ リー」という)を印刷等の方法で集電体上に塗布することによって形成されるが、このと き、第 1の未形成部 laを「形成代」にして未形成部 laに多孔膜スラリーが塗布され、 そのスラリーが活物質層端面に流れ込むことによって、負極活物質層 2の端面にも多 孔膜 3を形成することができる。 [0026] 従って、第 1の未形成部 laは、「形成代」として作用する最小限の幅を備えていれ ばよレ、。換言すれば、多孔膜 3は、第 1の未形成部 laを全て覆うように形成されること が好ましい。このように形成すれば、第 1の未形成部 laの幅を最小限にすることがで きるので、電池の容量を十分に確保することができる。 [0025] On the other hand, the first unformed portion la in the present invention is the second unformed portion as the “forming allowance” of the porous membrane 3 at the end opposite to the second unformed portion lb. An unformed part narrower than the formed part lb is separately provided. The porous membrane 3 is formed by applying a slurry containing a porous membrane material (hereinafter referred to as “porous membrane slurry”) onto a current collector by a method such as printing. The porous film slurry is applied to the non-formed part la with the formation part la as the “formation allowance”, and the slurry flows into the end face of the active material layer, thereby forming the porous film 3 on the end face of the negative electrode active material layer 2 be able to. [0026] Therefore, the first unformed part la only needs to have a minimum width that acts as a "forming allowance". In other words, the porous membrane 3 is preferably formed so as to cover the entire first unformed portion la. If formed in this way, the width of the first unformed portion la can be minimized, so that a sufficient battery capacity can be secured.
[0027] 最も、負極集電体 1の表面に負極活物質層 2を形成した後、第 1の未形成部 laを 残して負極集電体 1を切断する際、加工上の精度等の理由で、残存させた第 1の未 形成部 laの幅が、「形成代」としての最小限の幅以上のものになっても、本発明で奏 される発明の効果に影響を及ぼすことはなレ、。例えば、第 1の未形成部 laの幅を 3m m以下、より好適には lmm以下に設定すれば、電池容量の実質的な低下を抑制し つつ、安全性の高い二次電池を実現することができる。また、第 2の未形成部 lbの幅 は、例えば 5mm以上に設定すれば、集電板への溶接等による接合を確実にするこ とができる。また、多孔膜 3は、例えば 2〜30 x m (典型的には、 2〜: 10 z m)程度の 厚みに設定すれば、電池容量の実質的な低下を抑制しつつ、安全性の高い二次電 池を実現することができる。  [0027] Mostly, after forming the negative electrode active material layer 2 on the surface of the negative electrode current collector 1, when cutting the negative electrode current collector 1 leaving the first unformed portion la, reasons such as processing accuracy Thus, even if the width of the remaining first unformed portion la exceeds the minimum width as “formation allowance”, it does not affect the effects of the invention achieved by the present invention. Les. For example, if the width of the first unformed portion la is set to 3 mm or less, more preferably lmm or less, a highly safe secondary battery can be realized while suppressing a substantial decrease in battery capacity. Can do. Further, if the width of the second non-formed part lb is set to 5 mm or more, for example, the joining to the current collector plate can be ensured. Further, if the porous membrane 3 is set to a thickness of, for example, about 2 to 30 xm (typically 2 to 10 zm), the secondary membrane is highly safe while suppressing a substantial decrease in battery capacity. A battery can be realized.
[0028] 上述したように、多孔膜 3は、多孔膜材料を溶媒に混ぜて生成したスラリーを、印刷 法により、表面に負極活物質層 2が形成された負極集電体 1上に塗布することによつ て形成することが好ましい。また、多孔膜材料としては、例えば、アルミナまたはシリカ 等の粉末状の無機酸化物(フイラ一)を含むことが好ましい。さらに、フィラーを多孔膜 3として形成するための結着剤には、例えば、非結晶性で耐熱性が高ぐゴム弾性を 有するポリアクリロニトリル基を含むゴム性状高分子などを用いることが好ましい。これ らの材料を含む多孔膜 3は、耐熱性に優れ、電気化学的にも安定であるため、内部 短絡の発生を効果的に防止することができる。なお、多孔膜スラリーの印刷法として は、例えば、グラビア印刷、スクリーン印刷等を用いることができる。  [0028] As described above, in the porous film 3, the slurry produced by mixing the porous film material with the solvent is applied onto the negative electrode current collector 1 having the negative electrode active material layer 2 formed on the surface by a printing method. It is preferable to form them. The porous film material preferably contains, for example, a powdered inorganic oxide (filler) such as alumina or silica. Further, as the binder for forming the filler as the porous film 3, it is preferable to use, for example, a rubbery polymer containing a polyacrylonitrile group which is amorphous and has high heat resistance and rubber elasticity. Since the porous membrane 3 containing these materials has excellent heat resistance and is electrochemically stable, it is possible to effectively prevent the occurrence of an internal short circuit. In addition, as a printing method of porous film slurry, gravure printing, screen printing, etc. can be used, for example.
[0029] 図 1に示した構造の電極群は、図 4 (a)に示した従来のタブレス構造の二次電池と 同様に、電池ケース内に収容され、負極集電体 1の第 2の未形成部 lb、及び正極集 電体 5の露出部 5bは、それぞれ負極集電板及び正極集電板に溶接等で接合されて 、二次電池を構成している。  [0029] The electrode group having the structure shown in FIG. 1 is housed in a battery case and the second electrode of the negative electrode current collector 1 is the same as the conventional secondary battery having the tabless structure shown in FIG. The unformed portion lb and the exposed portion 5b of the positive electrode current collector 5 are joined to the negative electrode current collector plate and the positive electrode current collector plate, respectively, by welding or the like to constitute a secondary battery.
[0030] なお、本実施形態において、多孔膜 3は、負極側にのみ形成した力 負極、正極の 両方、あるいは正極側にのみ形成しても勿論よい。 [0030] In the present embodiment, the porous film 3 is composed of the force negative electrode and the positive electrode formed only on the negative electrode side. Of course, they may be formed only on both sides or on the positive electrode side.
[0031] 次に、本実施形態における二次電池用電極の製造方法について、図 2 (a)〜(b)、 及び図 3 (a)〜(d)を参照しながら説明する。なお、本実施形態では、負極を例に説 明する。  Next, a method for manufacturing the secondary battery electrode in the present embodiment will be described with reference to FIGS. 2 (a) to (b) and FIGS. 3 (a) to (d). In the present embodiment, the negative electrode will be described as an example.
[0032] まず、図 2 (a) (上側が平面図、下側が断面図を示す。図 2 (b)において同じ。)に示 すように、負極集電体 1の両面に、その両端部が露出するように、負極活物質層 2を 形成する。負極活物質層 2は、例えば、黒鉛等の負極活物質を含むスラリーを負極 集電体 1上に塗布することによって形成することができる。  [0032] First, as shown in Fig. 2 (a) (the upper side is a plan view and the lower side is a cross-sectional view; the same applies to Fig. 2 (b)), both ends of the negative electrode current collector 1 are provided on both sides. The negative electrode active material layer 2 is formed so that is exposed. The negative electrode active material layer 2 can be formed, for example, by applying a slurry containing a negative electrode active material such as graphite on the negative electrode current collector 1.
[0033] 次に、図 2 (b)に示すように、負極集電体 1の両端部の負極活物質層 2が形成され ていない未形成部を、それぞれ、 IIa_IIaの線、 IIb _IIbの線に沿って切断する。この とき、負極集電体 1の一方の端部における第 1の未形成部 laの幅は、他方の端部に おける第 2の未形成部 lbの幅よりも狭く形成される。  Next, as shown in FIG. 2 (b), the unformed portions where the negative electrode active material layer 2 is not formed at both ends of the negative electrode current collector 1 are respectively represented by IIa_IIa line and IIb_IIb line. Cut along. At this time, the width of the first unformed part la at one end of the negative electrode current collector 1 is formed narrower than the width of the second unformed part lb at the other end.
[0034] 次に、表面に負極活物質層 2が形成された負極集電体 1 (以下、「負極板 8」という) 上に、負極活物質層 2を覆うように、多孔膜を形成する。多孔膜の形成は、例えば、 図 3 (a)、(b)に示すように、通常のグラビア印刷法を用いて行うことができる。ここで、 図 3 (a)は、グラビア印刷装置の側面断面図、図 3 (b)は、同装置の正面断面図であ る。  Next, a porous film is formed so as to cover the negative electrode active material layer 2 on the negative electrode current collector 1 (hereinafter referred to as “negative electrode plate 8”) having the negative electrode active material layer 2 formed on the surface thereof. . The formation of the porous film can be performed, for example, using a normal gravure printing method as shown in FIGS. 3 (a) and 3 (b). Here, FIG. 3A is a side sectional view of the gravure printing apparatus, and FIG. 3B is a front sectional view of the apparatus.
[0035] 図 3 (a)、 (b)に示すように、周面に複数の溝が形成されたグラビアロール 7を、その 下周面が液槽 9に貯められた多孔膜スラリーに浸されるように配置する。そして、ダラ ビアロール 7を、走行する負極板 8に当接させながら、グラビアロール 7を負極板 8の 走行方向と逆向きに回転させることによって、グラビアロール 7の溝内に供給された多 孔膜スラリーを負極板 8の表面に転写することができる。負極板 8の表面に転写され た多孔膜スラリーは、その後乾燥させる。  [0035] As shown in Figs. 3 (a) and (b), a gravure roll 7 having a plurality of grooves formed on its peripheral surface is immersed in a porous membrane slurry whose lower peripheral surface is stored in a liquid tank 9. Arrange so that. Then, the porous film supplied into the groove of the gravure roll 7 is rotated by rotating the gravure roll 7 in a direction opposite to the traveling direction of the negative electrode plate 8 while contacting the negative roll 7 with the traveling negative plate 8. The slurry can be transferred to the surface of the negative electrode plate 8. The porous film slurry transferred to the surface of the negative electrode plate 8 is then dried.
[0036] 図 3 (c)、 (d)は、負極板 8の端部 A、 Bにおける状態を示した拡大図である。図 3 (d )に示すように、幅狭の第 1の未形成部 laは、グラビアロール 7と当接することによつ て、負極活物質層 2の端面にも多孔膜 (不図示)を形成することができる。  FIGS. 3 (c) and 3 (d) are enlarged views showing states at the end portions A and B of the negative electrode plate 8. As shown in FIG. 3 (d), the narrow first unformed portion la is brought into contact with the gravure roll 7 to form a porous film (not shown) on the end face of the negative electrode active material layer 2 as well. Can be formed.
[0037] 一方、図 3 (c)に示すように、幅広の第 2の未形成部 lbの先端を含む一部にテープ 12を貼っておくことによって、第 2の未形成部 lbの一部には多孔膜が形成されない 領域 (集電板と接合する部分)を確保することができる。あるいは、その領域にグラビ ァロール 7が接触しないように配置したり、その領域に接触するグラビアロール 7の溝 を、他の領域よりも深く形成しておくことによつても、多孔膜が形成されない領域を確 保すること力 Sできる。 [0037] On the other hand, as shown in FIG. 3 (c), a part of the second unformed part lb is obtained by applying the tape 12 to a part including the tip of the wide second unformed part lb. Does not form a porous membrane A region (a portion to be joined to the current collector plate) can be secured. Alternatively, the porous film is not formed by arranging the gravure roll 7 so as not to contact the region, or by forming the groove of the gravure roll 7 contacting the region deeper than the other region. The ability to secure an area is possible.
[0038] また、グラビアロール 7の溝を、グラビアロール 7の周面に対して傾斜させて形成し、 その傾斜方向及び Z又は傾斜角を調整することによって、第 1の未形成部 laにおけ る負極活物質層 2の端面に形成される多孔膜の厚みを最適化することができる。  [0038] Further, the groove of the gravure roll 7 is formed so as to be inclined with respect to the peripheral surface of the gravure roll 7, and the inclination direction and Z or the inclination angle thereof are adjusted, so that the first unformed portion la is formed. The thickness of the porous film formed on the end face of the negative electrode active material layer 2 can be optimized.
[0039] なお、図中の搔き落としブレード 10は、グラビアロール 7に沿って設けることによって 、グラビアロール 7の溝以外の表面に付着した余分な多孔膜スラリーを搔き落とすた めのものである。  [0039] The scraping blade 10 in the figure is provided along the gravure roll 7 so as to scrape off excess porous film slurry adhering to the surface other than the groove of the gravure roll 7. is there.
[0040] 本発明における二次電池を構成する正極、負極、及びセパレータは、以下に示す 材料、及び形成方法を好適に用いることができる。  [0040] For the positive electrode, the negative electrode, and the separator constituting the secondary battery in the present invention, the following materials and forming methods can be preferably used.
[0041] 正極活物質には、コバルト酸リチウムおよびその変性体(アルミニウムやマグネシゥ ムを共晶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコ バルトやアルミニウムなどで置換したもの)、マンガン酸リチウムおよびその変性体な どの複合酸化物を用いることができる。また、導電剤には、アセチレンブラック、ケツチ ェンブラック、各種グラフアイトを単独あるいは複数組み合わせたものなどを用いる。さ らに、結着剤には、ポリテトラフルォロエチレン(PTFE)やポリフッ化ビニリデン(PVd F)などを用いる。  [0041] As the positive electrode active material, lithium cobaltate and modified products thereof (such as those obtained by eutectic aluminum and magnesium), lithium nickelate and modified products thereof (partially nickel was substituted with cobalt or aluminum) Composite oxides such as lithium manganate and modified products thereof. As the conductive agent, acetylene black, ketjen black, or a combination of various types of graphite is used. Further, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVd F), or the like is used as the binder.
[0042] これら材料を混練装置を用い、必要に応じて増粘剤を混合し、水あるいは有機溶 媒とともに混練し、正極合剤スラリーを作製する。その後、アルミ集電体上にダイ塗工 装置などを用い、スラリーを塗布'乾燥させ、集電体上に活物質層を形成する。ここで 、正極長手方向の両端に正極活物質層を形成してレ、なレ、未形成部を連続形成する 。その後、必要に応じてプレスし、多孔膜を形成する場合は、多孔膜の形成代として 必要な幅の未形成部を残した状態でスリットを施し、正極の基材を作製する。  [0042] Using a kneader, these materials are mixed with a thickener as necessary, and kneaded with water or an organic solvent to prepare a positive electrode mixture slurry. Then, using a die coating device or the like on the aluminum current collector, the slurry is applied and dried to form an active material layer on the current collector. Here, a positive electrode active material layer is formed at both ends of the positive electrode in the longitudinal direction to continuously form a layer, an unformed portion, and an unformed portion. Thereafter, pressing is performed as necessary to form a porous film, and slitting is performed in a state where an unformed part having a width necessary for forming the porous film is left, thereby producing a positive electrode base material.
[0043] 負極活物質には、各種天然黒鉛、人造黒鉛、もしくは合金組成材料などを用いるこ とができる。また、結着剤には、スチレンブタジエンゴム(SBR)やポリフッ化ビニリデン (PVdF)などを用いることができる。 [0044] これら材料を混練装置を用い、必要に応じて増粘剤を混合し、水あるいは有機溶 媒とともに混練し、負極合剤スラリーを作製する。その後、銅集電体上にダイ塗工装 置などを用レ、、スラリーを塗布'乾燥させ、集電体上に活物質層を形成する。ここで、 負極長手方向の両端に負極活物質層を形成していない未形成部を連続形成する。 その後、必要に応じてプレスし、多孔膜を形成する場合は、多孔膜の形成代として必 要な幅の未形成部を残した状態でスリットを施し、負極の基材を作製する。 [0043] As the negative electrode active material, various natural graphites, artificial graphites, alloy composition materials, and the like can be used. As the binder, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVdF), or the like can be used. [0044] Using a kneader, these materials are mixed with a thickener as necessary, and kneaded with water or an organic solvent to prepare a negative electrode mixture slurry. Thereafter, a die coating apparatus or the like is used on the copper current collector, and the slurry is applied and dried to form an active material layer on the current collector. Here, the non-formed part in which the negative electrode active material layer is not formed is continuously formed at both ends in the negative electrode longitudinal direction. Thereafter, pressing is performed as necessary to form a porous film, and slits are made while leaving an unformed portion having a width necessary for forming the porous film, thereby producing a negative electrode substrate.
[0045] セパレータには、電解液の保持力が高ぐ正極および負極のいずれの電位下にお いても安定な微多孔性フィルムからなるものを用いることができる。このようなセパレー タとしては、例えば、ポリプロピレンからなるもの、ポリエチレンからなるもの、ポリイミド 力 なるもの、ポリアミドからなるものなどが挙げられる。  [0045] As the separator, it is possible to use a separator made of a microporous film that is stable at any potential of the positive electrode and the negative electrode, which have a high holding power of the electrolytic solution. Examples of such a separator include those made of polypropylene, those made of polyethylene, those made of polyimide, and those made of polyamide.
[0046] 以上の手順により作製した正極と負極を、セパレータを介して捲回、もしくはそれら 材料を必要寸法に加工して積層するなどして電極群を作製する。その後、電極群の 両端に露出している集電体部分を、外部端子に接続する集電板に溶接し、電池ケー スに挿入し、非水電解液を注入した後、必要個所を封止することで二次電池を得る。 なお、電池形状は円筒形、あるいは角型形状など特に限定されない。  [0046] The electrode group is produced by winding the positive electrode and the negative electrode produced by the above procedure through a separator, or processing and laminating these materials to necessary dimensions. After that, the current collector part exposed at both ends of the electrode group is welded to the current collector plate connected to the external terminal, inserted into the battery case, non-aqueous electrolyte is injected, and the necessary parts are sealed. By doing so, a secondary battery is obtained. The battery shape is not particularly limited, such as a cylindrical shape or a square shape.
[0047] 以下、実施例において本発明をさらに詳細に説明する。  [0047] Hereinafter, the present invention will be described in more detail in Examples.
[0048] (実施例 1)  [0048] (Example 1)
正極の作製方法について説明する。 NiSO水溶液に、所定比率の Coおよび A1の  A method for manufacturing the positive electrode will be described. In a NiSO aqueous solution, a predetermined ratio of Co and A1
4  Four
硫酸塩を加え、飽和水溶液を調製する。この飽和水溶液を撹拌しながら水酸化ナトリ ゥムを溶解したアルカリ溶液をゆっくりと滴下し中和することによって、三元系の水酸 化ニッケノレ Ni Co Al (OH) の沈殿物を共沈法により生成させた。この沈殿物を  Sulfate is added to prepare a saturated aqueous solution. While stirring this saturated aqueous solution, an alkaline solution in which sodium hydroxide is dissolved is slowly added dropwise to neutralize the solution, so that the ternary nickel hydroxide Ni Co Al (OH) precipitate is obtained by coprecipitation. Generated. This deposit
0.7 0.2 0.1 2  0.7 0.2 0.1 2
ろ過、水洗し、 80°Cで乾燥を行った。得られた水酸化ニッケルは平均粒径約 10 z m であった。  Filtration, washing with water and drying at 80 ° C were performed. The obtained nickel hydroxide had an average particle size of about 10 zm.
[0049] その後、得られた Ni Co Al (OH)を、大気中 900°Cで 10時間の熱処理を行  [0049] Thereafter, the obtained Ni Co Al (OH) was heat-treated at 900 ° C for 10 hours in the atmosphere.
0.7 0.2 0.1 2  0.7 0.2 0.1 2
レ、、酸化ニッケル Ni Co Al Oを得た。そして、 Ni、 Co、 Alの原子数の和と Liの原  Le, nickel oxide Ni Co Al O was obtained. And the sum of the numbers of Ni, Co, and Al and the source of Li
0.7 0.2 0.1  0.7 0.2 0.1
子数が等量になるように水酸化リチウム 1水和物をカ卩え、乾燥空気中 800°Cで 10時 間の熱処理を行うことにより、組成式 LiNi Co Al Oで表されるリチウムニッケル  Lithium nickel monohydrate represented by the composition formula LiNi Co Al O is obtained by holding lithium hydroxide monohydrate so that the number of dipoles is equal and performing heat treatment at 800 ° C for 10 hours in dry air.
0.7 0.2 0.1 2  0.7 0.2 0.1 2
複合酸化物を正極活物質として得た。そして粉砕、分級の処理を経て正極活物質粉 末とした。平均粒径 9· 5 μ ΐη、比表面積は 0· 4m2/gであった。 A composite oxide was obtained as a positive electrode active material. And after the pulverization and classification treatment, the positive electrode active material powder The end. The average particle size was 9 · 5 μΐη, and the specific surface area was 0.4 · m 2 / g.
[0050] 以上により得たリチウムニッケル複合酸化物 3kgと、アセチレンブラック 90g、 PTFE デイスパージヨン液(固形分 60%) 100gを適量の水とともに混練して正極スラリーを 作製した。このスラリーを厚み 15 z m、幅 150mmのアルミ箔上に塗布幅 110mm、 箔の片側端部長手方向に 11mmの未形成部、その反対側端部に 29mmの未形成 部を連続形成する状態で塗布乾燥した。そして総厚が 100 μ mとなるようにプレスし た後、極板幅 124mm、合剤塗布幅 110mm、そして片側未塗布幅 l lmm、反対側 の未塗布幅が多孔膜の形成代として 3mmになるようにスリットし、正極を作製した。  [0050] 3 kg of the lithium nickel composite oxide obtained as described above, 90 g of acetylene black, and 100 g of a PTFE dissemination liquid (solid content 60%) were kneaded together with an appropriate amount of water to prepare a positive electrode slurry. This slurry was applied on an aluminum foil with a thickness of 15 zm and a width of 150 mm, with a coating width of 110 mm, an unformed part of 11 mm in the longitudinal direction of one end of the foil, and a non-formed part of 29 mm on the opposite end. Dried. After pressing to a total thickness of 100 μm, the electrode plate width is 124 mm, the mixture coating width is 110 mm, and the uncoated width on one side is l lmm, and the uncoated width on the opposite side is 3 mm as the formation margin for the porous film. It was slit so that a positive electrode was produced.
[0051] 次に、負極の作製方法について説明する。人造黒鉛 3kgを、スチレン—ブタジエン 共重合体ゴム粒子結着剤(固形分重量 40重量%)を 75g、カルボキシメチルセル口 ース(CMC) 30g、および適量の水とを混練し、負極スラリーを作製した。このスラリー を厚み 10 x m、幅 150mmの銅箔上に塗布幅 114mm、箔の片側端部長手方向に 1 lmmの未形成部、その反対側端部に 25mmの未形成部を連続形成する状態で塗 布乾燥した。そして総厚が 110 /i mとなるようにプレスした後、極板幅 128mm、合剤 塗布幅 114mm、片側未塗布幅 l lmm、反対側の未塗布幅が多孔膜の形成代とし て 3mmになるようにスリットし、負極を作製した。  [0051] Next, a method for producing a negative electrode will be described. 3 kg of artificial graphite was kneaded with 75 g of styrene-butadiene copolymer rubber particle binder (solid weight 40% by weight), 30 g of carboxymethyl cellulose (CMC), and an appropriate amount of water, Produced. The slurry was applied on a copper foil having a thickness of 10 xm and a width of 150 mm, with a coating width of 114 mm, an unformed part of 1 lmm in the longitudinal direction of one end of the foil, and an unformed part of 25 mm continuously formed on the opposite end. The coating was dried. After pressing to a total thickness of 110 / im, the electrode plate width is 128mm, the mixture coating width is 114mm, the uncoated width on one side is l lmm, and the uncoated width on the opposite side is 3mm as the formation margin for the porous film. In this way, the negative electrode was produced.
[0052] 次に、多孔膜スラリーの作製方法にっレ、て説明する。メディアン径 0. 3 β mのアル ミナ lOOOgを、ポリアクリロニトリル変性ゴム結着剤(固形分 8重量%)を 375gおよび 適量の NMP溶媒とともに混練し、多孔膜スラリーを作製した。 [0052] Next, a method for producing a porous membrane slurry will be described. A porous membrane slurry was prepared by kneading alumina lOOOOg with a median diameter of 0.3 β m and 375 g of polyacrylonitrile-modified rubber binder (solid content 8 wt%) together with an appropriate amount of NMP solvent.
[0053] 多孔膜形成装置として、グラビア塗布装置を用いた。上記正極の片側 1 lmmの未 形成部に、活物質層端部から 6mm外側の位置まで多孔膜スラリーを連続塗布し、合 剤端部への多孔膜と 5mm幅の外部集電用の露出部を形成した。その反対側の幅 3 mmの多孔膜形成代には、全面に多孔膜を形成し、活物質層両端部および平面部 の全面に多孔膜スラリーを塗布し、その後、連続的に構成された乾燥炉にてスラリー 中の溶媒を乾燥させた。その後、もう一方の正極面側にも同様な形で多孔膜スラリー を塗布乾燥させることにより、正極合剤平面部と端部断面部全面に多孔膜を形成し、 片側に 5mm幅の集電用露出部を形成した正極板を作製した。多孔膜は、活物質層 上の膜厚が約 10 z mになるよう、グラビア印刷を用いて形成した。本実施例では、負 極には多孔膜を形成させなかった。 As the porous film forming apparatus, a gravure coating apparatus was used. The porous film slurry is continuously applied to the 1 mm unformed part on one side of the positive electrode from the edge of the active material layer to a position 6 mm outside, and the porous film at the edge of the mixture and the exposed part for external current collection with a width of 5 mm. Formed. On the opposite side, a porous film with a width of 3 mm is formed by forming a porous film on the entire surface, applying a porous film slurry to the entire surface of both ends of the active material layer and the flat surface, and then drying continuously formed. The solvent in the slurry was dried in an oven. After that, the porous film slurry is coated and dried in the same way on the other positive electrode surface side to form a porous film on the entire surface of the positive electrode mixture flat part and the end cross section, and for collecting current of 5 mm width on one side. A positive electrode plate having an exposed portion was produced. The porous film was formed using gravure printing so that the film thickness on the active material layer was about 10 zm. In this example, negative No porous film was formed on the electrode.
[0054] 以上のように多孔膜を塗布した正極と多孔膜を塗布していない上記負極とをポリエ チレンセパレータを介して、両端に正極および負極集電体が露出する形で角型に捲 回し電極群を作製した。この電極群の両端に外部集電端子を抵抗溶接し、両端子が 反対方向に突き出る形で、角型アルミケースに揷入し、液栓以外を封止し、ケース内 にエチレンカーボネイト(EC)とェチルメチルカーボネイト(EMC)を体積比 1: 3の配 合比で混合した混合溶媒に、溶質として六フッ化リン酸リチウム (LiPF )を lmol/d  [0054] As described above, the positive electrode coated with the porous film and the negative electrode not coated with the porous film are wound into a square shape through a polyethylene separator so that the positive electrode and the negative electrode current collector are exposed at both ends. An electrode group was prepared. External current collector terminals are resistance-welded to both ends of this electrode group, both terminals protrude in the opposite direction, inserted into a square aluminum case, and the parts other than the liquid stopper are sealed, and ethylene carbonate (EC) is placed inside the case. Lithium hexafluorophosphate (LiPF) as a solute is mixed with lmol / d in a mixed solvent in which ethanol and ethylmethyl carbonate (EMC) are mixed at a volume ratio of 1: 3.
6  6
m3の濃度で溶解した電解液を注入後、最終液栓を封止して、公称容量 5Ahの二次 電池を作製した。なおケースには電池内圧上昇による破裂を防止するために 10気圧 で開弁する安全弁を備えた。この電池を電池 Aとする。 After injecting an electrolytic solution dissolved at a concentration of m 3 , the final liquid stopper was sealed to produce a secondary battery with a nominal capacity of 5 Ah. The case was equipped with a safety valve that opened at 10 atm to prevent rupture due to an increase in battery internal pressure. This battery is called battery A.
[0055] (実施例 2) [Example 2]
実施例 1における正極への多孔膜形成の変わりに、負極上に多孔膜を形成したこ と以外は実施例 1と同様に電池を作製した。この電池を電池 Bとする。  A battery was fabricated in the same manner as in Example 1 except that instead of forming the porous film on the positive electrode in Example 1, a porous film was formed on the negative electrode. This battery is called battery B.
[0056] (実施例 3) [0056] (Example 3)
負極上にも実施例 1における正極と同様に多孔膜を形成し、正極と負極両方に多 孔膜を形成したこと以外は実施例 1と同様に電池を作製した。この電池を電池 Cとす る。  A battery was fabricated in the same manner as in Example 1 except that a porous film was formed on the negative electrode in the same manner as the positive electrode in Example 1, and a porous film was formed on both the positive electrode and the negative electrode. This battery is called battery C.
[0057] (比較例 1)  [0057] (Comparative Example 1)
実施例 1の多孔膜形成前の正極において、極板幅 121mm、合剤塗布幅 110mm 、片側未塗布幅 11mmになるように、反対側の未塗布幅 3mmを残さずスリットし、そ の上に多孔膜を形成した。この時、集電部と反対の正極合剤端部には多孔膜は形 成できていない。また、実施例 1の多孔膜形成前の負極において、極板幅 125mm、 合剤塗布幅 114mm、片側未塗布幅 11mmになるように、反対側の未塗布幅 3mm を残さずスリットし負極を作製した。このこと以外は実施例 1と同様に電池を作製した。 この電池を電池 Dとする。この時、集電部と反対の正極合剤端部には多孔膜は形成 できていない。  In the positive electrode before forming the porous film in Example 1, the electrode plate width is 121 mm, the mixture coating width is 110 mm, and the uncoated width of 3 mm on the other side is slit so that there is no uncoated width of 3 mm. A porous membrane was formed. At this time, no porous film was formed at the end of the positive electrode mixture opposite to the current collector. In addition, in the negative electrode before forming the porous film of Example 1, the negative electrode was prepared by slitting the uncoated width of 3 mm on the opposite side so that the electrode plate width was 125 mm, the mixture coating width was 114 mm, and the uncoated width was 11 mm on one side. did. A battery was fabricated in the same manner as in Example 1 except for this. This battery is called battery D. At this time, no porous film was formed at the end of the positive electrode mixture opposite to the current collector.
[0058] (比較例 2)  [0058] (Comparative Example 2)
比較例 1における正極で多孔膜を形成せず、負極上に多孔膜を形成したこと以外 は比較例 1の電池と同様に電池を作製した。この時、集電部と反対の負極合剤端部 には多孔膜は形成できていない。この電池を電池 Eとする。 Other than not forming a porous film on the positive electrode in Comparative Example 1 but forming a porous film on the negative electrode A battery was prepared in the same manner as the battery of Comparative Example 1. At this time, no porous film was formed at the end of the negative electrode mixture opposite to the current collector. This battery is called battery E.
[0059] (比較例 3) [0059] (Comparative Example 3)
比較例 1の正極と比較例 2の負極にぉレ、て、両者ともに多孔膜を形成してレ、なレ、極 板を用いたこと以外は比較例 1の電池と同様に電池を作製した。この電池を電池 Fと する。  A battery was fabricated in the same manner as the battery of Comparative Example 1 except that a porous film was formed on both the positive electrode of Comparative Example 1 and the negative electrode of Comparative Example 2, and both were used. . This battery is called battery F.
[0060] (比較例 4)  [0060] (Comparative Example 4)
実施例 1の正極において多孔膜を形成していないこと以外は実施例 1の電池と同 様に電池を作製した。この電池を電池 Gとする。  A battery was fabricated in the same manner as the battery of Example 1 except that the porous film was not formed on the positive electrode of Example 1. This battery is called battery G.
[0061] 以上の各電池を 20個それぞれ作製した。得られた各例の電池に対し、以下の評価 を行った。 [0061] Twenty of the batteries described above were produced. The following evaluations were performed on the batteries obtained in each example.
[0062] (短絡検査) [0062] (Short-circuit inspection)
電極群の外部端子をまず正極端側から抵抗溶接した後、電極群の短絡の有無を 2 First, resistance welding the external terminals of the electrode group from the positive electrode end side,
50Vの電圧を端子両端に印加し、その時の漏れ電流の有無を確認した。その後、短 絡してなかった場合、負極端側に外部端子を抵抗溶接し、同様な短絡検査を実施し た。 A voltage of 50 V was applied across the terminals, and the presence or absence of leakage current at that time was confirmed. After that, when there was no short circuit, the external terminal was resistance-welded to the negative electrode end side, and a similar short-circuit inspection was performed.
[0063] (圧壊試験)  [0063] (Crush test)
上述した短絡検査で異常が見られな力つた電極群を電池に組み立てた後、 25°C の環境下にて、 1. 4Aの電流値、 3〜4. 2Vの電圧範囲で 3サイクル充放電を実施し 、電池容量を確認した。その後、同電流値で 4. 4Vまでの過充電状態まで充電を行 つた。そして、 25°Cの環境下にて、先端の半径が 8mmの円形に加工されている板を 用レ、、 1)正極端子側のケース端面から 10mmの深さまで、 2)負極端子側のケース 端面から 10mmの深さまで、 3)正極と負極端子が左右に配された面の中心線部分 を電池の厚み方向の 1Z2の深さまで、それぞれ圧壊を実施した。 1)〜3)の試験は 、各電池 2個づっ実施した。 4. 4V過充電状態にしたのは、圧壊時の電池発熱挙動 をより明確にするためである。  After assembling a powerful electrode group with no abnormalities in the short-circuit inspection described above into a battery, under a 25 ° C environment, charge and discharge 3 cycles at a current value of 4 A and a voltage range of 3 to 4.2 V The battery capacity was confirmed. After that, the battery was charged to an overcharged state up to 4.4V at the same current value. Then, use a plate processed into a circle with a tip radius of 8 mm in an environment of 25 ° C. 1) From the case end face of the positive terminal side to a depth of 10 mm, 2) The case of the negative terminal side Crushing was carried out to a depth of 10 mm from the end face, and 3) the centerline part of the face where the positive and negative terminals were placed on the left and right, to a depth of 1Z2 in the thickness direction of the battery. The tests 1) to 3) were performed on two batteries. 4. The 4V overcharge state was set to clarify the battery heat generation behavior during crushing.
[0064] 表 1に、各例の電池とその評価結果を示す。なお、電池容量については全て公称 容量 5Ah前後が得られていた。なお、圧壊試験結果は、試験を行った 2個の電池の うち電池到達温度の高かった方の電池の結果を示している。 [0064] Table 1 shows the batteries of each example and the evaluation results. As for battery capacity, a nominal capacity of around 5Ah was obtained. The result of the crush test is that of the two batteries tested. The result of the battery with the higher battery arrival temperature is shown.
[0065] [表 1]  [0065] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0066] 表 1の結果について考察する。 [0066] Consider the results in Table 1.
[0067] まず、電池 Gについて外部端子溶接後に短絡が確認された電極群を観察したとこ ろ、合剤表面に多孔膜を形成していないため、溶接時の熱によってセパレータが収 縮もしくは溶融しており、対向する極板同士がむきだし状態となっていた。その結果、 短絡が生じたものと推測された。また、圧壊試験においては、 1)の正極側の圧壊で は、正極集電体は負極端部集電体と短絡し、部分的に負極活物質層との短絡も生じ ているものと推測される。ここで正極アルミ箔と負極炭素活物質層との短絡は短絡電 流が大きぐかつ活物質層の自己発熱も大きいことがこれまでわかっている。そのた め、 2)の負極側の圧壊での最高到達温度が 36°Cであるのに対し、 1)の正極側の圧 壊での最高到達温度が 79°Cまで達したのは、部分的な正極アルミと負極炭素活物 質層との短絡が重なったためと推測される。 [0067] First, for battery G, an electrode group in which a short circuit was confirmed after external terminal welding was observed. On the other hand, since no porous film was formed on the surface of the mixture, the separator was contracted or melted by heat during welding, and the opposing electrode plates were exposed. As a result, it was speculated that a short circuit occurred. In addition, in the crushing test, in the crushing on the positive electrode side in 1), it is estimated that the positive electrode current collector is short-circuited with the negative electrode end current collector and partially short-circuited with the negative electrode active material layer. The Here, it has been known that a short circuit between the positive electrode aluminum foil and the negative electrode carbon active material layer has a large short circuit current and a large amount of self-heating of the active material layer. For this reason, the maximum temperature reached in the collapse on the negative electrode side in 2) was 36 ° C, whereas the maximum temperature reached in the collapse on the positive electrode side in 1) reached 79 ° C. This is presumably because the short circuit between the positive electrode aluminum and the negative electrode carbon active material layer overlapped.
3)の中央部の圧壊では、直に正極と負極が短絡し、短絡面積も大きいため、 150°C と非常に大きな発熱が確認され、電解液の気化による内圧上昇が原因と推測される 安全弁の開弁にまで至る挙動も確認された。  In the crush in the center of 3), the positive and negative electrodes are short-circuited and the short-circuit area is large, so a very large heat generation of 150 ° C was confirmed, and the safety valve is assumed to be caused by an increase in internal pressure due to evaporation of the electrolyte The behavior up to the valve opening was also confirmed.
[0068] 次に、電池 D〜Fでは、 1)の正極側の圧壊において、正極アルミ箔と、多孔膜が形 成されていない負極端部活物質層とが広範囲で短絡したことにより大きな発熱となり 、 120°Cを超える発熱と、開弁が確認された。また、多孔膜を形成していない電池 F では、外部集電端子溶接時の短絡も発生している。  [0068] Next, in batteries D to F, in the collapse of 1) on the positive electrode side, the positive electrode aluminum foil and the negative electrode end active material layer on which the porous film is not formed are short-circuited over a wide area, resulting in large heat generation. A heat generation exceeding 120 ° C and valve opening were confirmed. In addition, in battery F in which no porous film was formed, a short circuit occurred during welding of the external current collector terminal.
[0069] 以上の比較例の結果に対し、電池 A〜Cにおいては、多孔膜を正極もしくは負極い ずれか一方に少なくとも形成しているため、集電端子溶接時の短絡は確認されなか つた。電池 Aにおいては、 1)の正極側の圧壊においては、電池 Gと同様に、正極集 電体と負極端部集電体とが短絡し、部分的に負極活物質層との短絡も生じているも のと推測され、電池 Gの結果にて考察した要因で 75°Cまでの発熱が生じたと推測さ れる。電池 Bおよび Cでは圧壊 1)〜3)レ、ずれにぉレ、ても大きな発熱には至ってレ、な レ、。  [0069] In contrast to the results of the comparative examples described above, in batteries A to C, since the porous film was formed at least on either the positive electrode or the negative electrode, a short circuit during current collector terminal welding was not confirmed. In the battery A, in the collapse of 1) on the positive electrode side, as in the case of the battery G, the positive electrode current collector and the negative electrode end current collector are short-circuited, and the short-circuit with the negative electrode active material layer partially occurs. It is presumed that heat generation up to 75 ° C was caused by the factors considered in the results of Battery G. Batteries B and C are crushed 1) to 3).
[0070] 以上の結果から、集電体上に活物質層を配した正極および負極とセパレータとを 積層または捲回した構成の二次電池において、正極、負極のいずれか一方の電極 に対して、集電体の端部における活物質層の端面を多孔膜で覆うことによって、内部 短絡の抑制、さらには電池の外圧による内部短絡時の安全性を高めることが可能と なること力 Sわ力^)。より好ましくは、多孔膜を負極側にに設けることで、さらに安全性を 高めた二次電池を得ることが可能となる。 [0070] From the above results, in a secondary battery having a configuration in which a positive electrode and a negative electrode each having an active material layer disposed on a current collector and a separator are stacked or wound, either the positive electrode or the negative electrode By covering the end face of the active material layer at the end of the current collector with a porous film, it is possible to suppress internal short circuits and further improve safety during internal short circuits due to the external pressure of the battery. ^). More preferably, providing a porous membrane on the negative electrode side further increases safety. An improved secondary battery can be obtained.
[0071] 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項で はなぐ勿論、種々の改変が可能である。  As described above, the present invention has been described with reference to the preferred embodiments. However, this description is not a limitation, and various modifications can be made.
[0072] なお、本発明において、「活物質層」は、少なくとも活物質を含む層のことを言い、 活物質以外に、例えば結着剤、導電剤、増粘剤等の材料が含まれているか否かは 問わない。 [0072] In the present invention, the "active material layer" refers to a layer containing at least an active material, and includes, in addition to the active material, materials such as a binder, a conductive agent, and a thickener. It doesn't matter whether or not.
産業上の利用可能性  Industrial applicability
[0073] 本発明は、安全性の高いタブレス構造の電極、及びそれを備えた二次電池に有用 で、ノートパソコン、携帯電話、デジタルスチールカメラ、電動工具、電動自動車等の 駆動電源に適用できる。 [0073] The present invention is useful for a highly safe tabless structure electrode and a secondary battery including the electrode, and can be applied to a drive power source of a notebook computer, a mobile phone, a digital still camera, an electric tool, an electric vehicle, and the like. .

Claims

請求の範囲 The scope of the claims
[1] 集電体上に、該集電体の両端部が露出するように、活物質層を形成する工程 (a)と 前記集電体上に、前記活物質層を覆うように、多孔膜を形成する工程 (b)と を有し、  [1] A step (a) of forming an active material layer on the current collector so that both ends of the current collector are exposed, and a porous material so as to cover the active material layer on the current collector And (b) forming a film, and
前記工程 (a)において、前記集電体の一方の端部における前記活物質層の第 1の 未形成部の幅は、他方の端部における第 2の未形成部の幅よりも狭く形成され、 前記工程 (b)において、前記多孔膜は、前記第 1の未形成部における前記活物質 層の端面を覆うとともに、前記第 2の未形成部における前記集電体の一部を露出す るように形成される、二次電池用電極の製造方法。  In the step (a), the width of the first unformed part of the active material layer at one end of the current collector is formed narrower than the width of the second unformed part at the other end. In the step (b), the porous film covers an end face of the active material layer in the first unformed part and exposes a part of the current collector in the second unformed part. The manufacturing method of the electrode for secondary batteries formed as follows.
[2] 前記工程 (b)において、前記多孔膜は、前記第 1の未形成部を全て覆うように形成 される、請求項 1に記載の二次電池用電極の製造方法。 [2] The method for producing an electrode for a secondary battery according to claim 1, wherein in the step (b), the porous film is formed so as to cover all of the first unformed part.
[3] 前記工程 (b)において、前記多孔膜は、多孔膜スラリーを印刷により前記集電体上 に塗布することによって形成される、請求項 1に記載の二次電池用電極の製造方法 [3] The method for producing an electrode for a secondary battery according to claim 1, wherein in the step (b), the porous film is formed by applying a porous film slurry onto the current collector by printing.
[4] 前記工程 (a)において、前記第 1の未形成部の幅は、 3mm以下に、前記第 2の未 形成部の幅は、 5mm以上になるように形成される、請求項 1に記載の二次電池用電 極の製造方法。 [4] In the step (a), the width of the first unformed portion is 3 mm or less, and the width of the second unformed portion is 5 mm or more. The manufacturing method of the electrode for secondary batteries as described.
[5] 前記多孔膜は、無機酸化物を含有する、請求項 1に記載の二次電池用電極の製 造方法。  [5] The method for producing an electrode for a secondary battery according to claim 1, wherein the porous film contains an inorganic oxide.
[6] 前記電極は、負極として使用される、請求項 1に記載の二次電池用電極の製造方 法。  6. The method for producing an electrode for a secondary battery according to claim 1, wherein the electrode is used as a negative electrode.
[7] 正極または負極の少なくとも一方力 請求項:!〜 3の何れかに記載の製造方法によ つて形成された電極を備えた二次電池であって、  [7] At least one force of a positive electrode or a negative electrode Claim: A secondary battery comprising an electrode formed by the manufacturing method according to any one of claims 1 to 3,
前記電極は、前記正極及び前記負極をセパレータを介して捲回または積層された 電極群を構成しており、  The electrode constitutes an electrode group in which the positive electrode and the negative electrode are wound or laminated through a separator,
前記集電体の第 2の未形成部の端部は、電極端子に接続された集電板に接合さ れている、二次電池。 A secondary battery in which an end portion of the second unformed portion of the current collector is joined to a current collector plate connected to an electrode terminal.
[8] 集電体上に活物質層がそれぞれ形成された正極及び負極を、セパレータを介して 捲回または積層された電極群を備えた二次電池であって、 [8] A secondary battery comprising an electrode group in which a positive electrode and a negative electrode each having an active material layer formed on a current collector are wound or laminated with a separator interposed therebetween,
前記正極または負極の少なくとも一方の電極の集電体上には、前記活物質層を覆 う多孔膜がさらに形成されており、  A porous film covering the active material layer is further formed on the current collector of at least one of the positive electrode and the negative electrode,
前記多孔膜が形成された前記集電体は、該集電体の両端部において、前記活物 質層が形成されていない第 1の未形成部及び第 2の未形成部を有し、  The current collector on which the porous film is formed has a first unformed portion and a second unformed portion where the active material layer is not formed at both ends of the current collector,
前記第 1の未形成部の幅は、前記第 2の未形成部の幅よりも狭く形成されており、 前記第 1の未形成部における前記活物質層の端面は、前記多孔膜で覆われ、 前記第 2の未形成部における前記集電体の一部は、前記多孔膜で覆われていな レ、、二次電池。  The width of the first unformed part is formed narrower than the width of the second unformed part, and the end surface of the active material layer in the first unformed part is covered with the porous film. A part of the current collector in the second unformed part is not covered with the porous film. A secondary battery.
[9] 前記第 1の未形成部における前記集電体の全ては前記多孔膜で覆われている、請 求項 8に記載の二次電池。  [9] The secondary battery according to claim 8, wherein all of the current collector in the first unformed part is covered with the porous film.
[10] 前記第 1の未形成部の幅は、 3mm以下、前記第 2の未形成部の幅は、 5mm以上 である、請求項 8に記載の二次電池。 [10] The secondary battery according to claim 8, wherein the width of the first unformed portion is 3 mm or less, and the width of the second unformed portion is 5 mm or more.
[11] 前記多孔膜は、無機酸化物を含有する、請求項 8に記載の二次電池。 11. The secondary battery according to claim 8, wherein the porous film contains an inorganic oxide.
[12] 前記多孔膜が形成された集電体の第 2の未形成部の端部は、電極端子に接続さ れた集電板に接合されている、請求項 8に記載の二次電池。 12. The secondary battery according to claim 8, wherein the end of the second unformed portion of the current collector on which the porous film is formed is joined to a current collector plate connected to the electrode terminal. .
[13] 前記多孔膜が形成された前記集電体は、負極の集電体を構成してレ、る、請求項 8 に記載の二次電池。 13. The secondary battery according to claim 9, wherein the current collector on which the porous film is formed constitutes a negative electrode current collector.
PCT/JP2007/063655 2006-09-19 2007-07-09 Method of producing electrode for secondary battery, and secondary battery WO2008035499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/377,340 US20100216000A1 (en) 2006-09-19 2007-07-09 Method of producing electrode for secondary battery and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-252068 2006-09-19
JP2006252068 2006-09-19

Publications (1)

Publication Number Publication Date
WO2008035499A1 true WO2008035499A1 (en) 2008-03-27

Family

ID=39200329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063655 WO2008035499A1 (en) 2006-09-19 2007-07-09 Method of producing electrode for secondary battery, and secondary battery

Country Status (4)

Country Link
US (1) US20100216000A1 (en)
KR (1) KR20090035041A (en)
CN (1) CN101517787A (en)
WO (1) WO2008035499A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017005A (en) * 2015-06-26 2017-01-19 パロ アルト リサーチ センター インコーポレイテッド Coextrusion conformal battery separator and electrode
WO2017057762A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
CN109565069A (en) * 2016-07-26 2019-04-02 日本电气株式会社 Electrode assembly and its manufacturing method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064689A (en) * 2009-12-08 2011-06-15 삼성에스디아이 주식회사 Lithium secondary battery
CN102222787A (en) * 2010-04-15 2011-10-19 深圳市比克电池有限公司 Lithium ion battery electrode plate, battery and method for improving battery security
FR2960705B1 (en) 2010-05-27 2012-08-17 Batscap Sa LITHIUM BATTERY PROTECTED AGAINST INTRUSION OF SHARP ELEMENTS
JP5701688B2 (en) * 2011-01-31 2015-04-15 三洋電機株式会社 Multilayer battery and method for manufacturing the same
KR20130102355A (en) * 2012-03-07 2013-09-17 에스케이이노베이션 주식회사 Battery cell for secondary battery
JP6256761B2 (en) * 2014-04-11 2018-01-10 トヨタ自動車株式会社 Secondary battery inspection method and manufacturing method
WO2016051645A1 (en) * 2014-09-29 2016-04-07 パナソニックIpマネジメント株式会社 Flexible battery
US20180026242A1 (en) * 2015-04-22 2018-01-25 Lg Chem, Ltd. Secondary battery pack and vehicle comprising the same
JP6319335B2 (en) * 2016-01-18 2018-05-09 トヨタ自動車株式会社 Manufacturing method of all solid state battery
CN106981621A (en) 2016-01-19 2017-07-25 株式会社杰士汤浅国际 Negative plate and its manufacture method, charge storage element and its manufacture method
CN105742527B (en) * 2016-03-18 2018-10-16 国轩新能源(苏州)有限公司 A kind of cylindrical lithium ion power battery of high energy than, long-life
CN105742721A (en) * 2016-04-27 2016-07-06 国轩新能源(苏州)有限公司 High-energy-ratio low-internal-resistance cylindrical lithium ion battery
JP6639347B2 (en) * 2016-07-20 2020-02-05 株式会社日立ハイテクファインシステムズ Secondary battery and method of manufacturing the same
US20190148692A1 (en) * 2017-11-16 2019-05-16 Apple Inc. Direct coated separators and formation processes
US11870037B2 (en) 2018-04-10 2024-01-09 Apple Inc. Porous ceramic separator materials and formation processes
JP7180343B2 (en) * 2018-12-06 2022-11-30 トヨタ自動車株式会社 Electrode sheet manufacturing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283131A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Manufacture of battery electrode
JPH09298058A (en) * 1996-05-02 1997-11-18 Dainippon Printing Co Ltd Manufacture of electrode plate for nonaqueous electrolyte secondary battery
WO1998038688A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Nonaqueous secondary battery and method for manufacturing the same
JP2004055537A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
WO2007083731A1 (en) * 2006-01-23 2007-07-26 Matsushita Electric Industrial Co., Ltd. Sealed battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69715819D1 (en) * 1996-01-25 2002-10-31 Danionics As Odense S ELECTRODE / ELECTRIC COLLECTOR, LAMINATES FOR AN ELECTROCHEMICAL DEVICE
JP2001052747A (en) * 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd Lithium secondary battery
US7335448B2 (en) * 2002-05-30 2008-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2005310502A (en) * 2004-04-20 2005-11-04 Sanyo Electric Co Ltd Manufacturing method of electrode for chemical cell, and cell
KR100659820B1 (en) * 2004-11-17 2006-12-19 삼성에스디아이 주식회사 Lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283131A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Manufacture of battery electrode
JPH09298058A (en) * 1996-05-02 1997-11-18 Dainippon Printing Co Ltd Manufacture of electrode plate for nonaqueous electrolyte secondary battery
WO1998038688A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Nonaqueous secondary battery and method for manufacturing the same
JP2004055537A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
WO2007083731A1 (en) * 2006-01-23 2007-07-26 Matsushita Electric Industrial Co., Ltd. Sealed battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017005A (en) * 2015-06-26 2017-01-19 パロ アルト リサーチ センター インコーポレイテッド Coextrusion conformal battery separator and electrode
WO2017057762A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
CN109565069A (en) * 2016-07-26 2019-04-02 日本电气株式会社 Electrode assembly and its manufacturing method

Also Published As

Publication number Publication date
KR20090035041A (en) 2009-04-08
CN101517787A (en) 2009-08-26
US20100216000A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
WO2008035499A1 (en) Method of producing electrode for secondary battery, and secondary battery
JP5378718B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2008103310A (en) Manufacturing method of electrode for secondary battery and secondary battery
KR101513821B1 (en) Battery electrode and use thereof
JP4183715B2 (en) Non-aqueous battery
JP5748108B2 (en) Lithium secondary battery
JP5113434B2 (en) Nonaqueous electrolyte secondary battery
EP2579363A1 (en) Negative electrode for secondary battery, and process for production thereof
JP2006269358A (en) Porous separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using above
JP5590381B2 (en) Lithium ion secondary battery
JP2016081758A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JPWO2017047353A1 (en) Nonaqueous electrolyte secondary battery
WO2007145275A1 (en) Nonaqueous electrolyte secondary battery
WO2007083731A1 (en) Sealed battery
JP2005259639A (en) Lithium secondary battery and its manufacturing method
JPH10144298A (en) Lithium secondary battery
JP2015181112A (en) Secondary battery, manufacturing method thereof, and method for manufacturing negative electrode sheet used for secondary battery
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2010009818A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JPH11273674A (en) Organic electrolyte secondary battery
JP2017016812A (en) Nonaqueous electrolyte secondary battery
JP2013131342A (en) Secondary battery and manufacturing method therefor and manufacturing method of negative electrode sheet for use in battery
JP2011103181A (en) Lithium secondary battery
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
CN116210103A (en) Solid-state battery negative electrode including high-molecular polymer layer for preventing micro-short circuit and solid-state battery including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034709.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790476

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12377340

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097004431

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07790476

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)