JPH09298058A - Manufacture of electrode plate for nonaqueous electrolyte secondary battery - Google Patents

Manufacture of electrode plate for nonaqueous electrolyte secondary battery

Info

Publication number
JPH09298058A
JPH09298058A JP8134184A JP13418496A JPH09298058A JP H09298058 A JPH09298058 A JP H09298058A JP 8134184 A JP8134184 A JP 8134184A JP 13418496 A JP13418496 A JP 13418496A JP H09298058 A JPH09298058 A JP H09298058A
Authority
JP
Japan
Prior art keywords
active material
coating
electrode plate
current collector
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8134184A
Other languages
Japanese (ja)
Inventor
Koji Sato
康志 佐藤
Shin Miyanowaki
伸 宮之脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP8134184A priority Critical patent/JPH09298058A/en
Publication of JPH09298058A publication Critical patent/JPH09298058A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To precisely apply an active material coating solution to a current collector surface in pattern form at high speed and manufacture an electrode plate minimized in the loss of the expensive active material by using photogravure method for the application of the electrode coating solution. SOLUTION: An electrode coating solution formed of an active material and a binder is applied to a current collector surface to form an active material layer, whereby an electrode plate is manufactured. The coating solution is pattern-applied to only the necessary area of the current collector surface by photogravure method to form the active material layer. In application of the electrode coating solution, photogravure method is adapted, and a pattern is preluminarily formed on a photogravure roll. Thus, a periodic pattern can be formed on the current collector surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、リチウム
イオン二次電池に代表される非水電解液二次電池用電極
板(以下単に電極板という)の製造方法に関し、更に詳
しくは端子取り出し部又は電池の製造上不要となる部分
を除いて、集電体面にパターン状の活物質層を経済的に
形成することができる電極板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode plate for a non-aqueous electrolyte secondary battery (hereinafter simply referred to as an electrode plate) represented by, for example, a lithium ion secondary battery, and more specifically, a terminal lead-out portion. Alternatively, the present invention relates to a method for manufacturing an electrode plate, which enables economical formation of a patterned active material layer on the surface of a current collector, except for a portion which is unnecessary for battery manufacturing.

【0002】[0002]

【従来の技術】近年、電子機器や通信機器の小型化及び
軽量化が急速に進んでおり、これらの駆動用電源として
用いられる二次電池に対しても小型化及び軽量化の要求
が強くなってきている。これらの要求に対して、従来の
アルカリ蓄電池に代わって、高エネルギー密度で且つ高
電圧を有するリチウムイオン二次電池に代表される非水
電解液二次電池が提案されている。
2. Description of the Related Art In recent years, miniaturization and weight reduction of electronic equipment and communication equipment have been rapidly progressing, and demands for miniaturization and weight reduction of a secondary battery used as a power supply for driving these electronic equipment and communication equipment have been increasing. Is coming. To meet these demands, non-aqueous electrolyte secondary batteries typified by lithium ion secondary batteries having high energy density and high voltage have been proposed instead of conventional alkaline storage batteries.

【0003】又、二次電池の性能に大きく影響を及ぼす
電極板に関しては、充放電サイクル寿命を延長させるた
めに、又、高エネルギー密度化のために薄膜大面積化を
図ることが提案されている。例えば、特開昭63−10
456号公報や特開平3−285262号公報等に記載
されているように、金属酸化物、硫化物、ハロゲン化物
等の正極活物質粉末に、導電剤及び結着剤(バインダ
ー)を適当な湿潤剤(溶媒)に分散溶解させて、ペース
ト状の活物質塗工液を調製し、金属箔からなる集電体を
基体とし、該基体上に上記塗工液を塗工して塗工層(活
物質層)を形成して得られる正極電極板が開示されてい
る。
As for the electrode plate which greatly affects the performance of the secondary battery, it has been proposed to increase the area of the thin film in order to extend the charge / discharge cycle life and to increase the energy density. I have. For example, JP-A-63-10
As described in Japanese Patent Laid-Open No. 456 and Japanese Patent Laid-Open No. 3-285262, a powder of a positive electrode active material such as a metal oxide, a sulfide, or a halide is appropriately wetted with a conductive agent and a binder. Dispersion and dissolution in an agent (solvent) to prepare a paste-like active material coating liquid, and a collector made of a metal foil is used as a substrate, and the coating liquid is applied onto the substrate to form a coating layer ( A positive electrode plate obtained by forming an active material layer) is disclosed.

【0004】この際、結着剤として、例えば、ポリフッ
化ビニリデン等のフッ素系樹脂、又はシリコーン・アク
リル共重合体が用いられている。又、負極電極板は、カ
ーボン等の負極活物質に結着剤を適当な湿潤剤(溶媒)
に溶解させたものを加えて、ペースト状の活物質塗工液
を調製し、金属箔集電体に塗工して得られる。
At this time, as a binder, for example, a fluorine-based resin such as polyvinylidene fluoride or a silicone-acrylic copolymer is used. Further, the negative electrode plate is formed by adding a binder to a negative electrode active material such as carbon and a suitable wetting agent (solvent).
It is obtained by adding a solution dissolved in the above to prepare a paste-like active material coating solution and applying it to a metal foil current collector.

【0005】[0005]

【発明が解決しようとする課題】上記塗工型の電極板に
おいて、活物質塗工液の調製に用いられる結着剤は、非
水電解液に対して電気化学的に安定であって、電解液へ
溶出しないこと、更には塗工をすることから何らかの溶
媒に可溶である必要がある。上記の活物質塗工液を金属
箔集電体に塗工して得られる電極板において、塗工及び
乾燥されて形成される活物質層(塗工層)は可撓性が十
分であり、電池の組立工程及び充放電時に、剥離、脱
落、ひび割れ等が生じないように十分な密着性を有する
ことが要求される。
In the above coating type electrode plate, the binder used for preparing the active material coating solution is electrochemically stable with respect to the non-aqueous electrolyte and It must be soluble in some solvent because it does not elute into the liquid and is applied. In the electrode plate obtained by applying the above active material coating liquid to the metal foil current collector, the active material layer formed by coating and drying (coating layer) has sufficient flexibility, It is required to have sufficient adhesiveness so that peeling, dropping, cracking, etc. do not occur during the battery assembly process and charging / discharging.

【0006】又、電極板から端子を取る場合、集電体の
その部分には、活物質層が形成されていないことが必要
である。即ち、最終的に得られる電極板は、端子とり出
し部には活物質層がなく、その他の部分に活物質層が形
成されるように、集電体面にパターン状に活物質層を形
成することが望ましい。又、活物質層の上から直接端子
を取り出すことも可能であるが、集電体から端子を取り
出す場合と比較して抵抗値が大きくなり、電池性能が劣
る可能性がある。更に、電池の作製上、活物質層が形成
されていない部分が必要となる場合も生じる。例えば、
電極を折り曲げて電池管に入れて電池を作製する場合、
折り曲げ部に活物質層が存在すると、その折り曲げ時に
活物質層の脱落やひび割れ等が生ずる場合がある。その
ためには上記の折り曲げ部には活物質層が存在しない方
が望ましい。
When the terminal is taken from the electrode plate, it is necessary that the active material layer is not formed on that portion of the current collector. That is, in the finally obtained electrode plate, the active material layer is formed in a pattern on the current collector surface so that the active material layer is not formed in the terminal lead-out portion and the active material layer is formed in other portions. Is desirable. Although it is possible to take out the terminals directly from the active material layer, the resistance value becomes larger than that in the case where the terminals are taken out from the current collector, and the battery performance may be deteriorated. Further, in the production of the battery, there may be a case where a portion where the active material layer is not formed is required. For example,
When making a battery by bending the electrode and putting it in a battery tube,
If the active material layer is present in the bent portion, the active material layer may be dropped or cracked during the bending. For that purpose, it is desirable that the active material layer does not exist in the bent portion.

【0007】従って本発明の目的は、上記従来技術の問
題点を解決し、集電体面に、活物質塗工液をパターン状
に、高速で且つ正確に塗工することができ、しかも高価
な活物質のロスが少ない電極板の製造方法を提供するこ
とにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to apply the active material coating solution in a pattern on the current collector surface at high speed and accurately, and at the same time, it is expensive. An object of the present invention is to provide a method for manufacturing an electrode plate with less loss of active material.

【0008】[0008]

【課題を解決するための手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、集電体面に活物
質と結着剤とからなる電極用塗工液を塗工して活物質層
を形成する電極板の製造方法において、上記塗工液を集
電体面の必要領域のみにグラビア印刷方式によりパター
ン塗工して活物質層を形成することを特徴とする電極板
の製造方法である。
The above object can be achieved by the present invention described below. That is, the present invention is a method for producing an electrode plate in which an active material layer is formed by applying an electrode coating liquid comprising an active material and a binder on the current collector surface, and the above coating liquid is applied to the current collector surface. The method for producing an electrode plate is characterized in that an active material layer is formed by pattern coating by a gravure printing method only on the necessary regions.

【0009】本発明によれば、電極用塗工液の塗工に際
し、グラビア印刷方式を用い、且つグラビア印刷ロール
にパターンを形成しておくことによって、集電体面に周
期的なパターンの形成が可能になる。従って、集電体面
に活物質塗工液をパターン状に、高速で且つ正確に塗工
することができ、しかも高価な活物質のロスが少ない。
According to the present invention, when the coating liquid for electrodes is applied, a gravure printing method is used and a pattern is formed on the gravure printing roll, so that a periodic pattern is formed on the current collector surface. It will be possible. Therefore, the active material coating liquid can be applied on the surface of the current collector in a pattern at high speed and accurately, and the loss of the expensive active material is small.

【0010】[0010]

【発明の実施の形態】次に好ましい実施の形態を挙げて
本発明を更に詳細に説明する。本発明の方法では、先ず
活物質と結着剤とそれらの分散媒体とを用いて電極用塗
工液を調製する工程、該塗工液をグラビア印刷方式を用
いて集電体面にパターン状に塗工する工程、塗工後に塗
工層から分散媒体を除去する工程、更には必要に応じて
活物質層の表面を平坦化する工程からなる。
Next, the present invention will be described in more detail with reference to preferred embodiments. In the method of the present invention, first, a step of preparing an electrode coating liquid using an active material, a binder and a dispersion medium thereof, and the coating liquid is patterned into a current collector surface using a gravure printing method. It comprises a coating step, a step of removing the dispersion medium from the coating layer after coating, and a step of flattening the surface of the active material layer if necessary.

【0011】本発明の電極板に用いられる集電体として
は、例えば、アルミニウム、銅等の金属箔が好ましく用
いられる。金属箔の厚さとしては、5〜30μm程度の
ものを用いる。本発明では、上記集電体の一方の表面に
正活物質層又は負活物質層を形成する。本発明で用いら
れる正極活物質としては、例えば、LiCoO、Li
NiO、LiMn等のリチウム酸化物、TiS
、MnO、MoO、V等のカルコゲン化合
物のうちの一種、或いは複数種が組み合わせて用いられ
る。一方、負極活物質としては、金属リチウム、リチウ
ム合金、或いはグラファイト、カーボンブラック、アセ
チレンブラック等の炭素質材料、又はリチウムイオンを
インターカレートする材料が好ましく用いられる。特
に、LiCoOを正極活物質として、そして炭素質材
料を負極活物質として用いることにより、4V程度の高
い放電電圧のリチウム系二次電池が得られる。
As the current collector used in the electrode plate of the present invention, for example, a metal foil such as aluminum or copper is preferably used. A metal foil having a thickness of about 5 to 30 μm is used. In the present invention, a positive active material layer or a negative active material layer is formed on one surface of the current collector. Examples of the positive electrode active material used in the present invention include LiCoO 2 and Li
LiO 2 such as NiO 2 and LiMn 2 O 4 , TiS
One or a plurality of chalcogen compounds such as 2 , MnO 2 , MoO 3 , and V 2 O 5 are used in combination. On the other hand, as the negative electrode active material, metallic lithium, a lithium alloy, a carbonaceous material such as graphite, carbon black, acetylene black, or a material intercalating lithium ions is preferably used. In particular, by using LiCoO 2 as a positive electrode active material and a carbonaceous material as a negative electrode active material, a lithium secondary battery having a high discharge voltage of about 4 V can be obtained.

【0012】これらの活物質は形成される塗工層中に均
一に分散されるのが好ましい。このため、本発明におい
ては、活物質として1〜100μmの範囲の粒径を有
し、平均粒径が10μm程度の粉体を用いるのが好まし
い。上記活物質を含む塗工液の調製に用いられる結着剤
としては、例えば、ポリエステル樹脂、ポリアミド樹
脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹
脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィ
ン樹脂、ポリビニル樹脂、フッ素系樹脂及びポリイミド
樹脂等の熱可塑性樹脂、又はゴム系の樹脂、アクリレー
トモノマー又はオリゴマー或いはそれらの混合物からな
る電離放射線硬化性樹脂、更にはこれらの各種樹脂の混
合物を使用することができる。
These active materials are preferably dispersed uniformly in the coating layer to be formed. For this reason, in the present invention, it is preferable to use a powder having a particle diameter in the range of 1 to 100 μm and an average particle diameter of about 10 μm as the active material. Examples of the binder used for preparing a coating liquid containing the active material include polyester resins, polyamide resins, polyacrylic acid ester resins, polycarbonate resins, polyurethane resins, cellulose resins, polyolefin resins, polyvinyl resins, and fluorine-based resins. A thermoplastic resin such as a resin and a polyimide resin, a rubber-based resin, an ionizing radiation-curable resin made of an acrylate monomer or oligomer or a mixture thereof, and a mixture of these various resins can be used.

【0013】本発明で使用する活物質塗工液の具体的な
調製方法について説明する。先ず、上記に挙げたような
材料から適宜に選択された結着剤と粉末状の活物質と
を、トルエン、メチルエチルケトン、N−メチルピロリ
ドン或いはこれらの混合物等の有機溶媒からなる分散媒
体中に入れ、更に必要に応じて導電剤を混合させた組成
物を、従来公知のホモジナイザー、ボールミル、サンド
ミル、ロールミル等の分散機を用いて混合分散すること
によって調製する。又、塗工液をグラビア印刷方式で塗
工するためには、得られる塗工液の粘度を約2,000
〜60,000cpsの範囲に調整することが好まし
い。上記塗工液の調製に際して必要に応じて添加する導
電剤としては、例えば、グラファイト、カーボンブラッ
ク、アセチレンブラック等の炭素質材料が用いられる。
A specific method for preparing the active material coating liquid used in the present invention will be described. First, a binder appropriately selected from the materials listed above and a powdery active material are placed in a dispersion medium composed of an organic solvent such as toluene, methyl ethyl ketone, N-methylpyrrolidone or a mixture thereof. Further, a composition in which a conductive agent is further mixed if necessary is prepared by mixing and dispersing using a conventionally known disperser such as a homogenizer, a ball mill, a sand mill and a roll mill. Further, in order to apply the coating liquid by the gravure printing method, the viscosity of the obtained coating liquid is about 2,000.
It is preferable to adjust in the range of -60,000 cps. As the conductive agent to be added as needed when preparing the coating liquid, for example, a carbonaceous material such as graphite, carbon black, and acetylene black is used.

【0014】本発明の主たる特徴は、上記塗工液をグラ
ビア印刷方式を用いて集電体面にパターン状に活物質層
を形成することである。本発明で使用するグラビア印刷
方式は、従来雑誌等の印刷に広く用いられている印刷方
式である。この印刷方式では、円筒形の版胴にインキを
取り込む凹部が形成され、この凹部に取り込まれたイン
キを紙等の被印刷物に転写する。本発明では、活物質塗
工液の集電体面への塗工にこのグラビア印刷方式を応用
して、活物質塗工液を集電体面に塗工する際に、端子の
取り出し部に相当する以外のグラビア版の面に適当な深
さの凹部を作成し、活物質塗工液を集電体面に塗工す
る。尚、通常のグラビア印刷に用いる金属ドクターで
は、上記塗工液の印刷が長時間の渡ると、ドクターの摩
耗が生じて塗工液中にドクターの金属が混入する可能性
があり、その結果活物質層に異種金属が混入し電池性能
に悪影響を与える虞がある。この場合にはドクター刃で
はなく、ロールからなる刃、例えば、コンマロール等を
ドクター刃の代わりに用いることも可能である。により
The main feature of the present invention is to form an active material layer in a pattern on the surface of the current collector using the above coating solution by a gravure printing method. The gravure printing method used in the present invention is a printing method that has been widely used for printing magazines and the like. In this printing method, a concave portion for taking in ink is formed in a cylindrical plate cylinder, and the ink taken in this concave portion is transferred to a printing object such as paper. In the present invention, this gravure printing method is applied to the coating of the active material coating liquid on the current collector surface, and when the active material coating liquid is coated on the current collector surface, it corresponds to the lead-out portion of the terminal. A recess having an appropriate depth is formed on the surface of the gravure plate other than the above, and the active material coating liquid is applied to the current collector surface. In addition, in the case of a metal doctor used for ordinary gravure printing, if the coating liquid is printed for a long time, the doctor metal may be worn and the metal of the doctor may be mixed into the coating liquid. Dissimilar metals may be mixed in the material layer and adversely affect battery performance. In this case, instead of the doctor blade, a blade made of rolls, for example, a comma roll or the like can be used instead of the doctor blade. By

【0015】このようにして集電体面にパターン状の活
物質層が形成される。但し、グラビア印刷による1回の
塗工厚みは、通常数μm〜数十μmであるので、所望の
厚みの活物質層が形成されるように複数回の重ね塗工を
行なうことが好ましい。この複数回の重ね塗工を行なう
場合、塗工パターンがズレないように、センサーを用い
て複数回の重ね塗工を行なうことが望ましい。例えば、
乾燥膜厚80μmの活物質層を形成する場合、乾燥膜厚
として20μmの版深さを有する4ヘッドのグラビア印
刷版を用い、4回の塗工をセンサーによりパターンを同
調させて印刷することにより、所望膜厚の活物質層をパ
ターン状に形成することができる。
In this way, a patterned active material layer is formed on the surface of the current collector. However, since the thickness of one coating applied by gravure printing is usually several μm to several tens of μm, it is preferable to perform multiple coatings so as to form an active material layer having a desired thickness. When performing the multiple-layer coating multiple times, it is desirable to perform the multiple-layer coating multiple times using a sensor so that the coating pattern does not shift. For example,
When forming an active material layer having a dry film thickness of 80 μm, a 4-head gravure printing plate having a plate depth of 20 μm as a dry film thickness is used, and four coatings are performed by synchronizing a pattern with a sensor and printing. The active material layer having a desired film thickness can be formed in a pattern.

【0016】活物質塗工液を集電体面に塗工ごとにドラ
イヤーにてその乾燥を行なうことが望ましい。ドライヤ
ーはロールサポートタイプ、フローティングタイプ及び
それらの組み合わせのいずれを用いてもよく、ドライヤ
ー部のノズル形状部から熱風を塗工面に吹きつけて乾燥
を行なう。熱風の温度は80〜140℃程度であり、特
に140℃を超える温度では、集電体が銅箔である場合
に、銅が酸化されて集電体面の色の変化が生じる虞があ
るので、高温側では乾燥温度の制御が必要である。1回
の塗工ごとの乾燥は十分に行なってもよく、不十分であ
ってもよいが、不十分である場合には、次の塗工に影響
が出ない(前回の塗工面に塗工してもその塗工面が荒れ
ない)程度の乾燥であればよい。複数回の塗工によっ
て、活物質層が必要塗工量となった後には、塗工層全厚
に亘って塗工層中の乾燥は溶媒を十分に蒸発させ、塗工
層全体を十分に乾燥させる必要がある。乾燥後の活物質
層の厚さは10〜200μm、好ましくは50〜150
μmの範囲であり、このような厚さになるように前記塗
工時の塗工量を設定する。
It is desirable to dry the coating liquid of the active material on the surface of the current collector with a dryer for each coating. The dryer may be a roll support type, a floating type, or a combination thereof, and hot air is blown onto the coated surface from the nozzle-shaped portion of the dryer to perform drying. The temperature of the hot air is about 80 to 140 ° C., and particularly at a temperature higher than 140 ° C., when the current collector is a copper foil, copper may be oxidized and the color of the current collector surface may change, It is necessary to control the drying temperature on the high temperature side. Drying for each coating may be sufficient or insufficient, but if it is insufficient, the next coating will not be affected (the coating on the previously coated surface will not be affected). However, the drying may be such that the coated surface is not rough. After the active material layer reaches the required coating amount by coating a plurality of times, drying in the coating layer over the entire thickness of the coating layer evaporates the solvent sufficiently to sufficiently cover the entire coating layer. Needs to be dried. The thickness of the active material layer after drying is 10 to 200 μm, preferably 50 to 150 μm.
The coating amount at the time of the coating is set so that the thickness is in the range of μm.

【0017】更に、乾燥後においては、塗工層に金属ロ
ール、加熱ロール、シートプレス機等を用いてプレス処
理を施して表面を平滑化することもできる。この際のプ
レス条件としては、500Kgf/cm未満では塗工
層の均一性が得られにくく、又、7,500Kgf/c
を超えると、集電体基材を含めた電極板自体が破損
してしまうため、プレス条件は500〜7,500Kg
f/cmの範囲が好ましい。更に好ましくは3,00
0〜5,000Kgf/cmの範囲である。更に、上
記の電極板を用いて電池の組み立て工程に移る前に、電
極板の活物質塗工層中の水分を除去するために、更に加
熱処理や減圧処理等を行うことが好ましい。
Further, after drying, the coating layer may be subjected to a press treatment using a metal roll, a heating roll, a sheet press machine or the like to smooth the surface. As for the pressing conditions at this time, if the pressure is less than 500 Kgf / cm 2, it is difficult to obtain the uniformity of the coating layer.
If it exceeds m 2 , the electrode plate itself including the current collector base material will be damaged, so the pressing condition is 500 to 7,500 Kg.
A range of f / cm 2 is preferred. More preferably 3,000
It is in the range of 0 to 5,000 Kgf / cm 2 . Further, before the process of assembling a battery using the above-described electrode plate, it is preferable to further perform a heat treatment, a pressure reduction treatment, or the like in order to remove moisture in the active material coating layer of the electrode plate.

【0018】以上のようにして作製した本発明の正極及
び負極の電極板を用いて、例えば、リチウム系二次電池
を作製する場合には、電解液として、溶質のリチウム塩
を有機溶媒に溶かした非水電解液が用いられる。非水電
解液を形成する溶質のリチウム塩としては、例えば、L
iClO、LiBF、LiPF、LiAsF
LiCl、LiBr等の無機リチウム塩、及びLiB
(C、LiN(SOCF、LiC
(SOCF、LiOSOCF、LiOSO
、LiOSO、LiOSO
、LiOSO11、LiOSO
13、LiOSO15等の有機リチウム塩等が
用いられる。
For example, when a lithium secondary battery is manufactured using the positive and negative electrode plates of the present invention manufactured as described above, a solute lithium salt is dissolved in an organic solvent as an electrolytic solution. A non-aqueous electrolyte solution is used. As the lithium salt of the solute forming the non-aqueous electrolyte, for example, L
iClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 ,
Inorganic lithium salts such as LiCl and LiBr, and LiB
(C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC
(SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO
2 C 2 F 5, LiOSO 2 C 3 F 7, LiOSO 2 C 4
F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F
13 , an organic lithium salt such as LiOSO 2 C 7 F 15 or the like is used.

【0019】この際に使用される有機溶媒としては、環
状エステル類、鎖状エステル類、環状エーテル類、鎖状
エーテル類等が挙げられる。環状エステル類としては、
例えば、プロピレンカーボネート、ブチレンカーボネー
ト、γ−ブチロラクトン、ビニレンカーボネート、2−
メチル−γ−ブチロラクトン、アセチル−γ−ブチロラ
クトン、γ−バレロラクトン等が挙げられる。鎖状エス
テル類としては、例えば、ジメチルカーボネート、ジエ
チルカーボネート、ジブチルカーボネート、ジプロピル
カーボネート、メチルエチルカーボネート、メチルブチ
ルカーボネート、メチルプロピルカーボネート、エチル
ブチルカーボネート、エチルプロピルカーボネート、ブ
チルプロピルカーボネート、プロピオン酸アルキルエス
テル、マロン酸ジアルキルエステル、酢酸アルキルエス
テル等が挙げられる。
Examples of the organic solvent used in this case include cyclic esters, chain esters, cyclic ethers and chain ethers. As cyclic esters,
For example, propylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-
Methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valerolactone, and the like. Examples of the chain ester include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, alkyl propionate. , Malonic acid dialkyl ester, acetic acid alkyl ester and the like.

【0020】環状エーテル類としては、例えば、テトラ
ヒドロフラン、アルキルテトラヒドロフラン、ジアルキ
ルアルキルテトラヒドロンフラン、アルコキシテトラヒ
ドロフラン、ジアルコキシテトラヒドロフラン、1,3
−ジオキソラン、アルキル−1,3−ジオキソラン、
1,4−ジオキソラン等が挙げられる。鎖状エーテル類
としては、1,2−ジメトキシエタン、1,2−ジエト
キシエタン、ジエチルエーテル、エチレングリコールジ
アルキルエーテル、ジエチレングリコールジアルキルエ
ーテル、トリエチレングリコールジアルキルエーテル、
テトラエチレングリコールジアルキルエーテル等が挙げ
られる。
Examples of the cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkylalkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3.
-Dioxolane, alkyl-1,3-dioxolane,
1,4-dioxolan and the like. Examples of chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether,
Examples include tetraethylene glycol dialkyl ether.

【0021】[0021]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。尚、文中「部」とあるのは「重量
部」である。 実施例1 先ず、正極活物質塗工液を以下の方法により調製した。
1〜100μm粒径を持ち平均粒径10μmのLiCo
O2粉末90部、導電剤としてグラファイト粉末5部、
結着剤としてポリフッ化ビニリデン樹脂(ダイキン工業
(株)製、ネオフロンVDF VP−850)5.0部
及びN−メチルピロリドン20部の配合比で、予めポリ
フッ化ビニリデンをN−メチルピロリドンにて溶解した
ワニスを作製した後、そのワニスを用いプラネタリーミ
キサー((株)小平製作所製)にて30分間粉末を撹拌
混合することにより、スラリー状の正極塗工液を得た。
この塗工液の粘度は、B型粘度計で測定したところ約1
0,000cpsであった。
Next, the present invention will be described more specifically with reference to examples and comparative examples. In the description, “parts” means “parts by weight”. Example 1 First, a positive electrode active material coating liquid was prepared by the following method.
LiCo having a particle size of 1 to 100 μm and an average particle size of 10 μm
90 parts of O2 powder, 5 parts of graphite powder as a conductive agent,
Polyvinylidene fluoride as a binder (manufactured by Daikin Industries, Ltd., NEOFLON VDF VP-850) 5.0 parts and N-methylpyrrolidone at a mixing ratio of 20 parts, polyvinylidene fluoride was previously dissolved in N-methylpyrrolidone. After producing the varnish described above, the varnish was used to stir and mix the powder for 30 minutes with a planetary mixer (manufactured by Kodaira Seisakusho Co., Ltd.) to obtain a slurry-type positive electrode coating liquid.
The viscosity of this coating solution is about 1 when measured with a B-type viscometer.
It was 0000 cps.

【0022】厚さ20μm、幅300mmのアルミ箔上
にグラビアコーターにて上記正極活物質塗工液を幅28
0×長さ500mmの大きさに1回目の塗工を行ない乾
燥した。この塗工及び乾燥を合計4回繰り返し、乾燥後
の膜厚80μmの活物質層を形成した。上記のグラビア
コーターの版は、幅50mmの未塗工部が形成され、版
の凹部300μmの深さで製版されているものを用い
た。その後得られた塗工層を80℃のオーブン中にて乾
燥後、更に80℃の真空オーブン中で48時間熟成して
水分を除去して正極電極板を得た。
On a aluminum foil having a thickness of 20 μm and a width of 300 mm, the above positive electrode active material coating liquid was applied with a width of 28 using a gravure coater.
The first coating was applied to a size of 0 × 500 mm in length and dried. This coating and drying were repeated 4 times in total to form an active material layer having a film thickness of 80 μm after drying. The gravure coater plate used was one in which an uncoated part having a width of 50 mm was formed and the plate was made to a depth of 300 μm in the plate. After that, the obtained coating layer was dried in an oven at 80 ° C., and then aged in a vacuum oven at 80 ° C. for 48 hours to remove water, thereby obtaining a positive electrode plate.

【0023】次に負極活物質塗工液を次のようにして調
製した。グラファイト粉末85部、結着剤としてポリフ
ッ化ビニリデン樹脂(ダイキン工業(株)製、ネオフロ
ンVDF VP−850)15部及び分散媒体としてN
−メチルピロリドン160部の配合比で、正極の作成に
用いたと同じミキサーを用い8,000回転の条件で粉
末を分散させ、負極活物質塗工液を得た。前記正極板の
場合と同様にして、負極集電体である圧延銅箔上にグラ
ビア印刷方式を用いて塗工し、以下正極板の場合と同様
にして負極電極板を得た。以上で得られた正極板及び負
極板は、電池の端子部を接続する端子取り出し部分(未
塗工部)が形成されており、又、それぞれの塗工液の使
用ロスが極端に少なく、殆どすべての塗工液が有効利用
され、最終的に電極板の製造コストが低下した。
Next, a negative electrode active material coating liquid was prepared as follows. 85 parts of graphite powder, 15 parts of polyvinylidene fluoride resin (manufactured by Daikin Industries, Ltd., NEOFLON VDF VP-850) as a binder, and N as a dispersion medium.
The powder was dispersed at a compounding ratio of 160 parts of methylpyrrolidone under the condition of 8,000 rotations using the same mixer as used for preparing the positive electrode to obtain a coating liquid for the negative electrode active material. In the same manner as in the case of the positive electrode plate, a rolled copper foil as a negative electrode current collector was coated by a gravure printing method, and a negative electrode plate was obtained in the same manner as in the case of the positive electrode plate. The positive electrode plate and the negative electrode plate obtained above are formed with a terminal take-out portion (uncoated portion) for connecting the terminal portion of the battery, and the use loss of each coating liquid is extremely small, All the coating liquids were effectively used, and finally the manufacturing cost of the electrode plate was reduced.

【0024】実施例2 先ず、正極活物質塗工液を以下の方法により調製した。
実施例1に示した1〜100μm粒径を持ち、且つ平均
粒径10μmのLiCoO粉末90部、導電剤として
グラファイト粉末5部、結着剤としてポリフッ化ビニリ
デン樹脂(ダイキン工業(株)製、ネオフロンVDF
VP−850)5部、及び分散媒体としてN−メチルピ
ロリドン400部の配合比で実施例1におけると同様に
塗工液を作製した。グラビア版として、250μmの深
さの30線の斜線目版(斜線目が形成されていない部分
の幅が50mm)を用いて、上記塗工液を厚さ20μ
m、幅300mmのアルミ箔集電体上に、塗工ごとに不
十分に乾燥しながら5回重ね塗工し、最後に80℃のオ
ーブン中にて乾燥後、更に80℃の真空オーブン中で4
8時間熟成して水分を除去して乾燥膜厚で100μmの
パターン化された活物質層を有する正極電極板を得た。
Example 2 First, a positive electrode active material coating liquid was prepared by the following method.
90 parts of LiCoO 2 powder having a particle size of 1 to 100 μm and an average particle size of 10 μm shown in Example 1, 5 parts of graphite powder as a conductive agent, polyvinylidene fluoride resin as a binder (manufactured by Daikin Industries, Ltd., NEOFLON VDF
VP-850) 5 parts and N-methylpyrrolidone 400 parts as a dispersion medium were used to prepare a coating solution in the same manner as in Example 1. As the gravure plate, a 30-line diagonal plate having a depth of 250 μm (the width of the portion where the diagonal lines are not formed is 50 mm) is used, and the coating solution is applied to a thickness of 20 μm.
m, width 300 mm, on aluminum foil current collector, overcoating 5 times with insufficient drying for each coating, finally drying in an oven at 80 ° C, and then in a vacuum oven at 80 ° C. Four
After aging for 8 hours, the water content was removed to obtain a positive electrode plate having a patterned active material layer with a dry film thickness of 100 μm.

【0025】次に負極活物質塗工液を次のようにして調
製した。グラファイト粉末85部、結着剤としてポリフ
ッ化ビニリデン樹脂(ダイキン工業(株)製、ネオフロ
ンVDF VP−850)15部及び分散媒体としてN
−メチルピロリドン400部の配合比で、分散機で8,
000回転の条件で粉末を分散させ、負極活物質塗工液
を得た。前記正極板の場合と同様にして、負極集電体で
ある圧延銅箔上にグラビア印刷方式を用いて塗工し、以
下正極板の場合と同様にして負極電極板を得た。以上で
得られた正極板及び負極板は、電池の端子部を接続する
端子取り出し部分(未塗工部)が形成されており、又、
それぞれの塗工液の使用ロスが極端に少なく、殆どすべ
ての塗工液が有効利用され、最終的に電極板の製造コス
トが低下した。
Next, a negative electrode active material coating liquid was prepared as follows. 85 parts of graphite powder, 15 parts of polyvinylidene fluoride resin (manufactured by Daikin Industries, Ltd., NEOFLON VDF VP-850) as a binder, and N as a dispersion medium.
-Methylpyrrolidone with a compounding ratio of 400 parts, 8 in a disperser,
The powder was dispersed under the condition of 000 rotations to obtain a negative electrode active material coating liquid. In the same manner as in the case of the positive electrode plate, a rolled copper foil as a negative electrode current collector was coated by a gravure printing method, and a negative electrode plate was obtained in the same manner as in the case of the positive electrode plate. The positive electrode plate and the negative electrode plate obtained above are formed with a terminal take-out portion (uncoated portion) for connecting the battery terminal portion, and
The use loss of each coating liquid was extremely small, almost all the coating liquids were effectively used, and finally the manufacturing cost of the electrode plate was reduced.

【0026】実施例3 実施例2と同一の塗工液を用い、250μmの版深さ
で、格子状の版面を有するグラビア版を用いて、実施例
2と同様に塗工液を集電体上に塗工ごとに不十分に乾燥
しながら5回重ね塗工し、最後に実施例2ど同様に乾燥
して乾燥膜厚で100μmのパターン化された活物質層
を有する正極電極板を得た。以下実施例2と同様にし
た。
Example 3 The same coating liquid as in Example 2 was used, using the same coating liquid as in Example 2 and using a gravure plate having a plate depth of 250 μm and having a grid-like plate surface. Overcoating was performed 5 times with each coating being insufficiently dried, and finally dried in the same manner as in Example 2 to obtain a positive electrode plate having a patterned active material layer with a dry film thickness of 100 μm. It was The same procedure as in Example 2 is performed below.

【0027】以上の実施例1〜3においては、グラビア
印刷方式により、又、塗工を複数回に分けて重ね塗工す
る場合には、塗工ごとに形成される塗膜が薄いために、
その乾燥が容易であり、且つパターンの精度を±1mm
以内にすることができた。又、塗工機械の乾燥フードの
長さを8mとし、乾燥温度を100℃とした場合には最
高で10m/minの速度で塗工が可能であった。特に
実施例1では実施例2及び実施例3に比べて塗工液の固
形分が高いために、乾燥時の溶剤(N−メチルピロリド
ン)の量が少ないことから、より容易に乾燥を行なうこ
とができた。
In Examples 1 to 3 described above, when the gravure printing method is used, or when the coating is carried out in multiple layers, the coating film formed for each coating is thin.
Easy to dry, and the pattern accuracy is ± 1mm
Could be within. Further, when the length of the drying hood of the coating machine was 8 m and the drying temperature was 100 ° C., coating was possible at a speed of 10 m / min at maximum. In particular, since the solid content of the coating liquid in Example 1 is higher than those in Examples 2 and 3, the amount of the solvent (N-methylpyrrolidone) at the time of drying is small. Therefore, drying can be performed more easily. I was able to.

【0028】比較例1 実施例1で用いたと同じ正極用塗工液及び負極塗工液を
用い、塗工方法として、いずれもダイコーターを用い
て、ダイコーター部分の前後の移動を行ない、パターン
の形成を行なった、その結果、塗工速度が5m/min
でまでは十分な精度でパターン塗工が可能であったが、
塗工速度の上昇に伴い、ダイコーターの前後スピードが
遅くなり、塗工速度に追いついて行かなくなって、10
m/minの塗工速度では、塗工層のパターン精度を±
1mmの範囲に制御することが困難であった。
Comparative Example 1 Using the same positive electrode coating liquid and negative electrode coating liquid used in Example 1, as a coating method, a die coater was used, and the die coater part was moved back and forth to form a pattern. Was formed, resulting in a coating speed of 5 m / min.
Until then, pattern coating was possible with sufficient accuracy,
As the coating speed increases, the front and rear speed of the die coater slows down, making it impossible to keep up with the coating speed.
At a coating speed of m / min, the pattern accuracy of the coating layer is ±
It was difficult to control within the range of 1 mm.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
電極用塗工液の塗工にグラビア印刷方式を用いることに
よって、集電体面に、活物質塗工液をパターン状に、高
速で且つ正確に塗工することができ、しかも高価な活物
質のロスが少ない電極板の製造方法が提供される。
As described above, according to the present invention,
By using the gravure printing method for coating the electrode coating liquid, it is possible to apply the active material coating liquid in a pattern on the current collector surface at high speed and accurately, and A method for manufacturing an electrode plate with less loss is provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 集電体面に活物質と結着剤とからなる電
極用塗工液を塗工して活物質層を形成する非水電解液二
次電池用電極板の製造方法において、上記塗工液を集電
体面の必要領域のみにグラビア印刷方式によりパターン
塗工して活物質層を形成することを特徴とする非水電解
液二次電池用電極板の製造方法。
1. A method for producing an electrode plate for a non-aqueous electrolyte secondary battery, comprising forming an active material layer by applying an electrode coating liquid comprising an active material and a binder on the surface of a current collector. A method for manufacturing an electrode plate for a non-aqueous electrolyte secondary battery, which comprises pattern-coating a coating solution only on a required area of a current collector surface by a gravure printing method to form an active material layer.
【請求項2】 活物質層を形成する必要のない領域が、
端子の取り出し部分又は電池の製造上不要となる部分で
ある請求項1に記載の非水電解液二次電池用電極板の製
造方法。
2. An area in which an active material layer is not required to be formed,
The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, which is a portion where a terminal is taken out or a portion which is unnecessary for battery production.
【請求項3】 複数回の重ね塗工を行なう請求項1に記
載の非水電解液二次電池用電極板の製造方法。
3. The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the overcoating is performed a plurality of times.
JP8134184A 1996-05-02 1996-05-02 Manufacture of electrode plate for nonaqueous electrolyte secondary battery Pending JPH09298058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8134184A JPH09298058A (en) 1996-05-02 1996-05-02 Manufacture of electrode plate for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8134184A JPH09298058A (en) 1996-05-02 1996-05-02 Manufacture of electrode plate for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09298058A true JPH09298058A (en) 1997-11-18

Family

ID=15122411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8134184A Pending JPH09298058A (en) 1996-05-02 1996-05-02 Manufacture of electrode plate for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09298058A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253351A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical element
WO2005081336A1 (en) * 2004-02-20 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing lithium ion secondary battery
JP2007242595A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Electrode plate for battery and its forming method as well as forming device of electrode plate for battery
WO2008004430A1 (en) * 2006-07-06 2008-01-10 Panasonic Corporation Method for production of member for secondary battery, apparatus for production of the member, and secondary battery using the member
WO2008035499A1 (en) * 2006-09-19 2008-03-27 Panasonic Corporation Method of producing electrode for secondary battery, and secondary battery
US7891313B2 (en) 2006-03-24 2011-02-22 Panasonic Corporation Gravure coating apparatus
JP2012501552A (en) * 2008-08-28 2012-01-19 イオクサス, インコーポレイテッド High voltage EDLC battery and manufacturing method thereof
US8192858B2 (en) 2006-02-07 2012-06-05 Panasonic Corporation Electrode plate for battery and method and apparatus for forming the same
JP2013030389A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Method for manufacturing charge collector
JP2019160549A (en) * 2018-03-13 2019-09-19 凸版印刷株式会社 Manufacturing method of doughnut-shaped electrode
JP2020087695A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Electrode sheet manufacturing device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253351A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical element
US8302559B2 (en) 2004-02-20 2012-11-06 Panasonic Corporation Method of producing lithium ion secondary battery
JP4753870B2 (en) * 2004-02-20 2011-08-24 パナソニック株式会社 Manufacturing method of lithium ion secondary battery
JPWO2005081336A1 (en) * 2004-02-20 2007-10-25 松下電器産業株式会社 Manufacturing method of lithium ion secondary battery
WO2005081336A1 (en) * 2004-02-20 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing lithium ion secondary battery
CN100334752C (en) * 2004-02-20 2007-08-29 松下电器产业株式会社 Method for producing lithium ion secondary battery
US7575606B2 (en) 2004-02-20 2009-08-18 Panasonic Corporation Method for producing lithium ion secondary battery
US8192858B2 (en) 2006-02-07 2012-06-05 Panasonic Corporation Electrode plate for battery and method and apparatus for forming the same
JP2007242595A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Electrode plate for battery and its forming method as well as forming device of electrode plate for battery
US7891313B2 (en) 2006-03-24 2011-02-22 Panasonic Corporation Gravure coating apparatus
WO2008004430A1 (en) * 2006-07-06 2008-01-10 Panasonic Corporation Method for production of member for secondary battery, apparatus for production of the member, and secondary battery using the member
WO2008035499A1 (en) * 2006-09-19 2008-03-27 Panasonic Corporation Method of producing electrode for secondary battery, and secondary battery
US10014125B2 (en) 2008-05-08 2018-07-03 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
JP2012501552A (en) * 2008-08-28 2012-01-19 イオクサス, インコーポレイテッド High voltage EDLC battery and manufacturing method thereof
US9245693B2 (en) 2008-08-28 2016-01-26 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
JP2013030389A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Method for manufacturing charge collector
JP2019160549A (en) * 2018-03-13 2019-09-19 凸版印刷株式会社 Manufacturing method of doughnut-shaped electrode
JP2020087695A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Electrode sheet manufacturing device

Similar Documents

Publication Publication Date Title
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
US6045947A (en) Electrode plate for secondary battery with nonaqueous electrolyte and method of manufacturing the same
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
US7854773B2 (en) Method of producing an electrode plate for a nonaqueous electrolyte secondary battery
JPH09298058A (en) Manufacture of electrode plate for nonaqueous electrolyte secondary battery
JP2000040506A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JPH11185734A (en) Electrode plate for nonaqueous electrolyte and manufacture thereof
JPH11354103A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacture, and its intermediate product
JPH09237625A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
JPH1167277A (en) Lithium secondary battery
JP4233785B2 (en) Negative electrode coating composition, negative electrode plate, and non-aqueous electrolyte secondary battery
JP4822603B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2006107750A (en) Active material layer coating composition, electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3626558B2 (en) Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH1064526A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
JPH09259890A (en) Electrode applying solution and electrode plate for nonaqueous electrolyte secondary battery
JP4774728B2 (en) Coating composition for positive electrode active material layer, positive electrode plate formed from the composition, and nonaqueous electrolyte secondary battery having the positive electrode plate
JP2004139800A (en) Nonaqueous electrolyte battery and its electrode plate
JP2003151555A (en) Coating composite for negative electrode, negative- electrode board, its manufacturing method, and non- aqueous electrolyte secondary battery
JPH10223209A (en) Manufacture of electrode plate for non-aqueous electrolytic solution secondary battery
JPH09283122A (en) Electrode plate for nonaqueous electr0lyte secondary battery and manufacture thereof
JP5044890B2 (en) Method for producing negative plate for non-aqueous electrolyte secondary battery, negative plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2000243384A (en) Manufacture of positive electrode material for polymer lithium secondary battery
JPH08124561A (en) Manufacture of plate for nonaqueous electrolyte secondary battery and active material applying liquid used in the manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130