JP2008103310A - Manufacturing method of electrode for secondary battery and secondary battery - Google Patents

Manufacturing method of electrode for secondary battery and secondary battery Download PDF

Info

Publication number
JP2008103310A
JP2008103310A JP2007179426A JP2007179426A JP2008103310A JP 2008103310 A JP2008103310 A JP 2008103310A JP 2007179426 A JP2007179426 A JP 2007179426A JP 2007179426 A JP2007179426 A JP 2007179426A JP 2008103310 A JP2008103310 A JP 2008103310A
Authority
JP
Japan
Prior art keywords
current collector
porous film
electrode
active material
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007179426A
Other languages
Japanese (ja)
Inventor
Hideaki Fujita
秀明 藤田
Takeshi Hatanaka
剛 畑中
Hidenori Takahashi
英徳 高橋
Kenichi Nishihata
健一 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007179426A priority Critical patent/JP2008103310A/en
Publication of JP2008103310A publication Critical patent/JP2008103310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode for a secondary battery of a high-safety tab-less structure in a simple method, and a secondary battery equipped with an electrode of a tab-less structure excellent in safety. <P>SOLUTION: An active material layer 2 is coated on a collector 1 with either end part exposed. A width of a first unformed part 1a at one end of the collector 1 is formed narrower than a second unformed part 1b at the other end. Next, a porous film 3 is formed on the collector 1 so as to cover the active material layer 2. Here, the porous layer 3 is formed so as to cover an end face of the active material layer 2 at the first unformed part 1a, and at the same time, to expose a part of the collector 1 at the second unformed part 1b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、タブレス構造の二次電池用電極の製造方法、及び二次電池に関する。   The present invention relates to a method for manufacturing an electrode for a secondary battery having a tabless structure, and a secondary battery.

一般に、リチウムイオン二次電池は、エネルギー密度あるいは出力密度が大きく、機器の小型化・軽量化が可能であることから、従来の携帯電話やパソコン用の電源から、さらに高出力が要求される電動工具あるいはハイブリッド自動車用の電源まで適用が拡大しており、より高出力性能が要求されている。   In general, lithium-ion secondary batteries have high energy density or output density, and can be made smaller and lighter. Therefore, electric power that requires higher output than conventional power sources for mobile phones and personal computers is required. Applications are expanding to power supplies for tools or hybrid vehicles, and higher output performance is required.

リチウムイオン二次電池の高出力化を図るためには、電池の内部抵抗を小さくする必要がある。その対策の一つとして、極板の集電抵抗の低減を図るために、いわゆるタブレス構造の集電構造が採用されている。図4(a)は、タブレス構造を採用したリチウムイオン二次電池の一般的な構成を示した断面図である。図4(a)に示すように、正極集電体101上に正極活物質層102が形成された正極、及び負極集電体103上に負極活物質層104が形成された負極が、セパレータ105を介して捲回されて、電池ケース108内に収容されている。そして、各集電体101、103の端部101a、103aは、活物質層102、104が形成されずに露出し、それぞれ正極集電板106及び負極集電板107に溶接等で接合されている。このように、正極及び負極の端部全体を集電板106、107に接合することによって、極板の集電抵抗を低減することができ、リチウムイオン二次電池の高出力化を図ることができる。   In order to increase the output of the lithium ion secondary battery, it is necessary to reduce the internal resistance of the battery. As one of the countermeasures, a so-called tabless current collecting structure is employed in order to reduce the current collecting resistance of the electrode plate. FIG. 4A is a cross-sectional view showing a general configuration of a lithium ion secondary battery adopting a tabless structure. As shown in FIG. 4A, the positive electrode in which the positive electrode active material layer 102 is formed on the positive electrode current collector 101 and the negative electrode in which the negative electrode active material layer 104 is formed on the negative electrode current collector 103 are included in the separator 105. Is housed in the battery case 108. The end portions 101a and 103a of the current collectors 101 and 103 are exposed without forming the active material layers 102 and 104, and are joined to the positive electrode current collector plate 106 and the negative electrode current collector plate 107, respectively, by welding or the like. Yes. In this way, by joining the entire ends of the positive electrode and the negative electrode to the current collector plates 106 and 107, the current collecting resistance of the electrode plate can be reduced, and the output of the lithium ion secondary battery can be increased. it can.

ところで、リチウムイオン二次電池の容量は、一般に、正極容量で決まるため、図4(b)に示すように、正極の面積は負極の面積よりも小さく設計されている。また、正極を例にとれば、図4(c)に示すように、正極集電体101の活物質層102が形成されていない端部101aと反対側の端部において、正極集電体101の切断時に、正極活物質層102の端面に導電性のバリ111が発生する場合がある。この切断バリ111が、セパレータ105を突き破って、対向する負極の活物質層104に接触すると、正極集電体101と負極活物質層104との短絡が生じる。このとき、黒鉛等の活物質を含む負極活物質層104は、導電性を有するため、正極集電体101と負極活物質層104との間に大電流が流れ、その結果、電池の発熱に至るおそれがある。   Incidentally, since the capacity of the lithium ion secondary battery is generally determined by the positive electrode capacity, the area of the positive electrode is designed to be smaller than the area of the negative electrode as shown in FIG. Taking the positive electrode as an example, as shown in FIG. 4C, the positive electrode current collector 101 is formed at the end of the positive electrode current collector 101 opposite to the end 101a where the active material layer 102 is not formed. When cutting, a conductive burr 111 may be generated on the end face of the positive electrode active material layer 102. When the cut burr 111 breaks through the separator 105 and comes into contact with the opposing negative electrode active material layer 104, a short circuit occurs between the positive electrode current collector 101 and the negative electrode active material layer 104. At this time, since the negative electrode active material layer 104 containing an active material such as graphite has conductivity, a large current flows between the positive electrode current collector 101 and the negative electrode active material layer 104, and as a result, heat generation of the battery occurs. There is a risk.

このような内部短絡の発生を防止する方法として、活物質層の表面に耐熱性の多孔膜を形成する技術が、特許文献1に記載されている。図5は、この技術をタブレス構造に適用した場合の電極群の構成を示した断面図である。図5に示すように、負極集電体103上に形成された負極活物質層104の表面に多孔膜120を形成することによって、正極活物質層102の端面に生じた切断バリ111が、セパレータ105を突き破って、負極活物質層104bに達することを阻止することができる。
特開平7−220759号公報 特開平9−298058号公報 特開2004−55537号公報
As a method for preventing the occurrence of such an internal short circuit, Patent Document 1 discloses a technique for forming a heat-resistant porous film on the surface of an active material layer. FIG. 5 is a cross-sectional view showing the configuration of an electrode group when this technique is applied to a tabless structure. As shown in FIG. 5, by forming the porous film 120 on the surface of the negative electrode active material layer 104 formed on the negative electrode current collector 103, the cut burrs 111 generated on the end face of the positive electrode active material layer 102 are separated from the separator. It is possible to prevent 105 from breaking through and reaching the negative electrode active material layer 104b.
Japanese Patent Laid-Open No. 7-220759 Japanese Patent Laid-Open No. 9-298058 Japanese Patent Laid-Open No. 2004-55537

ところで、負極活物質層104上に形成する多孔膜120は、電池の容量を確保する観点からは、できるだけ薄い方が好ましい。そのため、多孔膜120の形成には、グラビア印刷等の方法が用いられる(例えば、特許文献2を参照)。   By the way, the porous film 120 formed on the negative electrode active material layer 104 is preferably as thin as possible from the viewpoint of securing the capacity of the battery. Therefore, a method such as gravure printing is used for forming the porous film 120 (see, for example, Patent Document 2).

しかしながら、グラビア印刷等の方法では、図5に示すように、負極集電体103の露出部103aと反対側の端部における負極活物質層104の端面には、多孔膜120を形成することが難しい。そのため、正極集電体101の露出部101aが外圧によって折れ曲がった場合、負極活物質層104の端面と接触することによって、正極集電体101と負極活物質層104とが短絡するおそれがある。   However, in a method such as gravure printing, a porous film 120 may be formed on the end face of the negative electrode active material layer 104 at the end opposite to the exposed portion 103a of the negative electrode current collector 103, as shown in FIG. difficult. Therefore, when the exposed portion 101a of the positive electrode current collector 101 is bent by an external pressure, the positive electrode current collector 101 and the negative electrode active material layer 104 may be short-circuited by coming into contact with the end surface of the negative electrode active material layer 104.

一方、活物質層の端面に絶縁材料を形成する技術が、特許文献3に記載されている。しかしながら、これらの絶縁材料は、セラミックスの溶射や、絶縁テープの貼り付けによって形成されるもので、制御性よく形成することは難しく、量産工程に適用するには問題がある。加えて、活物質層の表面に多孔膜を形成する工程とは別の工程を要するため、製造コストの面でも問題がある。   On the other hand, Patent Document 3 discloses a technique for forming an insulating material on an end face of an active material layer. However, these insulating materials are formed by thermal spraying ceramics or affixing an insulating tape, and it is difficult to form them with good controllability, and there is a problem in applying them to mass production processes. In addition, since a process different from the process of forming the porous film on the surface of the active material layer is required, there is a problem in terms of manufacturing cost.

本発明は、かかる点に鑑みなされたもので、その主な目的は、簡単な方法で、安全性の高いタブレス構造の二次電池用電極を製造する方法、及び安全性に優れたタブレス構造の電極を備えた二次電池を提供することにある。   The present invention has been made in view of the above points, and its main object is to provide a method for producing a highly safe tabless structure secondary battery electrode by a simple method, and a tabless structure having excellent safety. It is providing the secondary battery provided with the electrode.

本願発明者等は、タブレス構造の電極において、活物質層が形成されていない集電体の露出部が、活物質層の端面に多孔膜を形成するための「形成代」になることに着目して、集電体端部の未形成部(集電板に接合される部分)とは別に、それとは反対側の端部に、多孔膜の「形成代」としての幅狭の未形成部を別途設けることによって、当該未形成部(形成代)における活物質層の端面に多孔膜を形成することを可能にした。   The inventors of the present application pay attention to the fact that the exposed portion of the current collector, in which the active material layer is not formed, is a “formation allowance” for forming a porous film on the end face of the active material layer in the tabless structure electrode. In addition to the non-formed part at the end of the current collector (the part to be joined to the current collector plate), the narrow non-formed part as the “forming allowance” for the porous film is formed at the end opposite to the current collector. By providing separately, it became possible to form a porous film on the end surface of the active material layer in the unformed part (formation allowance).

すなわち、本発明に係わる二次電池用電極の製造方法は、集電体上に該集電体の両端部が露出するように活物質層を形成する工程(a)と、集電体上に活物質層を覆うように多孔膜を形成する工程(b)とを有し、工程(a)において、集電体の一方の端部における活物質層の第1の未形成部の幅は、他方の端部における第2の未形成部の幅よりも狭く形成され、工程(b)において、多孔膜は第1の未形成部における活物質層の端面を覆うとともに、第2の未形成部における集電体の一部を露出するように形成されることを特徴とする。   That is, the method for manufacturing an electrode for a secondary battery according to the present invention includes a step (a) of forming an active material layer on a current collector so that both ends of the current collector are exposed, and a current collector. Forming a porous film so as to cover the active material layer, and in step (a), the width of the first unformed portion of the active material layer at one end of the current collector is: In the step (b), the porous film covers the end surface of the active material layer in the first unformed part, and the second unformed part is formed narrower than the width of the second unformed part at the other end. The current collector is formed so as to expose a part of the current collector.

このような方法により、集電体の一方の端部に、幅狭の第1の未形成部(形成代)を設けることによって、集電体上に多孔膜を形成する際、活物質層の表面と同時に、活物質層の端面にも多孔膜を形成することができ、これにより、内部短絡の発生を防止した、安全性の高いタブレス構造の電極を得ることができる。   By forming a narrow first unformed part (formation allowance) at one end of the current collector by such a method, when forming a porous film on the current collector, the active material layer At the same time as the surface, a porous film can be formed on the end face of the active material layer. Thereby, a highly safe tabless structure electrode that prevents the occurrence of an internal short circuit can be obtained.

ここで、上記多孔膜は、第1の未形成部を全て覆うように形成されることが好ましい。これにより、第1の未形成部の幅を最小限にすることができ、電池の容量を十分に確保することができる。   Here, the porous film is preferably formed so as to cover all the first unformed portions. Thereby, the width | variety of a 1st non-formation part can be made into the minimum, and the capacity | capacitance of a battery can fully be ensured.

また、上記多孔膜は、多孔膜スラリーを印刷により集電体上に塗布することによって形成されることが好ましい。これにより、簡単な方法で、安全性の高い電極構造を得ることができる。   The porous film is preferably formed by applying a porous film slurry onto a current collector by printing. Thereby, a highly safe electrode structure can be obtained by a simple method.

本発明に係わる二次電池は、集電体上に活物質層がそれぞれ形成された正極及び負極を、セパレータを介して捲回または積層された電極群を備えた二次電池であって、正極または負極の少なくとも一方の電極の集電体上には、活物質層を覆う多孔膜がさらに形成されており、多孔膜が形成された集電体は、該集電体の両端部において、活物質層が形成されていない第1の未形成部及び第2の未形成部を有し、第1の未形成部の幅は、第2の未形成部の幅よりも狭く形成されており、第1の未形成部における活物質層の端面は多孔膜で覆われ、第2の未形成部における集電体の一部は多孔膜で覆われていないことを特徴とする。   A secondary battery according to the present invention is a secondary battery comprising an electrode group in which a positive electrode and a negative electrode each having an active material layer formed on a current collector are wound or stacked with a separator interposed therebetween. Alternatively, a porous film covering the active material layer is further formed on the current collector of at least one electrode of the negative electrode, and the current collector on which the porous film is formed is active at both ends of the current collector. A first unformed portion and a second unformed portion where the material layer is not formed, the width of the first unformed portion being narrower than the width of the second unformed portion; The end surface of the active material layer in the first unformed part is covered with a porous film, and a part of the current collector in the second unformed part is not covered with the porous film.

このような構成により、集電体端部に設けられた幅狭の第1の未形成部における活物質層の端面を多孔膜で覆うことによって、内部短絡の発生を防止した、安全性の高いタブレス構造を備えた二次電池を得ることができる。   With such a configuration, the end face of the active material layer in the narrow first unformed portion provided at the end of the current collector is covered with a porous film, thereby preventing the occurrence of an internal short circuit and high safety. A secondary battery having a tabless structure can be obtained.

本発明によれば、集電体の一方の端部に、幅狭の第1の未形成部(形成代)を設けることによって、活物質層の表面及び端面に多孔膜を形成することができ、これにより、内部短絡の発生を防止した、安全性の高いタブレス構造の電極、及びそれを備えた二次電池を提供することができる。   According to the present invention, a porous film can be formed on the surface and the end face of the active material layer by providing the narrow first unformed part (formation allowance) at one end of the current collector. As a result, it is possible to provide a highly safe electrode having a tabless structure which prevents the occurrence of an internal short circuit, and a secondary battery including the same.

以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. In addition, this invention is not limited to the following embodiment.

図1は、本発明の実施形態における二次電池の電極構造を模式的に示した断面図である。   FIG. 1 is a cross-sectional view schematically showing an electrode structure of a secondary battery in an embodiment of the present invention.

図1に示すように、負極集電体1上に活物質層2が形成された負極、及び正極集電体5上に活物質層6が形成された正極が、セパレータ4を介して捲回または積層されて電極群を構成している。さらに、負極集電体1上には、負極活物質層2を覆う多孔膜3がさらに形成されている。多孔膜3が形成された負極集電体1は、その両端部において、負極活物質層2が形成されていない第1の未形成部1a及び第2の未形成部1bを有しており、第1の未形成部1aの幅は、第2の未形成部1bの幅よりも狭く形成されている。そして、第1の未形成部1aにおける負極活物質層2の端面は多孔膜3で覆われるとともに、第2の未形成部1bにおける負極集電体1の一部は多孔膜3で覆われていない。   As shown in FIG. 1, a negative electrode in which an active material layer 2 is formed on a negative electrode current collector 1 and a positive electrode in which an active material layer 6 is formed on a positive electrode current collector 5 are wound through a separator 4. Or it is laminated | stacked and the electrode group is comprised. Furthermore, a porous film 3 that covers the negative electrode active material layer 2 is further formed on the negative electrode current collector 1. The negative electrode current collector 1 in which the porous film 3 is formed has a first unformed portion 1a and a second unformed portion 1b in which the negative electrode active material layer 2 is not formed at both ends thereof. The width of the first unformed portion 1a is formed to be narrower than the width of the second unformed portion 1b. The end face of the negative electrode active material layer 2 in the first unformed part 1 a is covered with the porous film 3, and a part of the negative electrode current collector 1 in the second unformed part 1 b is covered with the porous film 3. Absent.

本実施形態において、負極集電体1上に形成された負極活物質層2の表面、及び第1の未形成部1aにおける負極活物質層2の端面を多孔膜3で覆うことによって、例えば、正極活物質層6の端面で発生した切断バリ、若しくは正極集電体5の露出部5bの押圧による屈曲等に起因して、正極集電体5と負極活物質層2とが内部短絡を起こすことを防止することができ、これにより、安全性の高いタブレス構造を備えた二次電池を実現することができる。   In this embodiment, by covering the surface of the negative electrode active material layer 2 formed on the negative electrode current collector 1 and the end surface of the negative electrode active material layer 2 in the first unformed portion 1a with the porous film 3, for example, The positive electrode current collector 5 and the negative electrode active material layer 2 cause an internal short circuit due to a cutting burr generated at the end face of the positive electrode active material layer 6 or bending due to pressing of the exposed portion 5b of the positive electrode current collector 5. Thus, a secondary battery having a highly safe tabless structure can be realized.

ここで、第2の未形成部1bは、電極端子(外部端子)に接続された集電板に接合されるもので、従来のタブレス構造の電極において設けられていたものであるが、第1の未形成部1aは、従来のタブレス構造の電極においてはなかったものである。すなわち、従来のタブレス構造の電極においては、第2の未形成部1bと反対側の集電体の端部は、表面に形成された活物質層とともに切断されるため、集電体の端面と活物質層の端面とは面一になっていた。   Here, the second unformed portion 1b is joined to the current collector plate connected to the electrode terminal (external terminal), and is provided in the conventional tabless structure electrode. The unformed portion 1a is not in the conventional tabless structure electrode. That is, in the conventional tabless structure electrode, the end portion of the current collector opposite to the second unformed portion 1b is cut together with the active material layer formed on the surface. It was flush with the end face of the active material layer.

これに対して、本発明における第1の未形成部1aは、第2の未形成部1bとは反対側の端部に、多孔膜3の「形成代」として、第2の未形成部1bよりも幅狭の未形成部を別途設けたものである。多孔膜3は、多孔膜材料を含むスラリー(以下、「多孔膜スラリー」という)を印刷等の方法で集電体上に塗布することによって形成されるが、このとき、第1の未形成部1aを「形成代」にして未形成部1aに多孔膜スラリーが塗布され、そのスラリーが活物質層端面に流れ込むことによって、負極活物質層2の端面にも多孔膜3を形成することができる。   On the other hand, the first unformed portion 1a in the present invention has the second unformed portion 1b as the “forming allowance” of the porous film 3 at the end opposite to the second unformed portion 1b. An unformed portion having a narrower width is separately provided. The porous film 3 is formed by applying a slurry containing a porous film material (hereinafter referred to as “porous film slurry”) onto a current collector by a method such as printing. At this time, the first unformed portion is formed. The porous film 3 can be formed also on the end face of the negative electrode active material layer 2 by applying the porous film slurry to the non-formed part 1a with “forming allowance” 1a and flowing the slurry into the end face of the active material layer 2. .

従って、第1の未形成部1aは、「形成代」として作用する最小限の幅を備えていればよい。換言すれば、多孔膜3は、第1の未形成部1aを全て覆うように形成されることが好ましい。このように形成すれば、第1の未形成部1aの幅を最小限にすることができるので、電池の容量を十分に確保することができる。   Therefore, the first unformed portion 1a only needs to have a minimum width that acts as a “forming allowance”. In other words, the porous membrane 3 is preferably formed so as to cover the entire first unformed portion 1a. If formed in this way, the width of the first unformed portion 1a can be minimized, so that the battery capacity can be sufficiently secured.

最も、負極集電体1の表面に負極活物質層2を形成した後、第1の未形成部1aを残して負極集電体1を切断する際、加工上の精度等の理由で、残存させた第1の未形成部1aの幅が、「形成代」としての最小限の幅以上のものになっても、本発明で奏される発明の効果に影響を及ぼすことはない。例えば、第1の未形成部1aの幅を3mm以下、より好適には1mm以下に設定すれば、電池容量の実質的な低下を抑制しつつ、安全性の高い二次電池を実現することができる。また、第2の未形成部1bの幅は、例えば5mm以上に設定すれば、集電板への溶接等による接合を確実にすることができる。また、多孔膜3は、例えば2〜30μm(典型的には、2〜10μm)程度の厚みに設定すれば、電池容量の実質的な低下を抑制しつつ、安全性の高い二次電池を実現することができる。   Mostly, after the negative electrode active material layer 2 is formed on the surface of the negative electrode current collector 1, when the negative electrode current collector 1 is cut leaving the first unformed portion 1 a, Even if the width of the first unformed portion 1a is greater than the minimum width as the “formation allowance”, the effect of the invention produced by the present invention is not affected. For example, if the width of the first unformed portion 1a is set to 3 mm or less, more preferably 1 mm or less, a highly safe secondary battery can be realized while suppressing a substantial decrease in battery capacity. it can. Further, if the width of the second unformed portion 1b is set to, for example, 5 mm or more, the joining to the current collector plate by welding or the like can be ensured. Moreover, if the porous membrane 3 is set to a thickness of, for example, about 2 to 30 μm (typically 2 to 10 μm), a highly safe secondary battery is realized while suppressing a substantial decrease in battery capacity. can do.

上述したように、多孔膜3は、多孔膜材料を溶媒に混ぜて生成したスラリーを、印刷法により、表面に負極活物質層2が形成された負極集電体1上に塗布することによって形成することが好ましい。また、多孔膜材料としては、例えば、アルミナまたはシリカ等の粉末状の無機酸化物(フィラー)を含むことが好ましい。さらに、フィラーを多孔膜3として形成するための結着剤には、例えば、非結晶性で耐熱性が高く、ゴム弾性を有するポリアクリロニトリル基を含むゴム性状高分子などを用いることが好ましい。これらの材料を含む多孔膜3は、耐熱性に優れ、電気化学的にも安定であるため、内部短絡の発生を効果的に防止することができる。なお、多孔膜スラリーの印刷法としては、例えば、グラビア印刷、スクリーン印刷等を用いることができる。   As described above, the porous film 3 is formed by applying a slurry produced by mixing a porous film material in a solvent onto the negative electrode current collector 1 having the negative electrode active material layer 2 formed on the surface by a printing method. It is preferable to do. Moreover, as a porous membrane material, it is preferable that powdered inorganic oxides (filler), such as an alumina or a silica, are included, for example. Further, as the binder for forming the filler as the porous film 3, it is preferable to use, for example, a rubbery polymer containing a polyacrylonitrile group which is amorphous and has high heat resistance and rubber elasticity. Since the porous film 3 containing these materials is excellent in heat resistance and electrochemically stable, it is possible to effectively prevent the occurrence of an internal short circuit. In addition, as a printing method of porous film slurry, gravure printing, screen printing, etc. can be used, for example.

図1に示した構造の電極群は、図4(a)に示した従来のタブレス構造の二次電池と同様に、電池ケース内に収容され、負極集電体1の第2の未形成部1b、及び正極集電体5の露出部5bは、それぞれ負極集電板及び正極集電板に溶接等で接合されて、二次電池を構成している。   The electrode group having the structure shown in FIG. 1 is housed in the battery case, as in the conventional secondary battery having the tabless structure shown in FIG. 1b and the exposed portion 5b of the positive electrode current collector 5 are joined to the negative electrode current collector plate and the positive electrode current collector plate, respectively, by welding or the like to constitute a secondary battery.

なお、本実施形態において、多孔膜3は、負極側にのみ形成したが、負極、正極の両方、あるいは正極側にのみ形成しても勿論よい。   In the present embodiment, the porous film 3 is formed only on the negative electrode side, but may of course be formed on both the negative electrode and the positive electrode, or only on the positive electrode side.

次に、本実施形態における二次電池用電極の製造方法について、図2(a)〜(b)、及び図3(a)〜(d)を参照しながら説明する。なお、本実施形態では、負極を例に説明する。   Next, the manufacturing method of the electrode for secondary batteries in this embodiment is demonstrated, referring FIG. 2 (a)-(b) and FIG. 3 (a)-(d). In the present embodiment, a negative electrode will be described as an example.

まず、図2(a)(上側が平面図、下側が断面図を示す。図2(b)において同じ。)に示すように、負極集電体1の両面に、その両端部が露出するように、負極活物質層2を形成する。負極活物質層2は、例えば、黒鉛等の負極活物質を含むスラリーを負極集電体1上に塗布することによって形成することができる。   First, as shown in FIG. 2A (upper side is a plan view and lower side is a sectional view, the same applies in FIG. 2B), both ends of the negative electrode current collector 1 are exposed. Then, the negative electrode active material layer 2 is formed. The negative electrode active material layer 2 can be formed, for example, by applying a slurry containing a negative electrode active material such as graphite on the negative electrode current collector 1.

次に、図2(b)に示すように、負極集電体1の両端部の負極活物質層2が形成されていない未形成部を、それぞれ、IIa−IIaの線、 IIb−IIbの線に沿って切断する。このとき、負極集電体1の一方の端部における第1の未形成部1aの幅は、他方の端部における第2の未形成部1bの幅よりも狭く形成される。   Next, as shown in FIG. 2 (b), the unformed portions where the negative electrode active material layer 2 is not formed at both ends of the negative electrode current collector 1 are respectively shown as IIa-IIa line and IIb-IIb line. Cut along. At this time, the width of the first unformed portion 1a at one end of the negative electrode current collector 1 is formed to be narrower than the width of the second unformed portion 1b at the other end.

次に、表面に負極活物質層2が形成された負極集電体1(以下、「負極板8」という)上に、負極活物質層2を覆うように、多孔膜を形成する。多孔膜の形成は、例えば、図3(a)、(b)に示すように、通常のグラビア印刷法を用いて行うことができる。ここで、図3(a)は、グラビア印刷装置の側面断面図、図3(b)は、同装置の正面断面図である。   Next, a porous film is formed on the negative electrode current collector 1 (hereinafter referred to as “negative electrode plate 8”) having the negative electrode active material layer 2 formed on the surface so as to cover the negative electrode active material layer 2. The formation of the porous film can be performed using, for example, a normal gravure printing method as shown in FIGS. 3 (a) and 3 (b). Here, FIG. 3A is a side sectional view of the gravure printing apparatus, and FIG. 3B is a front sectional view of the apparatus.

図3(a)、(b)に示すように、周面に複数の溝が形成されたグラビアロール7を、その下周面が液槽9に貯められた多孔膜スラリーに浸されるように配置する。そして、グラビアロール7を、走行する負極板8に当接させながら、グラビアロール7を負極板8の走行方向と逆向きに回転させることによって、グラビアロール7の溝内に供給された多孔膜スラリーを負極板8の表面に転写することができる。負極板8の表面に転写された多孔膜スラリーは、その後乾燥させる。   As shown in FIGS. 3A and 3B, the gravure roll 7 having a plurality of grooves formed on the peripheral surface thereof is immersed in the porous film slurry stored in the liquid tank 9 at the lower peripheral surface. Deploy. And the porous film slurry supplied in the groove | channel of the gravure roll 7 by rotating the gravure roll 7 in the opposite direction to the running direction of the negative electrode plate 8 while making the gravure roll 7 contact the traveling negative electrode plate 8. Can be transferred to the surface of the negative electrode plate 8. The porous film slurry transferred to the surface of the negative electrode plate 8 is then dried.

図3(c)、(d)は、負極板8の端部A、Bにおける状態を示した拡大図である。図3(d)に示すように、幅狭の第1の未形成部1aは、グラビアロール7と当接することによって、負極活物質層2の端面にも多孔膜(不図示)を形成することができる。   FIGS. 3C and 3D are enlarged views showing states at the end portions A and B of the negative electrode plate 8. As shown in FIG. 3 (d), the narrow first unformed portion 1 a forms a porous film (not shown) on the end face of the negative electrode active material layer 2 by contacting the gravure roll 7. Can do.

一方、図3(c)に示すように、幅広の第2の未形成部1bの先端を含む一部にテープ12を貼っておくことによって、第2の未形成部1bの一部には多孔膜が形成されない領域(集電板と接合する部分)を確保することができる。あるいは、その領域にグラビアロール7が接触しないように配置したり、その領域に接触するグラビアロール7の溝を、他の領域よりも深く形成しておくことによっても、多孔膜が形成されない領域を確保することができる。   On the other hand, as shown in FIG. 3C, a part of the second unformed portion 1b is porous by sticking the tape 12 to a portion including the tip of the wide second unformed portion 1b. A region where the film is not formed (portion joined to the current collector plate) can be secured. Alternatively, by arranging the gravure roll 7 so as not to contact the region, or by forming the groove of the gravure roll 7 contacting the region deeper than the other region, the region where the porous film is not formed is formed. Can be secured.

また、グラビアロール7の溝を、グラビアロール7の周面に対して傾斜させて形成し、その傾斜方向及び/又は傾斜角を調整することによって、第1の未形成部1aにおける負極活物質層2の端面に形成される多孔膜の厚みを最適化することができる。   Moreover, the groove | channel of the gravure roll 7 is formed inclining with respect to the surrounding surface of the gravure roll 7, and the negative electrode active material layer in the 1st unformed part 1a is adjusted by adjusting the inclination direction and / or inclination angle. The thickness of the porous film formed on the two end faces can be optimized.

なお、図中の掻き落としブレード10は、グラビアロール7に沿って設けることによって、グラビアロール7の溝以外の表面に付着した余分な多孔膜スラリーを掻き落とすためのものである。   The scraping blade 10 in the figure is provided along the gravure roll 7 to scrape off excess porous film slurry adhering to the surface other than the groove of the gravure roll 7.

本発明における二次電池を構成する正極、負極、及びセパレータは、以下に示す材料、及び形成方法を好適に用いることができる。   For the positive electrode, the negative electrode, and the separator constituting the secondary battery in the present invention, the following materials and forming methods can be suitably used.

正極活物質には、コバルト酸リチウムおよびその変性体(アルミニウムやマグネシウムを共晶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルトやアルミニウムなどで置換したもの)、マンガン酸リチウムおよびその変性体などの複合酸化物を用いることができる。また、導電剤には、アセチレンブラック、ケッチェンブラック、各種グラファイトを単独あるいは複数組み合わせたものなどを用いる。さらに、結着剤には、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVdF)などを用いる。   The positive electrode active material includes lithium cobaltate and modified products thereof (e.g., those obtained by eutectic aluminum or magnesium), lithium nickelate and modified products thereof (some of which nickel is replaced with cobalt, aluminum, etc.), manganic acid A composite oxide such as lithium and a modified product thereof can be used. In addition, as the conductive agent, acetylene black, ketjen black, various graphites or a combination of a plurality of graphites are used. Furthermore, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or the like is used as the binder.

これら材料を混練装置を用い、必要に応じて増粘剤を混合し、水あるいは有機溶媒とともに混練し、正極合剤スラリーを作製する。その後、アルミ集電体上にダイ塗工装置などを用い、スラリーを塗布・乾燥させ、集電体上に活物質層を形成する。ここで、正極長手方向の両端に正極活物質層を形成していない未形成部を連続形成する。その後、必要に応じてプレスし、多孔膜を形成する場合は、多孔膜の形成代として必要な幅の未形成部を残した状態でスリットを施し、正極の基材を作製する。   Using a kneading apparatus, these materials are mixed with a thickener as necessary, and kneaded with water or an organic solvent to prepare a positive electrode mixture slurry. Thereafter, using a die coating apparatus or the like on the aluminum current collector, the slurry is applied and dried to form an active material layer on the current collector. Here, the non-formed part in which the positive electrode active material layer is not formed is continuously formed at both ends in the positive electrode longitudinal direction. Thereafter, pressing is performed as necessary to form a porous film, and slits are made in a state where an unformed portion having a width necessary for forming the porous film is left, thereby producing a positive electrode base material.

負極活物質には、各種天然黒鉛、人造黒鉛、もしくは合金組成材料などを用いることができる。また、結着剤には、スチレンブタジエンゴム(SBR)やポリフッ化ビニリデン(PVdF)などを用いることができる。   Various types of natural graphite, artificial graphite, or alloy composition materials can be used as the negative electrode active material. As the binder, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVdF), or the like can be used.

これら材料を混練装置を用い、必要に応じて増粘剤を混合し、水あるいは有機溶媒とともに混練し、負極合剤スラリーを作製する。その後、銅集電体上にダイ塗工装置などを用い、スラリーを塗布・乾燥させ、集電体上に活物質層を形成する。ここで、負極長手方向の両端に負極活物質層を形成していない未形成部を連続形成する。その後、必要に応じてプレスし、多孔膜を形成する場合は、多孔膜の形成代として必要な幅の未形成部を残した状態でスリットを施し、負極の基材を作製する。   Using a kneading apparatus, these materials are mixed with a thickener as necessary, and kneaded with water or an organic solvent to prepare a negative electrode mixture slurry. Thereafter, using a die coating apparatus or the like on the copper current collector, the slurry is applied and dried to form an active material layer on the current collector. Here, the non-formed part in which the negative electrode active material layer is not formed is continuously formed at both ends in the negative electrode longitudinal direction. Thereafter, pressing is performed as necessary to form a porous film, and a slit is formed in a state where an unformed part having a width necessary for forming a porous film is left, thereby producing a negative electrode substrate.

セパレータには、電解液の保持力が高く、正極および負極のいずれの電位下においても安定な微多孔性フィルムからなるものを用いることができる。このようなセパレータとしては、例えば、ポリプロピレンからなるもの、ポリエチレンからなるもの、ポリイミドからなるもの、ポリアミドからなるものなどが挙げられる。   As the separator, there can be used a separator made of a microporous film that has a high holding power of the electrolyte and is stable under any potential of the positive electrode and the negative electrode. Examples of such a separator include those made of polypropylene, those made of polyethylene, those made of polyimide, and those made of polyamide.

以上の手順により作製した正極と負極を、セパレータを介して捲回、もしくはそれら材料を必要寸法に加工して積層するなどして電極群を作製する。その後、電極群の両端に露出している集電体部分を、外部端子に接続する集電板に溶接し、電池ケースに挿入し、非水電解液を注入した後、必要個所を封止することで二次電池を得る。なお、電池形状は円筒形、あるいは角型形状など特に限定されない。   The positive electrode and the negative electrode prepared by the above procedure are wound through a separator, or these materials are processed into necessary dimensions and laminated to prepare an electrode group. Then, the current collector parts exposed at both ends of the electrode group are welded to the current collector plate connected to the external terminal, inserted into the battery case, and after injecting the nonaqueous electrolyte, the necessary portions are sealed. A secondary battery is obtained. The battery shape is not particularly limited, such as a cylindrical shape or a square shape.

以下、実施例において本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
正極の作製方法について説明する。NiSO4水溶液に、所定比率のCoおよびAlの硫酸塩を加え、飽和水溶液を調製する。この飽和水溶液を撹拌しながら水酸化ナトリウムを溶解したアルカリ溶液をゆっくりと滴下し中和することによって、三元系の水酸化ニッケルNi0.7Co0.2Al0.1(OH)2の沈殿物を共沈法により生成させた。この沈殿物をろ過、水洗し、80℃で乾燥を行った。得られた水酸化ニッケルは平均粒径約10μmであった。
(Example 1)
A method for manufacturing the positive electrode will be described. A predetermined ratio of Co and Al sulfate is added to the NiSO 4 aqueous solution to prepare a saturated aqueous solution. While stirring this saturated aqueous solution, an alkaline solution in which sodium hydroxide is dissolved is slowly dropped and neutralized to thereby coprecipitate a ternary nickel hydroxide Ni 0.7 Co 0.2 Al 0.1 (OH) 2 precipitate. Was generated by The precipitate was filtered, washed with water, and dried at 80 ° C. The obtained nickel hydroxide had an average particle size of about 10 μm.

その後、得られたNi0.7Co0.2Al0.1(OH)2を、大気中900℃で10時間の熱処理を行い、酸化ニッケルNi0.7Co0.2Al0.1Oを得た。そして、Ni、Co、Alの原子数の和とLiの原子数が等量になるように水酸化リチウム1水和物を加え、乾燥空気中800℃で10時間の熱処理を行うことにより、組成式LiNi0.7Co0.2Al0.12で表されるリチウムニッケル複合酸化物を正極活物質として得た。そして粉砕、分級の処理を経て正極活物質粉末とした。平均粒径9.5μm、比表面積は0.4m2/gであった。 Thereafter, the obtained Ni 0.7 Co 0.2 Al 0.1 (OH) 2 was heat treated in the atmosphere at 900 ° C. for 10 hours to obtain nickel oxide Ni 0.7 Co 0.2 Al 0.1 O. Then, lithium hydroxide monohydrate is added so that the sum of the number of atoms of Ni, Co, and Al and the number of atoms of Li are equal, and a heat treatment is performed at 800 ° C. for 10 hours in dry air. A lithium nickel composite oxide represented by the formula LiNi 0.7 Co 0.2 Al 0.1 O 2 was obtained as a positive electrode active material. Then, a positive electrode active material powder was obtained through pulverization and classification. The average particle size was 9.5 μm, and the specific surface area was 0.4 m 2 / g.

以上により得たリチウムニッケル複合酸化物3kgと、アセチレンブラック90g、PTFEディスパージョン液(固形分60%)100gを適量の水とともに混練して正極スラリーを作製した。このスラリーを厚み15μm、幅150mmのアルミ箔上に塗布幅110mm、箔の片側端部長手方向に11mmの未形成部、その反対側端部に29mmの未形成部を連続形成する状態で塗布乾燥した。そして総厚が100μmとなるようにプレスした後、極板幅124mm、合剤塗布幅110mm、そして片側未塗布幅11mm、反対側の未塗布幅が多孔膜の形成代として3mmになるようにスリットし、正極を作製した。   3 kg of the lithium nickel composite oxide obtained above, 90 g of acetylene black, and 100 g of PTFE dispersion liquid (solid content 60%) were kneaded with an appropriate amount of water to prepare a positive electrode slurry. This slurry was applied and dried on an aluminum foil having a thickness of 15 μm and a width of 150 mm, with a coating width of 110 mm, an unformed part of 11 mm in the longitudinal direction of one end of the foil, and an unformed part of 29 mm continuously formed on the opposite end. did. After pressing to a total thickness of 100 μm, slits are made so that the electrode plate width is 124 mm, the mixture coating width is 110 mm, the one-side uncoated width is 11 mm, and the opposite-side uncoated width is 3 mm as an allowance for forming a porous film. Thus, a positive electrode was produced.

次に、負極の作製方法について説明する。人造黒鉛3kgを、スチレン−ブタジエン共重合体ゴム粒子結着剤(固形分重量40重量%)を75g、カルボキシメチルセルロース(CMC)30g、および適量の水とを混練し、負極スラリーを作製した。このスラリーを厚み10μm、幅150mmの銅箔上に塗布幅114mm、箔の片側端部長手方向に11mmの未形成部、その反対側端部に25mmの未形成部を連続形成する状態で塗布乾燥した。そして総厚が110μmとなるようにプレスした後、極板幅128mm、合剤塗布幅114mm、片側未塗布幅11mm、反対側の未塗布幅が多孔膜の形成代として3mmになるようにスリットし、負極を作製した。   Next, a method for manufacturing a negative electrode will be described. 3 kg of artificial graphite, 75 g of a styrene-butadiene copolymer rubber particle binder (solid weight 40% by weight), 30 g of carboxymethylcellulose (CMC), and an appropriate amount of water were kneaded to prepare a negative electrode slurry. This slurry was applied and dried on a copper foil having a thickness of 10 μm and a width of 150 mm, with a coating width of 114 mm, an unformed part of 11 mm in the longitudinal direction of one end of the foil, and an unformed part of 25 mm continuously formed on the opposite end. did. Then, after pressing to a total thickness of 110 μm, slitting is performed so that the electrode plate width is 128 mm, the mixture coating width is 114 mm, the one-side uncoated width is 11 mm, and the opposite-side uncoated width is 3 mm as the formation margin of the porous film. A negative electrode was produced.

次に、多孔膜スラリーの作製方法について説明する。メディアン径0.3μmのアルミナ1000gを、ポリアクリロニトリル変性ゴム結着剤(固形分8重量%)を375gおよび適量のNMP溶媒とともに混練し、多孔膜スラリーを作製した。   Next, a method for producing a porous film slurry will be described. A porous membrane slurry was prepared by kneading 1000 g of alumina having a median diameter of 0.3 μm with 375 g of a polyacrylonitrile-modified rubber binder (solid content 8 wt%) and an appropriate amount of NMP solvent.

多孔膜形成装置として、グラビア塗布装置を用いた。上記正極の片側11mmの未形成部に、活物質層端部から6mm外側の位置まで多孔膜スラリーを連続塗布し、合剤端部への多孔膜と5mm幅の外部集電用の露出部を形成した。その反対側の幅3mmの多孔膜形成代には、全面に多孔膜を形成し、活物質層両端部および平面部の全面に多孔膜スラリーを塗布し、その後、連続的に構成された乾燥炉にてスラリー中の溶媒を乾燥させた。その後、もう一方の正極面側にも同様な形で多孔膜スラリーを塗布乾燥させることにより、正極合剤平面部と端部断面部全面に多孔膜を形成し、片側に5mm幅の集電用露出部を形成した正極板を作製した。多孔膜は、活物質層上の膜厚が約10μmになるよう、グラビア印刷を用いて形成した。本実施例では、負極には多孔膜を形成させなかった。   A gravure coating apparatus was used as the porous film forming apparatus. A porous film slurry is continuously applied to an unformed portion of 11 mm on one side of the positive electrode from the end of the active material layer to a position 6 mm outside, and a porous film at the end of the mixture and an exposed portion for external current collection having a width of 5 mm are provided. Formed. On the opposite side, a 3 mm wide porous film is formed by forming a porous film on the entire surface, applying a porous film slurry to the entire surface of both ends of the active material layer and the flat surface, and then a drying furnace configured continuously. The solvent in the slurry was dried at Thereafter, a porous film slurry is applied and dried in the same manner on the other positive electrode surface side, thereby forming a porous film on the entire surface of the positive electrode mixture flat portion and the end cross section, and for collecting current with a width of 5 mm on one side. A positive electrode plate having an exposed portion was produced. The porous film was formed using gravure printing so that the film thickness on the active material layer was about 10 μm. In this example, no porous film was formed on the negative electrode.

以上のように多孔膜を塗布した正極と多孔膜を塗布していない上記負極とをポリエチレンセパレータを介して、両端に正極および負極集電体が露出する形で角型に捲回し電極群を作製した。この電極群の両端に外部集電端子を抵抗溶接し、両端子が反対方向に突き出る形で、角型アルミケースに挿入し、液栓以外を封止し、ケース内にエチレンカーボネイト(EC)とエチルメチルカーボネイト(EMC)を体積比1:3の配合比で混合した混合溶媒に、溶質として六フッ化リン酸リチウム(LiPF6)を1mol/dm3の濃度で溶解した電解液を注入後、最終液栓を封止して、公称容量5Ahの二次電池を作製した。なおケースには電池内圧上昇による破裂を防止するために10気圧で開弁する安全弁を備えた。この電池を電池Aとする。 As described above, a positive electrode coated with a porous film and the negative electrode not coated with a porous film are wound into a square shape with a positive electrode and a negative electrode current collector exposed at both ends through a polyethylene separator to produce an electrode group. did. External current collector terminals are resistance-welded to both ends of this electrode group, both terminals protrude in the opposite direction, inserted into a square aluminum case, and the parts other than the liquid stopper are sealed, and ethylene carbonate (EC) is sealed in the case. After injecting an electrolytic solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved as a solute at a concentration of 1 mol / dm 3 into a mixed solvent in which ethyl methyl carbonate (EMC) was mixed at a mixing ratio of 1: 3 by volume, The final liquid stopper was sealed to produce a secondary battery having a nominal capacity of 5 Ah. The case was equipped with a safety valve that opened at 10 atm to prevent rupture due to an increase in the internal pressure of the battery. This battery is referred to as battery A.

(実施例2)
実施例1における正極への多孔膜形成の変わりに、負極上に多孔膜を形成したこと以外は実施例1と同様に電池を作製した。この電池を電池Bとする。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that instead of forming the porous film on the positive electrode in Example 1, a porous film was formed on the negative electrode. This battery is referred to as a battery B.

(実施例3)
負極上にも実施例1における正極と同様に多孔膜を形成し、正極と負極両方に多孔膜を形成したこと以外は実施例1と同様に電池を作製した。この電池を電池Cとする。
(Example 3)
A battery was prepared in the same manner as in Example 1 except that a porous film was formed on the negative electrode in the same manner as the positive electrode in Example 1, and a porous film was formed on both the positive electrode and the negative electrode. This battery is referred to as a battery C.

(比較例1)
実施例1の多孔膜形成前の正極において、極板幅121mm、合剤塗布幅110mm、片側未塗布幅11mmになるように、反対側の未塗布幅3mmを残さずスリットし、その上に多孔膜を形成した。この時、集電部と反対の正極合剤端部には多孔膜は形成できていない。また、実施例1の多孔膜形成前の負極において、極板幅125mm、合剤塗布幅114mm、片側未塗布幅11mmになるように、反対側の未塗布幅3mmを残さずスリットし負極を作製した。このこと以外は実施例1と同様に電池を作製した。この電池を電池Dとする。この時、集電部と反対の正極合剤端部には多孔膜は形成できていない。
(Comparative Example 1)
In the positive electrode before forming the porous film of Example 1, the electrode plate width is 121 mm, the mixture coating width is 110 mm, and the one-side uncoated width is 11 mm. A film was formed. At this time, a porous film was not formed at the end of the positive electrode mixture opposite to the current collector. Further, in the negative electrode before forming the porous film of Example 1, the negative electrode was prepared by slitting without leaving the uncoated width of 3 mm on the opposite side so that the electrode plate width was 125 mm, the mixture coating width was 114 mm, and the one-side uncoated width was 11 mm. did. A battery was fabricated in the same manner as in Example 1 except for this. This battery is referred to as a battery D. At this time, a porous film was not formed at the end of the positive electrode mixture opposite to the current collector.

(比較例2)
比較例1における正極で多孔膜を形成せず、負極上に多孔膜を形成したこと以外は比較例1の電池と同様に電池を作製した。この時、集電部と反対の負極合剤端部には多孔膜は形成できていない。この電池を電池Eとする。
(Comparative Example 2)
A battery was produced in the same manner as the battery of Comparative Example 1 except that the porous film was not formed on the positive electrode in Comparative Example 1 but a porous film was formed on the negative electrode. At this time, no porous film was formed at the end of the negative electrode mixture opposite to the current collector. This battery is referred to as a battery E.

(比較例3)
比較例1の正極と比較例2の負極において、両者ともに多孔膜を形成していない極板を用いたこと以外は比較例1の電池と同様に電池を作製した。この電池を電池Fとする。
(Comparative Example 3)
A battery was fabricated in the same manner as the battery of Comparative Example 1, except that the positive electrode of Comparative Example 1 and the negative electrode of Comparative Example 2 were both used electrode plates that did not form a porous film. This battery is referred to as a battery F.

(比較例4)
実施例1の正極において多孔膜を形成していないこと以外は実施例1の電池と同様に電池を作製した。この電池を電池Gとする。
(Comparative Example 4)
A battery was produced in the same manner as the battery of Example 1, except that the porous film was not formed on the positive electrode of Example 1. This battery is referred to as a battery G.

以上の各電池を20個それぞれ作製した。得られた各例の電池に対し、以下の評価を行った。   Twenty pieces of each of the above batteries were produced. The following evaluation was performed on the batteries of the obtained examples.

(短絡検査)
電極群の外部端子をまず正極端側から抵抗溶接した後、電極群の短絡の有無を250Vの電圧を端子両端に印加し、その時の漏れ電流の有無を確認した。その後、短絡してなかった場合、負極端側に外部端子を抵抗溶接し、同様な短絡検査を実施した。
(Short-circuit inspection)
First, the external terminals of the electrode group were resistance-welded from the positive electrode end side, and then a voltage of 250 V was applied to both ends of the electrode group to check whether there was a short circuit, and the presence or absence of leakage current at that time was confirmed. Then, when it was not short-circuited, the external terminal was resistance-welded to the negative electrode end side, and the same short circuit inspection was implemented.

(圧壊試験)
上述した短絡検査で異常が見られなかった電極群を電池に組み立てた後、25℃の環境下にて、1.4Aの電流値、3〜4.2Vの電圧範囲で3サイクル充放電を実施し、電池容量を確認した。その後、同電流値で4.4Vまでの過充電状態まで充電を行った。そして、25℃の環境下にて、先端の半径が8mmの円形に加工されている板を用い、1)正極端子側のケース端面から10mmの深さまで、2)負極端子側のケース端面から10mmの深さまで、3)正極と負極端子が左右に配された面の中心線部分を電池の厚み方向の1/2の深さまで、それぞれ圧壊を実施した。1)〜3)の試験は、各電池2個づつ実施した。4.4V過充電状態にしたのは、圧壊時の電池発熱挙動をより明確にするためである。
(Crush test)
After assembling an electrode group in which no abnormality was found in the short-circuit inspection described above into a battery, charging and discharging was performed 3 cycles in a current value of 1.4 A and a voltage range of 3 to 4.2 V in an environment of 25 ° C. The battery capacity was confirmed. Then, it charged to the overcharge state to 4.4V with the same current value. Then, using a plate processed into a circular shape with a tip radius of 8 mm under an environment of 25 ° C., 1) to a depth of 10 mm from the case end surface on the positive electrode terminal side, 2) 10 mm from the case end surface on the negative electrode terminal side 3) The center line portion of the surface on which the positive electrode and the negative electrode terminal were arranged on the left and right sides was respectively crushed to a depth of ½ in the thickness direction of the battery. The tests 1) to 3) were performed on two batteries each. The reason why the 4.4V overcharge state is set is to make the battery heat generation behavior at the time of collapse more clear.

表1に、各例の電池とその評価結果を示す。なお、電池容量については全て公称容量5Ah前後が得られていた。なお、圧壊試験結果は、試験を行った2個の電池のうち電池到達温度の高かった方の電池の結果を示している。   Table 1 shows the batteries of each example and the evaluation results. In addition, about the battery capacity, nominal capacity around 5Ah was obtained. In addition, the crushing test result has shown the result of the battery with the higher battery arrival temperature among the two batteries tested.

Figure 2008103310
Figure 2008103310

表1の結果について考察する。   Consider the results in Table 1.

まず、電池Gについて外部端子溶接後に短絡が確認された電極群を観察したところ、合剤表面に多孔膜を形成していないため、溶接時の熱によってセパレータが収縮もしくは溶融しており、対向する極板同士がむきだし状態となっていた。その結果、短絡が生じたものと推測された。また、圧壊試験においては、1)の正極側の圧壊では、正極集電体は負極端部集電体と短絡し、部分的に負極活物質層との短絡も生じているものと推測される。ここで正極アルミ箔と負極炭素活物質層との短絡は短絡電流が大きく、かつ活物質層の自己発熱も大きいことがこれまでわかっている。そのため、2)の負極側の圧壊での最高到達温度が36℃であるのに対し、1)の正極側の圧壊での最高到達温度が79℃まで達したのは、部分的な正極アルミと負極炭素活物質層との短絡が重なったためと推測される。
3)の中央部の圧壊では、直に正極と負極が短絡し、短絡面積も大きいため、150℃と非常に大きな発熱が確認され、電解液の気化による内圧上昇が原因と推測される安全弁の開弁にまで至る挙動も確認された。
First, when an electrode group in which a short circuit was confirmed after battery terminal welding was observed for battery G, a porous film was not formed on the surface of the mixture, and therefore the separator was contracted or melted by heat during welding and opposed. The plates were bare. As a result, it was estimated that a short circuit occurred. Moreover, in the crushing test, in the crushing on the positive electrode side in 1), it is presumed that the positive electrode current collector is short-circuited with the negative electrode end current collector and partially short-circuited with the negative electrode active material layer. . Here, it has been known that a short circuit between the positive electrode aluminum foil and the negative electrode carbon active material layer has a large short circuit current and a large amount of self-heating of the active material layer. For this reason, the maximum temperature reached in crushing on the negative electrode side in 2) is 36 ° C., whereas the maximum temperature reached in crushing on the positive electrode side in 1) reached 79 ° C. It is estimated that the short circuit with the negative electrode carbon active material layer overlapped.
3) In the collapse of the central part, the positive electrode and the negative electrode are short-circuited and the short-circuit area is large, so a very large heat generation of 150 ° C. is confirmed, and the safety valve is estimated to be caused by an increase in internal pressure due to the evaporation of the electrolyte. The behavior leading to the valve opening was also confirmed.

次に、電池D〜Fでは、1)の正極側の圧壊において、正極アルミ箔と、多孔膜が形成されていない負極端部活物質層とが広範囲で短絡したことにより大きな発熱となり、120℃を超える発熱と、開弁が確認された。また、多孔膜を形成していない電池Fでは、外部集電端子溶接時の短絡も発生している。   Next, in the batteries D to F, in the crushing of the positive electrode side in 1), the positive electrode aluminum foil and the negative electrode end active material layer on which the porous film was not formed are short-circuited over a wide range, resulting in large heat generation. Excessive heat generation and valve opening were confirmed. Further, in the battery F in which the porous film is not formed, a short circuit also occurs during the external current collector terminal welding.

以上の比較例の結果に対し、電池A〜Cにおいては、多孔膜を正極もしくは負極いずれか一方に少なくとも形成しているため、集電端子溶接時の短絡は確認されなかった。電池Aにおいては、1)の正極側の圧壊においては、電池Gと同様に、正極集電体と負極端部集電体とが短絡し、部分的に負極活物質層との短絡も生じているものと推測され、電池Gの結果にて考察した要因で75℃までの発熱が生じたと推測される。電池BおよびCでは圧壊1)〜3)いずれにおいても大きな発熱には至っていない。   In contrast to the results of the comparative examples described above, in batteries A to C, since the porous film was formed at least on either the positive electrode or the negative electrode, a short circuit during current collector terminal welding was not confirmed. In the battery A, in the collapse of the positive electrode side in 1), like the battery G, the positive electrode current collector and the negative electrode end current collector are short-circuited, and the short-circuit with the negative electrode active material layer partially occurs. It is presumed that heat generation up to 75 ° C. was caused by the factors considered in the result of the battery G. In the batteries B and C, the crushing 1) to 3) did not cause any significant heat generation.

以上の結果から、集電体上に活物質層を配した正極および負極とセパレータとを積層または捲回した構成の二次電池において、正極、負極のいずれか一方の電極に対して、集電体の端部における活物質層の端面を多孔膜で覆うことによって、内部短絡の抑制、さらには電池の外圧による内部短絡時の安全性を高めることが可能となることがわかる。より好ましくは、多孔膜を負極側にに設けることで、さらに安全性を高めた二次電池を得ることが可能となる。   From the above results, in a secondary battery having a configuration in which a positive electrode and a negative electrode each having an active material layer disposed on a current collector and a separator are stacked or wound, the current collector is applied to either the positive electrode or the negative electrode. It can be seen that by covering the end surface of the active material layer at the end of the body with a porous film, it is possible to suppress internal short circuit and further improve safety during internal short circuit due to the external pressure of the battery. More preferably, by providing the porous film on the negative electrode side, a secondary battery with further improved safety can be obtained.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

なお、本発明において、「活物質層」は、少なくとも活物質を含む層のことを言い、活物質以外に、例えば結着剤、導電剤、増粘剤等の材料が含まれているか否かは問わない。   In the present invention, the “active material layer” means a layer containing at least an active material, and whether or not a material such as a binder, a conductive agent, and a thickener is included in addition to the active material. Does not matter.

本発明は、安全性の高いタブレス構造の電極、及びそれを備えた二次電池に有用で、ノートパソコン、携帯電話、デジタルスチールカメラ、電動工具、電動自動車等の駆動電源に適用できる。   INDUSTRIAL APPLICABILITY The present invention is useful for an electrode having a highly safe tabless structure and a secondary battery including the electrode, and can be applied to a drive power source of a notebook computer, a mobile phone, a digital still camera, an electric tool, an electric vehicle, and the like.

本発明の実施形態における二次電池の電極構造を模式的に示した断面図である。It is sectional drawing which showed typically the electrode structure of the secondary battery in embodiment of this invention. (a)〜(b)は、本発明の実施形態における二次電池用電極の製造方法を示した工程図である。(A)-(b) is process drawing which showed the manufacturing method of the electrode for secondary batteries in embodiment of this invention. (a)〜(d)は、本発明の実施形態における二次電池用電極の製造方法を示した工程図である。(A)-(d) is process drawing which showed the manufacturing method of the electrode for secondary batteries in embodiment of this invention. 従来のリチウムイオン二次電池の構成を示した図で、(a)は電池全体の断面図、(b)は電極群の部分断面図、(c)は極板の部分拡大図である。It is the figure which showed the structure of the conventional lithium ion secondary battery, (a) is sectional drawing of the whole battery, (b) is a fragmentary sectional view of an electrode group, (c) is the elements on larger scale of an electrode plate. 従来のタブレス構造の電極群の構成を示した断面図である。It is sectional drawing which showed the structure of the electrode group of the conventional tabless structure.

符号の説明Explanation of symbols

1 負極集電体
1a 第1の未形成部
1b 第2の未形成部
2 負極活物質層
3 多孔膜
4 セパレータ
5 正極集電体
5b 露出部
6 正極活物質層
7 グラビアロール
8 負極板
9 液槽
10 ブレード
12 テープ
101 正極集電体
101a 正極集電体端部
102 正極活物質
103 負極集電体
103a 負極集電体端部
104 負極活物質層
105 セパレータ
106 正極集電板
107 負極集電体
108 電池ケース
111 バリ
120 多孔膜
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 1a 1st unformed part 1b 2nd unformed part 2 Negative electrode active material layer 3 Porous film 4 Separator 5 Positive electrode collector 5b Exposed part 6 Positive electrode active material layer 7 Gravure roll 8 Negative electrode plate 9 Liquid Tank 10 Blade 12 Tape 101 Positive electrode current collector 101a Positive electrode current collector edge 102 Positive electrode active material 103 Negative electrode current collector 103a Negative electrode current collector edge 104 Negative electrode active material layer 105 Separator 106 Positive electrode current collector 107 Negative electrode current collector 108 Battery case 111 Burr 120 Porous membrane

Claims (13)

集電体上に、該集電体の両端部が露出するように、活物質層を形成する工程(a)と、
前記集電体上に、前記活物質層を覆うように、多孔膜を形成する工程(b)と
を有し、
前記工程(a)において、前記集電体の一方の端部における前記活物質層の第1の未形成部の幅は、他方の端部における第2の未形成部の幅よりも狭く形成され、
前記工程(b)において、前記多孔膜は、前記第1の未形成部における前記活物質層の端面を覆うとともに、前記第2の未形成部における前記集電体の一部を露出するように形成される、二次電池用電極の製造方法。
A step (a) of forming an active material layer on the current collector such that both ends of the current collector are exposed;
And (b) forming a porous film on the current collector so as to cover the active material layer,
In the step (a), the width of the first unformed portion of the active material layer at one end of the current collector is narrower than the width of the second unformed portion at the other end. ,
In the step (b), the porous film covers an end surface of the active material layer in the first unformed part and exposes a part of the current collector in the second unformed part. The manufacturing method of the electrode for secondary batteries formed.
前記工程(b)において、前記多孔膜は、前記第1の未形成部を全て覆うように形成される、請求項1に記載の二次電池用電極の製造方法。   2. The method of manufacturing an electrode for a secondary battery according to claim 1, wherein in the step (b), the porous film is formed so as to cover all of the first unformed portion. 前記工程(b)において、前記多孔膜は、多孔膜スラリーを印刷により前記集電体上に塗布することによって形成される、請求項1に記載の二次電池用電極の製造方法。   2. The method for producing an electrode for a secondary battery according to claim 1, wherein in the step (b), the porous film is formed by applying a porous film slurry onto the current collector by printing. 前記工程(a)において、前記第1の未形成部の幅は、3mm以下に、前記第2の未形成部の幅は、5mm以上になるように形成される、請求項1に記載の二次電池用電極の製造方法。   2. The device according to claim 1, wherein in the step (a), the first unformed portion is formed to have a width of 3 mm or less, and the second unformed portion has a width of 5 mm or more. The manufacturing method of the electrode for secondary batteries. 前記多孔膜は、無機酸化物を含有する、請求項1に記載の二次電池用電極の製造方法。   The method for manufacturing an electrode for a secondary battery according to claim 1, wherein the porous film contains an inorganic oxide. 前記電極は、負極として使用される、請求項1に記載の二次電池用電極の製造方法。   The method for manufacturing an electrode for a secondary battery according to claim 1, wherein the electrode is used as a negative electrode. 正極または負極の少なくとも一方が、請求項1〜3の何れかに記載の製造方法によって形成された電極を備えた二次電池であって、
前記電極は、前記正極及び前記負極をセパレータを介して捲回または積層された電極群を構成しており、
前記集電体の第2の未形成部の端部は、電極端子に接続された集電板に接合されている、二次電池。
At least one of a positive electrode or a negative electrode is a secondary battery provided with an electrode formed by the manufacturing method according to claim 1,
The electrode constitutes an electrode group in which the positive electrode and the negative electrode are wound or laminated through a separator,
An end portion of the second non-formed portion of the current collector is a secondary battery that is joined to a current collector plate connected to an electrode terminal.
集電体上に活物質層がそれぞれ形成された正極及び負極を、セパレータを介して捲回または積層された電極群を備えた二次電池であって、
前記正極または負極の少なくとも一方の電極の集電体上には、前記活物質層を覆う多孔膜がさらに形成されており、
前記多孔膜が形成された前記集電体は、該集電体の両端部において、前記活物質層が形成されていない第1の未形成部及び第2の未形成部を有し、
前記第1の未形成部の幅は、前記第2の未形成部の幅よりも狭く形成されており、
前記第1の未形成部における前記活物質層の端面は、前記多孔膜で覆われ、
前記第2の未形成部における前記集電体の一部は、前記多孔膜で覆われていない、二次電池。
A secondary battery comprising an electrode group in which a positive electrode and a negative electrode each having an active material layer formed on a current collector are wound or laminated via a separator,
On the current collector of at least one of the positive electrode and the negative electrode, a porous film covering the active material layer is further formed,
The current collector on which the porous film is formed has a first unformed portion and a second unformed portion where the active material layer is not formed at both ends of the current collector,
The width of the first unformed part is formed narrower than the width of the second unformed part,
An end face of the active material layer in the first unformed part is covered with the porous film,
A secondary battery in which a part of the current collector in the second unformed part is not covered with the porous film.
前記第1の未形成部における前記集電体の全ては前記多孔膜で覆われている、請求項8に記載の二次電池。   The secondary battery according to claim 8, wherein all of the current collector in the first unformed part is covered with the porous film. 前記第1の未形成部の幅は、3mm以下、前記第2の未形成部の幅は、5mm以上である、請求項8に記載の二次電池。   The secondary battery according to claim 8, wherein a width of the first unformed portion is 3 mm or less, and a width of the second unformed portion is 5 mm or more. 前記多孔膜は、無機酸化物を含有する、請求項8に記載の二次電池。   The secondary battery according to claim 8, wherein the porous film contains an inorganic oxide. 前記多孔膜が形成された集電体の第2の未形成部の端部は、電極端子に接続された集電板に接合されている、請求項8に記載の二次電池。   The secondary battery according to claim 8, wherein an end portion of the second unformed portion of the current collector on which the porous film is formed is joined to a current collector plate connected to the electrode terminal. 前記多孔膜が形成された前記集電体は、負極の集電体を構成している、請求項8に記載の二次電池。   The secondary battery according to claim 8, wherein the current collector on which the porous film is formed constitutes a negative electrode current collector.
JP2007179426A 2006-09-19 2007-07-09 Manufacturing method of electrode for secondary battery and secondary battery Pending JP2008103310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179426A JP2008103310A (en) 2006-09-19 2007-07-09 Manufacturing method of electrode for secondary battery and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006252068 2006-09-19
JP2007179426A JP2008103310A (en) 2006-09-19 2007-07-09 Manufacturing method of electrode for secondary battery and secondary battery

Publications (1)

Publication Number Publication Date
JP2008103310A true JP2008103310A (en) 2008-05-01

Family

ID=39437471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179426A Pending JP2008103310A (en) 2006-09-19 2007-07-09 Manufacturing method of electrode for secondary battery and secondary battery

Country Status (1)

Country Link
JP (1) JP2008103310A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099558A (en) * 2007-09-25 2009-05-07 Panasonic Corp Secondary battery
JP2009277597A (en) * 2008-05-16 2009-11-26 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2009301893A (en) * 2008-06-13 2009-12-24 Ntt Docomo Inc Battery testing device and battery testing method
WO2010067410A1 (en) * 2008-12-08 2010-06-17 トヨタ自動車株式会社 Lithium ion battery and method for manufacturing the same
WO2010116533A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Lithium ion battery and utilization thereof
JP2011124220A (en) * 2009-12-08 2011-06-23 Samsung Sdi Co Ltd Lithium secondary battery
JP2011243351A (en) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous battery
JP2012049103A (en) * 2010-08-25 2012-03-08 Samsung Sdi Co Ltd Electrode assembly, secondary battery comprising the same, and manufacturing method of the same
JP2013530497A (en) * 2010-05-27 2013-07-25 バスカップ Lithium battery protected from penetration by pointed elements
JP2015097159A (en) * 2013-11-15 2015-05-21 株式会社デンソー Electrode for secondary batteries, method for manufacturing electrode for secondary batteries, and secondary battery
EP2876711A1 (en) * 2013-11-25 2015-05-27 GS Yuasa International Ltd. Energy storage device and energy storage module
JP2016105360A (en) * 2014-12-01 2016-06-09 株式会社Gsユアサ Power storage device
JP2016157576A (en) * 2015-02-24 2016-09-01 株式会社豊田自動織機 Power storage device
JP2017050102A (en) * 2015-08-31 2017-03-09 日本電気株式会社 Secondary battery
US10511063B2 (en) 2016-01-19 2019-12-17 Gs Yuasa International Ltd. Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device
CN114374032A (en) * 2020-12-30 2022-04-19 北京卫蓝新能源科技有限公司 Tab-free lithium battery core, tab-free lithium battery core module and electric automobile

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099558A (en) * 2007-09-25 2009-05-07 Panasonic Corp Secondary battery
JP2009277597A (en) * 2008-05-16 2009-11-26 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2009301893A (en) * 2008-06-13 2009-12-24 Ntt Docomo Inc Battery testing device and battery testing method
WO2010067410A1 (en) * 2008-12-08 2010-06-17 トヨタ自動車株式会社 Lithium ion battery and method for manufacturing the same
KR101309925B1 (en) 2009-04-10 2013-09-17 도요타지도샤가부시키가이샤 Lithium ion battery and utilization thereof
WO2010116533A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Lithium ion battery and utilization thereof
US8658305B2 (en) 2009-04-10 2014-02-25 Toyota Jidosha Kabushiki Kaisha Lithium-ion battery and use thereof
JP2011124220A (en) * 2009-12-08 2011-06-23 Samsung Sdi Co Ltd Lithium secondary battery
JP2011243351A (en) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous battery
JP2013530497A (en) * 2010-05-27 2013-07-25 バスカップ Lithium battery protected from penetration by pointed elements
US10147924B2 (en) 2010-05-27 2018-12-04 Blue Solutions Lithium battery protected from intrusion by pointed elements
JP2012049103A (en) * 2010-08-25 2012-03-08 Samsung Sdi Co Ltd Electrode assembly, secondary battery comprising the same, and manufacturing method of the same
JP2015097159A (en) * 2013-11-15 2015-05-21 株式会社デンソー Electrode for secondary batteries, method for manufacturing electrode for secondary batteries, and secondary battery
EP2876711A1 (en) * 2013-11-25 2015-05-27 GS Yuasa International Ltd. Energy storage device and energy storage module
JP2016105360A (en) * 2014-12-01 2016-06-09 株式会社Gsユアサ Power storage device
JP2016157576A (en) * 2015-02-24 2016-09-01 株式会社豊田自動織機 Power storage device
JP2017050102A (en) * 2015-08-31 2017-03-09 日本電気株式会社 Secondary battery
US10511063B2 (en) 2016-01-19 2019-12-17 Gs Yuasa International Ltd. Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device
CN114374032A (en) * 2020-12-30 2022-04-19 北京卫蓝新能源科技有限公司 Tab-free lithium battery core, tab-free lithium battery core module and electric automobile
CN114374032B (en) * 2020-12-30 2023-12-26 北京卫蓝新能源科技有限公司 Electrodeless ear lithium battery core, electrodeless ear lithium battery core module and electric automobile

Similar Documents

Publication Publication Date Title
JP2008103310A (en) Manufacturing method of electrode for secondary battery and secondary battery
JP5378718B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2008035499A1 (en) Method of producing electrode for secondary battery, and secondary battery
KR101513821B1 (en) Battery electrode and use thereof
JP5093997B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5113434B2 (en) Nonaqueous electrolyte secondary battery
JP5748108B2 (en) Lithium secondary battery
JP6080044B2 (en) Nonaqueous secondary battery plate manufacturing method
JPWO2013005329A1 (en) Secondary battery
WO2007083731A1 (en) Sealed battery
WO2015121731A1 (en) Nonaqueous electrolyte secondary battery
JP2021086681A (en) Nonaqueous electrolyte secondary battery
JP2010160985A (en) Lithium ion secondary cell negative electrode and lithium ion secondary cell using the same
JP2012138217A (en) Battery manufacturing method
JP2015181112A (en) Secondary battery, manufacturing method thereof, and method for manufacturing negative electrode sheet used for secondary battery
JP2016126901A (en) Secondary battery
JP6156406B2 (en) Electrode manufacturing method
JP2010009818A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2017016812A (en) Nonaqueous electrolyte secondary battery
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP2013131342A (en) Secondary battery and manufacturing method therefor and manufacturing method of negative electrode sheet for use in battery
JP2011103181A (en) Lithium secondary battery
JP2006313736A (en) Non-aqueous electrolyte secondary battery
JP2013062139A (en) Evaluation method of electrode
JP2017091762A (en) Nonaqueous electrolyte secondary battery