JP2004055537A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2004055537A
JP2004055537A JP2003149836A JP2003149836A JP2004055537A JP 2004055537 A JP2004055537 A JP 2004055537A JP 2003149836 A JP2003149836 A JP 2003149836A JP 2003149836 A JP2003149836 A JP 2003149836A JP 2004055537 A JP2004055537 A JP 2004055537A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
negative electrode
electrode plate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003149836A
Other languages
Japanese (ja)
Other versions
JP4617065B2 (en
Inventor
Takeshi Minafuji
皆藤 豪
Futoshi Tanigawa
谷川 太志
Naoto Arai
荒井 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003149836A priority Critical patent/JP4617065B2/en
Publication of JP2004055537A publication Critical patent/JP2004055537A/en
Application granted granted Critical
Publication of JP4617065B2 publication Critical patent/JP4617065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wound-type lithium ion secondary battery capable of preventing short-circuiting between burr on a positive electrode collector and a negative electrode active material part to achieve high safety. <P>SOLUTION: This lithium ion secondary battery is provided with a positive electrode plate 110 comprising a positive electrode active material part 112 and a positive electrode collector 111 to carry that, a negative electrode plate 120 comprising a negative electrode active material part 122 and a negative electrode collector 121 to carry that, a separator 130 provided between the positive electrode plate 110 and the negative electrode plate 120, electrolyte, and a battery container to contain the positive electrode plate 110, the negative electrode plate 120, the separator 130, and the electrolyte. The positive electrode plate 110 and the negative electrode plate 120 are wound through the separator 130 between them to compose an electrode plate group. In the electrode plate group, both lengthwise end parts 111a and 111b of the positive electrode collector are positioned on the outer side of both lengthwise end parts 122a and 122b of the negative electrode active material part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、正極集電体のバリと負極活物質部との短絡の可能性を低減した安全性の高い捲回型のリチウムイオン二次電池に関する。
【0002】
【従来の技術】
近年、AV機器あるいはパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源となる二次電池の小型・軽量化および高エネルギー密度化への要求が高まっている。そのような二次電池のなかでも、リチウムを活物質とするリチウムイオン二次電池は、とりわけ高電圧・高エネルギー密度を有する。
【0003】
従来のリチウムイオン二次電池としては、捲回型電池が主流である。捲回型電池は、正極活物質部およびこれを担持する正極集電体からなる正極板と、負極活物質部およびこれを担持する負極集電体からなる負極板とを、セパレータを介して捲回してなる極板群を有する。正極活物質部には、リチウムイオンを充放電により吸蔵または放出可能な正極活物質が含まれており、負極活物質部には、リチウムイオンを充放電により吸蔵または放出可能な負極活物質が含まれている。極板群は電解液とともに電池容器内に収容されている。
【0004】
捲回型電池の場合、極板の捲回時に、折り曲げ部や湾曲部で極板やセパレータが変形を受けやすい。このような変形は、内部短絡を誘発する可能性がある。また、極板の捲回時に、セパレータの位置がずれることにより、内部短絡が発生する可能性もある。
【0005】
本発明者らは、上記を鑑み、捲回型のリチウムイオン二次電池において、内部短絡の主要原因を防ぐことに着眼した。
【0006】
内部短絡のタイプとしては、以下に述べる4つが考えられる。
(1)正極活物質部と負極活物質部との短絡
(2)正極活物質部と負極集電体との短絡
(3)正極集電体と負極活物質部との短絡
(4)正極集電体と負極集電体との短絡
【0007】
本発明者らは、過充電状態の電池を各部品ごとに分解し、各部品同士を直接接触させることにより、スパークおよび着火の有無を観察した。その結果、短絡モード(1)および(2)では、スパークも着火も発生しなかったが、短絡モード(3)では、スパークと着火が発生した。短絡モード(4)では、スパークは発生するものの、着火はしなかった。
【0008】
これらの結果から以下のことが考察される。
短絡モード(1)および(2)では、正極活物質自身の抵抗が大きいことから、正極活物質部と負極活物質部とを短絡させても大電流は流れない。
【0009】
短絡モード(4)では、導電性を有する集電体同士の短絡により、スパークは発生するが、集電体自体は可燃性ではないことから、着火には至らない。
短絡モード(3)では、正極集電体と負極活物質とが共に導電性を有することから、これらが短絡するとスパークが発生するとともに、可燃性である負極活物質が着火に至る。
【0010】
以上の考察から、短絡モード(3)が、内部短絡の主要原因であると考えられる。短絡モード(3)は、実際上は、正極集電体のスリット時に発生する導電性のバリが負極活物質部の表面と接触することにより発生する。
【0011】
近年、従来のセパレータを用いる代わりに、電解質層を介して、正極板と負極板とを積層してなる極板群を有する積層型のリチウムイオン二次電池が提案されている。このように電解質層が正極板や負極板と一体化されている電池においては、極板やセパレータの寸法を制御することにより、短絡を防止する提案がなされている(特許文献1参照)。しかしながら、積層一体型の極板群は、一般的に製造工程が複雑であり、高容量化も困難である。また、このような極板群においては、電池を軽量化する観点から、ポリエチレンテレフタレートフィルムなどの樹脂フィルムの表面に、金属蒸着膜を設けた集電体を用いることも提案されている(特許文献2参照)。
【0012】
【特許文献1】
特開2000−30742号公報
【特許文献2】
特開平9−213338号公報
【0013】
【発明が解決しようとする課題】
本発明は、上記知見を鑑みてなされたものであり、本発明の目的の一つは、正極集電体のバリと負極活物質部との短絡を防止し、安全性の高い捲回型のリチウムイオン二次電池を提供することにある。
【0014】
【課題を解決するための手段】
本発明のリチウムイオン二次電池は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備する。
【0015】
前記正極板と負極板とは、前記セパレータを介して捲回されることにより、極板群を構成している。ここで、本発明のリチウムイオン二次電池は、前記極板群において以下の〔A〕〜〔E〕のいずれかの特徴を有する。
【0016】
〔A〕前記正極集電体の長手方向に沿う両端部が、前記負極活物質部の長手方向に沿う両端部よりも外側に位置している。
〔B〕前記正極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置している。
【0017】
〔C〕前記負極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置し、前記正極集電体の長手方向に沿う両端部が、前記正極活物質部の長手方向に沿う両端部よりも外側に位置し、さらに、前記正極集電体の前記正極活物質部で覆われていない露出部が、絶縁材料により被覆されている。
【0018】
〔D〕前記正極集電体が、絶縁シートおよびその両面にそれぞれ形成された導電層からなり、前記絶縁シートの長手方向に沿う両端部には、前記絶縁シートの露出部が設けられている。
〔E〕前記正極板の長手方向に沿う両端部が、それぞれ絶縁材料により被覆されている。
なお、セパレータには、例えば、ポリオレフィンなどからなる織布、不織布、微多孔膜などが用いられる。
【0019】
【発明の実施の形態】
実施形態1
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記正極集電体の長手方向に沿う両端部が、前記負極活物質部の長手方向に沿う両端部よりも外側に位置しているリチウムイオン二次電池に関する。
【0020】
正極集電体の長手方向に沿う両端部が、負極活物質部の長手方向に沿う両端部よりも外側に位置していることから、たとえスリット時に正極集電体の端部にバリが発生しても、そのバリと負極活物質部との短絡を防ぐことができる。
【0021】
正極活物質部の長手方向に沿う両端部には、それぞれリチウムイオンを充放電により吸蔵または放出しない非活物質部を設けることができる。非活物質部により、正極集電体の端部を安定化させることができる。さらに、正極集電体の長手方向に沿う両端部においては、非活物質部の厚さが正極活物質部の厚さと同一で、段差が無いことが、捲回時の巻ずれなどが起こりにくい点で好ましい。非活物質部として絶縁材料を用いる場合には、正極集電体のバリと負極活物質部との短絡以外の一般的な短絡までも抑制することができる。
【0022】
極板群において、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。このような配置により、充電時に正極活物質より放出されるLiイオンを、対向する負極活物質によって確実に受けとめることができ、それによって、負極活物質の負荷の偏り、金属リチウムの析出などの不具合を防止することができる。
【0023】
図1に、本実施形態の極板群における正極板110、負極板120およびセパレータ130の長手方向に対して垂直な断面の一例を概念的に示す。図1では、正極板110と負極板120とセパレータ130の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0024】
正極板110は、正極集電体111および正極活物質部112からなり、負極板120は、負極集電体121および負極活物質部122からなる。正極板110と負極板120とは、セパレータ130を介して対向している。正極集電体の端部111aから正極活物質部の端部112aまでの間、ならびに正極集電体の端部111bから正極活物質部の端部112bまでの間は、正極活物質の未塗工部でもよいが、非活物質部113を設ける方が好ましい。
【0025】
正極集電体111の長手方向に沿う両端部111a、111bは、負極活物質部122の長手方向に沿う両端部122a、122bよりも外側に位置している。このような配置により、正極集電体の端部111aもしくは111bにバリが発生し、そのバリがセパレータ130を突き破ったとしても、負極活物質部122と短絡することは無い。
【0026】
図1のような構成を採用する場合、正極集電体の端部111aから負極活物質部の端部122aまでの間隔、ならびに正極集電体の端部111bから負極活物質部の端部122bまでの間隔は、それぞれ50〜300μmであることが好ましい。これらの間隔は、正極集電体の断面において想定されるバリの長さから、正極活物質部の片面あたりの厚さとセパレータの厚さとの合計を差し引いた長さよりも大きいことが好ましい。なお、正極集電体の断面において想定されるバリの長さは、一般に50〜100μmである。
【0027】
図2には、従来の極板群における正極板210、負極板220およびセパレータ230の長手方向に対して垂直な断面を図1と同様に概念的に示す。
正極板210は、正極集電体211および正極活物質部212からなり、負極板220は、負極集電体221および負極活物質部222からなる。
【0028】
正極集電体の長手方向に沿う両端部211a、211bは、負極活物質部222の長手方向に沿う両端部222a、222bよりも内側に位置している。こののような配置では、正極集電体の端部211aもしくは211bにバリが発生し、そのバリがセパレータ230を突き破ると、負極活物質部222と短絡することになる。
【0029】
実施形態2
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、正極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置しているリチウムイオン二次電池に関する。
【0030】
正極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置していることから、正極活物質部の端部付近をスリットする場合に、正極集電体と正極活物質部とが同時にスリットされることが無く、バリが発生しにくい。一方、図2のような従来の構成では、正極集電体211と正極活物質部212とが同時にスリットされるため、正極集電体の端部211aもしくは211bにバリが発生し易い。
【0031】
本実施形態においても、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。
正極集電体の長手方向に沿う両端部には、それぞれ正極集電体の面方向に延在する絶縁材料部が配置されていることが好ましい。このような絶縁材料部により、正極活物質部の端部を安定化させることができる。絶縁材料部は、正極集電体の長手方向に沿う端部の端面に接続されており、正極集電体と絶縁材料部とが一体化されていることが好ましい。正極集電体と絶縁材料部とが一体化されている場合には、これらを一つの芯材として取り扱うことができる。
【0032】
正極集電体の面方向に延在する絶縁材料部は、加工性に優れ、絶縁性を有し、低コストであることが好ましい。このような絶縁材料部としては、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0033】
正極集電体は、正極活物質部により完全に覆われていることが好ましい。
正極集電体の面方向に延在する絶縁材料部は、必須の構成要素ではない。正極集電体の端部から正極活物質部の端部までの間には、正極活物質を充填することもできる。このような場合にも、正極集電体は、正極活物質部により完全に覆われる。
【0034】
正極集電体の面方向に延在する絶縁材料部を設けない場合、正極集電体の長手方向に沿う両端部を、それぞれ絶縁材料で被覆することが好ましい。正極集電体の端部を被覆する絶縁材料としても、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。また、アルミナなどのセラミックスを溶射することにより、正極集電体の端部をセラミックスで被覆することもできる。
【0035】
図3に、本実施形態の極板群における正極板310、負極板320およびセパレータ330の長手方向に対して垂直な断面の一例を概念的に示す。図3では、正極板310と負極板320とセパレータ330の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0036】
正極板310は、正極集電体311および正極活物質部312からなり、負極板320は、負極集電体321および負極活物質部322からなる。正極板310と負極板320とは、セパレータ330を介して対向している。正極集電体の端部311aから正極活物質部の端部312aまでの間、ならびに正極集電体の端部311bから正極活物質部の端部312bまでの間には、絶縁材料部313が延在している。
【0037】
正極活物質部の長手方向に沿う両端部312a、312bは、正極集電体の長手方向に沿う両端部311a、311bよりも外側に位置している。このような配置において、正極活物質部312と絶縁材料部313との積層部をスリットする場合には、正極集電体311はスリットされないことから、導電性のバリは発生しない。
【0038】
図3のような構成を採用する場合、正極集電体の端部311aから正極活物質部の端部312aまでの間隔、ならびに正極集電体の端部311bから正極活物質部の端部312bまでの間隔は、特に限定されないが、それぞれ2mm以下であることが好ましい。
【0039】
実施形態3
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記負極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置し、前記正極集電体の長手方向に沿う両端部が、前記正極活物質部の長手方向に沿う両端部よりも外側に位置し、さらに、前記正極集電体の前記正極活物質部で覆われていない露出部が、絶縁材料により被覆されているリチウムイオン二次電池に関する。
【0040】
このような配置によれば、負極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置し、正極集電体の長手方向に沿う両端部が、正極活物質部の長手方向に沿う両端部よりも外側に位置していることから、正極集電体の端部が負極活物質部の表面と対面することになる。しかしながら、正極集電体の正極活物質部で覆われていない露出部が、絶縁材料により被覆されていることから、正極集電体にバリが発生しても、バリが負極活物質部の表面と短絡することは無い。
【0041】
正極集電体の露出部を覆う絶縁材料には、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、アルミナなどのセラミックスを溶射することにより、正極集電体の露出部をセラミックスで被覆することもできる。正極集電体の露出部に絶縁テープを貼りつけることもできる。絶縁テープには、ポリプロピレンなどからなる基材およびその片面に担持させたアクリル樹脂系の粘着材からなるテープを用いることが好ましい。
正極集電体の露出部を絶縁材料で覆う工程は、正極板のスリットの前後のどちらで行うこともできる。
【0042】
図4に、本実施形態の極板群における正極板410、負極板420およびセパレータ430の長手方向に対して垂直な断面の一例を概念的に示す。図4では、正極板410と負極板420とセパレータ430の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0043】
正極板410は、正極集電体411および正極活物質部412からなり、負極板420は、負極集電体421および負極活物質部422からなる。正極板410と負極板420とは、セパレータ430を介して対向している。正極集電体の端部411aから正極活物質部の端部412aまでの間、ならびに正極集電体の端部411bから正極活物質部の端部412bまでの間は、絶縁材料413により被覆されている。
【0044】
負極活物質部の長手方向に沿う両端部422a、422bは、正極集電体の長手方向に沿う両端部411a、411bよりも外側に位置している。また、正極集電体の長手方向に沿う両端部411a、411bは、正極活物質部の長手方向に沿う両端部412a、412bよりも外側に位置している。また、正極集電体の正極活物質部で覆われていない露出部は、絶縁材料413により被覆されている。このような正極板においては、正極集電体のバリが発生しても、そのバリが負極活物質部の表面と短絡することは無い。
【0045】
図4のような構成を採用する場合、負極活物質部の端部422aから正極集電体の端部411aまでの間隔、ならびに負極活物質部の端部422bから正極集電体の端部411bまでの間隔は、特に限定されないが、それぞれ2mm以下であることが好ましい。また、正極集電体の端部411aから正極活物質部の端部412aまでの間隔、ならびに正極集電体の端部411bから正極活物質部の端部412bまでの間隔は、特に限定されないが、それぞれ2mm以下であることが好ましい。
【0046】
実施形態4
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極集電体は、絶縁シートおよびその両面にそれぞれ形成された導電層からなり、前記絶縁シートの長手方向に沿う両端部には、前記絶縁シートの露出部が設けられているリチウムイオン二次電池に関する。
【0047】
本実施形態に係る正極集電体は、大部分が絶縁シートからなることから、軽量である。また、このような集電体においては、スリットにより形成される断面が絶縁性を有することから、導電性のバリが発生することが無い。
【0048】
絶縁シートの構成材料には、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレートなどを用いることができる。これらの材料は、柔軟性を有する点でも都合がよい。導電層としては、アルミニウム、アルミニウム合金などの蒸着膜が好ましい。蒸着膜の形成工程には、電子線蒸着などの従来公知の蒸着法を適宜用いれば良い。
絶縁シートの厚さは10〜30μmとすることが好ましく、導電層の厚さは1〜20μmとすることが好ましい。
【0049】
本実施形態においても、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。
図5に、本実施形態の極板群における正極板510、負極板520およびセパレータ530の長手方向に対して垂直な断面の一例を概念的に示す。図5では、正極板510と負極板520とセパレータ530の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0050】
正極板510は、正極集電体511および正極活物質部512からなり、負極板520は、負極集電体521および負極活物質部522からなる。正極板510と負極板520とは、セパレータ530を介して対向している。正極集電体511は、絶縁シート511xおよびその両面にそれぞれ形成された導電層511yからなり、絶縁シート511xの長手方向に沿う両端部には、絶縁シートの露出部511x’が設けられている。図5のような構成を採用する場合、絶縁シートの露出部511x’の幅は、特に限定されないが、2mm以下であることが好ましい。
【0051】
正極集電体511の長手方向に沿う両端部511a、511bは、絶縁シートの切断面を有することから、導電性を有するバリは発生し得ない。そのため、正極集電体511の長手方向に沿う両端部511a、511bが、負極活物質部512の表面と対向しているにもかかわらず、正極集電体と負極活物質部との短絡は防止される。
【0052】
実施形態5
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極板の長手方向に沿う両端部は、それぞれ絶縁材料により被覆されているリチウムイオン二次電池に関する。
【0053】
正極板の長手方向に沿う両端部が、それぞれ絶縁材料により被覆されていることから、正極活物質部の端部付近をスリットする場合に、正極集電体にバリが発生したとしても、絶縁材料により、バリと負極活物質部との短絡は防止される。例えば、図2のような従来の構成の正極板の長手方向に沿う両端部を、それぞれ絶縁材料により被覆することにより、本実施形態を実現することができる。
【0054】
正極板の長手方向に沿う両端部を被覆する絶縁材料には、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0055】
正極板の長手方向に沿う両端部を絶縁材料で被覆する工程は、正極板のスリットの前後のどちらで行うこともできるが、正極板をスリットした後では、スリットにより形成された断面全体を絶縁材料で被覆することができる。
本実施形態においても、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。
【0056】
図6に、本実施形態の極板群における正極板610、負極板620およびセパレータ630の長手方向に対して垂直な断面の一例を概念的に示す。図6では、正極板610と負極板620とセパレータ630の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0057】
正極板610は、正極集電体611および正極活物質部612からなり、負極板620は、負極集電体621および負極活物質部622からなる。正極板610と負極板620とは、セパレータ630を介して対向している。正極板610の長手方向に沿う両端部は、絶縁材料613で被覆されていることから、正極集電体がバリを有する場合にも、バリと負極活物質部との短絡は防止される。
【0058】
なお、実施形態1〜5においては、正極板の4辺のうち、長手方向に沿う両端部の配置や構成について説明したが、短手方向に沿う両端部の少なくとも一方においても、同様の配置や構成を採用することができる。その場合、短絡を防止する効果は、さらに大きくなる。また、実施形態1〜5において説明した正極板の配置や構成は、それぞれを単独で採用することも、複数を組み合わせて採用することもできる。
【0059】
【実施例】
次に、実施例に基づいて、本発明をさらに具体例に説明する。ただし、以下の実施例は、本発明を限定するものではない。
【0060】
《実施例1》
実施形態1の実施例の一つについて、図7〜10を参照しながら説明する。
(i)正極板の作製
正極板708は、正極集電体708aの両面に、正極活物質部708bを担持させることで作製した。
正極活物質部708bは、正極材料ペーストを、正極集電体708aの両面に塗工し、乾燥し、圧延することにより形成した。
【0061】
正極材料ペーストは、正極活物質のLiCoOと、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンとを、それぞれ重量比92:3:5の割合で混合することにより調製した。結着剤のポリフッ化ビニリデンは、N−メチル−2−ピロリドン(以下、NMPという)に溶解させて、NMP溶液として用いた。なお、ポリフッ化ビニリデンのNMP溶液は、正極板作製時において、非活物質ペーストとしても用いた。
【0062】
正極材料ペーストおよび非活物質ペーストは、厚さ20μmのアルミニウム箔からなる正極集電体708aの両面に、ストライプ状に間欠塗工した。
図8に、正極材料ペースト801と非活物質ペースト802が塗工された正極集電体708aの上面図を示す。正極材料ペーストおよび非活物質ペーストの未塗工部では、正極集電体708aが露出しており、その露出部の間隔は40mmである。正極材料ペースト801および非活物質ペースト802の長さは、両方とも419mmである。正極材料ペースト801の幅は50mmであり、非活物質ペースト802の幅は、中央が8mm、両端が6mmである。正極集電体708aの長手方向に沿う両端部における未塗工部の幅は10mmである。
【0063】
次いで、図9に示すように、ペーストの間欠部分にも、非活物質ペースト802’を塗工した。非活物質ペースト802、802’の塗膜の厚さと、正極材料ペースト801の塗膜の厚さは同じとし、乾燥後の両面の塗膜の厚さの合計は280μmとした。正極集電体708aの厚さを含めた全体の厚さは300μmとした。
【0064】
その後、全体の厚さが180μmになるまで、直径300mmのローラで圧延し、ストライプ状の正極活物質部と非活物質部とを有する正極板フープを得た。正極板フープを非活物質部でスリットし、正極板とした。得られた正極板の正極材料密度は3.1g/ccであった。
【0065】
正極板の上面図を図10に示す。図10において、正極板の長手方向の長さは428mm、幅は54mmである。正極活物質部1002は、正極材料ペーストの塗膜と同じく、長さ419mm、幅50mmである。正極活物質部1002の周囲には、幅2mmの非活物質部1003が配置されている。
【0066】
非活物質部1003の一部を5mm幅で剥離して形成した正極集電体708aの露出部には、長さ75mm、幅3mmの正極リード716を溶接した。正極リード716の溶接部は絶縁テープで被覆した。
【0067】
(ii)負極板の作製
負極板709は、従来公知の方法で、負極集電体709aの両面に、負極活物質部709bを担持させることで作製した。
負極活物質部709bは、負極材料ペーストを、負極集電体709aの両面に塗工し、乾燥し、圧延することにより形成した。
【0068】
負極材料ペーストは、人造黒鉛と、結着剤のスチレンブタジエンゴム(SBR)とを、重量比97:3の割合で混合して調製した。結着剤のスチレンブタジエンゴムは、水に分散させて、水性分散液として用いた。
【0069】
負極材料ペーストは、厚さ14μmの銅箔からなる負極集電体709aの両面に塗工した。次いで、負極材料ペーストの塗膜と負極集電体とを含めた全体の厚さが196μmになるまで、直径300mmのローラで圧延し、負極活物質部を有する負極板フープを得た。
【0070】
得られた負極板フープを、正極活物質部より大きく、かつ、非活物質部を含む正極板全体より小さい寸法にスリットし、負極板とした。得られた負極板の負極材料密度は1.4g/ccであった。負極板の長手方向の長さは513mm、幅は52mmであった。
【0071】
負極活物質部の一部を5mm幅で剥離して形成した負極集電体709aの露出部には、長さ75mm、幅3mmの負極リード717を溶接した。負極リード717の溶接部は絶縁テープで被覆した。
【0072】
(iii)電解液の調製
電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比1:1で混合した混合溶媒に、溶質として6フッ化リン酸リチウム(LiPF)を1mol/dmの濃度に溶解したものを用いた。
(iv)円筒形電池の組み立て工程
【0073】
図7に示すような、直径18mm、高さ65mmの円筒形のリチウムイオン二次電池を組み立てた。電池の設計容量は1400mAhとした。
正極板708と負極板709とを、ポリエチレン製微多孔膜からなるセパレータ710を介して、図1に示した配置で対向させ、渦巻き状に捲回することにより、極板群711を構成した。極板群711は、その上下に上部絶縁板718および下部絶縁板719を配置して、電解液(図示せず)とともに電池容器712内に収容した。電池容器712には、負極端子を兼ねる円筒状の電池缶713と正極端子を兼ねる封口板714とを組み合わせて用いた。極板群711と電池缶713の内周との間にもセパレータ710を介装した。
【0074】
正極板708の正極リード716は、上部絶縁板718の中央の穴を通して、封口板714の裏面に接続した。負極板709の負極リード717は、下部絶縁板719の外周を迂回させて、下部絶縁板719と電池缶713の底部との間に介在させた。負極リード717と電池缶713の底部は、下部絶縁板719の中央の穴の内側で溶接した。電池缶713の開口端部と封口板714の周縁部との間に絶縁パッキン715を介装して、封口板714で電池缶713の開口を封口し、電池容器712を密閉した。
【0075】
実施例1の電池の極板群においては、正極集電体の長手方向に沿う両端部が、負極活物質部の長手方向に沿う両端部よりも外側に位置しているため、正極集電体の端部に発生したバリがセパレータを突き破る事態になっても、そのバリが負極活物質部と短絡することは無いと考えられる。また、正極板の端部付近には、絶縁材料からなる非活物質部が設けられていることから、正極集電体が安定化するとともに、一般的な短絡も起こりにくくなっている。さらに、非活物質部の厚さと正極活物質部の厚さとが同一で段差が無いことから、捲回時の巻ずれなどは起こりにくかった。
【0076】
《実施例2》
実施形態2の実施例の一つについて、図11〜13を参照しながら説明する。
(i)正極板の作製
図11に示すように、正極集電体となる厚さ20μmのアルミニウム箔1101と、絶縁材料部となる2本の厚さ20μmのポリプロピレンフィルム1102とを、3列に配置し、正極芯材を構成した。アルミニウム箔1101の幅は48mm、その長手方向に沿う両端部に配置したポリプロピレンフィルム1102の幅は両方とも5mmとした。3つの構成部材からなる正極芯材は、正極材料ペーストの塗工機に設置した。
【0077】
図12に示すように、ポリプロピレンフィルム1102からなる絶縁材料部上にかかるように、正極芯材の両面に、実施例1で調製したのと同じ正極材料ペースト1201を幅52mmで塗工した。図12中、破線はアルミニウム箔とポリプロピレンフィルムとの境界を示す。
なお、アルミニウム箔とポリプロピレンフィルムとを、5列、7列、・・・に配置して、より多くの正極板を効率的に作製することも可能である。
【0078】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部を有する正極板フープを得た。正極板フープを絶縁材料部となるポリプロピレンフィルム1102と正極活物質部との積層部でスリットし、正極板とした。
正極板の上面図を図13に示す。図13において、正極板の長手方向の長さは428mm、幅は50mmである。
【0079】
正極活物質部1302の一部を5mm幅で剥離して形成したアルミニウム箔1101の露出部には、実施例1と同様の正極リード1316を設けた。正極板の長手方向に沿う両端部には、それぞれ幅1mmのポリプロピレンフィルムと正極活物質部との積層部を残した。
【0080】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0081】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図3に示した配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例2の電池を組み立てた。
【0082】
実施例2の電池の極板群においては、正極板フープを絶縁材料部となるポリプロピレンフィルムと正極活物質部との積層部でスリットしたことから、正極板の長手方向に沿う端部には導電性のバリが発生していないと考えられる。
【0083】
《実施例3》
実施形態3の実施例の一つについて、図14〜15を参照しながら説明する。(i)正極板の作製
実施例1で用いたのと同じ正極集電体1401の両面に、図14に示すように、実施例1で調製したのと同じ正極材料ペースト1402をストライプ状に塗工した。図14において、正極材料ペーストの幅は2列とも50mmであり、集電体露出部の幅は中央が8mm、両端が4mmである。
【0084】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部1501を有する正極板フープを得た。正極板フープを、集電体露出部でスリットし、図15に示すように、残された集電体露出部を幅1mmの絶縁テープ1509で被覆して正極板とした。
【0085】
図15において、正極板の長手方向の長さは428mm、幅は52mmである。正極活物質部1501の一部を5mm幅で剥離して形成した正極集電体1401の露出部には、実施例1と同様の正極リード1516を設けた。
【0086】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0087】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量は1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図4に示したような配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例3の電池を組み立てた。
【0088】
実施例3の電池の極板群においては、正極集電体の端部が絶縁テープにより被覆されていることから、正極集電体の端部にバリが発生しても、そのバリと負極活物質部とが短絡することは無いと考えられる。
【0089】
《実施例4》
実施形態4の実施例の一つについて、図16〜18を参照しながら説明する。(i)正極板の作製
厚さ20μmのフープ状のポリプロピレンシート1601の両面の同じ位置に、図16に示すように、前後左右に10mm以上のポリプロピレンシートの露出部を残して、厚さ5μmのAl蒸着膜1602を形成した。Al蒸着膜1602は、長さ426mm、幅48mmとした。
【0090】
次に、図17に示すように、実施例1と同様に調製した正極材料ペースト1701を、ポリプロピレンシート1601の両面の同じ位置に、片面ずつ塗工した。この時、Al蒸着膜1602の一方の幅5mmの端部には、正極材料ペーストが塗工されないAl蒸着膜の露出部1702を残した。Al蒸着膜の露出部1702は、ポリプロピレンシートの両面の同じ位置に設けた。
【0091】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部を有する正極板フープを得た。正極板フープを、Al蒸着膜の無い箇所でスリットし、図18に示すような正極板とした。正極板の長さは428mm、幅は50mmである。正極集電体の両面に設けた幅5mmのAl蒸着膜の露出部1702には、それぞれ長さ75mm、幅3mmの正極リード1816を導電性接着剤で固定し、それらの自由端は互いに溶接した。正極リード1816の接着固定部は絶縁テープで被覆した。正極板の長手方向に沿う幅1mmの端部には、Al蒸着膜が無く、ポリプロピレンシート上に直接正極活物質部が担持されている。
【0092】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0093】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図5に示したような配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例4の電池を組み立てた。
【0094】
実施例4の電池においては、正極集電体のスリット部分が絶縁材料であることから、導電性のバリが発生することがなく、バリによる短絡は起こらないと考えられる。
【0095】
《実施例5》
実施形態5の実施例の一つについて説明する。
(i)正極板の作製
実施例1で用いたのと同じ正極集電体の両面の全面に、実施例1で調製したのと同じ正極材料ペーストを塗工した。
【0096】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部を有する正極板フープを得た。正極板フープを、幅50mm、長さ428mmにスリットし、その長手方向に沿う幅2mmの両端部を、ポリエチレン粉末(融点約100℃)の分散液中に浸漬し、乾燥後、両端部に付着したポリエチレン粉末を溶融させてポリエチレンの被膜を形成した。
正極活物質部の一部を5mm幅で剥離して形成した正極集電体の露出部には、実施例1と同様の正極リードを設けた。
【0097】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0098】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図6に示したような配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例5の電池を組み立てた。
【0099】
実施例5の電池においては、正極板のスリット時にバリが発生しても、正極板の端部に設けられたポリエチレンの被膜により、バリと負極活物質部との短絡は防止される。
【0100】
《比較例1》
実施例5と同様の正極板フープを作製し、これを幅50mm、長さ428mmにスリットした。こうして得られた正極板を、その長手方向に沿う両端部にポリエチレンの被膜を形成することなく、そのまま用いて、実施例5と同様の直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
【0101】
[評価]
実施例1〜5および比較例1の電池を以下の手順で評価した。
(i)各電池を、それぞれ100個用意し、これらを500mAで、電池電圧が4.4Vの過充電状態になるまで充電した。
(ii)過充電状態の電池を、その電圧が低下し始めるまで、平板で抑えて圧壊させた。
(iii)圧壊後に温度が上昇し、ガス発生により安全弁が作動した電池の個数を調べた。
【0102】
結果を以下に示す。
実施例1:安全弁が作動した電池の個数は、100個中0個であった。
実施例2:安全弁が作動した電池の個数は、100個中0個であった。
実施例3:安全弁が作動した電池の個数は、100個中0個であった。
実施例4:安全弁が作動した電池の個数は、100個中0個であった。
実施例5:安全弁が作動した電池の個数は、100個中0個であった。
比較例1:安全弁が作動した電池の個数は、100個中26個であった。
【0103】
【発明の効果】
以上のように、本発明のリチウムイオン二次電池によれば、正極集電体のスリット時にバリが発生するのを防止したり、バリが発生しても、バリと負極活物質部との短絡は防止される。
【図面の簡単な説明】
【図1】本発明の実施形態1の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図2】従来の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図3】本発明の実施形態2の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図4】本発明の実施形態3の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図5】本発明の実施形態4の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図6】本発明の実施形態5の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図7】本発明の実施例1のリチウムイオン二次電池の縦断面図である。
【図8】本発明の実施例1に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図9】本発明の実施例1に係る正極板の製造工程を説明するための正極集電体の別の上面図である。
【図10】本発明の実施例1に係る正極板の正面図である。
【図11】本発明の実施例2に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図12】本発明の実施例2に係る正極板の製造工程を説明するための正極集電体の別の上面図である。
【図13】本発明の実施例2に係る正極板の正面図である。
【図14】本発明の実施例3に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図15】本発明の実施例3に係る正極板の正面図である。
【図16】本発明の実施例4に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図17】本発明の実施例4に係る正極板の製造工程を説明するための正極集電体の別の上面図である。
【図18】本発明の実施例4に係る正極板の正面図である。
【符号の説明】
110 正極板
111 正極集電体
111a、b 正極集電体の端部
112 正極活物質部
112a、b 正極活物質部の端部
113 非活物質部
120 負極板
121 負極集電体
122 負極活物質部
122a、b 負極活物質部の端部
130 セパレータ
210 正極板
211 正極集電体
212 正極活物質部
220 負極板
221 負極集電体
222 負極活物質部
230 セパレータ
211a、b 正極集電体の端部
222a、b 負極活物質部の端部
310 正極板
311 正極集電体
311a、b 正極集電体の端部
312 正極活物質部
312a、b 正極活物質部の端部
313 絶縁材料部
320 負極板
321 負極集電体
322 負極活物質部
330 セパレータ
410 正極板
411 正極集電体
411a、b 正極集電体の端部
412 正極活物質部
412a、b 正極活物質部の端部
413 絶縁材料
420 負極板
421 負極集電体
422 負極活物質部
422a、b 負極活物質部の端部
430 セパレータ
510 正極板
511 正極集電体
511a、b 正極集電体の端部
511x 絶縁シート
511x’ 絶縁シートの露出部
511y 導電層
512 正極活物質部
520 負極板
521 負極集電体
522 負極活物質部
530 セパレータ
610 正極板
611 正極集電体
612 正極活物質部
613 絶縁材料
620 負極板
621 負極集電体
622 負極活物質部
630 セパレータ
708 正極板
708a 正極集電体
708b 正極活物質部
709 負極板
709a 負極集電体
709b 負極活物質部
710 セパレータ
711 極板群
712 電池容器
713 電池缶
714 封口板
715 絶縁パッキン
716 正極リード
717 負極リード
718 上部絶縁板
719 下部絶縁板
801 正極材料ペースト
802、802’ 非活物質ペースト
1002 正極活物質部
1003 非活物質部
1101 アルミニウム箔
1102 ポリプロピレンフィルム
1201 正極材料ペースト
1302 正極活物質部
1316 正極リード
1401 正極集電体
1402 正極材料ペースト
1501 正極活物質部
1509 絶縁テープ
1516 正極リード
1601 ポリプロピレンシート
1602 Al蒸着膜
1701 正極材料ペースト
1702 Al蒸着膜の露出部
1816 正極リード
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a highly safe wound lithium ion secondary battery in which the possibility of a short circuit between a burr of a positive electrode current collector and a negative electrode active material portion is reduced.
[0002]
[Prior art]
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly developed, and demands for smaller and lighter secondary batteries as power sources for driving these devices and higher energy densities have been increasing. . Among such secondary batteries, a lithium ion secondary battery using lithium as an active material has particularly high voltage and high energy density.
[0003]
As a conventional lithium ion secondary battery, a wound type battery is mainly used. A wound type battery is obtained by winding a positive electrode plate including a positive electrode active material portion and a positive electrode current collector supporting the same, and a negative electrode plate including a negative electrode active material portion and a negative electrode current collector supporting the same, with a separator interposed therebetween. It has a group of rotating electrode plates. The positive electrode active material portion contains a positive electrode active material that can occlude or release lithium ions by charging and discharging, and the negative electrode active material portion contains a negative electrode active material that can occlude or release lithium ions by charging and discharging. Have been. The electrode group is housed in the battery container together with the electrolytic solution.
[0004]
In the case of a wound type battery, the electrode plate and the separator are easily deformed at the bent portion and the curved portion when the electrode plate is wound. Such deformation can induce an internal short circuit. In addition, when the electrode plate is wound, the position of the separator is displaced, so that an internal short circuit may occur.
[0005]
In view of the above, the present inventors have focused on preventing a main cause of an internal short circuit in a wound type lithium ion secondary battery.
[0006]
The following four types can be considered as types of the internal short circuit.
(1) Short circuit between positive electrode active material part and negative electrode active material part
(2) Short circuit between positive electrode active material and negative electrode current collector
(3) Short circuit between positive electrode current collector and negative electrode active material
(4) Short circuit between positive and negative electrode current collectors
[0007]
The present inventors disassembled a battery in an overcharged state for each part, and observed the presence or absence of spark and ignition by directly contacting each part. As a result, in the short-circuit modes (1) and (2), neither spark nor ignition occurred, but in the short-circuit mode (3), spark and ignition occurred. In the short-circuit mode (4), sparks occurred, but did not ignite.
[0008]
The following are considered from these results.
In the short-circuit modes (1) and (2), since the resistance of the positive electrode active material itself is large, a large current does not flow even when the positive electrode active material portion and the negative electrode active material portion are short-circuited.
[0009]
In the short-circuit mode (4), a spark is generated due to a short-circuit between the current collectors having conductivity, but the current collector itself is not flammable and thus does not ignite.
In the short-circuit mode (3), since both the positive electrode current collector and the negative electrode active material have conductivity, when they are short-circuited, a spark is generated and the flammable negative electrode active material is ignited.
[0010]
From the above considerations, the short circuit mode (3) is considered to be the main cause of the internal short circuit. The short-circuit mode (3) actually occurs when conductive burrs generated at the time of slitting the positive electrode current collector come into contact with the surface of the negative electrode active material portion.
[0011]
In recent years, instead of using a conventional separator, a stacked lithium ion secondary battery having an electrode group formed by stacking a positive electrode plate and a negative electrode plate via an electrolyte layer has been proposed. In such a battery in which the electrolyte layer is integrated with the positive electrode plate and the negative electrode plate, a proposal has been made to prevent short-circuit by controlling the dimensions of the electrode plate and the separator (see Patent Document 1). However, the manufacturing process of a laminated integrated electrode plate group is generally complicated, and it is difficult to increase the capacity. Further, in such an electrode plate group, from the viewpoint of reducing the weight of the battery, it has been proposed to use a current collector provided with a metal vapor-deposited film on the surface of a resin film such as a polyethylene terephthalate film (Patent Document 1). 2).
[0012]
[Patent Document 1]
JP 2000-30742 A
[Patent Document 2]
JP-A-9-213338
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described findings, and one of the objects of the present invention is to prevent short-circuit between a burr of a positive electrode current collector and a negative electrode active material portion, thereby providing a highly safe wound type. An object of the present invention is to provide a lithium ion secondary battery.
[0014]
[Means for Solving the Problems]
The lithium ion secondary battery of the present invention comprises (a) a positive electrode active material part and a positive electrode current collector supporting the positive electrode active material part, and the positive electrode active material part can occlude or release lithium ions by charging and discharging. A positive electrode plate containing a positive electrode active material, (b) a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion can occlude or release lithium ions by charging and discharging. A negative electrode plate containing a negative electrode active material, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) an electrolytic solution, and (e) a battery containing the positive electrode plate, the negative electrode plate, the separator and the electrolytic solution A container is provided.
[0015]
The positive electrode plate and the negative electrode plate constitute an electrode plate group by being wound via the separator. Here, the lithium ion secondary battery of the present invention has any of the following features [A] to [E] in the electrode group.
[0016]
[A] Both ends along the longitudinal direction of the positive electrode current collector are located outside the both ends along the longitudinal direction of the negative electrode active material portion.
[B] Both ends along the longitudinal direction of the positive electrode active material part are located outside the both ends along the longitudinal direction of the positive electrode current collector.
[0017]
(C) Both end portions along the longitudinal direction of the negative electrode active material portion are located outside both end portions along the longitudinal direction of the positive electrode current collector, and both end portions along the longitudinal direction of the positive electrode current collector, An exposed portion, which is located outside both ends along the longitudinal direction of the positive electrode active material portion and is not covered with the positive electrode active material portion of the positive electrode current collector, is covered with an insulating material.
[0018]
[D] The positive electrode current collector includes an insulating sheet and conductive layers formed on both surfaces of the insulating sheet, and exposed portions of the insulating sheet are provided at both ends along the longitudinal direction of the insulating sheet.
[E] Both ends along the longitudinal direction of the positive electrode plate are coated with an insulating material.
For the separator, for example, a woven fabric, a nonwoven fabric, a microporous film, or the like made of polyolefin or the like is used.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
The present embodiment includes (a) a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion contains a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging. A positive electrode plate comprising: (b) a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging. A negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) an electrolyte, and (e) a lithium including a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte. In the ion secondary battery, the positive electrode plate and the negative electrode plate are wound with the separator interposed therebetween to form an electrode group, and in the electrode group, the positive electrode Longitudinal direction of current collector Both end portions along is a lithium ion secondary battery than both end portions along the longitudinal direction is located outside of the negative electrode active material portion.
[0020]
Since the both ends along the longitudinal direction of the positive electrode current collector are located outside the both ends along the longitudinal direction of the negative electrode active material part, burrs are generated at the end of the positive electrode current collector at the time of slitting. However, a short circuit between the burr and the negative electrode active material portion can be prevented.
[0021]
At both ends along the longitudinal direction of the positive electrode active material portion, inactive material portions that do not occlude or release lithium ions by charging and discharging can be provided. The end portion of the positive electrode current collector can be stabilized by the inactive material portion. Furthermore, at both end portions along the longitudinal direction of the positive electrode current collector, the thickness of the non-active material portion is the same as the thickness of the positive electrode active material portion, and there is no step, so that it is unlikely that a winding shift or the like during winding will occur. It is preferred in that respect. When an insulating material is used as the non-active material portion, even a general short circuit other than a short circuit between the burr of the positive electrode current collector and the negative electrode active material portion can be suppressed.
[0022]
In the electrode plate group, it is preferable that both end portions along the longitudinal direction of the negative electrode active material portion are located outside the both end portions along the longitudinal direction of the positive electrode active material portion. With such an arrangement, Li ions released from the positive electrode active material at the time of charging can be reliably received by the opposite negative electrode active material, thereby causing uneven load of the negative electrode active material, deposition of metallic lithium, and the like. Can be prevented.
[0023]
FIG. 1 conceptually shows an example of a cross section perpendicular to the longitudinal direction of the positive electrode plate 110, the negative electrode plate 120, and the separator 130 in the electrode plate group of the present embodiment. In FIG. 1, each element is shown at intervals in the stacking direction so that the arrangement relationship between the positive electrode plate 110, the negative electrode plate 120, and the separator 130 can be easily understood.
[0024]
The positive electrode plate 110 includes a positive electrode current collector 111 and a positive electrode active material part 112, and the negative electrode plate 120 includes a negative electrode current collector 121 and a negative electrode active material part 122. The positive electrode plate 110 and the negative electrode plate 120 face each other with a separator 130 interposed therebetween. Between the end portion 111a of the positive electrode current collector and the end portion 112a of the positive electrode active material portion, and between the end portion 111b of the positive electrode current collector and the end portion 112b of the positive electrode active material portion, the positive electrode active material is not coated. Although a work portion may be used, it is preferable to provide the inactive material portion 113.
[0025]
Both ends 111a and 111b along the longitudinal direction of the positive electrode current collector 111 are located outside of both ends 122a and 122b along the longitudinal direction of the negative electrode active material portion 122. With such an arrangement, even if burrs are generated at the end 111a or 111b of the positive electrode current collector and the burrs break through the separator 130, there is no short circuit with the negative electrode active material portion 122.
[0026]
When the configuration as shown in FIG. 1 is employed, the distance from the end 111a of the positive electrode current collector to the end 122a of the negative electrode active material part, and the distance from the end 111b of the positive electrode current collector to the end 122b of the negative electrode active material part Is preferably 50 to 300 μm. These intervals are preferably larger than the length obtained by subtracting the sum of the thickness per one side of the positive electrode active material portion and the thickness of the separator from the length of the burr assumed in the cross section of the positive electrode current collector. In addition, the length of the burr assumed in the cross section of the positive electrode current collector is generally 50 to 100 μm.
[0027]
FIG. 2 conceptually shows a cross section perpendicular to the longitudinal direction of the positive electrode plate 210, the negative electrode plate 220, and the separator 230 in the conventional electrode plate group, similarly to FIG.
The positive electrode plate 210 includes a positive electrode current collector 211 and a positive electrode active material part 212, and the negative electrode plate 220 includes a negative electrode current collector 221 and a negative electrode active material part 222.
[0028]
Both ends 211a and 211b along the longitudinal direction of the positive electrode current collector are located inside the both ends 222a and 222b along the longitudinal direction of the negative electrode active material portion 222. In such an arrangement, a burr is generated at the end 211 a or 211 b of the positive electrode current collector, and if the burr breaks through the separator 230, a short circuit occurs with the negative electrode active material part 222.
[0029]
Embodiment 2
The present embodiment includes (a) a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion contains a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging. A positive electrode plate comprising: (b) a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging. A negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) an electrolyte, and (e) a lithium including a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte. In the ion secondary battery, the positive electrode plate and the negative electrode plate constitute a group of electrodes by being wound therebetween with the separator interposed therebetween. In the longitudinal direction of the material part Cormorants both ends, a lithium ion secondary battery is positioned outward from both ends in the longitudinal direction of the positive electrode current collector.
[0030]
Since both ends along the longitudinal direction of the positive electrode active material part are located outside the both ends along the longitudinal direction of the positive electrode current collector, when slitting near the end of the positive electrode active material part, the positive electrode Since the current collector and the positive electrode active material part are not slit at the same time, burrs do not easily occur. On the other hand, in the conventional configuration as shown in FIG. 2, since the positive electrode current collector 211 and the positive electrode active material part 212 are simultaneously slit, burrs are likely to be generated at the end 211a or 211b of the positive electrode current collector.
[0031]
Also in the present embodiment, it is preferable that both end portions along the longitudinal direction of the negative electrode active material portion are located outside the both end portions along the longitudinal direction of the positive electrode active material portion.
It is preferable that insulating material portions extending in the plane direction of the positive electrode current collector are respectively disposed at both ends along the longitudinal direction of the positive electrode current collector. With such an insulating material portion, the end portion of the positive electrode active material portion can be stabilized. The insulating material portion is connected to the end face of the end portion along the longitudinal direction of the positive electrode current collector, and it is preferable that the positive electrode current collector and the insulating material portion are integrated. When the positive electrode current collector and the insulating material portion are integrated, they can be handled as one core material.
[0032]
The insulating material portion extending in the surface direction of the positive electrode current collector preferably has excellent workability, has insulating properties, and is low in cost. As such an insulating material portion, polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can be used. These may be used alone or in combination of two or more.
[0033]
It is preferable that the positive electrode current collector is completely covered with the positive electrode active material portion.
The insulating material portion extending in the surface direction of the positive electrode current collector is not an essential component. The space between the end of the positive electrode current collector and the end of the positive electrode active material portion may be filled with the positive electrode active material. Also in such a case, the positive electrode current collector is completely covered by the positive electrode active material portion.
[0034]
When the insulating material portion extending in the surface direction of the positive electrode current collector is not provided, it is preferable that both end portions along the longitudinal direction of the positive electrode current collector are respectively coated with the insulating material. Polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can also be used as an insulating material covering the end of the positive electrode current collector. Further, by spraying a ceramic such as alumina, the end of the positive electrode current collector can be coated with the ceramic.
[0035]
FIG. 3 conceptually shows an example of a cross section perpendicular to the longitudinal direction of the positive electrode plate 310, the negative electrode plate 320, and the separator 330 in the electrode plate group of the present embodiment. In FIG. 3, each element is shown at intervals in the stacking direction so that the arrangement relationship between the positive electrode plate 310, the negative electrode plate 320, and the separator 330 can be easily understood.
[0036]
The positive electrode plate 310 includes a positive electrode current collector 311 and a positive electrode active material part 312, and the negative electrode plate 320 includes a negative electrode current collector 321 and a negative electrode active material part 322. The positive electrode plate 310 and the negative electrode plate 320 face each other with a separator 330 interposed therebetween. Between the end 311a of the positive electrode current collector and the end 312a of the positive electrode active material part, and between the end 311b of the positive electrode current collector and the end 312b of the positive electrode active material part, an insulating material part 313 is provided. Extending.
[0037]
Both ends 312a and 312b along the longitudinal direction of the positive electrode active material portion are located outside of both ends 311a and 311b along the longitudinal direction of the positive electrode current collector. In such an arrangement, when the stacked portion of the positive electrode active material portion 312 and the insulating material portion 313 is slit, the positive electrode current collector 311 is not slit, so that no conductive burrs are generated.
[0038]
When the configuration as shown in FIG. 3 is adopted, the distance from the end 311a of the positive electrode current collector to the end 312a of the positive electrode active material portion, and the distance from the end 311b of the positive electrode current collector to the end 312b of the positive electrode active material portion The distance between them is not particularly limited, but each is preferably 2 mm or less.
[0039]
Embodiment 3
The present embodiment includes (a) a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion contains a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging. A positive electrode plate comprising: (b) a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging. A negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) an electrolyte, and (e) a lithium including a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte. In an ion secondary battery, the positive electrode plate and the negative electrode plate are wound with the separator interposed therebetween to form an electrode group, and in the electrode group, the negative electrode Active material section longitudinal direction Both ends along the longitudinal direction of the positive electrode current collector are located outside the both ends along the longitudinal direction of the positive electrode current collector, and both ends along the longitudinal direction of the positive electrode current collector are both ends along the longitudinal direction of the positive electrode active material part. The present invention relates to a lithium ion secondary battery in which an exposed portion which is located outside of a portion and which is not covered with the cathode active material portion of the cathode current collector is covered with an insulating material.
[0040]
According to such an arrangement, both end portions along the longitudinal direction of the negative electrode active material portion are located outside both end portions along the longitudinal direction of the positive electrode current collector, and both end portions along the longitudinal direction of the positive electrode current collector. Are located outside both ends along the longitudinal direction of the positive electrode active material portion, so that the end portion of the positive electrode current collector faces the surface of the negative electrode active material portion. However, since the exposed portion of the positive electrode current collector that is not covered with the positive electrode active material portion is covered with the insulating material, even if burrs are generated on the positive electrode current collector, the burrs are formed on the surface of the negative electrode active material portion. There is no short circuit.
[0041]
As an insulating material covering the exposed portion of the positive electrode current collector, polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can be used. These may be used alone or in combination of two or more. Further, the exposed portion of the positive electrode current collector can be coated with ceramics by spraying ceramics such as alumina. An insulating tape can be attached to the exposed portion of the positive electrode current collector. As the insulating tape, it is preferable to use a tape made of a base material made of polypropylene or the like and an acrylic resin-based adhesive material carried on one surface thereof.
The step of covering the exposed portion of the positive electrode current collector with the insulating material can be performed either before or after the slit of the positive electrode plate.
[0042]
FIG. 4 conceptually shows an example of a cross section perpendicular to the longitudinal direction of the positive electrode plate 410, the negative electrode plate 420, and the separator 430 in the electrode plate group of the present embodiment. In FIG. 4, each element is shown at intervals in the stacking direction so that the arrangement relationship between the positive electrode plate 410, the negative electrode plate 420, and the separator 430 can be easily understood.
[0043]
The positive electrode plate 410 includes a positive electrode current collector 411 and a positive electrode active material part 412, and the negative electrode plate 420 includes a negative electrode current collector 421 and a negative electrode active material part 422. The positive electrode plate 410 and the negative electrode plate 420 face each other with a separator 430 interposed therebetween. An insulating material 413 covers the portion from the end portion 411a of the positive electrode current collector to the end portion 412a of the positive electrode active material portion and the portion from the end portion 411b of the positive electrode current collector to the end portion 412b of the positive electrode active material portion. ing.
[0044]
Both ends 422a and 422b along the longitudinal direction of the negative electrode active material portion are located outside of both ends 411a and 411b along the longitudinal direction of the positive electrode current collector. Further, both end portions 411a and 411b along the longitudinal direction of the positive electrode current collector are located outside of both end portions 412a and 412b along the longitudinal direction of the positive electrode active material portion. Further, an exposed portion of the positive electrode current collector which is not covered with the positive electrode active material portion is covered with the insulating material 413. In such a positive electrode plate, even when burrs of the positive electrode current collector occur, the burrs do not short-circuit with the surface of the negative electrode active material portion.
[0045]
When the configuration as shown in FIG. 4 is employed, the distance from the end 422a of the negative electrode active material portion to the end 411a of the positive electrode current collector, and the distance from the end 422b of the negative electrode active material portion to the end 411b of the positive electrode current collector The distance between them is not particularly limited, but each is preferably 2 mm or less. The distance from the end 411a of the positive electrode current collector to the end 412a of the positive electrode active material part and the distance from the end 411b of the positive electrode current collector to the end 412b of the positive electrode active material part are not particularly limited. Is preferably 2 mm or less.
[0046]
Embodiment 4
The present embodiment includes (a) a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion contains a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging. A positive electrode plate comprising: (b) a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging. A negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) an electrolyte, and (e) a lithium including a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte. An ion secondary battery, wherein the positive electrode plate and the negative electrode plate are wound with the separator interposed therebetween to form an electrode plate group, and the positive electrode current collector is insulated. On the sheet and on both sides Consist respectively formed conductive layer, wherein the both end portions along the longitudinal direction of the insulating sheet, a lithium ion secondary battery exposed portion is provided in the insulating sheet.
[0047]
The positive electrode current collector according to the present embodiment is lightweight because most of the current collector is made of an insulating sheet. Further, in such a current collector, since the cross section formed by the slit has an insulating property, conductive burrs do not occur.
[0048]
As a constituent material of the insulating sheet, polypropylene, polyethylene, polyethylene terephthalate, or the like can be used. These materials are also advantageous in that they have flexibility. As the conductive layer, a deposited film of aluminum, an aluminum alloy, or the like is preferable. In the step of forming the deposition film, a conventionally known deposition method such as electron beam deposition may be used as appropriate.
The thickness of the insulating sheet is preferably 10 to 30 μm, and the thickness of the conductive layer is preferably 1 to 20 μm.
[0049]
Also in the present embodiment, it is preferable that both end portions along the longitudinal direction of the negative electrode active material portion are located outside the both end portions along the longitudinal direction of the positive electrode active material portion.
FIG. 5 conceptually shows an example of a cross section perpendicular to the longitudinal direction of the positive electrode plate 510, the negative electrode plate 520, and the separator 530 in the electrode plate group of the present embodiment. In FIG. 5, each element is shown at intervals in the stacking direction so that the arrangement relationship between the positive electrode plate 510, the negative electrode plate 520, and the separator 530 can be easily understood.
[0050]
The positive electrode plate 510 includes a positive electrode current collector 511 and a positive electrode active material part 512, and the negative electrode plate 520 includes a negative electrode current collector 521 and a negative electrode active material part 522. The positive electrode plate 510 and the negative electrode plate 520 face each other with a separator 530 interposed therebetween. The positive electrode current collector 511 includes an insulating sheet 511x and conductive layers 511y formed on both surfaces thereof. Exposed portions 511x ′ of the insulating sheet are provided at both ends of the insulating sheet 511x along the longitudinal direction. When the configuration as shown in FIG. 5 is adopted, the width of the exposed portion 511x ′ of the insulating sheet is not particularly limited, but is preferably 2 mm or less.
[0051]
Since both end portions 511a and 511b along the longitudinal direction of the positive electrode current collector 511 have cut surfaces of the insulating sheet, conductive burrs cannot be generated. Therefore, the short-circuit between the positive electrode current collector and the negative electrode active material part is prevented even though both ends 511a and 511b along the longitudinal direction of the positive electrode current collector 511 face the surface of the negative electrode active material part 512. Is done.
[0052]
Embodiment 5
The present embodiment includes (a) a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion contains a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging. A positive electrode plate comprising: (b) a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging. A negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) an electrolyte, and (e) a lithium including a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte. In the ion secondary battery, the positive electrode plate and the negative electrode plate constitute an electrode group by being wound therebetween with the separator interposed therebetween, and extend along the longitudinal direction of the positive electrode plate. Both ends are respectively A lithium ion secondary battery is covered by the edge material.
[0053]
Since both ends along the longitudinal direction of the positive electrode plate are coated with an insulating material, even when burrs are generated on the positive electrode current collector when slitting the vicinity of the end of the positive electrode active material portion, the insulating material is used. Thereby, a short circuit between the burr and the negative electrode active material portion is prevented. For example, the present embodiment can be realized by coating both ends along the longitudinal direction of a positive electrode plate having a conventional configuration as shown in FIG. 2 with an insulating material.
[0054]
Polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can be used as an insulating material that covers both ends along the longitudinal direction of the positive electrode plate. These may be used alone or in combination of two or more.
[0055]
The step of coating both ends along the longitudinal direction of the positive electrode plate with an insulating material can be performed either before or after the slit of the positive electrode plate, but after slitting the positive electrode plate, the entire cross section formed by the slit is insulated. It can be coated with a material.
Also in the present embodiment, it is preferable that both end portions along the longitudinal direction of the negative electrode active material portion are located outside the both end portions along the longitudinal direction of the positive electrode active material portion.
[0056]
FIG. 6 conceptually shows an example of a cross section perpendicular to the longitudinal direction of the positive electrode plate 610, the negative electrode plate 620, and the separator 630 in the electrode plate group of the present embodiment. In FIG. 6, each element is shown at intervals in the stacking direction so that the arrangement relationship between the positive electrode plate 610, the negative electrode plate 620, and the separator 630 can be easily understood.
[0057]
The positive electrode plate 610 includes a positive electrode current collector 611 and a positive electrode active material part 612, and the negative electrode plate 620 includes a negative electrode current collector 621 and a negative electrode active material part 622. The positive electrode plate 610 and the negative electrode plate 620 face each other with the separator 630 interposed therebetween. Since both ends along the longitudinal direction of the positive electrode plate 610 are covered with the insulating material 613, even when the positive electrode current collector has burrs, a short circuit between the burrs and the negative electrode active material portion is prevented.
[0058]
In Embodiments 1 to 5, of the four sides of the positive electrode plate, the arrangement and configuration of both ends along the longitudinal direction have been described. However, the same arrangement and configuration can be applied to at least one of both ends along the lateral direction. A configuration can be employed. In that case, the effect of preventing a short circuit is further increased. In addition, the arrangement and configuration of the positive electrode plates described in Embodiments 1 to 5 can be employed alone or in combination.
[0059]
【Example】
Next, the present invention will be described in further detail with reference to examples. However, the following examples do not limit the present invention.
[0060]
<< Example 1 >>
One example of the first embodiment will be described with reference to FIGS.
(I) Production of positive electrode plate
The positive electrode plate 708 was manufactured by supporting a positive electrode active material portion 708b on both surfaces of a positive electrode current collector 708a.
The positive electrode active material portion 708b was formed by applying a positive electrode material paste to both surfaces of the positive electrode current collector 708a, drying and rolling.
[0061]
The positive electrode material paste is LiCoO as a positive electrode active material. 2 And acetylene black as a conductive agent and polyvinylidene fluoride as a binder in a weight ratio of 92: 3: 5, respectively. Polyvinylidene fluoride as a binder was dissolved in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and used as an NMP solution. Note that the NMP solution of polyvinylidene fluoride was also used as a non-active material paste at the time of manufacturing the positive electrode plate.
[0062]
The positive electrode material paste and the inactive material paste were intermittently applied in stripes on both surfaces of a positive electrode current collector 708a made of an aluminum foil having a thickness of 20 μm.
FIG. 8 shows a top view of a positive electrode current collector 708a to which a positive electrode material paste 801 and a non-active material paste 802 are applied. In the uncoated portion of the positive electrode material paste and the non-active material paste, the positive electrode current collector 708a is exposed, and the interval between the exposed portions is 40 mm. The lengths of the positive electrode material paste 801 and the inactive material paste 802 are both 419 mm. The width of the positive electrode material paste 801 is 50 mm, and the width of the inactive material paste 802 is 8 mm at the center and 6 mm at both ends. The width of the uncoated portion at both ends along the longitudinal direction of the positive electrode current collector 708a is 10 mm.
[0063]
Next, as shown in FIG. 9, a non-active material paste 802 ′ was also applied to the intermittent portions of the paste. The thicknesses of the coating films of the non-active material pastes 802 and 802 ′ and the coating thickness of the positive electrode material paste 801 were the same, and the total thickness of the coating films on both surfaces after drying was 280 μm. The total thickness including the thickness of the positive electrode current collector 708a was 300 μm.
[0064]
Thereafter, the resultant was rolled with a roller having a diameter of 300 mm until the entire thickness became 180 μm to obtain a positive electrode plate hoop having a stripe-shaped positive electrode active material portion and a non-active material portion. The positive electrode plate hoop was slit at the non-active material portion to obtain a positive electrode plate. The positive electrode material density of the obtained positive electrode plate was 3.1 g / cc.
[0065]
FIG. 10 shows a top view of the positive electrode plate. In FIG. 10, the length of the positive electrode plate in the longitudinal direction is 428 mm and the width is 54 mm. The positive electrode active material portion 1002 has a length of 419 mm and a width of 50 mm, similarly to the coating film of the positive electrode material paste. A non-active material portion 1003 having a width of 2 mm is arranged around the positive electrode active material portion 1002.
[0066]
A positive electrode lead 716 having a length of 75 mm and a width of 3 mm was welded to an exposed portion of the positive electrode current collector 708a formed by peeling a part of the inactive material portion 1003 with a width of 5 mm. The welded part of the positive electrode lead 716 was covered with an insulating tape.
[0067]
(Ii) Preparation of negative electrode plate
The negative electrode plate 709 was produced by carrying a negative electrode active material portion 709b on both surfaces of a negative electrode current collector 709a by a conventionally known method.
The negative electrode active material portion 709b was formed by applying a negative electrode material paste on both surfaces of the negative electrode current collector 709a, drying and rolling.
[0068]
The negative electrode material paste was prepared by mixing artificial graphite and styrene butadiene rubber (SBR) as a binder at a weight ratio of 97: 3. Styrene butadiene rubber as a binder was dispersed in water and used as an aqueous dispersion.
[0069]
The negative electrode material paste was applied to both surfaces of a negative electrode current collector 709a made of a copper foil having a thickness of 14 μm. Then, rolling was performed with a roller having a diameter of 300 mm until the entire thickness including the coating film of the negative electrode material paste and the negative electrode current collector was 196 μm, to obtain a negative electrode plate hoop having a negative electrode active material portion.
[0070]
The obtained negative electrode plate hoop was slit into a size larger than the positive electrode active material portion and smaller than the entire positive electrode plate including the non-active material portion, to obtain a negative electrode plate. The negative electrode material density of the obtained negative electrode plate was 1.4 g / cc. The length in the longitudinal direction of the negative electrode plate was 513 mm, and the width was 52 mm.
[0071]
A negative electrode lead 717 having a length of 75 mm and a width of 3 mm was welded to an exposed portion of the negative electrode current collector 709a formed by peeling a part of the negative electrode active material portion with a width of 5 mm. The welded part of the negative electrode lead 717 was covered with an insulating tape.
[0072]
(Iii) Preparation of electrolyte solution
As the electrolyte, a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of 1: 1 was mixed with lithium hexafluorophosphate (LiPF) as a solute. 6 ) Is 1 mol / dm 3 Used at a concentration of 1.
(Iv) Assembly process of cylindrical battery
[0073]
As shown in FIG. 7, a cylindrical lithium ion secondary battery having a diameter of 18 mm and a height of 65 mm was assembled. The design capacity of the battery was 1400 mAh.
The positive electrode plate 708 and the negative electrode plate 709 were opposed to each other via a separator 710 made of a microporous polyethylene film in the arrangement shown in FIG. 1 and spirally wound to form an electrode plate group 711. In the electrode group 711, an upper insulating plate 718 and a lower insulating plate 719 are arranged above and below the electrode group 711, and are housed in a battery container 712 together with an electrolyte (not shown). For the battery container 712, a cylindrical battery can 713 also serving as a negative electrode terminal and a sealing plate 714 also serving as a positive electrode terminal were used in combination. A separator 710 was also interposed between the electrode plate group 711 and the inner periphery of the battery can 713.
[0074]
The positive electrode lead 716 of the positive electrode plate 708 was connected to the back surface of the sealing plate 714 through the center hole of the upper insulating plate 718. The negative electrode lead 717 of the negative electrode plate 709 bypassed the outer periphery of the lower insulating plate 719 and was interposed between the lower insulating plate 719 and the bottom of the battery can 713. The negative electrode lead 717 and the bottom of the battery can 713 were welded inside the center hole of the lower insulating plate 719. An insulating packing 715 was interposed between the opening end of the battery can 713 and the peripheral edge of the sealing plate 714, and the opening of the battery can 713 was sealed with the sealing plate 714 to seal the battery container 712.
[0075]
In the electrode plate group of the battery of Example 1, since both ends along the longitudinal direction of the positive electrode current collector are located outside the both ends along the longitudinal direction of the negative electrode active material portion, the positive electrode current collector It is considered that even if the burr generated at the end of the electrode breaks through the separator, the burr does not short-circuit with the negative electrode active material portion. Further, since an inactive material portion made of an insulating material is provided near the end of the positive electrode plate, the positive electrode current collector is stabilized, and a general short circuit is unlikely to occur. Further, since the thickness of the non-active material portion and the thickness of the positive electrode active material portion were the same and there was no step, it was difficult to cause winding deviation during winding.
[0076]
<< Example 2 >>
One example of the second embodiment will be described with reference to FIGS.
(I) Production of positive electrode plate
As shown in FIG. 11, an aluminum foil 1101 having a thickness of 20 μm serving as a positive electrode current collector and two polypropylene films 1102 having a thickness of 20 μm serving as an insulating material portion are arranged in three rows, and a positive electrode core material is provided. Configured. The width of the aluminum foil 1101 was 48 mm, and the width of both polypropylene films 1102 disposed at both ends along the longitudinal direction was 5 mm. The positive electrode core material composed of the three constituent members was installed in a positive electrode material paste coating machine.
[0077]
As shown in FIG. 12, the same positive electrode material paste 1201 as prepared in Example 1 was applied to both surfaces of the positive electrode core material with a width of 52 mm so as to cover the insulating material portion made of the polypropylene film 1102. In FIG. 12, a broken line indicates a boundary between the aluminum foil and the polypropylene film.
Incidentally, it is also possible to arrange the aluminum foil and the polypropylene film in five rows, seven rows,... To efficiently produce more positive electrode plates.
[0078]
As in Example 1, the overall thickness including the dried coating film and the positive electrode current collector was 300 μm, and the entire thickness was rolled to 180 μm to obtain a positive electrode having a positive electrode active material portion. I got a board hoop. The positive electrode plate hoop was slit at the laminated portion of the polypropylene film 1102 serving as an insulating material portion and the positive electrode active material portion to obtain a positive electrode plate.
FIG. 13 shows a top view of the positive electrode plate. In FIG. 13, the length in the longitudinal direction of the positive electrode plate is 428 mm, and the width is 50 mm.
[0079]
A positive electrode lead 1316 similar to that of Example 1 was provided on an exposed portion of the aluminum foil 1101 formed by peeling a part of the positive electrode active material portion 1302 with a width of 5 mm. At both ends along the longitudinal direction of the positive electrode plate, a laminated portion of a polypropylene film having a width of 1 mm and a positive electrode active material portion was left.
[0080]
(Ii) Preparation of negative electrode plate
The negative electrode plate was manufactured by slitting a negative electrode plate hoop manufactured in the same manner as in Example 1 to a size larger than the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0081]
(Iii) Assembly process of cylindrical battery
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate produced above are opposed to each other in the arrangement shown in FIG. 3 via a separator made of a microporous polyethylene membrane, and are spirally wound to form an electrode plate group. did. Then, a battery of Example 2 similar to that of Example 1 was assembled except that this electrode group was used.
[0082]
In the electrode plate group of the battery of Example 2, since the positive electrode plate hoop was slit at the laminated portion of the polypropylene film and the positive electrode active material portion serving as the insulating material portion, the conductive portion was formed at the end along the longitudinal direction of the positive electrode plate. It is considered that no burrs occurred.
[0083]
<< Example 3 >>
One example of the third embodiment will be described with reference to FIGS. (I) Production of positive electrode plate
As shown in FIG. 14, the same positive electrode material paste 1402 as prepared in Example 1 was applied on both surfaces of the same positive electrode current collector 1401 as used in Example 1 in a stripe shape. In FIG. 14, the width of the positive electrode material paste is 50 mm in both rows, and the width of the exposed portion of the current collector is 8 mm at the center and 4 mm at both ends.
[0084]
As in Example 1, the entire thickness including the coating film on both sides after drying and the positive electrode current collector was set to 300 μm, and was rolled until the entire thickness became 180 μm to have the positive electrode active material portion 1501. A positive electrode plate hoop was obtained. The positive electrode plate hoop was slit at the current collector exposed portion, and as shown in FIG. 15, the remaining current collector exposed portion was covered with a 1 mm-wide insulating tape 1509 to obtain a positive electrode plate.
[0085]
In FIG. 15, the length of the positive electrode plate in the longitudinal direction is 428 mm and the width is 52 mm. A positive electrode lead 1516 similar to that of Example 1 was provided on an exposed portion of the positive electrode current collector 1401 formed by peeling a part of the positive electrode active material portion 1501 with a width of 5 mm.
[0086]
(Ii) Preparation of negative electrode plate
The negative electrode plate was manufactured by slitting a negative electrode plate hoop manufactured in the same manner as in Example 1 to a size larger than the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0087]
(Iii) Assembly process of cylindrical battery
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate prepared above are opposed to each other in the arrangement shown in FIG. 4 via a separator made of a microporous polyethylene film, and are spirally wound to form an electrode plate group. Was configured. Then, a battery of Example 3 similar to that of Example 1 was assembled except that this electrode group was used.
[0088]
In the electrode plate group of the battery of Example 3, since the end of the positive electrode current collector was covered with the insulating tape, even if burrs occurred at the end of the positive electrode current collector, the burrs and the negative electrode active It is considered that there is no short circuit with the material part.
[0089]
<< Example 4 >>
One example of the fourth embodiment will be described with reference to FIGS. (I) Production of positive electrode plate
As shown in FIG. 16, a 5 μm-thick Al vapor-deposited film 1602 was formed at the same position on both sides of a 20 μm-thick hoop-shaped polypropylene sheet 1601, leaving the exposed portions of the polypropylene sheet 10 mm or more in front, rear, left and right. . The Al deposited film 1602 was 426 mm long and 48 mm wide.
[0090]
Next, as shown in FIG. 17, a cathode material paste 1701 prepared in the same manner as in Example 1 was applied to the same position on both surfaces of the polypropylene sheet 1601 one by one. At this time, an exposed portion 1702 of the Al-deposited film to which the positive electrode material paste was not applied was left at one end of the Al-deposited film 1602 having a width of 5 mm. The exposed portion 1702 of the Al vapor-deposited film was provided at the same position on both surfaces of the polypropylene sheet.
[0091]
As in Example 1, the entire thickness including the dried coating film and the positive electrode current collector was 300 μm, and the entire thickness was rolled to 180 μm to obtain a positive electrode having a positive electrode active material portion. I got a board hoop. The positive electrode plate hoop was slit at a portion where no Al vapor-deposited film was formed to obtain a positive electrode plate as shown in FIG. The length of the positive electrode plate is 428 mm and the width is 50 mm. A 75 mm long, 3 mm wide positive electrode lead 1816 was fixed to the exposed portion 1702 of the 5 mm wide Al vapor-deposited film provided on both surfaces of the positive electrode current collector with a conductive adhesive, and their free ends were welded to each other. . The adhesive fixing portion of the positive electrode lead 1816 was covered with an insulating tape. At the end of the positive electrode plate having a width of 1 mm along the longitudinal direction, there is no Al vapor-deposited film, and the positive electrode active material portion is directly carried on the polypropylene sheet.
[0092]
(Ii) Preparation of negative electrode plate
The negative electrode plate was manufactured by slitting a negative electrode plate hoop manufactured in the same manner as in Example 1 to a size larger than the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0093]
(Iii) Assembly process of cylindrical battery
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate prepared above are opposed to each other in a layout as shown in FIG. 5 via a separator made of a microporous polyethylene film, and are spirally wound to form an electrode plate group. Was configured. Then, a battery of Example 4 similar to that of Example 1 was assembled except that this electrode group was used.
[0094]
In the battery of Example 4, since the slit portion of the positive electrode current collector is made of an insulating material, it is considered that no conductive burrs are generated and no short circuit is caused by the burrs.
[0095]
<< Example 5 >>
One example of the fifth embodiment will be described.
(I) Production of positive electrode plate
The same positive electrode material paste as prepared in Example 1 was applied to the entire surface on both sides of the same positive electrode current collector used in Example 1.
[0096]
As in Example 1, the entire thickness including the dried coating film and the positive electrode current collector was 300 μm, and the entire thickness was rolled to 180 μm to obtain a positive electrode having a positive electrode active material portion. I got a board hoop. The positive electrode plate hoop is slit into a width of 50 mm and a length of 428 mm, and both ends having a width of 2 mm along the longitudinal direction are immersed in a dispersion of polyethylene powder (melting point: about 100 ° C.), dried, and adhered to both ends. The polyethylene powder thus obtained was melted to form a polyethylene coating.
The same positive electrode lead as in Example 1 was provided on the exposed portion of the positive electrode current collector formed by peeling off a part of the positive electrode active material portion with a width of 5 mm.
[0097]
(Ii) Preparation of negative electrode plate
The negative electrode plate was manufactured by slitting a negative electrode plate hoop manufactured in the same manner as in Example 1 to a size larger than the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0098]
(Iii) Assembly process of cylindrical battery
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate produced above are opposed to each other in the arrangement shown in FIG. 6 via a separator made of a microporous polyethylene film, and are spirally wound to form an electrode plate group. Was configured. Then, a battery of Example 5 similar to that of Example 1 was assembled except that this electrode plate group was used.
[0099]
In the battery of Example 5, even if burrs are generated at the time of slitting the positive electrode plate, a short circuit between the burrs and the negative electrode active material portion is prevented by the polyethylene coating provided on the end of the positive electrode plate.
[0100]
<< Comparative Example 1 >>
A positive electrode plate hoop similar to that in Example 5 was produced, and this was slit into a width of 50 mm and a length of 428 mm. The positive electrode plate thus obtained was used as it was, without forming a polyethylene coating on both ends along the longitudinal direction, and was the same as that of Example 5 in a cylindrical lithium having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh. An ion secondary battery was assembled.
[0101]
[Evaluation]
The batteries of Examples 1 to 5 and Comparative Example 1 were evaluated according to the following procedure.
(I) 100 batteries were prepared and charged at 500 mA until the battery voltage reached an overcharged state of 4.4 V.
(Ii) The overcharged battery was crushed down with a flat plate until its voltage began to drop.
(Iii) The number of batteries in which the temperature increased after the crush and the safety valve was activated by gas generation was examined.
[0102]
The results are shown below.
Example 1: The number of batteries for which the safety valve was activated was 0 out of 100 batteries.
Example 2: The number of batteries for which the safety valve was activated was 0 out of 100 batteries.
Example 3: The number of batteries for which the safety valve was activated was 0 out of 100 batteries.
Example 4: The number of batteries for which the safety valve was activated was 0 out of 100 batteries.
Example 5: The number of batteries for which the safety valve was activated was 0 out of 100 batteries.
Comparative Example 1: The number of batteries for which the safety valve was activated was 26 out of 100 batteries.
[0103]
【The invention's effect】
As described above, according to the lithium ion secondary battery of the present invention, it is possible to prevent burrs from being generated at the time of slitting the positive electrode current collector, and even if burrs occur, short-circuit between the burrs and the negative electrode active material portion. Is prevented.
[Brief description of the drawings]
FIG. 1 is a view conceptually showing an example of a cross section perpendicular to the longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to Embodiment 1 of the present invention.
FIG. 2 is a view conceptually showing an example of a cross section perpendicular to the longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in a conventional electrode plate group.
FIG. 3 is a view conceptually illustrating an example of a cross section perpendicular to the longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to Embodiment 2 of the present invention.
FIG. 4 is a diagram conceptually illustrating an example of a cross section perpendicular to the longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to Embodiment 3 of the present invention.
FIG. 5 is a diagram conceptually illustrating an example of a cross section perpendicular to the longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to Embodiment 4 of the present invention.
FIG. 6 is a diagram conceptually illustrating an example of a cross section perpendicular to the longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to Embodiment 5 of the present invention.
FIG. 7 is a longitudinal sectional view of the lithium ion secondary battery of Example 1 of the present invention.
FIG. 8 is a top view of the positive electrode current collector for describing a manufacturing process of the positive electrode plate according to the first embodiment of the present invention.
FIG. 9 is another top view of the positive electrode current collector for describing the manufacturing process of the positive electrode plate according to Example 1 of the present invention.
FIG. 10 is a front view of a positive electrode plate according to Example 1 of the present invention.
FIG. 11 is a top view of a positive electrode current collector for explaining a manufacturing process of a positive electrode plate according to Example 2 of the present invention.
FIG. 12 is another top view of the positive electrode current collector for describing the manufacturing process of the positive electrode plate according to the second embodiment of the present invention.
FIG. 13 is a front view of a positive electrode plate according to Example 2 of the present invention.
FIG. 14 is a top view of a positive electrode current collector for describing a manufacturing process of a positive electrode plate according to Example 3 of the present invention.
FIG. 15 is a front view of a positive electrode plate according to Example 3 of the present invention.
FIG. 16 is a top view of a positive electrode current collector for describing a manufacturing process of a positive electrode plate according to Example 4 of the present invention.
FIG. 17 is another top view of the positive electrode current collector for describing the manufacturing process of the positive electrode plate according to Example 4 of the present invention.
FIG. 18 is a front view of a positive electrode plate according to Example 4 of the present invention.
[Explanation of symbols]
110 Positive electrode plate
111 positive electrode current collector
111a, b End of positive electrode current collector
112 Positive electrode active material
112a, b End of positive electrode active material part
113 Inactive material part
120 negative electrode plate
121 Negative electrode current collector
122 Negative electrode active material section
122a, b End of negative electrode active material part
130 separator
210 Positive electrode plate
211 Positive electrode current collector
212 Positive electrode active material section
220 negative electrode plate
221 Negative electrode current collector
222 negative electrode active material section
230 separator
211a, b End of positive electrode current collector
222a, b End of negative electrode active material part
310 Positive electrode plate
311 Positive electrode current collector
311a, b End of positive electrode current collector
312 Positive electrode active material section
312a, b End of positive electrode active material part
313 Insulation material section
320 negative electrode plate
321 Negative electrode current collector
322 Negative electrode active material section
330 separator
410 Positive electrode plate
411 Positive electrode current collector
411a, b End of positive electrode current collector
412 Positive electrode active material section
412a, b End of positive electrode active material part
413 Insulating material
420 negative electrode plate
421 Negative electrode current collector
422 negative electrode active material section
422a, b Ends of negative electrode active material part
430 separator
510 positive plate
511 Positive electrode current collector
511a, b Ends of positive electrode current collector
511x insulation sheet
511x 'Exposed part of insulating sheet
511y conductive layer
512 Positive electrode active material section
520 negative electrode plate
521 Negative electrode current collector
522 Negative electrode active material section
530 separator
610 Positive electrode plate
611 positive electrode current collector
612 Positive electrode active material section
613 Insulation material
620 negative electrode plate
621 Negative electrode current collector
622 Negative electrode active material section
630 separator
708 Positive electrode plate
708a positive electrode current collector
708b Positive electrode active material section
709 negative electrode plate
709a Negative electrode current collector
709b Negative electrode active material part
710 separator
711 Electrode group
712 Battery container
713 Battery Can
714 sealing plate
715 Insulation packing
716 Positive electrode lead
717 Negative electrode lead
718 Upper insulating plate
719 Lower insulating plate
801 cathode material paste
802, 802 'Inactive material paste
1002 Positive electrode active material section
1003 Inactive material section
1101 Aluminum foil
1102 Polypropylene film
1201 cathode material paste
1302 Positive electrode active material section
1316 Positive electrode lead
1401 positive electrode current collector
1402 Positive electrode material paste
1501 Positive electrode active material section
1509 Insulation tape
1516 Positive electrode lead
1601 Polypropylene sheet
1602 Al deposited film
1701 Positive electrode material paste
1702 Exposed part of Al deposited film
1816 positive electrode lead

Claims (15)

(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記正極集電体の長手方向に沿う両端部が、前記負極活物質部の長手方向に沿う両端部よりも外側に位置しているリチウムイオン二次電池。
(A) a positive electrode plate including a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion includes a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(B) a negative electrode plate including a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate,
(D) an electrolytic solution, and (e) a lithium ion secondary battery including a battery container containing the positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution,
The positive electrode plate and the negative electrode plate are wound therebetween with the separator interposed therebetween to form an electrode plate group, and in the electrode plate group, along the longitudinal direction of the positive electrode current collector. A lithium ion secondary battery in which both ends are located outside both ends along the longitudinal direction of the negative electrode active material part.
前記正極活物質部の長手方向に沿う両端部には、それぞれリチウムイオンを充放電により吸蔵または放出しない非活物質部が設けられている請求項1記載のリチウムイオン二次電池。2. The lithium ion secondary battery according to claim 1, wherein non-active material portions that do not occlude or release lithium ions by charging and discharging are provided at both ends of the positive electrode active material portion along the longitudinal direction. 前記非活物質部は、絶縁材料からなる請求項2記載のリチウムイオン二次電池。3. The lithium ion secondary battery according to claim 2, wherein the non-active material portion is made of an insulating material. 前記極板群において、前記負極活物質部の長手方向に沿う両端部が、正極活物質部の長手方向に沿う両端部よりも外側に位置している請求項1記載のリチウムイオン二次電池。2. The lithium ion secondary battery according to claim 1, wherein, in the electrode plate group, both ends along the longitudinal direction of the negative electrode active material portion are located outside both ends along the longitudinal direction of the positive electrode active material portion. 3. (a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、正極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置しているリチウムイオン二次電池。
(A) a positive electrode plate including a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion includes a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(B) a negative electrode plate including a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate,
(D) an electrolytic solution, and (e) a lithium ion secondary battery including a battery container containing the positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution,
The positive electrode plate and the negative electrode plate constitute an electrode group by being wound therebetween with the separator interposed therebetween, and in the electrode group, both ends along the longitudinal direction of the positive electrode active material portion. The lithium ion secondary battery in which the portion is located outside both ends along the longitudinal direction of the positive electrode current collector.
前記正極集電体の長手方向に沿う両端部には、それぞれ前記正極集電体の面方向に延在する絶縁材料部が配置されている請求項5記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 5, wherein insulating material portions extending in a surface direction of the positive electrode current collector are disposed at both ends of the positive electrode current collector along the longitudinal direction. 前記絶縁材料部は、前記正極集電体の長手方向に沿う端部の端面に接続されている請求項6記載のリチウムイオン二次電池。7. The lithium ion secondary battery according to claim 6, wherein the insulating material portion is connected to an end face of an end portion of the positive electrode current collector along a longitudinal direction. 前記絶縁材料部は、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンおよびポリエチレンテレフタレートよりなる群から選ばれる少なくとも1種からなる請求項6記載のリチウムイオン二次電池。7. The lithium ion secondary battery according to claim 6, wherein the insulating material portion is made of at least one selected from the group consisting of polypropylene, polyethylene, polyvinylidene fluoride, and polyethylene terephthalate. 前記正極集電体は、前記正極活物質部により完全に覆われている請求項5記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 5, wherein the positive electrode current collector is completely covered by the positive electrode active material part. 前記正極集電体の長手方向に沿う両端部は、それぞれ絶縁材料により被覆されている請求項5記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 5, wherein both end portions along the longitudinal direction of the positive electrode current collector are respectively coated with an insulating material. 前記極板群において、前記負極活物質部の長手方向に沿う両端部が、正極活物質部の長手方向に沿う両端部よりも外側に位置している請求項5記載のリチウムイオン二次電池。6. The lithium ion secondary battery according to claim 5, wherein, in the electrode plate group, both ends along the longitudinal direction of the negative electrode active material portion are located outside both ends along the longitudinal direction of the positive electrode active material portion. 7. (a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記負極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置し、前記正極集電体の長手方向に沿う両端部が、前記正極活物質部の長手方向に沿う両端部よりも外側に位置し、さらに、前記正極集電体の前記正極活物質部で覆われていない露出部が、絶縁材料により被覆されているリチウムイオン二次電池。
(A) a positive electrode plate including a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion includes a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(B) a negative electrode plate including a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate,
(D) an electrolytic solution, and (e) a lithium ion secondary battery including a battery container containing the positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution,
The positive electrode plate and the negative electrode plate are wound therebetween with the separator interposed therebetween to form an electrode plate group, and in the electrode plate group, along the longitudinal direction of the negative electrode active material portion. Both ends are located outside both ends along the longitudinal direction of the positive electrode current collector, and both ends along the longitudinal direction of the positive electrode current collector are both ends along the longitudinal direction of the positive electrode active material part. A lithium ion secondary battery in which an exposed portion of the positive electrode current collector that is not covered with the positive electrode active material portion is covered with an insulating material.
(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極集電体は、絶縁シートおよびその両面にそれぞれ形成された導電層からなり、前記絶縁シートの長手方向に沿う両端部には、前記絶縁シートの露出部が設けられているリチウムイオン二次電池。
(A) a positive electrode plate including a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion includes a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(B) a negative electrode plate including a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate,
(D) an electrolytic solution, and (e) a lithium ion secondary battery including a battery container containing the positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution,
The positive electrode plate and the negative electrode plate constitute an electrode plate group by being wound therebetween with the separator therebetween, and the positive electrode current collector is formed on an insulating sheet and both surfaces thereof, respectively. A lithium ion secondary battery comprising a conductive layer, and exposed portions of the insulating sheet are provided at both ends along the longitudinal direction of the insulating sheet.
(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極板の長手方向に沿う両端部は、それぞれ絶縁材料により被覆されているリチウムイオン二次電池。
(A) a positive electrode plate including a positive electrode active material portion and a positive electrode current collector supporting the positive electrode active material portion, wherein the positive electrode active material portion includes a positive electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(B) a negative electrode plate including a negative electrode active material portion and a negative electrode current collector supporting the negative electrode active material portion, wherein the negative electrode active material portion includes a negative electrode active material capable of occluding or releasing lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate,
(D) an electrolytic solution, and (e) a lithium ion secondary battery including a battery container containing the positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution,
The positive electrode plate and the negative electrode plate are wound therebetween with the separator interposed therebetween to form an electrode plate group, and both ends along the longitudinal direction of the positive electrode plate are each formed of an insulating material. Lithium-ion secondary battery covered.
前記絶縁材料は、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンおよびポリエチレンテレフタレートよりなる群から選ばれる少なくとも1種からなる請求項14記載のリチウムイオン二次電池。The lithium-ion secondary battery according to claim 14, wherein the insulating material is at least one selected from the group consisting of polypropylene, polyethylene, polyvinylidene fluoride, and polyethylene terephthalate.
JP2003149836A 2002-05-30 2003-05-27 Lithium ion secondary battery Expired - Fee Related JP4617065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149836A JP4617065B2 (en) 2002-05-30 2003-05-27 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002156892 2002-05-30
JP2003149836A JP4617065B2 (en) 2002-05-30 2003-05-27 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004055537A true JP2004055537A (en) 2004-02-19
JP4617065B2 JP4617065B2 (en) 2011-01-19

Family

ID=31949064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149836A Expired - Fee Related JP4617065B2 (en) 2002-05-30 2003-05-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4617065B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120604A (en) * 2004-09-03 2006-05-11 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2006302877A (en) * 2005-03-23 2006-11-02 Hitachi Maxell Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2007257848A (en) * 2006-03-20 2007-10-04 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007273438A (en) * 2006-03-10 2007-10-18 Sony Corp Battery
JP2008066020A (en) * 2006-09-05 2008-03-21 Sony Corp Nonaqueous electrolyte secondary battery
WO2008035499A1 (en) * 2006-09-19 2008-03-27 Panasonic Corporation Method of producing electrode for secondary battery, and secondary battery
JP2010015851A (en) * 2008-07-04 2010-01-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2010267632A (en) * 2004-09-03 2010-11-25 Panasonic Corp Lithium ion secondary battery
JP2011096575A (en) * 2009-10-30 2011-05-12 Denso Corp Electrode for secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery
EP2426773A2 (en) 2010-09-03 2012-03-07 GS Yuasa International Ltd. Battery
KR20120023573A (en) 2010-09-03 2012-03-13 가부시키가이샤 지에스 유아사 Battery
JP2012079696A (en) * 2010-10-01 2012-04-19 Samsung Sdi Co Ltd Secondary battery
EP2450989A2 (en) 2010-11-05 2012-05-09 GS Yuasa International Ltd. Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
WO2012128160A1 (en) * 2011-03-23 2012-09-27 三洋電機株式会社 Positive electrode plate for anhydrous electrolyte secondary cell, method for manufacturing positive electrode plate, and anhydrous electrolyte secondary cell and method for manufacturing same
JP2013020968A (en) * 2011-07-12 2013-01-31 Samsung Sdi Co Ltd Secondary battery
KR101264422B1 (en) 2006-05-08 2013-05-14 삼성에스디아이 주식회사 Electrode assembly and Lithium rechargeable battery using the same
WO2013111624A1 (en) * 2012-01-26 2013-08-01 東レエンジニアリング株式会社 Device for manufacturing electrode sheet material
JP2014089856A (en) * 2012-10-30 2014-05-15 Sony Corp Cell, electrode, cell pack, electronic apparatus, electric vehicle, storage device and power system
WO2014156092A1 (en) * 2013-03-29 2014-10-02 三洋電機株式会社 Lithium-ion cell
JP2016119183A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Electrode body and manufacturing method for cathode
JP2017188371A (en) * 2016-04-08 2017-10-12 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
JP2019160553A (en) * 2018-03-13 2019-09-19 Tdk株式会社 Electrode and power storage element
WO2021065900A1 (en) * 2019-09-30 2021-04-08 株式会社村田製作所 Secondary battery
CN114530646A (en) * 2022-01-21 2022-05-24 厦门钧科电子科技有限公司 Power module with consistent temperature and design method of radiator of power module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130394A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JPH10241735A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Lithium ion battery
JP2001210304A (en) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk Sealed type battery and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130394A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JPH10241735A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Lithium ion battery
JP2001210304A (en) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk Sealed type battery and its manufacturing method

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120604A (en) * 2004-09-03 2006-05-11 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2010267632A (en) * 2004-09-03 2010-11-25 Panasonic Corp Lithium ion secondary battery
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP4549992B2 (en) * 2005-03-23 2010-09-22 日立マクセル株式会社 Nonaqueous electrolyte battery and manufacturing method thereof
JP2006302877A (en) * 2005-03-23 2006-11-02 Hitachi Maxell Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2007273438A (en) * 2006-03-10 2007-10-18 Sony Corp Battery
JP2007257848A (en) * 2006-03-20 2007-10-04 Hitachi Maxell Ltd Nonaqueous secondary battery
KR101264422B1 (en) 2006-05-08 2013-05-14 삼성에스디아이 주식회사 Electrode assembly and Lithium rechargeable battery using the same
JP2008066020A (en) * 2006-09-05 2008-03-21 Sony Corp Nonaqueous electrolyte secondary battery
WO2008035499A1 (en) * 2006-09-19 2008-03-27 Panasonic Corporation Method of producing electrode for secondary battery, and secondary battery
JP2010015851A (en) * 2008-07-04 2010-01-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2011096575A (en) * 2009-10-30 2011-05-12 Denso Corp Electrode for secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery
EP2426773A2 (en) 2010-09-03 2012-03-07 GS Yuasa International Ltd. Battery
KR20120023573A (en) 2010-09-03 2012-03-13 가부시키가이샤 지에스 유아사 Battery
US9099757B2 (en) 2010-09-03 2015-08-04 Gs Yuasa International Ltd. Battery
JP2012079696A (en) * 2010-10-01 2012-04-19 Samsung Sdi Co Ltd Secondary battery
US9490464B2 (en) 2010-10-01 2016-11-08 Samsung Sdi Co., Ltd. Secondary battery
EP2450989A3 (en) * 2010-11-05 2014-01-08 GS Yuasa International Ltd. Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
US9450236B2 (en) 2010-11-05 2016-09-20 Gs Yuasa International Ltd. Electrode for electricity-storing device, electricity storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
EP2450989A2 (en) 2010-11-05 2012-05-09 GS Yuasa International Ltd. Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
US8986891B2 (en) 2010-11-05 2015-03-24 Gs Yuasa International Ltd. Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
JP5929897B2 (en) * 2011-03-23 2016-06-08 三洋電機株式会社 Positive electrode plate for nonaqueous electrolyte secondary battery and method for producing the same, nonaqueous electrolyte secondary battery and method for producing the same
JPWO2012128160A1 (en) * 2011-03-23 2014-07-24 三洋電機株式会社 Positive electrode plate for nonaqueous electrolyte secondary battery and method for producing the same, nonaqueous electrolyte secondary battery and method for producing the same
WO2012128160A1 (en) * 2011-03-23 2012-09-27 三洋電機株式会社 Positive electrode plate for anhydrous electrolyte secondary cell, method for manufacturing positive electrode plate, and anhydrous electrolyte secondary cell and method for manufacturing same
US9231245B2 (en) 2011-03-23 2016-01-05 Sanyo Electric Co., Ltd. Positive electrode plate for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode plate, nonaqueous electrolyte secondary battery, and method for manufacturing the battery
KR20160097390A (en) * 2011-07-12 2016-08-18 삼성에스디아이 주식회사 Secondary battery
JP2013020968A (en) * 2011-07-12 2013-01-31 Samsung Sdi Co Ltd Secondary battery
JP2013157091A (en) * 2012-01-26 2013-08-15 Toray Eng Co Ltd Electrode sheet material manufacturing device
WO2013111624A1 (en) * 2012-01-26 2013-08-01 東レエンジニアリング株式会社 Device for manufacturing electrode sheet material
US10115969B2 (en) 2012-10-30 2018-10-30 Murata Manufacturing Co., Ltd. Battery, electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2014089856A (en) * 2012-10-30 2014-05-15 Sony Corp Cell, electrode, cell pack, electronic apparatus, electric vehicle, storage device and power system
WO2014156092A1 (en) * 2013-03-29 2014-10-02 三洋電機株式会社 Lithium-ion cell
JPWO2014156092A1 (en) * 2013-03-29 2017-02-16 三洋電機株式会社 Lithium ion battery
JP2016119183A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Electrode body and manufacturing method for cathode
JP2017188371A (en) * 2016-04-08 2017-10-12 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
JP2019160553A (en) * 2018-03-13 2019-09-19 Tdk株式会社 Electrode and power storage element
WO2021065900A1 (en) * 2019-09-30 2021-04-08 株式会社村田製作所 Secondary battery
JPWO2021065900A1 (en) * 2019-09-30 2021-04-08
CN114514646A (en) * 2019-09-30 2022-05-17 株式会社村田制作所 Secondary battery
CN114514646B (en) * 2019-09-30 2023-11-28 株式会社村田制作所 secondary battery
CN114530646A (en) * 2022-01-21 2022-05-24 厦门钧科电子科技有限公司 Power module with consistent temperature and design method of radiator of power module
CN114530646B (en) * 2022-01-21 2023-09-22 合肥钧联汽车电子有限公司 Temperature-consistent power module and radiator design method thereof

Also Published As

Publication number Publication date
JP4617065B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4617065B2 (en) Lithium ion secondary battery
US7935445B2 (en) Lithium ion secondary battery
KR100958649B1 (en) Battery unit and the winding method thereof and lithum secondary battery using the same
US8067112B2 (en) Stacked lithium secondary battery and its fabrication utilizing a folded configuration
US20130177787A1 (en) Current collector and nonaqueous secondary battery
KR100626510B1 (en) Lithium ion secondary battery and method for manufacturing the same
WO2005013408A1 (en) Lithium ion secondary cell
JPH11102711A (en) Lithium ion secondary battery
JP2007317638A (en) Electrode assembly excellent in structural stability and wettability of electrolyte solution and secondary battery containing above
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
US8088517B2 (en) Lithium ion secondary battery and production method thereof
JP2004356085A (en) Jelly roll type electrode assembly and secondary battery adopting this
JPH09283149A (en) Collector for battery plate and battery using this collector
JPH11135116A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, and manufacture of the negative electrode for the lithium secondary battery
JPH10241699A (en) Battery
JP7036554B2 (en) Sheet material, secondary battery and method of manufacturing secondary battery
JP2011129446A (en) Laminated type battery
KR102028167B1 (en) Secondary battery and manufacturing method using the same
JPH10112323A (en) Battery
KR20220074498A (en) Electrode assembly and secondary battery including the same
JP2005174779A (en) Lithium ion secondary cell
JP5128008B1 (en) Nonaqueous electrolyte secondary battery
KR100601563B1 (en) Cylindrical lithium ion secondary battery
JP2002025627A (en) Nonaqueous film package secondary battery
JPH10112322A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees