WO2008022751A2 - Verfahren zum betreiben einer abgasreinigungsanlage an einem mager betriebenen ottomotor - Google Patents

Verfahren zum betreiben einer abgasreinigungsanlage an einem mager betriebenen ottomotor Download PDF

Info

Publication number
WO2008022751A2
WO2008022751A2 PCT/EP2007/007290 EP2007007290W WO2008022751A2 WO 2008022751 A2 WO2008022751 A2 WO 2008022751A2 EP 2007007290 W EP2007007290 W EP 2007007290W WO 2008022751 A2 WO2008022751 A2 WO 2008022751A2
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
lean
engine
catalyst
nitrogen oxide
Prior art date
Application number
PCT/EP2007/007290
Other languages
English (en)
French (fr)
Other versions
WO2008022751A3 (de
Inventor
Susanne Philipp
Torsten Franke
Stephan Eckhoff
Wilfried Mueller
Thomas Kreuzer
Hubert Bichler
Rainer Zimmer
Christof Schoen
Original Assignee
Umicore Ag & Co. Kg
Bayerische Motoren Werke Ag
Daimlerchrisler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg, Bayerische Motoren Werke Ag, Daimlerchrisler Ag filed Critical Umicore Ag & Co. Kg
Publication of WO2008022751A2 publication Critical patent/WO2008022751A2/de
Publication of WO2008022751A3 publication Critical patent/WO2008022751A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for operating an exhaust gas purification system on a lean-burn gasoline engine, which first contains a nitrogen oxide storage catalyst and then an SCR catalyst in the flow direction of the exhaust gas, wherein the exhaust gas contains nitrogen oxides, which are converted by the operation of the emission control system to harmless compounds should.
  • Exhaust gas purification systems which contain a nitrogen oxide storage catalyst and an SCR catalyst in the flow direction of the exhaust gas, are known.
  • a nitrogen oxide storage catalyst and an SCR catalyst in the flow direction of the exhaust gas
  • Such a plant is described for example in US 6,182,443 for the treatment of the exhaust gas of a diesel engine.
  • the diesel engine is operated with a constantly lean air / fuel mixture.
  • the nitrogen oxides contained in the diesel exhaust are absorbed by the nitrogen oxide storage catalyst.
  • the stored nitrogen oxides are thermally desorbed and reduced to nitrogen in the following SCR catalyst.
  • ammonia or urea is added to the exhaust gas before the SCR catalyst when the SCR catalyst has reached its light-off temperature.
  • the published patent application US 2006/0010857 A1 likewise discloses an exhaust gas purification system for a diesel engine comprising a nitrogen oxide storage catalytic converter and a downstream SCR catalytic converter.
  • the diesel engine is operated with a constantly lean air / fuel mixture.
  • a reducing agent is supplied to the exhaust gas upstream of the storage catalytic converter.
  • ammonia is generated by the storage catalytic converter. This is stored by the SCR catalyst and used in a period that follows directly on the regeneration of the storage catalyst for the reduction of nitrogen oxides, which are not absorbed by the nitrogen oxide storage catalyst.
  • the publication US 2005/0129601 Al also describes an exhaust gas purification plant, which in the flow direction of the exhaust gas, a nitrogen oxide storage lysator and an SCR catalyst.
  • the exhaust gas is periodically emaciated and enriched.
  • the nitrogen oxides contained in the exhaust gas are stored by the storage catalytic converter.
  • the nitrogen oxides stored by the storage catalyst are reduced to ammonia.
  • the mixture of ammonia and unreacted nitrogen oxides is converted to nitrogen and water on the SCR catalyst.
  • DE 100 11 612 A1 describes an exhaust gas purification system for an internal combustion engine, which likewise consists of a nitrogen oxide storage catalytic converter and an SCR catalytic converter.
  • the engine is alternately operated with lean and rich air / fuel mixture in order to be able to convert the nitrogen oxides contained in the exhaust gas to the nitrogen oxide storage catalytic converter.
  • the engine is operated with a stoichiometric air / fuel mixture and at full load the engine is supplied with a rich air / fuel mixture.
  • JP 2002-188429 also describes an exhaust gas purification system for a lean-burn engine comprising a nitrogen oxide storage catalyst and an SCR catalyst. The addition of reductant before the nitrogen oxide storage catalyst is stopped when the amount of reductant exceeds a threshold and is then fed to the SCR catalyst.
  • JP 2003-286827 describes another exhaust gas purification system comprising a nitrogen oxide storage catalytic converter and an SCR catalytic converter. The nitrogen oxide storage catalyst absorbs the nitrogen oxides contained in the exhaust gas below a predetermined temperature and desorbs them above this temperature. The desorbed nitrogen oxides are converted by the downstream SCR catalyst.
  • Another exhaust gas purification system for a lean-burn engine is described in JP 2004-218575. It also contains a nitrogen oxide storage catalyst and an SCR catalyst. In contrast to the systems described so far, the SCR catalytic converter is connected upstream of the nitrogen oxide storage catalytic converter.
  • the known methods for removing the nitrogen oxides by means of a nitrogen oxide storage catalytic converter and a downstream SCR catalytic converter are not suitable for effectively cleaning the exhaust gas from lean-burn gasoline engines over wide ranges of the possible operating states.
  • conventional gasoline lean-burn gasoline engines with stratified gasoline direct injection from a certain vehicle speed can no longer be operated with lean air / fuel mixture and must be switched to stoichiometric operation
  • the modern gasoline lean-burn engines with spray-guided gasoline direct injection capable, even at significant to work at higher speeds with lean mixture preparation.
  • the engine generates exhaust gas at high temperatures above, for example, 500 ° C and with high exhaust gas mass flows.
  • Nitrogen storage catalysts typically have a temperature window for optimum operation between about 200 and 450 ° C. Above 450 ° C, nitrogen oxide storage catalysts are no longer able to store the nitrogen oxides. Therefore, for example, the nitrogen oxide storage catalyst in US 2005/0129601 A1 can no longer form ammonia at temperatures above 450 ° C. in the rich periods for the selective reduction of the nitrogen oxides on the downstream SCR catalyst.
  • the object of the present invention is therefore to provide a method for operating an exhaust gas purification system comprising a nitrogen oxide storage catalytic converter and an SCR catalytic converter, which over a wide range of operating conditions, especially those with high exhaust gas temperatures and high NOx mass flows, the nitrogen oxides in the exhaust of modern Can effectively convert gasoline lean-burn engines into harmless products.
  • This object is achieved by a method for operating an exhaust-gas purification system on a lean-burn engine of a vehicle which first contains a nitrogen oxide storage catalytic converter and then an SCR catalytic converter in the flow direction of the exhaust gas, the exhaust gas having an exhaust gas temperature which is dependent on the instantaneous operating state of the engine and including nitrogen oxides as pollutants.
  • the method is characterized in that
  • the engine is operated with a constantly lean air / fuel mixture when the operating condition of the engine produces an exhaust gas temperature above the predetermined temperature, and during this operating condition prior to the SCR catalyst, the exhaust gas is ammonia directly or in the form of an ammonia-decomposable one Connection is supplied.
  • the lean-burn engine is operated at low exhaust gas temperatures with alternately lean and rich air / fuel mixture.
  • the nitrogen oxides contained in the exhaust gas are stored by the storage catalytic converter. If the storage capacity of the storage catalytic converter is exhausted, it is regenerated by switching the engine to rich operation. In this case, a portion of the stored nitrogen oxides is reduced to ammonia in this temperature range, which is cached by the downstream SCR catalyst.
  • the stored ammonia serves to reduce nitrogen oxides which are not absorbed by the storage catalytic converter.
  • This mode of operation of the exhaust gas purification system is advantageous only in the lower temperature range.
  • the storage capacity of the storage catalyst is reduced and only small amounts of ammonia are formed.
  • Above about 450 to 500 ° C there is no significant storage of nitrogen oxides more, so that no sufficient amounts of ammonia are formed.
  • a stoichiometric or substoichiometric air / fuel mixture is converted in order to ensure a further effective NOx aftertreatment.
  • the advantage of saving fuel is no longer given. Therefore, according to the invention, at operating conditions of the engine with higher exhaust gas temperatures, the engine is constantly operated with a lean air / fuel mixture.
  • Ammonia or a decomposable to ammonia compound is injected into the exhaust gas, whereby the nitrogen oxides are continuously converted to nitrogen. It is also advantageous in this case that the nitrogen dioxide formed on the nitrogen oxide storage catalyst of nitrogen monoxide improves the nitrogen oxide conversion on the SCR catalyst in this temperature range.
  • the optimum temperature for switching from one operating mode to the other depends on the type of engine and the respective operating conditions as well as the degree of aging of the NOx storage catalytic converter and is usually between 300 and 500 ° C
  • the method is particularly suitable for lean burn engines with spray-guided gasoline direct injection, which can be operated even at high load conditions with a lean air / Krafitstoff mixture.
  • the method has several advantages over the prior art methods.
  • In the lower temperature range it is possible by the ammonia formed on the storage catalyst during the regeneration to achieve an additional nitrogen oxide reduction on the SCR catalyst.
  • the emission of ammonia is avoided by absorption on the SCR catalyst.
  • the reductant metering e.g., urea as a compound decomposable to ammonia
  • the SCR catalyst may not yet be used, thereby reducing urea consumption. Only from about 350 ° C, it is necessary to meter reducing agent.
  • the downstream SCR catalytic converter contributes to nitrogen oxide reduction.
  • the SCR catalyst can be used solely for nitrogen oxide reduction. Furthermore, there are situations in which desulfurization of the nitrogen oxide storage catalyst is not possible because the high temperatures required for desulfurization can not be achieved. as when operating the vehicle in city traffic or in a traffic jam. Again, then the SCR catalyst can be used alone for nitrogen oxide reduction.
  • the SCR system with reductant dosing may continue to be used for NOx reduction.
  • Exhaust gas purification systems with NOx storage catalytic converter and downstream SCR catalyst may also contain before the NOx storage catalyst, a three-way catalyst, an oxidation catalyst or another, optionally high temperature stable NOx storage catalyst.
  • a supplemental catalyst can improve hydrocarbon conversion and further increase nitrogen oxide conversion rates.
  • Nitrogen storage catalysts contain as storage material for the nitrogen oxides basic compounds of alkali or alkaline earth metals and at least one noble metal from the group platinum, palladium and rhodium.
  • SCR catalysts may be based on zeolites exchanged with noble metals or subgroup metals.
  • SCR catalysts are known which contain a mixture of the solid acids vanadium oxide, tungsten oxide and molybdenum oxide.
  • the method is particularly suitable for emission control systems from a near-engine nitrogen oxide storage catalyst and an arranged in the underbody area of the vehicle SCR catalyst.
  • Near-engine means here that the distance of the catalyst to the exhaust manifold is less than 0.8 m and the underfloor position is characterized by a distance from the catalyst to the exhaust manifold of more than 1, 0 m.
  • the alternating operation with lean and rich air / fuel mixture leads here already shortly after the cold start and also during operating phases of the engine with low exhaust gas temperatures to good nitrogen oxide sales. Operating phases with low exhaust gas temperatures occur, for example, in idling mode at low speed / load collectivities of the engine, or generally when using large displacement engines, and especially diesel engines.
  • the nitrogen oxides are stored by the near-engine nitrogen oxide storage catalyst only to a small extent. He then acts essentially as an oxidation catalyst.
  • the nitrogen oxides contained in the exhaust gas are converted in the SCR catalyst in the underfloor region in these operating conditions. For this purpose, ammonia or a decomposable to ammonia compound is supplied to the exhaust gas before entering the SCR catalyst.
  • a close-coupled nitrogen oxide storage catalyst can be much easier desulfurize than in appropriate underbody position, since heating the catalyst to the desulfurization temperature of about 550 to 800 ° C in the engine near much easier and is associated with lower fuel consumption ,
  • FIG. 1 emission control system for carrying out the method
  • Figure 1 shows the structure of the exhaust gas purification system as it can be used for the inventive method.
  • the exhaust gas coming from the lean-burn engine is first led through a nitrogen oxide storage catalytic converter (NSC). Downstream of the nitrogen oxide storage catalytic converter, the SCR catalytic converter (SCR) is inserted into the exhaust gas line. Between the nitrogen oxide storage catalytic converter and the SCR catalytic converter, a device for injecting, for example, urea into the exhaust gas flow is provided.
  • NSC nitrogen oxide storage catalytic converter
  • SCR SCR catalytic converter
  • FIG. 2 shows four nitrogen oxide conversion curves for three different exhaust gas purification systems as a function of the exhaust gas temperature for different modes of operation.
  • the four different sales curves are designated as follows: NSC: Nitrogen oxide conversion of a NOx storage catalyst during rich / lean operation over the entire temperature range of the diagram
  • SCR Nitrogen oxide conversion of an SCR catalyst at constant lean operation over the entire temperature range with external addition of ammonia as reducing agent
  • Nitrogen oxide conversion of an exhaust gas purification system from NOx storage catalyst and SCR catalyst when operating by the novel process rich / lean operation below 350 ° C and constant lean operation with NH 3 - addition above 350 ° C.
  • the turnover curve denoted by “NSC” shows a bad NOx conversion in the high temperature range
  • the sales curve denoted by “SCR” has a very good NOx conversion in the high temperature range, but has disadvantages in the low temperature range.
  • the "NSC + SCR (without NH 3)" with designated sales curve for the emission control system of the nitrogen oxide storage catalyst and SCR catalyst exhibits at rich / lean operation without addition of NH 3 good low-temperature activity.
  • the high-temperature activity is insufficient.
  • NOx After-treatment in diesel exhaust gas such a system is sufficient in most cases, especially with an upstream diesel oxidation catalyst, since hardly any temperatures in the subfloor are reached above 450-500 ° C.

Abstract

Zur Entfernung der Stickoxide aus dem Abgas eines Magermotors ist es bekannt, eine Abgasreinigungsanlage aus einem Stickoxid- Speicherkatalysator und einem SCR-Katalysator zu verwenden und den Motor mit abwechselnd mageren und fetten Luft/Kraftstoff-Gemischen zu betreiben. Der für die SCR-Reaktion benötigte Ammoniak wird hierbei während der Regeneration des Stickoxid-Speicherkatalysators erzeugt. Nachteilig hierbei ist, daß bei hohen Temperaturen nicht mehr ausreichend Ammoniak bei der Regeneration erzeugt wird. Es wird daher vorgeschlagen, bei Abgastemperaturen oberhalb von etwa 350 °C vor dem SCR-Katalysator Ammoniak einzudüsen. Bei Abgastemperaturen unterhalb von 350°C unterbleibt die Eindüsung von Ammoniak. Das Verfahren ist besonders für Magermotoren mit strahlgeführter Benzindirekteinspritzung, die auch noch bei hoher Last mit einem mageren Luft/Kraftstoff-Gemisch betrieben werden können.

Description

Verfahren zum Betreiben einer Abgasreinigungsanlage an einem mager betriebenen Ottomotor
Beschreibung
Die Erfindung betrifft ein Verfahren zum Betreiben einer Abgasreinigungsanlage an einem mager betriebenen Ottomotor, welche in Strömungsrichtung des Abgases zuerst einen Stickoxid-Speicherkatalysator und dann einen SCR-Katalysator enthält, wobei das Abgas Stickoxide enthält, die durch den Betrieb der Abgasreinigungsanlage zu unschädlichen Verbindungen umgesetzt werden sollen.
Abgasreinigungsanlagen, welche in Strömungsrichtung des Abgases einen Stickoxid- Speicherkatalysator und einen SCR-Katalysator enthalten, sind bekannt. Eine solche Anlage wird zum Beispiel in der US 6,182,443 für die Behandlung des Abgases eines Dieselmotors beschrieben. Der Dieselmotor wird mit konstant magerem Luft/Kraftstoff- Gemisch betrieben. Bei tiefen Abgastemperaturen werden die im Dieselabgas enthaltenen Stickoxide vom Stickoxid-Speicherkatalysator absorbiert. Bei höheren Abgastem- peraturen werden die gespeicherten Stickoxide thermisch desorbiert und am folgenden SCR-Katalysator zu Stickstoff reduziert. Zu diesem Zweck wird Ammoniak oder Harnstoff vor dem SCR-Katalysator dem Abgas zugefügt, wenn der SCR-Katalysator seine Anspringtemperatur erreicht hat.
Die Offenlegungsschrift US 2006/0010857 Al offenbart ebenfalls eine Abgasreini- gungsanlage für einen Dieselmotor aus einem Stickoxid-Speicherkatalysator und einem nachfolgenden SCR-Katalysator. Der Dieselmotor wird mit konstant magerem Luft/Kraftstoff-Gemisch betrieben. Zur Regeneration des Stickoxid-Speicherkatalysators wird dem Abgas vor dem Speicherkatalysator ein Reduktionsmittel zugeführt. Während der Regeneration des Speicherkatalysators wird vom Speicherkatalysator Ammoniak erzeugt. Dieser wird vom SCR-Katalysator gespeichert und in einer Periode, die unmittelbar auf die Regeneration des Speicherkatalysators folgt, zur Reduktion von Stickoxiden verwendet, die vom Stickoxid-Speicherkatalysator nicht absorbiert werden.
Die Offenlegungsschrift US 2005/0129601 Al beschreibt ebenfalls eine Abgasreinigungsanlage, welche in Strömungsrichtung des Abgases einen Stickoxid-Speicherkata- lysator und einen SCR-Katalysator enthält. Das Abgas wird periodisch abgemagert und angefettet. Während der Magerperiode werden die im Abgas enthaltenen Stickoxide vom Speicherkatalysator gespeichert. Während der Fettperiode werden die vom Speicherkatalysator gespeicherten Stickoxide zu Ammoniak reduziert. Die Mischung aus Ammoniak und nicht umgesetzten Stickoxiden wird am SCR-Katalysator zu Stickstoff und Wasser umgesetzt.
Die DE 100 11 612 Al beschreibt ein Abgasreinigungssystem für einen Verbrennungsmotor, das ebenfalls aus einem Stickoxid- Speicherkatalysator und einem SCR- Katalysator besteht. Bei Fahrzeuggeschwindigkeiten unterhalb 120 km/h wird der Mo- tor abwechselnd mit magerem und fettem Luft/Kraftstoff-Gemisch betrieben, um die im Abgas enthaltenen Stickoxide am Stickoxid-Speicherkatalysator umsetzen zu können. Bei einer Geschwindigkeit von 120 km/h oder mehr wird der Motor mit einem stöchio- metrischen Luft/Kraftstoff-Gemisch betrieben und im Vollastbetrieb wird dem Motor ein fettes Luft/Kraftstoff-Gemisch zugeführt.
JP 2002-188429 beschreibt ebenfalls ein Abgasreinigungssystem für einen Magermotor aus einem Stickoxid-Speicherkatalysator und einem SCR-Katalysator. Die Zugabe von Reduktionsmittel vor dem Stickoxid- Speicherkatalysator wird gestoppt, wenn die Menge des Reduktionsmittels einen Grenzwert überschreitet und wird dann dem SCR- Katalysator zugeführt. JP 2003-286827 beschreibt ein weiteres Abgasreinigungssystem aus einem Stickoxid-Speicherkatalysator und einem SCR-Katalysator. Der Stickoxid- Speicherkatalysator absorbiert die im Abgas enthaltenen Stickoxide unterhalb einer vorgegebenen Temperatur und desorbiert sie oberhalb dieser Temperatur. Die desor- bierten Stickoxide werden von dem nachgeschalteten SCR-Katalysator umgesetzt. Ein weiteres Abgasreinigungssystem für einen Magermotor beschreibt die JP 2004-218575. Es enthält ebenfalls einen Stickoxid-Speicherkatalysator und eine SCR-Katalysator. Im Gegensatz zu den bisher beschriebenen Systemen ist der SCR-Katalysator dem Stickoxid-Speicherkatalysator vorgeschaltet.
Die bekannten Verfahren zur Entfernung der Stickoxide mittels eines Stickoxid- Speicherkatalysators und eines nachgeschalteten SCR-Katalysators sind nicht geeignet, um das Abgas von mager betriebenen Ottomotoren über weite Bereiche der möglichen Betriebszustände effektiv zu reinigen. Das gilt insbesondere für moderne Benzin- Magermotoren mit strahlgeführter Benzindirekteinspritzung. Während konventionelle Benzin-Magermotoren mit geschichteter Benzindirekteinspritzung ab einer bestimmten Fahrzeuggeschwindigkeit nicht mehr mit magerem Luft/Rraftstoff-Gemisch betrieben werden können und in den stöchiometrischen Betrieb umgeschaltet werden müssen, sind die modernen Benzin-Magermotoren mit strahlgeführter Benzindirekteinspritzung in der Lage, auch noch bei wesentlich höheren Geschwindigkeiten mit magerer Gemischaufbereitung zu arbeiten. Bei diesen Betriebszuständen erzeugt der Motor ein Abgas mit hohen Temperaturen über zum Beispiel 500 °C und mit hohen Abgasmassenströmen. Diesen Betriebszuständen sind die aus dem Stand der Technik bekannten Verfahren nicht gewachsen. Stickoxid-Speicherkatalysatoren haben üblicherweise ein Temperaturfenster für den optimalen Betrieb zwischen etwa 200 und 450 °C. Oberhalb von 450 °C sind Stickoxid-Speicherkatalysatoren nicht mehr in der Lage, die Stickoxide zu speichern. Daher kann zum Beispiel der Stickoxid- Speicherkatalysator in der US 2005/0129601 Al bei Temperaturen oberhalb von 450 °C in den Fettperioden kein Ammoniak mehr für die selektive Reduktion der Stickoxide am nachgeschalteten SCR- Katalysator bilden.
Aufgabe der vorliegenden Erfindung ist daher, ein Verfahren zum Betreiben einer Abgasreinigungsanlage aus einem Stickoxid- Speicherkatalysator und einem SCR- Katalysator anzugeben, das über einen weiten Bereich der Betriebszustände, besonders solchen mit hohen Abgastemperaturen und hohen NOx-Massenströmen, die Stickoxide im Abgas von modernen Benzin-Magermotoren effektiv zu unschädlichen Produkten umsetzen kann.
Diese Aufgabe wird gelöst durch ein Verfahren zum Betreiben einer Abgasreinigungsanlage an einem Magermotor eines Fahrzeugs, welche in Strömungsrichtung des Abga- ses zuerst einen Stickoxid-Speicherkatalysator und dann einen SCR-Katalysator enthält, wobei das Abgas eine von dem augenblicklichen Betriebszustand des Motors abhängige Abgastemperatur aufweist und unter anderem Stickoxide als Schadstoffe enthält. Das Verfahren ist dadurch gekennzeichnet, daß
a) der Motor mit abwechselnd magerem und fettem Luft/Kraftstoff-Gemisch betrieben wird, wenn der Betriebszustand des Motors eine Abgastemperatur unterhalb einer vorgegebenen Temperatur erzeugt, und
b) der Motor mit konstant magerem Luft/Kraftstoff-Gemisch betrieben wird, wenn der Betriebszustand des Motors eine Abgastemperatur oberhalb der vorgegebenen Temperatur erzeugt, und während dieses Betriebszustandes vor dem SCR- Katalysator dem Abgas Ammoniak direkt oder in Form einer zu Ammoniak zer- setzlichen Verbindung zugeführt wird.
Erfindungsgemäß wird der Magermotor bei niedrigen Abgastemperaturen mit abwechselnd magerem und fettem Luft/Kraftstoff-Gemisch betrieben. Während des Magerbetriebs werden die im Abgas enthaltenen Stickoxide vom Speicherkatalysator gespeichert. Wenn die Speicherkapazität des Speicherkatalysators erschöpft ist, wird er durch Umschalten des Motors auf Fettbetrieb regeneriert. Dabei wird in diesem Temperatur- bereich ein Teil der gespeicherten Stickoxide zu Ammoniak reduziert, der von dem nachgeschalteten SCR-Katalysator zwischengespeichert wird. Während des nachfolgenden Magerbetriebs dient der gespeicherte Ammoniak zur Reduktion von nicht vom Speicherkatalysator absorbierten Stickoxiden.
Diese Betriebsweise der Abgasreinigungsanlage ist nur im unteren Temperaturbereich vorteilhaft. Bei höheren Temperaturen vermindert sich die Speicherkapazität des Speicherkatalysators und es werden nur noch geringe Mengen Ammoniak gebildet. Oberhalb von etwa 450 bis 500 °C findet keine wesentliche Speicherung der Stickoxide mehr statt, so daß keine ausreichenden Mengen an Ammoniak mehr gebildet werden. Bei den bekannten Verfahren wird daher bei höheren Temperaturen auf ein stöchiometrisches oder unterstöchiometrisches Luft/Kraftstoff-Gemisch umgestellt, um eine weiterhin effektive NOx-Nachbehandlung sicherzustellen. Bei stöchiometrischer oder unterstö- chiometrischer Betriebsweise ist allerdings der Vorteil der Kraftstoffeinsparung nicht mehr gegeben. Erfindungsgemäß wird deshalb bei Betriebszuständen des Motors mit höheren Abgastemperaturen der Motor konstant mit magerem Luft/Kraftstoff-Gemisch betrieben. Zur Reduktion der Stickoxide im Abgas wird vor dem SCR-Katalysator Ammoniak oder eine zu Ammoniak zersetzliche Verbindung in das Abgas eingedüst, wodurch die Stickoxide kontinuierlich zu Stickstoff umgesetzt werden. Von Vorteil ist hierbei auch, daß in diesem Temperaturbereich das am Stickoxid- Speicherkatalysator aus Stickstoffmonoxid gebildet Stickstoffdioxid die Stickoxid-Umsetzung am SCR- Katalysator verbessert.
Die optimale Temperatur für die Umschaltung von der einen Betriebsweise in die andere hängt von der Art des Motors und den jeweiligen Betriebszuständen sowie dem Alterungsgrad des NOx-Speicherkatalysators ab und liegt gewöhnlich zwischen 300 und 500 °C
Das Verfahren ist besonders geeignet für Magermotoren mit strahlgeführter Benzindirekteinspritzung, die auch noch bei hohen Lastzuständen mit einem mageren Luft/Krafitstoff-Gemisch betrieben werden können.
Das Verfahren hat mehrere Vorteile gegenüber den Verfahren aus dem Stand der Technik. Im unteren Temperaturbereich wird es durch den am Speicherkatalysator bei der Regeneration gebildeten Ammoniak möglich, am SCR-Katalysator eine zusätzliche Stickoxidreduktion zu erzielen. Die Emission von Ammoniak wird durch Absorption am SCR-Katalysator vermieden.
Durch die Ammoniakbildung am Speicherkatalysator muß die Reduktionsmitteldosierung (z.B. Harnstoff als zu Ammoniak zersetzlicher Verbindung) für den SCR- Katalysator bei niedrigen Temperaturen noch nicht eingesetzt werden, wodurch der Harnstoffverbrauch vermindert wird. Erst ab ca. 350 °C ist es nötig, Reduktionsmittel einzudosieren.
Bei sehr hohen Stickoxid-Massenströmen trägt zusätzlich zum Speicherkatalysator der nachgeschaltete SCR-Katalysator zur Stickoxidreduktion bei.
Bei thermischer Schädigung oder Vergiftung des Speicherkatalysators z.B. durch Schwefel, bzw. bei Betrieb mit hochverschwefeltem Kraftstoff kann der SCR- Katalysator allein zur Stickoxidreduktion benutzt werden. Ferner gibt es Situationen, bei der eine Entschwefelung des Stickoxid-Speicherkatalysators nicht möglich ist, weil die zur Entschwefelung notwendigen hohen Temperaturen nicht erreicht werden kön- nen, wie beim Betreiben des Fahrzeuges im Stadtverkehr oder im Stau. Auch hier kann dann der SCR-Katalysator allein zur Stickoxidreduktion herangezogen werden.
Bei Motorbetriebspunkten, die das Fettfahren zur Regeneration des Speicherkatalysators aus Komfort- oder anderen Gründen verbieten oder erschweren, kann das SCR-System mit Reduktionsmitteldosierung weiterhin zur NOx-Reduktion benutzt werden.
Abgasreinigungsanlagen mit NOx-Speicherkatalysator und in Strömungsrichtung nach- geordnetem SCR-Katalysator, für deren Betrieb sich das erfindungsgemäße Verfahren eignet, können außerdem vor dem NOx-Speicherkatalysator einen Dreiwegekatalysator, einen Oxidationskatalysator oder einen weiteren, gegebenenfalls hochtemperaturstabi- len NOx-Speicherkatalysator enthalten. Ein solcher ergänzender Katalysator kann die Kohlenwasserstoffkonvertierung verbessern und die Umsatzraten für Stickoxide weiter erhöhen.
Für die Durchführung des Verfahrens können die dem Fachmann bekannten Stickoxid- Speicherkatalysatoren und SCR-Katalysatoren eingesetzt werden. Stickoxid-Speicher- katalysatoren enthalten als Speichermaterial für die Stickoxide basische Verbindungen der Alkali- oder Erdalkalimetalle sowie wenigsten ein Edelmetall aus der Gruppe Platin, Palladium und Rhodium. SCR-Katalysatoren können auf der Basis von Zeolithen aufgebaut sein, die mit Edelmetallen oder Nebengruppenmetallen ausgetauscht sind. Alternativ sind SCR-Katalysatoren bekannt, die eine Mischung der Feststoffsäuren Vanadi- umoxid, Wolframoxid und Molybdänoxid enthalten.
Das Verfahren eignet sich besonders für Abgasreinigungsanlagen aus einem motornahen Stickoxid-Speicherkatalysator und einem im Unterbodenbereich des Fahrzeugs angeordneten SCR-Katalysator. Motornah bedeutet hier, daß die Entfernung des Katalysators zum Abgaskrümmer weniger als 0,8 m beträgt und die Unterbodenposition ist durch einen Abstand vom Katalysator zum Abgaskrümmer von mehr als 1 ,0 m gekennzeichnet. Der Wechselbetrieb mit magerem und fettem Luft/Kraftstoff-Gemisch führt hier schon kurz nach dem Kaltstart und auch während Betriebsphasen des Motors mit niedrigen Abgastemperaturen zu guten Stickoxid-Umsätzen. Betriebsphasen mit niedrigen Abgastemperaturen kommen zum Beispiel im Leerlaufbetrieb vor beziehungsweise bei niedrigen Drehzahl/Last-Kollektiven des Motors oder allgemein bei der Verwendung von Motoren mit großem Hubraum und besonders bei Dieselmotoren.
Bei Abgastemperaturen oberhalb von 450 °C werden dagegen die Stickoxide vom motornahen Stickoxid-Speicherkatalysator nur im geringen Maße gespeichert. Er wirkt dann im wesentlichen als Oxidationskatalysator. Erfindungsgemäß werden bei diesen Betriebszuständen die im Abgas enthaltenen Stickoxide am SCR-Katalysator im Unterbodenbereich umgesetzt. Hierzu wird Ammoniak oder eine zu Ammoniak zersetzliche Verbindung dem Abgas vor Eintritt in den SCR-Katalysator zugeführt.
Vorteilhaft ist bei einer solchen Abgasreinigungsanlage, daß ein motornaher Stickoxid- Speicherkatalysator sich wesentlich leichter entschwefeln läßt als in entsprechender Unterbodenposition, da ein Aufheizen des Katalysators auf die Entschwefelungstemperatur von ca. 550 bis 800 °C in Motornähe wesentlich leichter möglich und mit geringerem Kraftstoffverbrauch verbunden ist.
Die Erfindung wird im folgenden an Hand der Figuren 1 und 2 näher erläutert. Es zei- gen:
Figur 1: Abgasreinigungsanlage für die Durchführung des Verfahrens
Figur 2; Schematischer Vergleich des Stickoxidumsatzes verschiedener Abgasreinigungssysteme in Abhängigkeit von der Temperatur
Figur 1 zeigt den Aufbau der Abgasreinigungsanlage wie sie für das erfindungsgemäße Verfahren eingesetzt werden kann. Das vom Magermotor kommende Abgas wird zunächst über einen Stickoxid-Speicherkatalysator (NSC) geführt. Stromabwärts des Stickoxid-Speicherkatalysators ist der SCR-Katalysator (SCR) in den Abgasstrang eingefügt. Zwischen Stickoxid-Speicherkatalysator und SCR-Katalysator ist eine Vorrichtung zur Eindüsung von zum Beispiel Harnstoff in den Abgasstrom vorgesehen.
Figur 2 zeigt vier Stickoxidumsatzkurven für drei verschiedene Abgasreinigungssysteme in Abhängigkeit von der Abgastemperatur für unterschiedliche Betriebsweisen. Die vier verschiedenen Umsatzkurven sind wie folgt bezeichnet: NSC: Stickoxidumsatz eines NOx- Speicherkatalysators bei Fett/Mager-Betrieb über den gesamten Temperaturbereich des Diagramms
SCR: Stickoxidumsatz eines SCR-Katalysators bei konstantem Magerbetrieb über den gesamten Temperaturbereich mit externer Zugabe von Ammoniak als Re- duktionsmittel
NSC + SCR (ohne NH3):
Stickoxidumsatz eines Abgasreinigungssystems aus NOx-Speicherkatalysator und SCR-Katalysator bei Fett/Magerbetrieb über den gesamten Temperaturbereich ohne externe Einspeisung von Ammoniak als Reduktionsmittel
NSC + SCR (mit NH3):
Stickoxidumsatz eines Abgasreinigungssystems aus NOx-Speicherkatalysator und SCR-Katalysator bei Betrieb nach dem erfindungsgemäßen Verfahren: Fett/Mager-Betrieb unterhalb 350 °C und konstanter Magerbetrieb mit NH3- Zugabe oberhalb von 350 °C
Die mit „NSC" bezeichnete Umsatzkurve zeigt einen schlechten NOx-Umsatz im Hochtemperaturbereich, während die mit „SCR" bezeichnete Umsatzkurve einen sehr guten NOx-Umsatz im Hochtemperaturbereich aufweist, aber Nachteile im Tieftemperaturbereich hat. Die mit „NSC + SCR (ohne NH3)" bezeichnete Umsatzkurve für das Abgasreinigungssystem aus Stickoxid-Speicherkatalysator und SCR-Katalysator zeigt bei Fett/Mager-Betrieb ohne NH3-Zugabe eine gute Tieftemperaturaktivität. Die Hochtemperaturaktivität ist dagegen unzureichend. Für die NOx-Nachbehandlung im Dieselabgas ist ein solches System insbesondere mit einem vorgeschalteten Dieseloxidationska- talysator in den meisten Fällen ausreichend, da kaum Temperaturen im Unterboden über 450-500 °C erreicht werden. Für die Abgasnachbehandlung an mager betriebenen Ottomotoren müssen jedoch auch oberhalb von 500 °C höhere NOx-Umsätze erzielt werden. Dies ist nur möglich, wenn das Abgasreinigungssystem aus Stickoxid- Speicherkatalysator und SCR-Katalysator nach dem erfindungsgemäßen Verfahren betrieben wird. Die zugehörige Umsatzkurve ist in Figur 2 mit „NSC + SCR (mit NH3)" bezeichnet.

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Abgasreinigungsanlage an einem Magermotor eines Fahrzeugs, welche in Strömungsrichtung des Abgases zuerst einen Stickoxid-Speicherkatalysator und dann einen SCR-Katalysator enthält, wobei das Ab- gas eine von dem augenblicklichen Betriebszustand des Motors abhängige Abgastemperatur aufweist und unter anderem Stickoxide als Schadstoffe enthält, d ad urc h gekennze i c hnet daß , a) der Motor abwechselnd mit magerem und fettem Luft/Kraftstoff-Gemisch betrieben wird, wenn der Betriebszustand des Motors eine Abgastemperatur un- terhalb einer vorgegebenen Temperatur erzeugt, und b) der Motor mit konstant magerem Luft/Kraftstoff-Gemisch betrieben wird, wenn der Betriebszustand des Motors eine Abgastemperatur oberhalb der vorgegebenen Temperatur erzeugt, und während dieses Betriebszustandes vor dem SCR-Katalysator dem Abgas Ammoniak direkt oder in Form einer zu Ammo- niak zersetzlichen Verbindung zugeführt wird.
2. Verfahren nach Anspruch 1 , dadurch ge kennzei c hnet, daß die vorgegebene Temperatur im Bereich zwischen 300 und 550 °C liegt.
3. Verfahren nach Anspruch 1 , dadurch gekennzei chnet, daß dem Stickoxid-Speicherkatalysator ein Dreiwegekatalysator, ein Oxidations- katalysator oder ein weiterer Stickoxid- Speicherkatalysator vorgeschaltet ist.
4. Verfahren nach Anspruch 1 , d adurch gekennzei chnet , daß der Magermotor eine strahlgeführte Benzindirekteinspritzung aufweist.
5. Verfahren nach Anspruch 1 , d adurc h ge kennze i c hn et , daß der Stickoxid-Speicherkatalysator motornah und der SCR-Katalysator in Unterbodenposition des Fahrzeugs angeordnet ist.
PCT/EP2007/007290 2006-08-19 2007-08-17 Verfahren zum betreiben einer abgasreinigungsanlage an einem mager betriebenen ottomotor WO2008022751A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06017313.5 2006-08-19
EP06017313 2006-08-19

Publications (2)

Publication Number Publication Date
WO2008022751A2 true WO2008022751A2 (de) 2008-02-28
WO2008022751A3 WO2008022751A3 (de) 2008-04-17

Family

ID=38943820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007290 WO2008022751A2 (de) 2006-08-19 2007-08-17 Verfahren zum betreiben einer abgasreinigungsanlage an einem mager betriebenen ottomotor

Country Status (1)

Country Link
WO (1) WO2008022751A2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001724A1 (de) 2008-05-13 2009-11-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abgasoptimierung einer Brennkraftmaschine
DE102008047722A1 (de) 2008-09-18 2010-03-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Abgasreinigungsanlage
FR2941874A1 (fr) * 2009-02-06 2010-08-13 Inst Francais Du Petrole Procede de traitement en depollution des oxydes d'azote contenus dans des gaz d'echappement d'un moteur a combustion interne
WO2012029051A1 (en) 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved nh3-formation activity
WO2012029050A1 (en) 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved no oxidation activity
US8950174B2 (en) 2010-09-02 2015-02-10 Basf Se Catalysts for gasoline lean burn engines with improved NH3-formation activity
FR3020830A1 (fr) * 2014-05-06 2015-11-13 Peugeot Citroen Automobiles Sa Vehicule automobile a systeme de depollution ameliore
FR3020831A1 (fr) * 2014-05-06 2015-11-13 Peugeot Citroen Automobiles Sa Vehicule automobile a fonction de depollution a basses temperatures
US9242242B2 (en) 2010-09-02 2016-01-26 Basf Se Catalyst for gasoline lean burn engines with improved NO oxidation activity
FR3025725A1 (fr) * 2014-09-15 2016-03-18 Peugeot Citroen Automobiles Sa Procede de depollution des oxydes d'azote

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011612A1 (de) * 1999-03-11 2000-10-26 Toyota Motor Co Ltd Emissionsregelvorrichtung für einen Verbrennungsmotor
DE10113947A1 (de) * 2001-03-22 2002-09-26 Daimler Chrysler Ag Verfahren zur Verringerung des Stickoxidgehalts im Abgas einer im Mager-Fett-Wechsel betreibbaren Brennkraftmaschine
DE10152187A1 (de) * 2001-10-23 2003-04-30 Daimler Chrysler Ag Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und SCR-Katalysator und Verfahren zur Verminderung des Stickoxidgehalts im Abgas von Brennkraftmaschinen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011612A1 (de) * 1999-03-11 2000-10-26 Toyota Motor Co Ltd Emissionsregelvorrichtung für einen Verbrennungsmotor
DE10113947A1 (de) * 2001-03-22 2002-09-26 Daimler Chrysler Ag Verfahren zur Verringerung des Stickoxidgehalts im Abgas einer im Mager-Fett-Wechsel betreibbaren Brennkraftmaschine
DE10152187A1 (de) * 2001-10-23 2003-04-30 Daimler Chrysler Ag Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und SCR-Katalysator und Verfahren zur Verminderung des Stickoxidgehalts im Abgas von Brennkraftmaschinen

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001724A1 (de) 2008-05-13 2009-11-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abgasoptimierung einer Brennkraftmaschine
DE102008001724B4 (de) 2008-05-13 2021-10-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abgasoptimierung einer Brennkraftmaschine
DE102008047722A1 (de) 2008-09-18 2010-03-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Abgasreinigungsanlage
FR2941874A1 (fr) * 2009-02-06 2010-08-13 Inst Francais Du Petrole Procede de traitement en depollution des oxydes d'azote contenus dans des gaz d'echappement d'un moteur a combustion interne
WO2012029051A1 (en) 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved nh3-formation activity
WO2012029050A1 (en) 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved no oxidation activity
US8950174B2 (en) 2010-09-02 2015-02-10 Basf Se Catalysts for gasoline lean burn engines with improved NH3-formation activity
US9242242B2 (en) 2010-09-02 2016-01-26 Basf Se Catalyst for gasoline lean burn engines with improved NO oxidation activity
FR3020830A1 (fr) * 2014-05-06 2015-11-13 Peugeot Citroen Automobiles Sa Vehicule automobile a systeme de depollution ameliore
FR3020831A1 (fr) * 2014-05-06 2015-11-13 Peugeot Citroen Automobiles Sa Vehicule automobile a fonction de depollution a basses temperatures
FR3025725A1 (fr) * 2014-09-15 2016-03-18 Peugeot Citroen Automobiles Sa Procede de depollution des oxydes d'azote
WO2016042224A1 (fr) * 2014-09-15 2016-03-24 Peugeot Citroen Automobiles Sa Procédé de dépollution des oxydes d'azote

Also Published As

Publication number Publication date
WO2008022751A3 (de) 2008-04-17

Similar Documents

Publication Publication Date Title
WO2008022751A2 (de) Verfahren zum betreiben einer abgasreinigungsanlage an einem mager betriebenen ottomotor
DE102016213322B4 (de) Duales Katalysator-Heizsystem
DE102007060623B4 (de) Entstickung von Dieselmotorenabgasen unter Verwendung eines temperierten Vorkatalysators zur bedarfsgerechten NO2-Bereitstellung
DE102008048854B4 (de) Regelungsstrategie für ein Katalysatorkonzept zur Abgasnachbehandlung mit mehreren Stickoxid-Speicherkatalysatoren
DE69817718T2 (de) Abgasreiniger für direkteingespritzte verbrennungsmotoren
EP2138681B1 (de) Verfahren und Vorrichtung zur Reinigung von Dieselabgasen
DE102004040533B4 (de) Nachbehandlung von Abgasemissionen
DE10113947B4 (de) Verfahren zur Verringerung des Stickoxidgehalts im Abgas einer im Mager-Fett-Wechsel betreibbaren Brennkraftmaschine
EP2115277B1 (de) Verfahren zur regeneration von russfiltern in der abgasanlage eines magermotors und abgasanlage hierfür
DE102013210120B4 (de) Abgasreinigungssystem eines Verbrennungsmotors
DE102008026191B4 (de) Kraftfahrzeug mit Brennkraftmaschine und einer Abgasnachbehandlungseinrichtung sowie Verfahren zur Partikel- und Stickoxidverminderung
EP2855867B1 (de) Verfahren zum betreiben einer reduktionsmitteldosierung eines scr-katalysatorsystems und entsprechendes scr-katalysatorsystem
DE10054877A1 (de) Abgasreinigungsanlage für die selektive katalytische Reduktion von Stickoxiden unter mageren Abgasbedingungen und Verfahren zur Abgasreinigung
DE102006038289A1 (de) Abgasnachbehandlungssystem
EP1579109A1 (de) Abgasnachbehandlungseinrichtung und -verfahren
DE102016200207B4 (de) Abgasreinigungssystem für Brennkraftmaschinen
WO2008077602A1 (de) Abgasreinigungsanlage für magermotoren und verfahren zum betreiben der anlage
DE10339005B4 (de) Abgasreinigungsverfahren für Verbrennungsmotor
DE102007052153A1 (de) Verfahren zum schadstoffemissionsarmen Betreiben eines Verbrennungsmotors und entsprechender Verbrennungsmotor
EP1177369B1 (de) ABGASREINIGUNGSVERFAHREN UND ABGASREINIGUNGSVORRICHTUNG MIT NO x?-SPEICHERKATALYSATOR UND VORKATALYSATOR
WO2020069548A1 (de) Verfahren und ottomotoranordnung mit einem verbesserten scr-system
EP3167171B1 (de) Verfahren zum betreiben einer reduktionsmitteldosierung eines scr-katalysatorsystems sowie entsprechendes scr-katalysatorsystem
DE102013217169A1 (de) Verfahren und System zur Abgasnachbehandlung
DE102016205265B4 (de) Verfahren und Vorrichtung zum Betrieb einer Abgasnachbehandlungseinrichtung
DE19949046B4 (de) Abgasreinigungsanlage mit interner Erzeugung und Zwischenspeicherung von Ammoniak sowie Betriebsverfahren hierfür

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801732

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07801732

Country of ref document: EP

Kind code of ref document: A2