WO2008007481A1 - Resistive memory device - Google Patents

Resistive memory device Download PDF

Info

Publication number
WO2008007481A1
WO2008007481A1 PCT/JP2007/055989 JP2007055989W WO2008007481A1 WO 2008007481 A1 WO2008007481 A1 WO 2008007481A1 JP 2007055989 W JP2007055989 W JP 2007055989W WO 2008007481 A1 WO2008007481 A1 WO 2008007481A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
voltage
memory element
electrodes
element body
Prior art date
Application number
PCT/JP2007/055989
Other languages
English (en)
French (fr)
Inventor
Sakyo Hirose
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008524728A priority Critical patent/JP5251506B2/ja
Publication of WO2008007481A1 publication Critical patent/WO2008007481A1/ja
Priority to US12/352,689 priority patent/US7649768B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Definitions

  • the present invention relates to a resistance memory element, and more particularly to a resistance memory element including an element body having a semiconductor ceramic force as a polycrystalline body.
  • a resistance memory element includes an element body having a resistance memory function. This element body exhibits a relatively high resistance in an initial state, for example, but when a voltage of a predetermined value or more is applied, the resistance memory element has a low resistance state. Even if the voltage is removed, this low resistance state is retained (stored), and if a voltage higher than the specified value is applied to the element in the low resistance state in the reverse direction, it returns to the high resistance state. Even if this voltage is removed, if the high resistance state is maintained (stored), it will have the characteristics.
  • Such a resistance memory element can be switched between a low resistance state and a high resistance state by applying a voltage equal to or higher than a threshold value in each of the forward and reverse directions. It is possible to change the resistance and memorize it. By utilizing such a resistance switch effect, the resistance memory element can be used not only as a so-called memory element but also as a switching element.
  • Non-Patent Document 1 describes a resistive memory element that is of interest to the present invention.
  • an interface between different materials more specifically, a single SrTiO
  • a resistance memory element which exhibits a sexiness.
  • the switching voltage that can change the resistance state is about 3 V at maximum, and switching is performed at a relatively low voltage.
  • Non-Patent Document 1 has a maximum switching voltage of 3 Switching may occur inadvertently with the drive voltage itself, which is relatively low, such as about V, and there is a problem that it cannot be used stably as a switching element by itself.
  • NORISTA an element of interest for the present invention.
  • an internal electrode composed mainly of Pd on an element body made of SrTiO to which various additive elements are added.
  • a laminated varistor in which is formed.
  • the diffusion and addition of an element serving as an acceptor is actively performed, and the re-oxidation treatment is performed after the reduction treatment for the semiconductor, thereby reducing the grain boundary barrier. It is formed.
  • This noristor changes to a low resistance state when a voltage of a predetermined value or more is applied, but if the voltage is removed, it returns to the original state and has no function of holding (storing) a specific resistance state. That is, the noristor is not a resistance memory element.
  • Patent Document 1 Japanese Patent No. 2727626
  • Non-Patent Document 1 T. Fujii and five others, “Hysteretic current-voltage characteristics and resistance switching at an epitaxial” oxide Schot tky Junction SrRuO3 / SrTi0.99Nb0.01O3) j, APPLIED PHYSICS LETTERS 86, 0121 07 (2005)
  • an object of the present invention is to provide a resistance memory element that can make a switching voltage relatively high and can realize a high resistance change rate.
  • the present invention provides an element body and at least one pair of electrodes facing each other through at least a part of the element body.
  • a switching voltage in the first direction is applied between a pair of electrodes
  • the portion of the element body located between the pair of electrodes has a low resistance, and then the switching voltage in the first direction is removed.
  • the low resistance state of the element body is maintained.
  • a switching voltage in the second direction opposite to the first direction is applied between the pair of electrodes, the element body is connected between the pair of electrodes.
  • the portion located in the region is made highly resistive, and after that, even if the switching voltage in the second direction is removed, the high resistance state of the element body is maintained.
  • the strontium titanate-based semiconductor ceramic has a general formula: (Sr A) (Ti B) O (where A is selected from the group consisting of Y and rare earth element force)
  • the strontium titanate semiconductor ceramic satisfies the condition of 0.005 ⁇ x + y ⁇ 0.01 in the above general formula.
  • the strontium titanate-based semiconductor ceramic has a general formula of 0.950
  • the average number of grain boundaries existing between the pair of electrodes in the element body is preferably in the range of 0.5 or more and 44.5 or less.
  • the electrode is preferably formed by simultaneous firing with the element body.
  • the electrode preferably contains one metal selected from Pd, Pt, Ag—Pd, Au, Ru, and Ir.
  • switching between a low resistance Z and a high resistance state can be realized by a high switching voltage of, for example, 10 V or more, and a high resistance change rate, for example, 5000, even in a relatively high driving voltage environment.
  • a resistance change rate of more than% can be realized.
  • the switching voltage can be controlled by controlling the number of grain boundaries existing between a pair of electrodes, that is, the distance between the electrodes or the thickness of the element body.
  • the strontium titanate semiconductor ceramic satisfies the above general formula.
  • the interface between the electrode and the element body becomes strong, and a high withstand voltage characteristic is given to the interface between the electrode and the element body.
  • the switching voltage can be increased without any problem.
  • the electrode includes one metal selected from Pd, Pt, Ag—Pd, Au, Ru, and Ir, a Schottky junction can be formed between the electrode and the element body.
  • FIG. 1 is a cross-sectional view showing a resistance memory element 1 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a typical current-voltage characteristic of the resistance memory element according to the present invention.
  • FIG. 3 is a diagram showing current-voltage characteristics measured in a voltage range in which resistance switching does not occur after switching to a high resistance state and a low resistance state in the resistance memory element according to the present invention. is there.
  • FIG. 1 is a cross-sectional view showing a resistance memory element 1 according to one embodiment of the present invention.
  • the resistance memory element 1 includes an element body 2 having a strontium titanate semiconductor ceramic force.
  • Element 2 is preferably titanic acid represented by the general formula: (Sr A) (Ti B) O
  • A is at least one element selected from Y and rare earth element forces, and preferably Y, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho.
  • B is at least one of Nb and Ta. Also, in the above general formula, the condition of 0. 001 ⁇ x + y ⁇ 0.02 (where 0 ⁇ x ⁇ 0.02 and 0 ⁇ y ⁇ 0.02), and 0.87 ⁇ v / w ⁇ l. The composition ratio is selected so as to satisfy the condition of 030.
  • the resistance memory element 1 also includes at least one pair of counter electrodes 3 and 4 that face each other with at least a part of the element body 2 interposed therebetween.
  • the element body 2 has a laminated structure, and the counter electrodes 3 and 4 are positioned inside the element body 2 and face each other so as to sandwich at least a part of the element body 2, It is formed by firing at the same time as firing for obtaining the element body 2. By performing such simultaneous firing at a relatively high temperature, the interface between the counter electrodes 3 and 4 and the element body 2 can be made strong, and the withstand voltage characteristics of the resistance memory element 1 can be improved. .
  • the counter electrodes 3 and 4 preferably contain one type of metal selected from Pd, Pt, Ag—Pd, Au, Ru, and Ir.
  • a Schottky junction can be formed with the element body 2 by using the above-described metal.
  • the resistance memory element 1 further includes terminal electrodes 5 and 6.
  • Terminal electrodes 5 and 6 are formed on each end of element body 2 and are electrically connected to counter electrodes 3 and 4, respectively.
  • Terminal electrodes 5 and 6 are formed, for example, by baking a conductive paste containing silver.
  • the above-described switching voltage is high, for example, 10 V or more, and therefore, it can be stably and normally operated even in a relatively high driving voltage environment.
  • a high V and resistance change rate of 5000% or more can be realized.
  • the aforementioned strontium titanate-based semiconductor ceramic force constituting the element body 2 In the above general formula, a more restrictive condition such as 0.005 ⁇ x + y ⁇ 0.01 is satisfied, or 0.9 If a more limited condition such as 50 ⁇ v / w ⁇ l.010 is satisfied, a higher resistance change rate can be realized, for example, 100% or more.
  • the strontium titanate-based semiconductor ceramic constituting the element body 2 has a characteristic in which the switching voltage described above changes depending on the number of grain boundaries existing in a portion sandwiched between the counter electrodes 3 and 4. Therefore, the switching voltage can be controlled by controlling the number of grain boundaries existing in the portion sandwiched between the counter electrodes 3 and 4, that is, the interval between the counter electrodes 3 and 4. Also, if the average value of the number of grain boundaries existing in the area sandwiched between the counter electrodes 3 and 4 is selected to be in the range of 0.5 or more and 44.5 or less, the resistance change will be high, for example, 10000% or more. Rate can be realized.
  • Non-Patent Document 1 a resistor is connected in series to the resistance memory element described in Non-Patent Document 1. It becomes a connected shape, and its resistance change rate is
  • Resistance change rate ⁇ (Series resistance component + resistance of element in high resistance state) (Series resistance component + The resistance of the element in the low resistance state) ⁇ Z (series resistance component + resistance of the element in the low resistance state).
  • the resistance of the element corresponds to the resistance of the grain boundary.
  • the resistance component is equivalent to the ceramic itself, but the resistance change rate should decrease because the resistance of the ceramic itself is high.
  • the series resistance component is 1 ⁇ ⁇ and this does not change, even if the resistance of the element changes by 6 digits such as 1 ⁇ in the low resistance state and 1 ⁇ ⁇ in the high resistance state, there is a series resistance component. Therefore, the force resistance does not change, almost doubled, such as 1M ⁇ + 1 ⁇ in the low resistance state and 1 ⁇ + 1 + ⁇ in the high resistance state. From this, it can be explained that the resistance memory element 1 according to the present invention is not merely high in resistance because the conduction electrons are scattered at the grain boundaries and the mobility is lowered.
  • resistance switching can be performed at a relatively high voltage, which is equal to or higher than that described in Non-Patent Document 1.
  • the high resistance change rate can be realized mainly because of the low grain boundary barriers formed at the grain boundaries. In other words, it is speculated that application of the switching voltage changes the height of the grain boundary barrier, which may lead to a high rate of resistance change. This is because, as described above, if the resistance at the interface with the electrodes 3 and 4 is simply reduced due to the increase in the grain boundary resistance and the resistance switching phenomenon occurs, the resistance change rate is high. This is because I cannot explain everything.
  • the resistance memory element 1 requires a relatively high switching voltage. Therefore, at the time of switching, a high voltage is applied to the interface with the electrodes 3 and 4 and the ceramic itself, and high withstand voltage characteristics are required at the interface with the electrodes 3 and 4 and the ceramic itself. With respect to the withstand voltage characteristics of the ceramic itself, a high withstand voltage characteristic can be obtained by increasing the number of grain boundaries existing in the portion sandwiched between the counter electrodes 3 and 4 that make a pair. Therefore, as described above, a strong interface state can be obtained by co-firing the counter electrodes 3 and 4 with the element body 2 at a relatively high temperature, as described above. The characteristics can be enhanced.
  • FIG. 2 shows a typical current-voltage characteristic (IV characteristic) of the resistance memory element 1 according to the present invention.
  • the resistance memory element 1 having the IV characteristics shown in FIG. 2 has a strontium titanate-based semiconductor ceramic constituting the element body having Sr La TiO yarns.
  • sample 8 which is a sample within the preferable range of the present invention.
  • a voltage pulse with a pulse width of 0.1 s was applied in IV increments, and the flowing current was measured.
  • FIG. 3 shows the I-V characteristics measured in the voltage range in which resistance switching does not occur in the range of 20V to 20V after switching to each of the high resistance state and the low resistance state. .
  • FIG. 3 even after resistance switching, the low resistance state and the high resistance state are maintained, and this also has a memory effect that can maintain the resistance state only by resistance switching. I understand that.
  • the IV characteristics shown in Fig. 3 have been confirmed to be the same after 24 hours have elapsed after switching between the high resistance state and the low resistance state.
  • the resistance memory element 1 according to the present invention has a switching voltage of several tens of volts.
  • Non-Patent Document 1 describes switching voltages of 5V or less. Therefore, the switching voltage of several tens of volts is higher than the switching voltage of the resistance memory element described in Non-Patent Document 1.
  • a voltage of 5 OV is applied to the resistance memory element 1 according to the present invention having the IV characteristics shown in FIG. 2 while changing the pulse width such as lmsec, 10 msec, and 100 msec.
  • the pulse width dependence of the resistance change was investigated, even when a pulse voltage with a pulse width of lmsec or a pulse voltage with a pulse width of 10 msec was applied, the resistance did not change and the pulse voltage with a pulse width of 100 msec was detected. It has been confirmed that the resistance changes only after the voltage is applied.
  • Non-Patent Document 1 when a voltage of 5 V is applied, the resistance increases (the current value decreases) with a pulse width of 1 msec, and a 5 V voltage with a longer pulse width of 10 msec. It has been confirmed that the resistance is further increased by applying.
  • the resistance memory element 1 in order to cause the resistance switching phenomenon, it is necessary to apply a voltage of a certain value or more, and furthermore, the resistance described in Non-Patent Document 1 Compared to the memory element, it is necessary to apply a voltage having a longer pulse width.
  • the counter electrodes 3 and 4 forming a pair are arranged in the central portion in the thickness direction of the element body 2, but are biased toward one end side in the thickness direction.
  • one of the counter electrodes 3 and 4 may be formed on the outer surface of the element body 2.
  • the pair of counter electrodes 3 and 4 may be arranged so as to be arranged on the outer surface of the element body 2 at a predetermined interval, and may be opposed to each other at their edges.
  • a pair of counter electrodes 3 and 4 may be arranged side by side on the same plane inside the element 2 so as to face each other at their edges.
  • the counter electrodes 3 and 4 are arranged inside the element body 2, and a portion sandwiched between the counter electrodes 3 and 4 forming a pair is a very small part of the element body 2. This is because the element body 2 has a predetermined mechanical strength or more while ensuring a small interval between the counter electrodes 3 and 4. Therefore, if it is not necessary to consider the problem of mechanical strength, a counter electrode may be formed on each main surface of the thin plate-like element.
  • the counter electrodes 3 and 4 forming a pair are not only used for applying a switching voltage but also used for current measurement (for resistance measurement). May be used exclusively for voltage application, and a separate electrode for current measurement may be provided.
  • the first, second, and third electrodes are formed in this order in a state of facing each other.
  • the first and second electrodes are made common to the first electrode. To measure the current and apply a voltage using the first and third electrodes, or apply a voltage using the first and second electrodes and use the first and third electrodes. It is conceivable to measure the current.
  • strontium titanate semiconductor ceramics As starting materials for the strontium titanate semiconductor ceramics that make up the element body, strontium carbonate (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), strontium carbonate (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), titanium oxide (TiO 2), and lanthanum oxide as a donor (SrCO 3), titanium oxide (TiO 2), and lanthan
  • the above starting materials are weighed so that the compositions shown in Table 1 to Table 5 are obtained, and these are added to pure water together with a dispersant, and wet-mixed for 24 hours using PSZ balls with a diameter of 2 mm. Grinding was performed. After mixing and pulverizing, the resulting slurry was dried and calcined in the atmosphere at a temperature of 1200 ° C. for 4 hours. The obtained calcined powder is added to pure water together with a dispersant, pulverized using PSZ balls with a diameter of 5 mm for 24 hours, and then added with an acrylic binder, plasticizer, antifoaming agent, etc., and mixed again for 12 hours. Thus, a slurry for forming a green sheet was obtained.
  • the obtained slurry was formed into a sheet by applying a doctor blade method to obtain a green sheet.
  • the thickness of this green sheet was adjusted to about 40 m.
  • the conductive sheet containing Pd was screen-printed in order to cut the Darin sheet into strips and form a counter electrode.
  • multiple green sheets including a green sheet on which a conductive paste film to be the counter electrode is formed are stacked, crimped, and cut to give a dimension of 2.0 mm X I. 2 mm X I. 2 mm
  • a green chip having was obtained.
  • Each green chip Your, Te, opposite the area of the counter electrode was adjusted to about lmm 2.
  • the above-mentioned green chip is degreased at a temperature of 550 ° C. in the air, and then baked in the air at a temperature of 1400 ° C. for 2 hours, and then a nitrogen containing 3% of hydrogen. Reduced for 4 hours at an appropriate temperature in the range of 600 to 1200 ° C in an atmosphere.o
  • the ADVANTEST R6246 pulse source meter was used. The voltage was switched from OV ⁇ predetermined voltage (positive side) ⁇ OV ⁇ predetermined voltage (negative side) ⁇ OV. I let you. At this time, the voltage was applied with a voltage pulse, and the measurement was performed with a pulse width of 0.1 s. An example of the IV characteristics obtained in this way is shown in Fig. 2 above. FIG. 2 shows the IV characteristics of Sample 8.
  • the absolute value of the switching voltage (corresponding to [6] in Fig. 2) and the maximum resistance change rate when changing from the low-resistance state to the high-resistance state.
  • the resistance change rate is the voltage at which the difference between the low resistance state and the high resistance state is the largest at a voltage higher than 10 V in the polarity (minus in FIG. 2) where the low resistance state force also becomes the high resistance state. Calculated as the resistance when in a high resistance state.
  • Tables 1 to 5 show the switching voltage and the maximum resistance change rate obtained as described above. ] [0600
  • the substitution amount x of La, Nd, Sm, Gd, Ho, Dy or Y added as a donor to the Sr site and the substitution amount of Nb or Ta added as a donor to the Ti site sum with y x + y is 0
  • the donor strontium titanate ceramic is not added to the semiconductor and the interface with the counter electrode is sufficient.
  • the resistance change rate was lower than 5000% due to the inability to create a proper Schottky barrier.
  • the substitution amount x of La, Nd, Sm, Gd, Ho, Dy or Y exceeds 0.02, the substitution amount y of Nb or Ta exceeds 0.02, or these substitution amounts x x + y force with y.> 02 Samples 12, 21, 30, 39, 48, 57, 66, 78 and 87 have a switching voltage force of 10 V or more, but the donor is excessive and the ceramic When the resistance is too low, the Schottky barrier height is lowered, and some of the IV characteristics can be confirmed as hysteresis, but the resistance change rate is less than 5000%.
  • experimental Example 2 starting materials were prepared so that the composition of the strontium titanate semiconductor ceramic constituting the element body was the same as that of Sample 8 in Experimental Example 1, and the same process as in Experimental Example 1 was performed. While adopting, samples for evaluation as shown in Table 6 were prepared by changing the thickness of the green sheet and the firing temperature in various ways. Table 6 shows the thickness between the counter electrodes and the firing temperature adjusted by the thickness of the green sheet. Note that the optimal reduction conditions differ depending on the firing temperature and the thickness of the green sheet (thickness between the counter electrodes). Therefore, the optimum temperature for the reduction treatment after firing was selected in the range of 600 to 1200 ° C for each sample.
  • the rate of change in resistance was less than 10000% in Samples 212 and 220, which are less than 0.5. This indicates that the high resistance change rate obtained in the present invention also contributes to grain boundaries that are not solely due to the Schottky barrier at the electrode interface, and in order to achieve a high resistance change rate. This indicates that a certain number of grain boundaries is necessary.
  • Sample 204 and 205 having an average number of grain boundaries larger than 44.5 were also less than the resistance change rate force S 10000%. The reason for this is not clear, but as the number of grain boundaries increases, the grain boundary resistance component becomes too large, and the rate of change in resistance may be relatively reduced.
  • the switching voltage can be controlled and a high resistance change rate can be realized by controlling the thickness between the counter electrodes and the average number of grain boundaries.
  • the v / w force is in the range of 0.950 to 1.010, and in the range of x + y force of 0.005 to 0.01, the resistance change rate is 10000% or more, which is more excellent.
  • the obtained characteristics were obtained.
  • the anti-change rate has become low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Description

明 細 書
抵抗記憶素子
技術分野
[0001] この発明は、抵抗記憶素子に関するもので、特に、多結晶体としての半導体セラミ ック力 なる素体を備える抵抗記憶素子に関するものである。
背景技術
[0002] 抵抗記憶素子は、抵抗記憶機能を有する素体を備えており、この素体は、初期状 態でたとえば比較的高い抵抗を示すが、所定値以上の電圧を印加すると、低抵抗状 態に変化し、電圧を除去しても、この低抵抗状態が保持 (記憶)され、他方、低抵抗 状態にある素体に所定値以上の電圧を逆方向に印加すると、高抵抗状態に戻り、こ の電圧を除去しても、高抵抗状態が保持 (記憶)されると!ヽぅ特性を有して 、る。
[0003] このような抵抗記憶素子は、しきい値以上の電圧を正方向および逆方向の各々に 印加することにより、低抵抗状態と高抵抗状態とにスイッチングできるものであり、スィ ツチングにより、抵抗変化させ、それを記憶することが可能である。このような抵抗スィ ツチ効果を利用することにより、抵抗記憶素子は、いわゆるメモリー素子としてだけで なぐスイッチング素子としても用いることができる。
[0004] この発明にとって興味ある抵抗記憶素子として、たとえば非特許文献 1に記載され たものがある。非特許文献 1では、異種材料の界面、より具体的には、 SrTiO単結
3 晶基板と SrRuO薄膜 (単結晶薄膜)との接合界面において、上述した抵抗記憶特
3
性を発現させている、抵抗記憶素子が記載されている。この抵抗記憶素子では、抵 抗状態を変化させ得るスイッチング電圧は、最大 3V程度であり、比較的低い電圧で スイッチングする。
[0005] 抵抗記憶素子が使用されようとする回路の中には、 3V以上の定格電圧が加えられ る回路も比較的多くある。そこで、非特許文献 1に記載の抵抗記憶素子を、上記のよ うな比較的高い駆動電圧環境でスイッチング素子として使用しょうとする場合、スイツ チング電圧を定格電圧より高くする必要がある。
[0006] し力しながら、非特許文献 1に記載の抵抗記憶素子は、スイッチング電圧が最大 3 V程度と比較的低ぐ駆動電圧自体でスイッチングが不用意に生じる可能性があり、 そのものだけではスイッチング素子として安定して使用することができないという問題 がある。
[0007] したがって、たとえば 30V以上の電圧でスイッチングするようなスイッチング素子を 実現しょうとすると、別の抵抗体を直列に挿入する必要があり、この場合、スィッチン グ電圧については高くできるものの、挿入される抵抗体により、消費電力が増大し、ま た、この抵抗体のためにスイッチングされる抵抗変化率が低下してしまうという問題に 遭迪する。
[0008] 他方、この発明にとって興味ある素子として、ノ リスタがある。たとえば特許文献 1で は、各種添加元素が添加された SrTiOからなる素体に Pdを主成分とする内部電極
3
が形成された、積層型バリスタが記載されている。このようなバリスタを製造するにあ たっては、ァクセプタとなる元素の拡散や添加を積極的に行なうとともに、半導体ィ匕 のための還元処理の後に、再酸化処理を行なうことにより、粒界障壁が形成される。 このノ リスタでは、所定値以上の電圧を印加すると、低抵抗状態に変化するものの、 電圧を除去すれば、元の状態に戻り、特定の抵抗状態を保持 (記憶)する機能はな い。すなわち、ノ リスタは抵抗記憶素子ではない。
特許文献 1:特許第 2727626号公報
非特許文献 1 : T. Fujii、外 5名, 「ェピタキシャル酸化物のショットキー接合 SrRu03/Sr Ti0.99Nb0.01O3における電流 電圧ヒステリシス特性と抵抗スイッチング(Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schot tky Junction SrRuO3/SrTi0.99Nb0.01O3)j , APPLIED PHYSICS LETTERS 86, 0121 07(2005)
発明の開示
発明が解決しょうとする課題
[0009] そこで、この発明の目的は、スイッチング電圧を比較的高くすることができるとともに 、高い抵抗変化率を実現し得る、抵抗記憶素子を提供しょうとすることである。
課題を解決するための手段
[0010] この発明は、素体と、素体の少なくとも一部を介して対向する少なくとも 1対の電極と を備え、 1対の電極間に第 1方向のスイッチング電圧を印加したとき、素体の、 1対の 電極間に位置する部分が低抵抗ィ匕し、その後、第 1方向のスイッチング電圧を除去し ても、素体の低抵抗状態が保持され、他方、 1対の電極間に第 1方向とは逆の第 2方 向のスイッチング電圧を印加したとき、素体の、 1対の電極間に位置する部分が高抵 抗化し、その後、第 2方向のスイッチング電圧を除去しても、素体の高抵抗状態が保 持される、抵抗記憶素子に向けられるものであって、素体がチタン酸ストロンチウム系 半導体セラミック力 なることを特徴として 、る。
[0011] この発明において、好ましくは、上記チタン酸ストロンチウム系半導体セラミックは、 一般式:(Sr A ) (Ti B ) O (ただし、 Aは、 Yおよび希土類元素力 選ばれる
1 1— 3
少なくとも 1種の元素であり、 Bは、 Nbおよび Taの少なくとも一方である。)で表され、 かつ、 0. 001≤x+y≤0. 02 (ただし、 0≤x≤0. 02、および 0≤y≤0. 02)の条件
、ならびに 0. 87≤v/w≤l. 030の条件を満足するものである。
[0012] チタン酸ストロンチウム系半導体セラミックは、上記一般式において、 0. 005≤x+ y≤0. 01の条件を満足することがより好ましい。
[0013] また、チタン酸ストロンチウム系半導体セラミックは、上記一般式において、 0. 950
≤v/w≤l. 010の条件を満足することがより好ましい。
[0014] 素体の、 1対の電極の間に存在する粒界数の平均値は 0. 5以上かつ 44. 5以下の 範囲にあることが好ましい。
[0015] 電極は、素体と同時焼成により形成されたものであることが好ましい。
[0016] 電極は、 Pd、 Pt、 Ag— Pd、 Au、 Ruおよび Irから選ばれる 1種の金属を含むことが 好ましい。
発明の効果
[0017] この発明によれば、たとえば 10V以上といった高いスイッチング電圧によって低抵 抗 Z高抵抗状態間のスイッチングを実現できるようになり、比較的高い駆動電圧環境 においても、高い抵抗変化率、たとえば 5000%以上の抵抗変化率を実現することが できる。また、 1対の電極の間に存在する粒界数、すなわち、電極間の間隔あるいは 素体の厚みを制御することによって、スイッチング電圧を制御することができる。
[0018] この発明において、チタン酸ストロンチウム系半導体セラミックが、上記一般式を満 足し、力つ、 0. 001≤x+y≤0. 02 (ただし、 0≤x≤0. 02、および 0≤y≤0. 02) の条件、ならびに 0. 87≤v/w≤l. 030の条件を満足しな力 Sら、 0. 005≤x+y≤ 0. 01といったより限定的な条件を満足する場合、また、 0. 950≤v/w≤l. 010と いったより限定的な条件を満足する場合、あるいは、 1対の電極の間に存在する粒界 数の平均値が 0. 5以上かつ 44. 5以下の範囲にある場合、抵抗変化率をより高くす ることができ、たとえば 10000%以上の抵抗変化率を実現することができる。
[0019] 電極が、素体と同時焼成により形成されたものである場合には、電極と素体との界 面が強固なものとなり、電極と素体との界面に高い耐電圧特性を与えることができ、ス イッチング電圧を問題なく高くすることができる。
[0020] 電極が、 Pd、 Pt、 Ag— Pd、 Au、 Ruおよび Irから選ばれる 1種の金属を含む場合、 電極と素体との間にショットキー接合を形成することができる。
図面の簡単な説明
[0021] [図 1]この発明の一実施形態による抵抗記憶素子 1を示す断面図である。
[図 2]この発明に係る抵抗記憶素子の典型的な電流—電圧特性を示す図である。
[図 3]この発明に係る抵抗記憶素子において、高抵抗状態および低抵抗状態へそれ ぞれスイッチングした後に、抵抗スイッチングが発現しな 、電圧範囲で測定された電 流—電圧特性を示す図である。
符号の説明
[0022] 1 抵抗記憶素子
2 素体
3, 4 対向電極
5, 6 端子電極
発明を実施するための最良の形態
[0023] 図 1は、この発明の一実施形態による抵抗記憶素子 1を示す断面図である。
[0024] 抵抗記憶素子 1は、チタン酸ストロンチウム系半導体セラミック力 なる素体 2を備え ている。素体 2は、好ましくは、一般式:(Sr A ) (Ti B ) Oで表されるチタン酸
3
ストロンチウム系半導体セラミック力もなるものである。上記一般式において、 Aは、 Y および希土類元素力 選ばれる少なくとも 1種の元素であり、好ましくは、 Y、 La、 Ce 、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dyおよび Hoから選ばれる少なくとも 1種である。また 、 Bは、 Nbおよび Taの少なくとも一方である。また、上記一般式において、 0. 001≤ x+y≤0. 02 (ただし、 0≤x≤0. 02、および 0≤y≤0. 02)の条件、ならびに 0. 87 ≤v/w≤l. 030の条件を満足するように組成比が選ばれる。
[0025] 抵抗記憶素子 1は、また、素体 2の少なくとも一部を介して対向する少なくとも 1対の 対向電極 3および 4を備えている。この実施形態では、素体 2は積層構造を有してい て、対向電極 3および 4は、素体 2の内部に位置されながら、素体 2の少なくとも一部 を挟むように対向しており、素体 2を得るための焼成と同時に焼成されて形成される。 このような同時焼成を比較的高温で実施することによって、対向電極 3および 4と素体 2との界面を強固な状態とすることができ、抵抗記憶素子 1の耐電圧特性を高めること ができる。
[0026] 対向電極 3および 4は、 Pd、 Pt、 Ag— Pd、 Au、 Ruおよび Irから選ばれる 1種の金 属を含むことが好ましい。対向電極 3および 4において、上述のような金属を用いるこ とにより、素体 2との間にショットキー接合を形成することができる。
[0027] 抵抗記憶素子 1は、さらに、端子電極 5および 6を備えている。端子電極 5および 6 は、素体 2の各端部上に形成され、それぞれ、対向電極 3および 4と電気的に接続さ れる。端子電極 5および 6は、たとえば銀を含む導電性ペーストの焼き付けによって 形成される。
[0028] このような抵抗記憶素子 1において、端子電極 5および 6を介して対向電極 3および 4間に第 1方向のスイッチング電圧を印加したとき、素体 2の、対向電極 3および 4に 挟まれた部分が低抵抗ィ匕し、その後、この第 1方向のスイッチング電圧を除去しても、 素体 2の低抵抗状態が保持され、他方、対向電極 3および 4間に第 1方向とは逆の第 2方向のスイッチング電圧を印加したとき、素体 2の、対向電極 3および 4に挟まれた 部分が高抵抗ィ匕し、その後、この第 2方向のスイッチング電圧を除去しても、素体 2の 高抵抗状態が保持される。この発明に係る抵抗記憶素子 1では、上述したスィッチン グ電圧がたとえば 10V以上と高くなり、そのため、比較的高い駆動電圧環境下にあつ ても、安定して正常に動作させることができ、また、たとえば 5000%以上といった高 V、抵抗変化率を実現することができる。 [0029] 素体 2を構成する前述したチタン酸ストロンチウム系半導体セラミック力 前述の一 般式において、 0. 005≤x+y≤0. 01といったより限定的な条件を満足したり、 0. 9 50≤v/w≤l . 010といったより限定的な条件を満足したりしていると、たとえば 100 00%以上と 、うように、より高 、抵抗変化率を実現することができる。
[0030] 素体 2を構成するチタン酸ストロンチウム系半導体セラミックは、対向電極 3および 4 に挟まれた部分に存在する粒界数によって前述したスイッチング電圧が変わる特性 を有している。したがって、対向電極 3および 4に挟まれた部分に存在する粒界数、 すなわち対向電極 3および 4間の間隔を制御することにより、スイッチング電圧を制御 することができる。また、対向電極 3および 4に挟まれた部分に存在する粒界数の平 均値が 0. 5以上かつ 44. 5以下の範囲に選ばれると、たとえば 10000%以上といつ た高 、抵抗変化率を実現することができる。
[0031] 以上のような抵抗記憶素子 1が有する特性が発現されるメカニズムについては完全 に解明されていない。一般に、半導体と金属との界面では抵抗スイッチング効果が発 現し、その抵抗変化自体は半導体側に起因するものと考えられている。この発明で は、チタン酸ストロンチウム系半導体セラミック力 なる多結晶体を用いることにより、 チタン酸ストロンチウム系セラミック自体は半導体化されて 、るため、その抵抗は低 ヽ 力 粒界が高抵抗となっており、スイッチング現象が引き起こされる電極 3および 4に かかる電圧は電極界面、粒界面に分散し、各界面にかかる実効電圧が低下すること により、非特許文献 1に記載されるものと比較して高 、スイッチング電圧を実現できて いるものと考えられる。
[0032] チタン酸ストロンチウム系半導体セラミック力もなる多結晶体において、粒界が高抵 抗ィ匕している理由としては、単に、粒界で伝導電子が散乱され移動度が低下するた めに高抵抗となっているだけでなぐ浅い粒界準位が自然に生成し、それらが電子の トラップとなり、低 、粒界障壁が形成されて 、るものと推測される。
[0033] すなわち、上述のように、単に、粒界での伝導電子の散乱が原因で抵抗が高くなつ ていると仮定すれば、非特許文献 1に記載の抵抗記憶素子に直列に抵抗体を接続 したような形となり、その抵抗変化率は、
抵抗変化率 = { (直列抵抗成分 +高抵抗状態での素子の抵抗) (直列抵抗成分 + 低抵抗状態での素子の抵抗) }Z (直列抵抗成分 +低抵抗状態での素子の抵抗) の式で表される。
[0034] 本素子にお 、ても、電極界面の抵抗のみ変化し、抵抗スイッチングが発現して!/、る とすると、上記式においては、素子の抵抗が粒界の抵抗に相当し、直列抵抗成分が セラミック自体に相当することになるが、セラミック自体の抵抗が高いため、抵抗変化 率も低下してしまうはずである。たとえば、直列抵抗成分が 1Μ Ωであり、これが変化 しないとすると、素子の抵抗が低抵抗状態で 1 Ω、高抵抗状態で 1Μ Ωというように 6 桁抵抗変化したとしても、直列抵抗成分があるため、低抵抗状態では 1M Ω + 1 Ω、 高抵抗状態では 1Μ Ω + 1Μ Ωというように、ほぼ 2倍し力抵抗変化しない。このこと から、この発明に係る抵抗記憶素子 1では、単に粒界で伝導電子が散乱され移動度 が低下するために高抵抗となって 、るだけではな 、ことが説明できる。
[0035] このように、この発明に係る抵抗記憶素子 1によれば、比較的高!ヽ電圧で抵抗スィ ツチングが可能であり、非特許文献 1に記載のものと比較して、同等以上の高い抵抗 変化率を実現できるのは、粒界に形成されている低い粒界障壁などが大きく影響し ているものと考えられる。つまり、スイッチング電圧の印加により、粒界の障壁の高さな ども変化し、このことが高い抵抗変化率をもたらしている可能性があると推測される。 なぜなら、前述したように、単に粒界抵抗が高くなり、電極 3および 4との界面にかか る電圧が低下することにより、抵抗スイッチング現象が生じていると考えると、抵抗変 化率が高 、ことまで説明することができな 、ためである。
[0036] この発明に係る抵抗記憶素子 1では、前述したように、比較的高!ヽスイッチング電 圧が必要とされる。そのため、スイッチング時には、電極 3および 4との界面およびセ ラミック自体に高 、電圧が印加され、電極 3および 4との界面およびセラミック自体に 高い耐電圧特性が必要とされる。セラミック自体の耐電圧特性については、対をなす 対向電極 3および 4に挟まれた部分に存在する粒界数をある程度多くすることによつ て高 、耐電圧特性を得ることができ、電極 3および 4との界面の耐電圧特性にっ 、て は、前述したように、対向電極 3および 4を比較的高い温度で素体 2と同時焼成する ことにより強固な界面状態が得られ、耐電圧特性を高めることができる。
[0037] 次に、この発明に係る抵抗記憶素子 1の抵抗スイッチング特性について、より具体 的に説明する。
[0038] 図 2は、この発明に係る抵抗記憶素子 1の典型的な電流 電圧特性 (I V特性)を 示している。なお、図 2に示した I—V特性が有する抵抗記憶素子 1は、素体を構成す るチタン酸ストロンチウム系半導体セラミックが Sr La TiOの糸且成を有するも
0. 992 0. 008 3
のであって、後述する実験例において、この発明の好ましい範囲内の試料とされた試 料 8と同等のものである。図 2に示した I—V特性を求めるため、パルス幅 0. lsecの電 圧パルスを IV刻みで印加し、流れる電流を測定した。
[0039] 図 2を参照して、まず、 0Vから 100Vまで電圧を印加していくと [1]、約 60Vのところ で、電流が 100mA (電流リミット)に達する [2]。その後、 100Vから 0Vへ電圧を下げ ていくと、約 20Vで電流が 100mAより小さくなり [3]、行き帰りで同じ I—V特性を示さ ず [4]、高抵抗状態から低抵抗状態へ変化する。
[0040] 次に、 0Vから一 100Vへ電圧を印加していくと [5]、約一 30Vで一度電流リミットに 達し、約—40Vから電流が低下し始め [6]、 一 100Vまで徐々に電流が低下していく (言い換えると、抵抗が上昇していく) [7]。その後、 100Vから 0Vへ電圧を印加し ていくと、前述した場合と同様、行き帰りで同じ I—V特性を示さず [8]、高抵抗状態 のまま電流が低下していく。
[0041] 以上のように、 +方向の電圧では、高抵抗状態力ゝら低抵抗状態へ抵抗がスィッチ ングし、他方、—方向の電圧では、低抵抗状態から高抵抗状態へ抵抗がスィッチン グして、何度測定しても、同様の抵抗スイッチング現象が発現する。
[0042] 上述のように、高抵抗状態および低抵抗状態の各々にスイッチングした後、 20V 〜20Vの範囲の抵抗スイッチングが生じない電圧範囲で測定した I—V特性が図 3に 示されている。図 3から明らかなように、抵抗スイッチング後においても、低抵抗状態 および高抵抗状態がそれぞれ保持されており、このことから、抵抗のスイッチングだけ でなぐその抵抗状態を保持できるメモリー効果も有していることがわかる。なお、図 3 に示した I—V特性は、高抵抗状態および低抵抗状態の各々〖こスイッチングした後、 24時間経過後にお 、ても同様であることが確認されて 、る。
[0043] 前述の図 2に示されるように、この発明に係る抵抗記憶素子 1では、数十 Vといった スイッチング電圧を有している。非特許文献 1では、 5V以下のスイッチング電圧が記 載されているため、数十 Vといったスイッチング電圧は、非特許文献 1に記載の抵抗 記憶素子のスイッチング電圧より高 、。
[0044] 次に、図 2に示した I—V特性を有する、この発明に係る抵抗記憶素子 1に対して、 5 OVの電圧を、 lmsec、 10msec, 100msecというようにパルス幅を変えながら印加し 、抵抗変化のパルス幅依存性を調査したところ、パルス幅が lmsecのパルス電圧や パルス幅が 10msecのパルス電圧を印加しても、抵抗は変化せず、ノ ルス幅が 100 msecのパルス電圧を印加して初めて抵抗が変化することが確認されて 、る。他方、 非特許文献 1に記載の抵抗記憶素子では、 5Vの電圧を印加するとき、パルス幅が 1 msecで高抵抗化し(電流値が低下し)、さらに長い 10msecのパルス幅をもって、 5V の電圧を印加すると、さらに高抵抗ィ匕することが確認されている。
[0045] このようなことから、この発明に係る抵抗記憶素子 1では、抵抗スイッチング現象を 生じさせるためには、一定値以上の電圧を加える必要があり、さらに、非特許文献 1 に記載の抵抗記憶素子に比べて、より長 、パルス幅を持つ電圧を印加する必要があ ることがゎカゝる。
[0046] 図 1に示した抵抗記憶素子 1では、対をなす対向電極 3および 4が、素体 2の厚み 方向での中央部に配置されたが、厚み方向での一方端側に偏った位置に配置され てもよく、極端な場合には、対向電極 3および 4のいずれか一方については、素体 2 の外表面上に形成されてもよい。また、 1対の対向電極 3および 4力 ともに、素体 2の 外表面上で所定の間隔を隔てて並ぶように配置され、互 、の端縁で対向するように されてもよい。さらに、 1対の対向電極 3および 4力 互いの端縁で対向するように、素 体 2の内部における同一面上に並んで配置されてもょ 、。
[0047] なお、上述のように、対向電極 3および 4を素体 2の内部に配置し、対をなす対向電 極 3および 4に挟まれる部分が素体 2のごく一部とされるのは、対向電極 3および 4間 の間隔を小さくしながらも、素体 2において所定以上の機械的強度を確保するためで ある。したがって、機械的強度の問題を考慮する必要がないならば、薄板状の素体 の各主面上に対向電極をそれぞれ形成するようにしてもよい。
[0048] また、対をなす対向電極 3および 4は、スイッチング電圧を印加するために用いられ るばかりでなぐ電流測定用(抵抗測定用)としても用いられるが、対向電極 3および 4 を専ら電圧印加用として用い、別に電流測定用の電極を設けてもよい。この場合、典 型的には、互いに対向する状態で第 1、第 2および第 3の電極がこの順序で形成され 、たとえば、第 1の電極を共通にしながら、第 1および第 2の電極を用いて電流測定を 行ない、第 1および第 3の電極を用いて電圧を印加すること、あるいは、第 1および第 2の電極を用いて電圧を印加し、第 1および第 3の電極を用いて電流を測定すること が考えられる。
[0049] 次に、この発明による効果を確認するため、あるいは、この発明の好ましい範囲を 求めるために実施した実験例につ!、て説明する。
[0050] (実験例 1)
素体を構成するチタン酸ストロンチウム系半導体セラミックの出発原料として、炭酸 ストロンチウム(SrCO )、酸ィ匕チタン (TiO )、ならびに、ドナーとしての酸ィ匕ランタン(
3 2
La O )、酸化ネオジム(Nd O )、酸化サマリウム(Sm O )、酸化ガドリニウム(Gd
2 3 2 3 2 3 2
O )、酸ィ匕デイスプロシゥム(Dy O )、酸ィ匕ホルミウム (Ho O )、酸化イットリウム (Y
3 2 3 2 3 2
O )、ならびに酸ィ匕ニオブ (Nb O )および酸ィ匕タンタル (Ta O )の各粉末を用いた
3 2 5 2 5
[0051] 焼成後において表 1〜表 5に示すような組成になるように、上記出発原料を秤量し、 これらを分散剤とともに純水に加え、直径 2mmの PSZボールを用いて 24時間湿式 混合粉砕を行なった。混合粉砕後、得られたスラリーを乾燥し、大気中において 120 0°Cの温度で 4時間仮焼を行なった。得られた仮焼粉末を分散剤とともに純水に加え 、直径 5mmの PSZボールを用いて 24時間粉砕し、その後、アクリル系バインダ、可 塑剤および消泡剤等を加え、再度、 12時間混合し、グリーンシート成形用スラリーを 得た。
[0052] 次に、得られたスラリーにドクターブレード法を適用してシート状に成形し、グリーン シートを得た。このグリーンシートの厚みは約 40 mになるように調整した。次に、ダリ ーンシートを短冊状にカットし、対向電極を形成するため、 Pdを含む導電性ペースト をスクリーン印刷した。その後、対向電極となるべき導電性ペースト膜が形成されたグ リーンシートを含む複数のグリーンシートを積層し、圧着し、カットすることにより、 2. 0 mm X I. 2mm X I. 2mmの寸法を有するグリーンチップを得た。各グリーンチップ にお 、て、対向電極の対向面積は約 lmm2になるように調整した。
[0053] 次に、上記グリーンチップを、大気中において 550°Cの温度で脱脂処理し、その後 、大気中において、 1400°Cの温度で 2時間焼成し、その後、水素を 3%含有する窒 素雰囲気下において、 600〜1200°Cの範囲の適当な温度で 4時間還元処理を行な つた o
[0054] 上記のようにして得られた焼成後の素体に、端子電極を形成するため、 Agを含む 導電性ペーストを塗布し、大気中において、 750°Cの温度で焼き付け処理を行ない 、評価用試料とした。
[0055] このようにして得られた各試料について、より正確な評価を行なえるようにするため、 100〜200V、パルス幅 100msecのパルス電圧を正方向および逆方向の各々に 10 〜50回印加して、エレクト口フォーミング処理を行なった上で、 I— V特性を評価した。
[0056] この I—V特'性の評価には、「ADVANTEST R6246 パルスソースメーター」を 用い、電圧を、 OV→所定電圧 (プラス側)→OV→所定電圧 (マイナス側)→OVとスィ ープさせた。また、このとき、電圧は電圧パルスで印加し、パルス幅 0. lsecで測定を 行なった。このようにして求められた I—V特性の一例が前述した図 2に示したもので ある。なお、図 2は、試料 8の I V特性を示している。
[0057] 上記のようにして求められた I V特性に基づき、低抵抗状態から高抵抗状態にな るときのスイッチング電圧の絶対値(図 2の [6]に対応)と最大抵抗変化率とを求めた 。最大抵抗変化率については、低抵抗状態力も高抵抗状態になる極性(図 2ではマ ィナス)における 10Vより高い電圧で、低抵抗状態と高抵抗状態との差が最も大きく なる電圧で抵抗変化率を算出したもので、高抵抗状態にあるときの抵抗 とし、低
H
抵抗状態にあるときの抵抗を P として、抵抗変化率 [%] = - ) / β X IOO
L H L L
の式から求めたものである。たとえば、図 2に示した試料 8について言えば、—10V以 下 (絶対値 10V以上)で抵抗変化率が最も大きくなる電圧での値を求めた。このよう にして最大抵抗変化率を求めたのは、抵抗記憶素子の抵抗は電圧依存性があるた めである。
[0058] 表 1〜表 5には、上述のようにして求められたスイッチング電圧および最大抵抗変化 率が示されている。 〕〔0600
Figure imgf000014_0001
〕 〔0590
/ O8t-0080sAV l:/v>d ε_ 686sso/-oozfcl·
Figure imgf000015_0001
soo
/ O00800ΖAVv: 686sso-ooifcl>d
Figure imgf000016_0001
〕 〔〔0寸290
Figure imgf000017_0001
Figure imgf000017_0002
00ε9s
Figure imgf000018_0001
[0064] 素体を構成するチタン酸ストロンチウム系半導体セラミックの糸且成に関して、この発 明の好まし ヽ範囲内にあるの ίま、 0. 001≤x+y≤0. 02、 0≤x≤0. 02、および 0 ≤y≤0. 02の各条件を満足する試料 2〜11、 14〜20、 23〜29、 32〜38、 41〜4 7、 50〜56、 59〜65、 68〜77および 80〜86である。これらの試料によれば、 5000 %以上の抵抗変化率を実現することができた。
[0065] これに対して、 Srサイトにドナーとして添カ卩した La、 Nd、 Sm、 Gd、 Ho、 Dyまたは Y の置換量 xと Tiサイトにドナーとして添カ卩した Nbまたは Taの置換量 yとの和 x+yが 0 . 001未満である試料 1、 13、 22、 31、 40、 49、 58、 67および 79では、ドナーカ坏 足してチタン酸ストロンチウム系セラミックが半導体ィ匕せずに、対向電極との界面に十 分なショットキー障壁ができないため、抵抗変化率が 5000%より低力つた。
[0066] 他方、 La、 Nd、 Sm、 Gd、 Ho、 Dyまたは Yの置換量 xが 0. 02を超え、 Nbまたは T aの置換量 yが 0. 02を超え、あるいはこれら置換量 xと yとの和 x+y力 . 02を超える 試料 12、 21、 30、 39、 48、 57、 66、 78および 87では、スイッチング電圧力 10 V以 上であるものの、ドナーが過剰となり、セラミックの抵抗が低下しすぎることにより、ショ ットキー障壁高さが低くなり、一部、 I—V特性にヒステリシスが確認できるものも存在し たが、抵抗変化率が 5000%より低力つた。
[0067] なお、この発明の好まし!/ヽ範囲内【こある試料 2〜11、 14〜20、 23〜29、 32〜38 、 41〜47、 50〜56、 59〜65、 68〜77および 80〜86のうち、 0. 005≤x+y≤0. 01の条件を満足する試料 5〜10、 16〜20、 25〜28、 34〜38、 43〜46、 52〜55 、 61〜64、 71〜76および 82〜85と、それ以外の試料 2〜4、 11、 14, 15、 20、 23 、 24、 29、 32、 33、 38、 41、 42、 47、 50、 51、 56、 59、 60、 65、 68〜70, 77、 80 、 81および 86とを比較すると、前者の試料によれば、 10000%以上といった、より高 い抵抗変化率を実現している。このことから、ドナー置換量をより適正に制御すること により、最適なショットキー障壁および粒界構造を形成できることがわかる。
[0068] また、試料 1〜12と試料 13〜66との比較から、チタン酸ストロンチウム系半導体セ ラミックに固溶される Laを Yまたは他の希土類元素に変えたとしても、そのイオン半径 には関係なぐこの発明の範囲内で添加すれば、大きな効果が得られることがわかる
[0069] (実験例 2)
実験例 2では、素体を構成するチタン酸ストロンチウム系半導体セラミックの組成と して、実験例 1における試料 8と同じ組成となるように出発原料を調合し、実験例 1の 場合と同様の工程を採用しながらも、グリーンシートの厚みおよび焼成温度を種々に 変えて、表 6に示すような評価用試料を作製した。表 6には、グリーンシートの厚みに よって調整される対向電極間の厚みおよび焼成温度が示されている。なお、焼成温 度およびグリーンシートの厚み (対向電極間の厚み)によって最適な還元条件が異な るため、焼成後の還元処理温度については、各試料ごとに 600〜1200°Cの範囲で 最適な温度を選択した。
[0070] 実験例 2では、実験例 1の場合と同様、最大抵抗変化率およびスイッチング電圧を 求めるとともに、素体を構成するチタン酸ストロンチウム系半導体セラミックの平均粒 径および対向電極間に存在する平均粒界数を求めた。これらの結果が表 6に示され ている。
[0071] なお、対向電極間の厚み、平均粒径および平均粒界数につ!、ては、焼成後の素 体の破断面を電界放射型走査型電子顕微鏡 (FE-SEM)を用いて観察することに よって求めた。ここで、破断面から約 10個程度の粒子の粒径を調べて、その平均値 としての平均粒径と、対向電極間の厚みとから、(対向電極間の厚み Z平均粒径) 1の式により、間接的に粒界数を求めた。
[0072] [表 6]
Figure imgf000020_0001
[0073] 表 6から、スイッチング電圧は、対向電極間の厚みに大きく依存し、この厚みが薄く なるほど、スイッチング電圧が低下する傾向があることがわかる。
[0074] また、平均粒界数に注目すると、これが 0. 5未満の試料 212および 220では、抵抗 変化率が 10000%を下回っていた。これは、この発明において得られる高い抵抗変 化率は、電極界面のショットキー障壁だけによるものではなぐ粒界も寄与しているこ とを示しており、高い抵抗変化率を実現するためには、ある程度の粒界数が必要で あることを示している。
[0075] 他方、平均粒界数が 44. 5よりも多い試料 204および 205においても、抵抗変化率 力 S 10000%を下回っていた。この原因は、明らかではないが、粒界数が多くなると、 粒界抵抗成分が大きくなりすぎ、相対的に抵抗変化率が低下している可能性が考え られる。
[0076] これらに対して、平均粒界数が 0. 5以上かつ 44. 5以下の試料 201〜203、 206
〜211、 213〜219および 221〜225では、対向電極間の厚みに関係なく、 10000
%以上の抵抗変化率を実現して!/、る。
[0077] 以上のことから、対向電極間の厚みおよび平均粒界数を制御することにより、スイツ チング電圧を制御することができ、また、高い抵抗変化率を実現できることがわかる。
[0078] (実験例 3)
実験例 3では、素体を構成するチタン酸ストロンチウム系半導体セラミックの組成に 関して、
(1) (Sr A ) Ti Oにおいて、表 7〜表 13にそれぞれ示すように、 Srに対するド ナーである「A」としての La、 Nd、 Sm、 Gd、 Dy、 Hoおよび Yの各置換量 xならびに いわゆる Srサイトと Tiサイトとの比率 vZwを種々に変えたもの、
(2) Sr (Ti B ) Oにおいて、表 14および表 15にそれぞれ示すように、 Tiに対
1— 3
するドナーである「B」としての Nbおよび Taの各置換量 yならびに Srサイトと Tiサイトと の比率 vZwを種々に変えたもの、ならびに、
(3) (Sr A ) (Ti Nb ) Oにおいて、表 16〜表 20に示すように、 Srに対する
1— 1— 3
ドナーである「A」としての La、 Sm、 Gd、 Dyおよび Yの各置換量 xと Nb置換量 yとの 和 x+yならびに Srサイトと Tiサイトとの比率 vZwを種々に変えたもの をそれぞれ用意し、これらチタン酸ストロンチウム系半導体セラミックをもって素体を構 成した。なお、上記(1)の組成では、 y=0であるので、 Xの値は x+yの値と同等であ る。上記(2)の組成では、 x=0であるので、 yの値は x+yの値と同等である。
[0079] その他の点については、実験例 1の場合と同様の工程を経て、評価用試料を作製 し、実験例 1の場合と同様の方法により、最大抵抗変化率を求めた。表 7〜表 20には 、最大抵抗変化率 (単位は%)が示されている。なお、表 7〜表 20において、最大抵 抗変化率の数値が記入されて ヽな 、欄にっ 、ては、抵抗スイッチング現象が生じな 力つたこと、ある 、は抵抗変化率が低すぎたことを示して!/、る。
[0080] [表 7]
Figure imgf000023_0001
Figure imgf000024_0001
[8挲] [1800]SS0/.00Zdf/X3d ΖΖ 18^.00/800Ζ OAV 9]
Figure imgf000025_0001
Figure imgf000026_0001
686SS0/.00Zdf/X3d PZ 18^00/800^ OAV
Figure imgf000027_0001
[urn [湖 o] SS0/.00Zdf/X3d 93 18^.00/800Ζ OAV 12]
Figure imgf000028_0001
Figure imgf000029_0001
[98oo]
686SS0/A00Zdf/I3d LZ T8fZ.00/800∑: OAV
Figure imgf000030_0001
8oo]
686SS0/.00Zdf/X3d 83 18^.00/800Ζ OAV 15]
Figure imgf000031_0001
Figure imgf000032_0001
[9i [6800] SS0/.00Zdf/X3d OS 18^00/800^ OAV
Figure imgf000033_0001
SS0/.00Zdf/X3d 1-8 Ϊ817.00/800Ζ OAV 18]
Figure imgf000034_0001
Figure imgf000035_0001
[6ΐ¾ [2600]SS0/.00Zdf/X3d SS 18^.00/800Ζ OAV
Figure imgf000036_0001
K600]
686SS0/.00Zdf/X3d P£ 18^00/800^ OAV [0094] 表 7〜表 20力らゎ力るように、 v/w力0. 87〜: L 030の範囲にあり、 0. 001≤x+ y≤0. 02、 0≤x≤0. 02、および 0≤y≤0. 02の各条件を満足するとき、 5000%以 上の抵抗変化率を示した。
[0095] さらに、 v/w力 0. 950〜1. 010の範囲にあり、 x+y力0. 005〜0. 01の範囲に おいては、抵抗変化率が 10000%以上となり、より優れた特性が得られた。
[0096] これらに対して、 vZwが 1. 030より大きい場合、過剰な Srが粒成長を抑制し、高抵 抗ィ匕しすぎるため、抵抗スイッチング現象が発現せず、他方、 vZwが 0. 87より小さ い場合には、粒成長については、 vZwが 1. 000の場合とほぼ同じであり、若干粒成 長するが、低抵抗である TiOが粒界や電極界面に偏祈して低抵抗ィ匕するため、抵
2
抗変化率が低くなつた。
[0097] また、 x+yが 0. 001未満の場合には、半導体化せず、電極界面や粒界で障壁が 形成されないか、あるいは、粒内の抵抗が高すぎるために、抵抗変化が小さすぎるか 、あるいはスイッチングせず、他方、 x+yが 0. 02より多い場合には、低抵抗化しすぎ て、電極界面のショットキー障壁が良好に形成されず、抵抗変化率が低くなつた。
[0098] 以上、実験例 1〜3では、 Srに対するドナーとして La、 Nd、 Sm、 Gd、 Dy、 Hoおよ び Yを用いたが、これらに代えて、 Ce、 Pr、 Eu、 Tb、 Er、 Tm、 Ybまたは Luが用いら れても、同様の作用効果が奏される。

Claims

請求の範囲
[1] 素体と、前記素体の少なくとも一部を介して対向する少なくとも 1対の電極とを備え 、前記 1対の電極間に第 1方向のスイッチング電圧を印加したとき、前記素体の、前 記 1対の電極間に位置する部分が低抵抗ィ匕し、その後、前記第 1方向のスイッチング 電圧を除去しても、前記素体の低抵抗状態が保持され、他方、前記 1対の電極間に 前記第 1方向とは逆の第 2方向のスイッチング電圧を印加したとき、前記素体の、前 記 1対の電極間に位置する部分が高抵抗ィ匕し、その後、前記第 2方向のスイッチング 電圧を除去しても、前記素体の高抵抗状態が保持される、抵抗記憶素子であって、 前記素体は、チタン酸ストロンチウム系半導体セラミック力 なる、
抵抗記憶素子。
[2] 前記チタン酸ストロンチウム系半導体セラミックは、一般式:(Sr A ) (Ti B )
O (ただし、 Aは、 Yおよび希土類元素力 選ばれる少なくとも 1種の元素であり、 Βは
3
、 Nbおよび Taの少なくとも一方である。)で表され、力つ、 0. 001≤x+y≤0. 02 ( ただし、 0≤x≤0. 02、および 0≤y≤0. 02)の条件、ならびに 0. 87≤vZw≤l. 0
30の条件を満足する、請求項 1に記載の抵抗記憶素子。
[3] 前記チタン酸ストロンチウム系半導体セラミックは、 0. 005≤x+y≤0. 01の条件 を満足する、請求項 2に記載の抵抗記憶素子。
[4] 前記チタン酸ストロンチウム系半導体セラミックは、 0. 950≤v/w≤l. 010の条件 を満足する、請求項 2に記載の抵抗記憶素子。
[5] 前記素体の、前記 1対の電極の間に存在する粒界数の平均値が 0. 5以上かつ 44
. 5以下の範囲にある、請求項 1に記載の抵抗記憶素子。
[6] 前記電極は、前記素体と同時焼成により形成されたものである、請求項 1に記載の 抵抗記憶素子。
[7] 前記電極は、 Pd、 Pt、 Ag— Pd、 Au、 Ruおよび Irから選ばれる 1種の金属を含む、 請求項 1に記載の抵抗記憶素子。
PCT/JP2007/055989 2006-07-14 2007-03-23 Resistive memory device WO2008007481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008524728A JP5251506B2 (ja) 2006-07-14 2007-03-23 抵抗記憶素子
US12/352,689 US7649768B2 (en) 2006-07-14 2009-01-13 Resistance memory element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-193556 2006-07-14
JP2006193556 2006-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/352,689 Continuation US7649768B2 (en) 2006-07-14 2009-01-13 Resistance memory element

Publications (1)

Publication Number Publication Date
WO2008007481A1 true WO2008007481A1 (en) 2008-01-17

Family

ID=38923051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055989 WO2008007481A1 (en) 2006-07-14 2007-03-23 Resistive memory device

Country Status (3)

Country Link
US (1) US7649768B2 (ja)
JP (1) JP5251506B2 (ja)
WO (1) WO2008007481A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462539B2 (en) 2009-02-20 2013-06-11 Murata Manufacturing Co., Ltd. Resistive memory element and use thereof
US8542520B2 (en) 2009-02-20 2013-09-24 Murata Manufacturing Co., Ltd. Resistive memory element and use thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123139A1 (ja) * 2007-03-26 2008-10-16 Murata Manufacturing Co., Ltd. 抵抗記憶素子
DE102010011646A1 (de) 2010-03-10 2011-09-15 Technische Universität Bergakademie Freiberg Verfahren zur Herstellung eines nichtflüchtigen elektronischen Datenspeichers auf Grundlage eines kristallinen Oxids mit Perowskitstruktur
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US8637413B2 (en) 2011-12-02 2014-01-28 Sandisk 3D Llc Nonvolatile resistive memory element with a passivated switching layer
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
JP5877445B2 (ja) * 2012-02-21 2016-03-08 株式会社村田製作所 抵抗スイッチングデバイスおよびその製造方法
US20140241031A1 (en) 2013-02-28 2014-08-28 Sandisk 3D Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236100A (ja) * 1999-02-17 2000-08-29 Sanyo Electric Co Ltd 半導体素子
JP2005167064A (ja) * 2003-12-04 2005-06-23 Sharp Corp 不揮発性半導体記憶装置
JP2005311356A (ja) * 2004-04-16 2005-11-04 Internatl Business Mach Corp <Ibm> 不揮発性抵抗切替メモリのための堆積方法
JP2006324447A (ja) * 2005-05-19 2006-11-30 Sharp Corp 不揮発性記憶素子及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075818A (en) 1989-02-16 1991-12-24 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
JPH0536931A (ja) 1991-07-26 1993-02-12 Olympus Optical Co Ltd メモリ素子及びその製造方法
JP2001210817A (ja) 2000-01-27 2001-08-03 Seiko Epson Corp スイッチング素子
JP4187148B2 (ja) 2002-12-03 2008-11-26 シャープ株式会社 半導体記憶装置のデータ書き込み制御方法
US7291878B2 (en) * 2003-06-03 2007-11-06 Hitachi Global Storage Technologies Netherlands B.V. Ultra low-cost solid-state memory
US6992369B2 (en) * 2003-10-08 2006-01-31 Ovonyx, Inc. Programmable resistance memory element with threshold switching material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236100A (ja) * 1999-02-17 2000-08-29 Sanyo Electric Co Ltd 半導体素子
JP2005167064A (ja) * 2003-12-04 2005-06-23 Sharp Corp 不揮発性半導体記憶装置
JP2005311356A (ja) * 2004-04-16 2005-11-04 Internatl Business Mach Corp <Ibm> 不揮発性抵抗切替メモリのための堆積方法
JP2006324447A (ja) * 2005-05-19 2006-11-30 Sharp Corp 不揮発性記憶素子及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462539B2 (en) 2009-02-20 2013-06-11 Murata Manufacturing Co., Ltd. Resistive memory element and use thereof
US8542520B2 (en) 2009-02-20 2013-09-24 Murata Manufacturing Co., Ltd. Resistive memory element and use thereof

Also Published As

Publication number Publication date
JPWO2008007481A1 (ja) 2009-12-10
JP5251506B2 (ja) 2013-07-31
US7649768B2 (en) 2010-01-19
US20090109730A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
WO2008007481A1 (en) Resistive memory device
JP5012891B2 (ja) 抵抗記憶素子
US8106375B2 (en) Resistance-switching memory based on semiconductor composition of perovskite conductor doped perovskite insulator
CN111564310B (zh) 多层陶瓷电容器
JP4292901B2 (ja) バリスタ
JP5662888B2 (ja) 多積層圧電セラミックス部品
EP2159205A1 (en) Piezoelectric ceramic composition and piezoelectric-ceramic electronic part
JP5704725B2 (ja) 圧電セラミックス及び圧電素子
TW201003683A (en) A method of making zinc oxide varistor
JP4650695B2 (ja) 圧電体磁器組成物及び圧電セラミック電子部品
US6542067B1 (en) Barium titanate semiconductor ceramic powder and laminated semiconductor ceramic device
WO2015116066A1 (en) Oxygen conducting bismuth perovskite material
EP3127889B1 (en) Semiconductor ceramic composition and ptc thermistor
JP5196879B2 (ja) 圧電材料
JP5429287B2 (ja) 抵抗スイッチング・メモリー素子
JP5282384B2 (ja) 抵抗記憶素子およびスイッチング回路
WO2019106994A1 (ja) セラミック部材
CN111971759A (zh) 用于高温应用的变阻器
Chen et al. HfOx thin films for resistive memory device by use of atomic layer deposition
EP2695869A1 (en) Semiconductor ceramic, and positive temperature coefficient thermistor
JP6039715B2 (ja) 圧電セラミックス及び圧電素子
Zhang et al. Effects of Mg Doping Concentration on Resistive Switching Behavior and Properties of SrTi 1− y Mg y O 3 Films
TWI425623B (zh) 非揮發性電阻式記憶體
JP2004063693A (ja) 電圧非直線抵抗体、および積層型バリスタ
JP2007250517A (ja) 電子放出素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524728

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07739430

Country of ref document: EP

Kind code of ref document: A1