WO2008004403A1 - Panneau à cristaux liquides et appareil d'affichage à cristaux liquides - Google Patents

Panneau à cristaux liquides et appareil d'affichage à cristaux liquides Download PDF

Info

Publication number
WO2008004403A1
WO2008004403A1 PCT/JP2007/061600 JP2007061600W WO2008004403A1 WO 2008004403 A1 WO2008004403 A1 WO 2008004403A1 JP 2007061600 W JP2007061600 W JP 2007061600W WO 2008004403 A1 WO2008004403 A1 WO 2008004403A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sensitive adhesive
adhesive layer
pressure
crystal panel
Prior art date
Application number
PCT/JP2007/061600
Other languages
English (en)
French (fr)
Inventor
Masayuki Satake
Yuusuke Toyama
Naotaka Kinjou
Takashi Shimizu
Kentarou Yoshida
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to CN2007800240037A priority Critical patent/CN101479652B/zh
Priority to US12/306,847 priority patent/US8189149B2/en
Priority to EP07744920.5A priority patent/EP2037317B1/en
Publication of WO2008004403A1 publication Critical patent/WO2008004403A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • Liquid crystal panel and liquid crystal display device Liquid crystal panel and liquid crystal display device
  • the present invention relates to a liquid crystal panel and a liquid crystal display device.
  • a liquid crystal panel of a liquid crystal display device generally includes a liquid crystal cell and polarizing plates disposed on both sides of the liquid crystal cell.
  • the liquid crystal cell includes two liquid crystal cell substrates, a spacer interposed between the two substrates, and a liquid crystal material injected into a gap between the two substrates.
  • the liquid crystal cell into which the liquid crystal material is injected has birefringence in itself and produces a phase difference.
  • an optical compensation layer is usually provided between the liquid crystal cell and the polarizing plate (for example, Patent Document 1).
  • optical films such as polarizing plates are usually attached to a liquid crystal cell via an adhesive.
  • an acrylic pressure-sensitive adhesive is generally used from the viewpoint of transparency and durability.
  • Patent Document 1 Japanese Published Patent Publication 2003—344658
  • the optical film easily expands and contracts under heating conditions and humidification conditions. For this reason, after the optical film is attached, the optical film tends to float or peel off as the optical film expands and contracts.
  • the film contracts relatively greatly in the main stretching direction when heat is applied.
  • the liquid crystal panel When the optical film shrinks in this way, the liquid crystal panel is bent along with it, so that light leakage of the liquid crystal panel is likely to occur. Due to the light leakage, for example, there is a problem that the black display level at the peripheral portion of the panel is lowered in the black display state of the liquid crystal panel.
  • An object of the present invention is to provide a liquid crystal panel and a liquid crystal display device that can suppress light leakage at the peripheral edge of the panel accompanying shrinkage of an optical film.
  • the liquid crystal panel of the present invention has a first optical film on the viewing side of the liquid crystal cell via a first adhesive layer.
  • a liquid crystal panel in which the second optical film is bonded to the opposite side of the liquid crystal cell via the second pressure-sensitive adhesive layer, and the creep amount (L1) of the first pressure-sensitive adhesive layer is 50 to 3000. / im, the creep amount (L2) of the second adhesive layer is 10 to 400 ⁇ , and the creep amount (L1) of the first adhesive layer is larger than the creep amount (L2) of the second adhesive layer Features.
  • the creep value indicates the thickness 20 xm of the adhesive layers, at the adhesion area of 10 mm 2, the shift amount after one hour in case of adding a tensile shear strength of 4. 9N at 23 ° C.
  • the specific measurement method is as described in the examples.
  • At least one of the first optical film and the second optical film includes a polarizer.
  • the first optical film and the second optical film are polarizing plates including a polarizer, and the absorption axis direction of the polarizer of the first optical film is on the long side of the liquid crystal panel.
  • the polarizers of the second optical film are arranged substantially in parallel, and the absorption axis direction of the polarizer of the second optical film is arranged substantially parallel to the short side of the liquid crystal panel.
  • the polarizer includes a stretched film, and the absorption axis of the polarizer is formed in the main stretch direction of the stretched film.
  • a preferred liquid crystal panel of the present invention has a ratio (L1 / L2) of the creep amount (L1) of the first pressure-sensitive adhesive layer to the creep amount (L2) of the second pressure-sensitive adhesive layer of 30 or less.
  • the ratio (L1 / L2) of the creep amount (L1) of the first pressure-sensitive adhesive layer to the creep amount (L2) of the second pressure-sensitive adhesive layer is 2 or more.
  • the ratio (L1 / L2) of the creep amount (L1) of the first pressure-sensitive adhesive layer to the creep amount (L2) of the second pressure-sensitive adhesive layer is 5 to 20.
  • a preferred liquid crystal panel of the present invention has a bezel on the periphery of the panel.
  • the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer contain an acrylic pressure-sensitive adhesive as a main component.
  • a liquid crystal display device of the present invention has any one of the above liquid crystal panels.
  • the liquid crystal panel and the liquid crystal display device of the present invention prevent light leakage at the peripheral edge of the panel.
  • a good image display can be expressed in the entire panel.
  • the first optical film and the second optical film include a polarizer including a stretched film, the absorption axis direction of the polarizer of the first optical film is disposed substantially parallel to the long side of the liquid crystal panel, and the second optical film
  • a liquid crystal panel in which the absorption axis direction of the film polarizer is arranged substantially parallel to the short side of the liquid crystal panel can further prevent light leakage at the peripheral edge of the panel.
  • FIG. 1 is an exploded reference perspective view showing an embodiment of a liquid crystal panel of the present invention.
  • FIG. 2 is a vertical cross-sectional view omitting the central portion showing an embodiment of the liquid crystal panel of the present invention.
  • FIG. 3 is a reference perspective view showing the arrangement of a polarizing plate on the opposite side to the polarizing plate on the viewing side.
  • FIG. 4 is a reference diagram showing the curved state of the liquid crystal panel.
  • FIG. 5 is a reference cross-sectional view showing a method for measuring the amount of creep deviation.
  • the first optical film is bonded to the viewing side of the liquid crystal cell via the first pressure-sensitive adhesive layer, and the second pressure-sensitive adhesive layer is connected to the opposite side of the liquid crystal cell via the second pressure-sensitive adhesive layer.
  • the optical film is bonded, the creep amount of the first adhesive layer (L1) is 50 to 3000 zm, the creep amount of the second adhesive layer (L2) is 10 to 400 xm, and the creep amount of the first adhesive layer is (L1) is larger than the creep amount (L2) of the second pressure-sensitive adhesive layer.
  • the amount of creep displacement (Ll) f of the first adhesive homogeneous IJ layer is preferably 80 to 2500 to 111, more preferably 150 to 2000 ⁇ m force S.
  • the creep amount (L2) of the second pressure-sensitive adhesive layer is preferably 20 to 200/1 111 particles, and more preferably 30 to 150 / im force S.
  • the stress due to the shrinkage of the first optical film is relaxed by the first pressure-sensitive adhesive layer, and deformation of the liquid crystal cell can be prevented.
  • the pressure-sensitive adhesive includes an agent generally called an adhesive.
  • the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer may be collectively referred to as “pressure-sensitive adhesive layer”.
  • the first optical film and the second optical film may be collectively referred to as “optical film”.
  • ⁇ Configuration example of liquid crystal panel> 1 and 2 show an example of a liquid crystal display device including the liquid crystal panel of the present invention.
  • 1 denotes a liquid crystal panel
  • 10 denotes a bezel provided around the liquid crystal panel
  • 100 denotes a light unit provided in the liquid crystal panel 1.
  • the bezel 10 is formed of a known frame-like member in which an opening that exposes the viewing surface (image display surface) of the liquid crystal panel 1 is formed.
  • the bezel 10 includes a side surface portion 11 covering the side portion la of the liquid crystal panel 1 and a rectangular frame-shaped front portion 12 that is bent inward from the side surface portion 11 and covers the viewing surface peripheral portion 1 b of the liquid crystal panel 1. Have.
  • the bezel 10 is attached to the liquid crystal panel 1 in a state where it touches or has a slight gap between the side portion 1 a and the viewing surface peripheral portion 1 b of the liquid crystal panel 1.
  • the light unit 100 is provided on the opposite side of the liquid crystal panel 1 (referred to as a so-called backlight unit).
  • reference numeral 2 denotes a liquid crystal cell.
  • 3 shows a first pressure-sensitive adhesive layer provided on the viewing side of the liquid crystal cell 2.
  • 4 shows a first optical film adhered to the liquid crystal cell 2 via the first pressure-sensitive adhesive layer 3.
  • 5 shows a second pressure-sensitive adhesive layer provided on the opposite side of the liquid crystal cell.
  • 6 shows a second optical film adhered to the liquid crystal cell 2 via the second pressure-sensitive adhesive layer 5.
  • first and second are added for the sake of convenience to distinguish the constituent members. Accordingly, the terms “first” and “second” do not mean the order or superiority of the optical film and the pressure-sensitive adhesive layer.
  • the viewing surface of the liquid crystal panel 1 is formed in a rectangular shape when viewed from the front. Accordingly, the horizontal length of the viewing surface of the liquid crystal panel 1 is longer than the vertical length.
  • the liquid crystal cell 2 a conventionally known liquid crystal cell can be used.
  • the liquid crystal cell 2 includes a pair of liquid crystal cell substrates, a spacer interposed between the liquid crystal cell substrates, a liquid crystal material placed between the pair of liquid crystal cell substrates, and a liquid crystal on the viewing side.
  • a color filter provided on the inner surface of the cell substrate; and an electrode element such as a driving TFT substrate provided on the inner surface of the other liquid crystal cell substrate.
  • the liquid crystal cell substrate is not particularly limited as long as it has excellent transparency.
  • Liquid crystal cell substrate is an example
  • transparent glass plates such as soda-lime glass, low alkali borosilicate glass, non-alkali aluminoborosilicate glass
  • optical resin plates such as polycarbonate, polymethyl methacrylate, polyethylene terephthalate, epoxy resin
  • a transparent substrate having properties can be used.
  • the liquid crystal material is not particularly limited as long as it is a material exhibiting a liquid crystal phase.
  • the mode of the liquid crystal cell 2 can also be selected as appropriate.
  • the liquid crystal cell 2 can adopt any mode such as VA type, IPS type, TN type, STN type, OCB type, for example. Above all, VA type (vertical alignment type) liquid crystal cell 2 is preferable because it can achieve very high contrast and contrast.
  • a pressure-sensitive adhesive in which the creep amount (L1) of the first pressure-sensitive adhesive layer 3 is 50 to 3000 zm is used.
  • a pressure-sensitive adhesive having a creep displacement (L 1) of 80 to 2500 ⁇ m of the first pressure-sensitive adhesive layer 3 is used, and more preferably, a pressure-sensitive adhesive having a creep displacement of 150 to 2000 ⁇ m is used.
  • a pressure-sensitive adhesive in which the creep amount (L2) of the second pressure-sensitive adhesive layer 5 is 10 to 400 ⁇ m is used.
  • a pressure-sensitive adhesive having a creep displacement amount (L2) of 20 to 200 ⁇ of the second pressure-sensitive adhesive layer 5 is used, and more preferably a pressure-sensitive adhesive having a crepe displacement amount of 30 to 150 / m.
  • the pressure-sensitive adhesive constituting the first pressure-sensitive adhesive layer 3 and the second pressure-sensitive adhesive layer 5 has a creep shift amount (L1) of the first pressure-sensitive adhesive layer 3 larger than a creep shift amount (L2) of the second pressure-sensitive adhesive layer 5.
  • a larger adhesive is used.
  • the ratio (L1 / L2) between the creep amount (L1) of the first pressure-sensitive adhesive layer 3 and the creep amount (L2) of the second pressure-sensitive adhesive layer 5 is 30 or less, preferably 20 or less.
  • the ratio (L1 / L2) of the creep amount (L1) of the first pressure-sensitive adhesive layer 3 to the creep amount (L2) of the second pressure-sensitive adhesive layer 5 is 2 or more, preferably 5 or more.
  • the creep ratio (L1 / L2) is particularly preferably 5-20.
  • an acrylic pressure-sensitive adhesive for the first pressure-sensitive adhesive layer 3 and the second pressure-sensitive adhesive layer 5
  • an acrylic pressure-sensitive adhesive for example, an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or the like can be used.
  • an acrylic pressure-sensitive adhesive is preferable because of its excellent transparency and weather resistance.
  • the thicknesses of the first pressure-sensitive adhesive layer 3 and the second pressure-sensitive adhesive layer 5 are not particularly limited, but are about 5 to 40 ⁇ m in dry film thickness, preferably about 10 to 30 ⁇ m in dry film thickness.
  • the acrylic pressure-sensitive adhesive used for the first pressure-sensitive adhesive layer 3 and the second pressure-sensitive adhesive layer 5 will be described in detail below.
  • first optical film 4 and the second optical film 6 various conventionally known films can be used.
  • a polarizing plate 41 (hereinafter referred to as a first polarizing plate 41) can be used as the first optical film 4.
  • a polarizing plate 61 having an optical compensation layer 65 (hereinafter referred to as a second polarizing plate 61) can be used.
  • This optical compensation layer 65 may be composed of a single layer or may be composed of two or more layers.
  • the optical compensation layer 65 may be provided directly on the surface of the polarizing plate 61, or may be bonded via a conventionally known adhesive.
  • the first polarizing plate 41 is directly bonded to the viewing surface of the liquid crystal cell 2 via the first pressure-sensitive adhesive layer 3.
  • the second polarizing plate 61 having the optical compensation layer 65 is directly bonded to the opposite surface of the liquid crystal cell 2 via the second pressure-sensitive adhesive layer 5.
  • another optical film may be interposed between the first polarizing plate 41 and Z or the second polarizing plate 61 and the liquid crystal cell 2.
  • Each of the polarizing plates 41 and 61 includes a polarizer that extracts linearly polarized light.
  • Each of the polarizing plates 41 and 61 preferably includes a polarizer and a protective film laminated on one surface of the polarizer, more preferably a polarizer and a protective film laminated on both surfaces of the polarizer. including.
  • the type of the polarizer is not particularly limited, but is preferably a stretched film on which iodine is adsorbed.
  • the polarizer made of the stretched film has an absorption axis in the main stretching direction of the film.
  • FIG. 2 illustrates a first polarizing plate 41 and a second polarizing plate 61 in which protective films 43 and 63 are laminated on both surfaces of the polarizers 42 and 62.
  • the protective film 43 is bonded to the viewing surface of the liquid crystal cell 2 via the first pressure-sensitive adhesive layer 3.
  • the second polarizing plate 61 is bonded to the opposite surface of the liquid crystal cell 2 by bonding the optical compensation layer 65 to the opposite surface of the liquid crystal sensor 2 via the second pressure-sensitive adhesive layer 5.
  • optical film such as the polarizer, the protective film and the optical compensation layer
  • the first polarizing plate 41 and the second polarizing plate 61 are arranged so that the respective absorption axis directions are substantially orthogonal.
  • the first polarizing plate 41 is bonded to the liquid crystal cell 2 so that the absorption axis direction A4 of the polarizer 42 is substantially parallel to the long side (lateral) direction X of the liquid crystal panel.
  • the polarizing plate 61 is adhered to the liquid crystal cell 2 so that the absorption axis direction A6 of the polarizer 62 is substantially parallel to the short side (longitudinal) direction Y of the liquid crystal panel.
  • substantially parallel means that the angle formed by the absorption axis direction A4 and the long side direction X and the angular force formed by the absorption axis direction A6 and the short side direction Y include 0 ° ⁇ 5 °.
  • the liquid crystal panel 1 of the present invention can prevent bending under heating conditions and the like, and can suppress light leakage at the peripheral edge of the panel. It is considered that the light leakage suppression of the liquid crystal panel 1 of the present invention is caused by the following action.
  • the optical film contracts when heat generated during driving of the liquid crystal panel is applied to the optical film. With this contraction, the liquid crystal panel is curved.
  • the film shrinks greatly in the stretching direction when heat is applied. For this reason, as a result of the shrinkage stress being applied to the liquid crystal cell, the liquid crystal panel is greatly bent.
  • the peripheral edge of the panel comes into strong contact with the bezel, and light leakage occurs at the peripheral edge of the panel.
  • the absorption axis direction A4 of the polarizer 42 of the first polarizing plate 41 is arranged substantially parallel to the long side of the liquid crystal panel 1 as described above. That is, the polarizer 42 is arranged so that the extending direction of the polarizer 42 is substantially parallel to the long side of the liquid crystal panel 1 (a polarizer made of a stretched film has an absorption axis in the main extending direction). For this reason, the first polarizing plate 41 contracts greatly in the long side direction of the liquid crystal panel 1 under heating conditions. When the first polarizing plate 41 contracts in the long side direction of the liquid crystal panel 1, the liquid crystal panel 1 is curved in a concave shape. It should be noted that “curved in a concave shape” means that the viewing surface central portion C of the liquid crystal panel 1 is curved so as to protrude to the opposite side of the viewing surface I as shown in FIG. 4 (a).
  • the first pressure-sensitive adhesive layer 3 to which the first polarizing plate 41 is bonded has a creep displacement larger than that of the second pressure-sensitive adhesive layer 5, and the creep displacement (L1) is 50 to 3000 zm. Therefore, the first adhesive layer 3 sufficiently relaxes the contraction stress when the first polarizing plate 41 contracts in the long side direction, and suppresses the liquid crystal panel 1 from being greatly curved in a concave shape.
  • the absorption axis direction A 6 of the polarizer 62 is arranged in a direction substantially orthogonal to the long side of the liquid crystal panel 1. That is, the stretching direction of the polarizer 62 is liquid crystal
  • the panel 1 is arranged so as to be substantially orthogonal to the long side. Therefore, the second polarizing plate 61 slightly contracts in the long side direction of the liquid crystal panel 1 under a heating condition or the like.
  • the liquid crystal panel 1 is curved in a convex shape. It should be noted that this convex curve means that the center portion C of the viewing surface of the liquid crystal panel 1 is curved so as to protrude toward the viewing surface I as shown in FIG. 4 (b).
  • the second pressure-sensitive adhesive layer 5 to which the second polarizing plate 61 is bonded has a smaller creep amount than that of the first pressure-sensitive adhesive layer 3, and the creep amount (L2) is 10 to 400 zm. For this reason, the second pressure-sensitive adhesive layer 5 is less likely to relieve the shrinkage stress than the first pressure-sensitive adhesive layer 3. Accordingly, the second polarizing plate 61 is easily applied to the liquid crystal cell when the second polarizing plate 61 slightly contracts in the long side direction. As a result, the liquid crystal panel 1 is slightly curved in a convex shape.
  • the present invention allows the liquid crystal cell 2 to be slightly curved into a convex shape due to the contraction of the second polarizing plate 61 while suppressing the liquid crystal cell 2 from being greatly curved into a concave shape due to the contraction of the first polarizing plate 41.
  • the concave curve and the convex curve of the liquid crystal cell 2 cancel each other. Therefore, it is considered that the liquid crystal panel 1 of the present invention can prevent light leakage at the peripheral edge of the panel as a result of the liquid crystal panel 1 as a whole being difficult to bend under heating conditions (ie, maintaining a flat state). .
  • the absorption axis direction A4 of the polarizer 42 of the first polarizing plate 41 is disposed substantially parallel to the long side of the panel 1 and the second polarizing plate 61
  • the absorption axis direction A6 of the polarizer 62 is preferably arranged in a direction substantially orthogonal to the absorption axis direction A4 of the polarizer 42 of the first polarizing plate 41.
  • the liquid crystal panel 1 of the present invention is not limited to this arrangement and can be variously changed.
  • the absorption axis direction of the polarizer of the first polarizing plate is arranged at 45 ° ⁇ 5 ° with respect to the long side direction of the liquid crystal panel, and the polarizer of the second polarizing plate
  • the absorption axis direction may be arranged so as to be substantially orthogonal to the absorption axis direction of the first polarizing plate (not shown).
  • the absorption axis direction of the polarizer of the first polarizing plate is disposed substantially parallel to the short side of the liquid crystal panel, and the absorption axis direction of the polarizer of the second polarizing plate is the first polarization plate. It may be arranged in a direction substantially orthogonal to the absorption axis direction of the plate (not shown).
  • the liquid crystal panel 1 includes a polarization having an optical compensation layer 65 as the second optical film 6.
  • the power that exemplifies the plate 61 is not limited to this.
  • a polarizing plate including an optical compensation layer can be used as the first optical film 4.
  • both the first optical film 4 and the second optical film 6 can use a polarizing plate provided with an optical compensation layer.
  • the first optical film 4 and / or the second optical film 6 may include other layers and films in addition to the polarizer, the protective film, and the optical compensation layer.
  • the backlight unit 100 preferably eliminates the light source 81, the reflection fin 82, the diffusion plate 83, and the prism sheet 84. .
  • the present invention is not limited to the liquid crystal panel 1 having the backlight unit 100.
  • the liquid crystal panel 1 of the present invention may be a transmissive or transflective type (not shown) in which a light source (front light) is disposed on the viewing side or a light source (side light) is disposed on the side of the panel.
  • the liquid crystal panel 1 of the present invention may be a reflection type using an external fluorescent lamp or sunlight as a light source (not shown).
  • the acrylic pressure-sensitive adhesive constituting the pressure-sensitive adhesive of the present invention uses a (meth) acrylic polymer having an alkyl (meth) acrylate monomer unit as the main skeleton as a base polymer.
  • (Meth) acrylic means acryl and / or methacryl, and (meth) acrylate refers to acrylate and / or metatalylate.
  • the alkyl group of the alkyl (meth) acrylate constituting the main skeleton of the acrylic polymer has a carbon number of:! To about 18, preferably 1 to 9.
  • strong alkyl (meth) acrylates include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n_butyl (meth) acrylate, iso _butyl (Meth) acrylate, 2_ethyl hexyl (meth) acrylate, n_ octyl (meth) acrylate, iso-octyl (meth) acrylate, laurinore (meth) acrylate, isononyl (meth) acrylate , Stearinole (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
  • Alkyl (meth) acrylates can be used
  • the (meth) acrylic polymer has one or more types for the purpose of improving adhesion and heat resistance.
  • a seed monomer is introduced by copolymerization.
  • Such copolymerization monomers include hydroxyl group-containing (meth) acrylic monomers; carboxyl group-containing monomers such as (meth) acrylic acid; acid anhydride group-containing monomers such as anhydrous maleic acid; Sulfonic acid group-containing monomers such as styrene sulfonic acid; phosphoric acid group-containing monomers.
  • a hydroxyl group-containing (meth) aryl monomer and a carboxyl group-containing monomer are preferably used.
  • hydroxyl group-containing (meth) acrylic monomer examples include, for example, 2-hydroxyethylenol (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxy.
  • These hydroxyl group-containing (meth) acrylic monomers can be used alone or in combination of two or more.
  • the hydroxyl group-containing (meth) acrylic monomer preferably has an alkyl group in hydroxyalkyl having 4 or more carbon atoms.
  • a hydroxy group-containing (meth) acrylic monomer having a hydroxyalkyl alkyl group of 4 or more carbon atoms is introduced into a (meth) acrylic polymer, the alkyl group has a carbon number of the hydroxyl group-containing (meth) acrylic monomer. It is preferable to use an alkyl (meth) acrylate having the same number or less as the carbon number of the alkyl group.
  • alkyl having a smaller number of carbon atoms than butyl (meth) acrylate or butyl (meth) acrylate is preferred. It is preferred to use alkyl (meth) acrylates having groups.
  • the copolymerization amount of the copolymerizable monomer such as a hydroxyl group-containing (meth) acrylic monomer is 0.01 to 10 parts by weight with respect to 100 parts by weight of the alkynole (meth) acrylate.
  • the copolymerization amount of the hydroxyl group-containing (meth) acrylic monomer is less than 0.01 parts by weight, the number of crosslinking points with the isocyanate cross-linking agent is decreased, which is not preferable in terms of adhesion to an optical film and durability. is there.
  • the amount exceeds 10 parts by weight the number of cross-linking points becomes too large, which is not preferable.
  • the copolymerization amount of the copolymerization monomer is preferably 0.01 to 5 parts by weight, and more preferably 0.03 to 3 parts by weight with respect to 100 parts by weight of the alkyl (meth) acrylate.
  • the (meth) acrylic polymer may contain other copolymerization components in addition to the alkyl (meth) acrylate and the hydroxyl group-containing (meth) acrylic monomer.
  • examples of other copolymerization components include benzinole (meth) acrylate, methoxyethyl (meth) acrylate, amide, butyl acetate, (meth) acrylonitrile and the like.
  • other copolysynthetic components are not limited to these.
  • the copolymerization amount of the other copolymerization component is 100 parts by weight or less, preferably 50 parts by weight or less, with respect to 100 parts by weight of the alkyl (meth) acrylate.
  • the average molecular weight of the (meth) acrylic polymer is not particularly limited, but is preferably about 500,000 to 2.5 million in weight average molecular weight.
  • the (meth) acrylic polymer can be produced by a known method.
  • radical polymerization methods such as Balta polymerization method, solution polymerization method, suspension polymerization method and the like can be appropriately selected.
  • the radical polymerization initiator various known polymerization initiators such as azo and peroxides can be used.
  • the reaction temperature is usually about 50-80 ° C, and the reaction time is:! -8 hours.
  • the solution polymerization method is preferable.
  • As a solvent for (meth) acrylic polymer ethyl acetate, toluene or the like is generally used.
  • the solution concentration is usually about 20-80% by weight.
  • the peroxide remaining without being used in the polymerization reaction can also be used in the crosslinking reaction described later.
  • the acrylic pressure-sensitive adhesive of the present invention further contains a crosslinking agent.
  • the crosslinking agent include isocyanate compounds and peroxides.
  • Isocyanate compounds include tolylene diisocyanate, chlorodiylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and other isocyanate monomers.
  • Adisocyanate compounds such as compounds obtained by adding these isocyanate monomers to polyhydric alcohols such as trimethylolpropane; isocyanurates; burette type compounds; polyether polyols, polyester polyols, acrylic polyols, polybutadiene polyols, polyisoprene polyols And urethane prepolymers obtained by addition reaction of the above; and the like.
  • optical fiber is used. From the standpoint of improving adhesion to rum, adduct isocyanate compounds such as xylylene diisocyanate are preferred.
  • the amount of the isocyanate compound used can be set to an appropriate amount so that the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer have the above-mentioned tally displacement amount.
  • This setting is unclear because it also affects the material and molecular weight of the (meth) acrylic polymer.
  • the greater the number of cross-linking points the smaller the amount of creep of the acrylic adhesive. Therefore, in general, the acrylic pressure-sensitive adhesive composition constituting the first pressure-sensitive adhesive layer uses a smaller amount of isocyanate compound than the acrylic pressure-sensitive adhesive composition constituting the second pressure-sensitive adhesive layer. Is done.
  • the amount of isocyanate compound used is 0.00 :! to 2 parts by weight, preferably 0.01 to 1.5 parts by weight, based on 100 parts by weight of the (meth) acrylic polymer. Preferably it is 0.02 to 1 part by weight. This is because when the amount of the isocyanate compound used is less than 0.001 part by weight, it is preferable in terms of adhesion to the optical film and durability.
  • any peroxide that can generate a radical by heating to achieve crosslinking of the (meth) acrylic polymer can be used without particular limitation.
  • the peroxide has a one-minute half-life temperature of about 70 to 170 ° C, preferably 90 to 150 ° C. If a peroxide with a half-life temperature too low for 1 minute is used, the crosslinking reaction will proceed before the adhesive is applied, and as a result, the viscosity of the coated product will increase and the coating may become impossible. Because.
  • the half-life of the peroxide is an index representing the decomposition rate of the peroxide, and is a time during which the decomposition amount of the peroxide is halved.
  • the decomposition temperature for obtaining a half-life at an arbitrary time and the half-life time at an arbitrary temperature are described in the manufacturer catalog. For example, it is described in Nippon Oil & Fats Co., Ltd. Organic Peroxide Catalog 9th Edition ( May 2003).
  • Examples of the peroxide include di (2-ethylhexyl) peroxydicarbonate, di (4_t_butynolecyclohexenole) peroxydicarbonate, di-sec_butynoleperoxide. Sidicarbonate, t-butylperoxyneodecanoate, t-xyperoxybivalate, t-butylperoxybivalate, dilauroyl peroxide, di-n-otatanyl peroxide, 1, 1, 3, 3-tetramethyl Examples include butyl peroxyisobutylate and dibenzoyl peroxide (BPO). Of these, di (4_t-butylcyclohexyl) peroxydicarbonate, dilauroyl peroxide, and dibenzoyl peroxide are preferably used because of particularly excellent bridge reaction efficiency.
  • the amount of peroxide used can be set to an appropriate amount so that the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer have the above-mentioned creep amount.
  • the amount of peroxide used is 0.02 2 parts by weight, preferably 0.05 1 part by weight, more preferably 0.06 0.5 part by weight, per 100 parts by weight of the (meth) acrylic polymer. It is. This is because if the amount of peroxide used is less than 0.02 parts by weight, the crosslinking reaction becomes insufficient, which is not preferable from the viewpoint of durability. On the other hand, if the amount used exceeds 2 parts by weight, excessive crosslinking may occur.
  • the acrylic pressure-sensitive adhesive of the present invention may contain various additives as required.
  • An additive is mix
  • additives include tackifiers, plasticizers, fillers (eg, glass fibers, glass beads, metal powders, other inorganic powders), pigments, colorants, antioxidants, ultraviolet absorbers, silane couplings. Agents and the like.
  • the adhesive which shows light diffusivity can also be comprised by making an adhesive contain microparticles
  • the acrylic pressure-sensitive adhesive of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent can impart durability, particularly an effect of suppressing peeling in a humidified environment, to the adhesive.
  • Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2_ (3_epoxycyclohexyl) ethyltrimethoxysilane, and other epoxy structures.
  • Elemental compounds amino group-containing cages such as 3-aminopropyltrimethoxysilane, N— (2 aminoethyl) 3 aminopropyltrimethoxysilane, N— (2-aminoethyl) 3-aminopropylmethyldimethoxysilane Compound; 3-chloropropyltrimethoxysilane; trimethoxysilane containing acetoacetyl group, 3-a (Meth) acryl group-containing silane coupling agent; 3-isocyanate propyl triethoxy silane coupling agent such as isocyanate group-containing silane coupling agent;
  • 3-glycidoxypropyltrimethoxysilane and acetocetyl group-containing trimethoxysilane are preferred because they can effectively suppress peeling of the optical film.
  • the amount of the silane coupling agent used is 1 part by weight or less, preferably 0.01-1 part by weight, more preferably 0.02-0.6 parts by weight per 100 parts by weight of the (meth) acrylic polymer. Part.
  • the amount of the silane coupling agent used is increased, the adhesive force to the liquid crystal cell increases too much, which may affect the reworkability.
  • An anchor coat layer may be provided between the first pressure-sensitive adhesive layer and / or the second pressure-sensitive adhesive layer and the optical film.
  • the material for forming the anchor coat layer is not particularly limited, but a compound that exhibits good adhesion to both the pressure-sensitive adhesive layer and the optical film and can form a film having excellent cohesive strength is preferable.
  • As the anchor coat layer exhibiting such properties various polymers, metal oxide sols, silica sols and the like can be used. Of these, polymers are particularly preferred.
  • Examples of the polymers include polyurethane resins, polyester resins, and polymers containing an amino group in the molecule.
  • the polymer may be used in any of solvent-soluble type, water-dispersed type, and water-soluble type. Examples include water-soluble polyurethanes, water-soluble polyesters, water-soluble polyamides, and water-dispersible resins (such as ethylene acetate butyl emulsion and (meth) acrylate emulsion).
  • Water-dispersed polymers include polymers obtained by emulsifying various resins such as polyurethane, polyester, and polyamide using an emulsifier, and water-dispersible hydrophilic groups such as an anion group, a cationic group, or the like. A self-emulsified product into which a nonionic group has been introduced can be used. In addition, it is possible to use ionic polymer complexes.
  • the polymer has a functional group reactive with the isocyanate compound in the acrylic pressure-sensitive adhesive.
  • the polymer having a reactive functional group preferably includes a polymer having an amino group in the molecule, and more preferably includes a polymer having a primary amino group at the terminal.
  • Examples of the polymer having an amino group in the molecule include polyethyleneimine, polyallylamine, and polymer.
  • examples thereof include polymers of amino group-containing monomers such as libulamine, polybutyrpyridine, polybutyrpyrrolidine, dimethylaminoethyl acrylate, and the like.
  • polyethyleneimine is preferable as the polymer having an amino group.
  • the polyethyleneimine is not particularly limited and can be used as appropriate.
  • the weight average molecular weight of polyethyleneimine is not particularly limited, but is usually about 1 to 1 million.
  • Examples of such commercially available polyethyleneimine products are those manufactured by Nippon Shokubai Co., Ltd .: Epomin SP series (SP-003, SP006, SP012, SP018, SP103, SP110, SP200, etc.), Epomin P_ 1000 mag. Of these, the trade name: Epomin P-100 0 is preferred.
  • the polyethyleneimine should have a polyethylene structure.
  • the polyethyleneimine include an ethyleneimine adduct to polyacrylic acid ester and a product with Z or polyethyleneimine.
  • the polyacrylic acid ester can be obtained by emulsion polymerization of various alkyl (meth) acrylates and their copolymer monomers exemplified in the (meth) acrylic polymer according to a conventional method.
  • the copolymerization monomer a monomer having a functional group such as a carboxyl group is used for reacting ethyleneimine or the like. The proportion of the monomer having a functional group such as a carboxyl group is appropriately adjusted depending on the proportion of ethyleneimine to be reacted.
  • a styrene monomer is preferably used as the copolymerization monomer. Further, by reacting a separately synthesized polyethyleneimine with a carboxyl group or the like in an acrylate ester, an adduct of polyethyleneimine in a graph M can be obtained.
  • a commercially available product of polyethyleneimine Polyment NK-380, 350 manufactured by Nippon Shokubai Co., Ltd. is particularly preferred.
  • polyethyleneimine an acrylic polymer emulsion with ethyleneimine and / or a polyethyleneimine adduct can be used.
  • An example of this commercial product is POLYMENT SK-1000 manufactured by Nippon Shokubai Co., Ltd.
  • the polyallylamine is not particularly limited and includes, for example, diallylamine hydrochloride-sulfur dioxide copolymer, diallylmethylamine hydrochloride copolymer, polyallylamine hydrochloride, polyallylamine compounds such as polyallylamine, Condensates of polyalkylene polyamines such as diethylenetriamine and dicarboxylic acids, adducts of their epihalohydrins, polybulaamine For example.
  • Polyallylamine is preferably used because it is soluble in water or alcohol.
  • the weight average molecular weight of polyallylamine is not particularly limited, but is preferably about 10,000 to 100,000.
  • the anchor coat layer forming material may be mixed with a polymer that reacts with the polymer in addition to the polymer containing an amino group in the molecule.
  • the compound can improve the strength of the anchor coat layer formed by crosslinking with polymers containing amino groups.
  • Examples of the compound that reacts with a polymer containing an amino group include an epoxy compound.
  • the acrylic pressure-sensitive adhesive constituting the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is usually applied to one surface of an optical film and used in the form of an optical film with a pressure-sensitive adhesive. In use, the optical film with the adhesive is stuck to the liquid crystal cell via the adhesive.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include a method of applying a pressure-sensitive adhesive solution on an optical film and drying, a method of transferring with a release sheet provided with a pressure-sensitive adhesive, and the like.
  • a coating method roll coating methods such as reverse coating and gravure coating, spin coating methods, screen coating methods, fountain coating methods, dating methods and spray methods can be adopted.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably about 10 to 40 ⁇ m.
  • Examples of the release sheet include paper, polyethylene, polypropylene, polyethylene terephthalate and other synthetic resin films, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, laminates thereof, and the like. There is a thin leaf body.
  • the surface of the release sheet is subjected to a low-adhesion release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment as necessary in order to enhance the peelability from the adhesive layer. Moyore.
  • the pressure-sensitive adhesive layer is formed after the anchor coat layer is formed on the optical film.
  • a solution of an anchor component such as a polyethyleneimine aqueous solution is applied and dried using a coating method such as a coating method, a dating method, or a spray method to form an anchor coat layer.
  • the anchor coat layer has a thickness of about 10 to 500 nm, preferably about 50 to 500 nm. If the thickness of the anchor coat layer is too thin, sufficient strength is not exhibited and sufficient adhesion is obtained. It may not be possible. If the anchor coat layer is too thick, the optical characteristics may be deteriorated.
  • the optical film can be activated.
  • Various methods can be used for the activation treatment, such as corona treatment, low-pressure UV treatment, and plasma treatment.
  • an antistatic layer can be formed on the optical film.
  • Each layer such as the optical film and the pressure-sensitive adhesive layer may have an ultraviolet absorption performance.
  • each layer may be treated with an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound. Can be mentioned.
  • a polarizer is an optical film for obtaining specific polarized light.
  • the polarizer include hydrophilic polymer films (polyvinyl alcohol film, partially formalized polyvinyl alcohol film, ethylene / vinyl acetate copolymer partially saponified film, etc.
  • the polarizer is preferably a stretched film in which a dichroic substance such as iodine is adsorbed on a polyvinyl alcohol film.
  • the thickness of the polarizer is not particularly limited, but is generally about 5 to 80 / im.
  • a polarizer made of the stretched film can be produced by, for example, dyeing a polyvinyl alcohol film by immersing it in an aqueous solution of iodine and stretching it 3 to 7 times the original length.
  • the polarizer if necessary, it may be immersed in an aqueous solution of potassium iodide or the like which may contain boric acid, zinc sulfate, zinc chloride and the like.
  • the polybulal alcohol film can be immersed in water and washed before dyeing. By washing the polybutyl alcohol film with water in this way, it is possible to clean the surface of the polybutyl alcohol film and the anti-blocking agent.
  • the stretching treatment may be performed after dyeing with iodine.
  • the stretching process may be performed while dyeing.
  • it can be dyed with iodine after stretching treatment.
  • the stretching treatment may be performed in an aqueous solution of potassium iodide or potassium iodide.
  • the protective film provided on the polarizer is preferably a film excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like.
  • the protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate; cenorelose polymers such as diacetylenorenorose and triacetinoresenorelose; acrylic polymers such as polymethylenomethacrylate; polystyrene, Acrylonitrile 'Styrene polymers such as styrene copolymer (AS resin); Polycarbonate polymers; Polyolefin polymers such as polyethylene, polypropylene, cyclo or norbornene structures, polyolefins such as ethylene monopropylene copolymer; Polymer; Amide polymer such as nylon and aromatic polyamide; Imide polymer; Sulfone polymer; Polyether Sulfon polymer; Polyether ether ketone Polymers: Polyphenylene sulfide
  • the protective film a polymer film described in Japanese Patent Application Publication No. 2001-343529 can also be used.
  • the polymer film includes, for example, (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and (B) a heat having substituted and / or unsubstituted phenyl and nitrile groups in the side chain.
  • a film of a resin composition containing a plastic resin A specific example is a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • a mixed extrusion product of a resin composition or the like can be used.
  • the thickness of the protective film can be determined as appropriate, but in general, from the viewpoint of workability such as strength and handleability, thin film properties, and the like:! To about 500 xm, preferably 5 to 200 xm It is. [0060] Further, it is preferable that the protective film be as colored as possible.
  • a protective film having excellent transparency preferably has a retardation value (Rth) in the film thickness direction of visible light at 23 ° C. of 90 nm to +75 nm.
  • Nx represents the refractive index in the slow axis direction in the plane of the film
  • nz represents the refractive index in the thickness direction of the film
  • d represents the film thickness [nm].
  • the protective film a cellulose-based polymer film such as triacetyl cellulose is preferably used from the viewpoints of polarization characteristics and durability. More preferably, the protective film is a polymer film containing triacetyl cellulose. If protective films are provided on both sides of the polarizer, both protective films may be the same polymer film or different polymer films.
  • the polarizer and the protective film are usually bonded via an aqueous adhesive or the like.
  • water-based pressure-sensitive adhesive examples include isocyanate-based pressure-sensitive adhesives, polyvinyl alcohol-based pressure-sensitive adhesives, gelatin-based pressure-sensitive adhesives, Biel-based latex-based, water-based polyurethane, water-based polyester, and the like.
  • the surface of the protective film to which the polarizer is not adhered may be subjected to a hard coat layer, antireflection treatment, anti-sticking treatment, treatment for diffusion or anti-glare, and the like.
  • the hard coat layer is applied for the purpose of preventing scratches on the surface of the polarizing plate.
  • the hard coat layer can be formed, for example, by adding a cured film made of an appropriate ultraviolet curable resin such as acrylic or silicone to the surface of the protective film.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate.
  • the antireflection layer can be formed by adding a conventional antireflection film or the like to the protective film. Further, the anti-sticking treatment is performed for the purpose of preventing adhesion between adjacent layers of other members.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the viewing of the light transmitted through the polarizing plate.
  • Examples of the antiglare treatment include appropriate means such as (a) roughening the surface of the protective film by sandblasting or embossing, and (b) blending transparent fine particles in the protective film forming material. By the antiglare treatment, a fine uneven structure can be formed on the surface of the protective film.
  • the transparent fine particles include inorganic fine particles having an average particle size of 0.5 to 50 ⁇ m made of, for example, silica, alumina, titania, zirconium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide (the inorganic fine particles are electrically conductive). And organic fine particles (including beads) made of a crosslinked or uncrosslinked polymer.
  • the amount of the transparent fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin, and preferably 5 to 25 parts by weight.
  • the anti-glare treatment may also serve as a diffusion layer (such as a visual magnification function).
  • the antireflection layer, the anti-sticking layer, the diffusion layer, the antiglare layer and the like can be provided on the protective film itself.
  • a separate optical layer including the antireflection layer and the like can be laminated on the protective film.
  • the optical compensation layer is composed of a birefringent layer exhibiting a predetermined retardation, and is also called a retardation plate.
  • As the optical compensation layer linearly polarized light is changed into circularly polarized light or circularly polarized light is changed into linearly polarized light.
  • a so-called 1/4 ⁇ plate) or an optical compensation layer that changes the polarization direction of linearly polarized light can be used.
  • nx, ny, and nz respectively indicate the refractive indexes of the X axis, the Y axis, and the Z axis
  • the X axis is an axial direction that indicates the maximum refractive index in the plane of the optical compensation layer
  • the Y axis is In the same plane
  • the axis is perpendicular to the X axis
  • the Z axis is perpendicular to the X and Y axes.
  • the thickness direction is shown.
  • the case where nx and ny are substantially the same is, for example, Re [590] force 3 ⁇ 4 nm to 10 nm, preferably 0 nm to 5 nm.
  • Re [590] is the in-plane retardation value at 23 ° C and wavelength 59 Onm.
  • the material for forming the optical compensation layer is not particularly limited, and a conventionally known material can be used.
  • a material for forming the optical compensation layer for example, it is preferable to select a material having a relatively high birefringence when the optical compensation layer is formed.
  • the optical compensation layer preferably has an optical biaxial property of nx> ny> nz since a wide viewing angle characteristic can be realized.
  • Examples of the material for forming the optical compensation layer include a birefringent film obtained by uniaxially or biaxially stretching a non-liquid crystalline polymer film, a liquid crystal polymer alignment film, and a film supporting a liquid crystal polymer alignment layer.
  • the thickness of the optical compensation layer is not particularly limited, but is generally about 1 to about 150 / im.
  • non-liquid crystalline polymer examples include polybutyl alcohol, polyvinyl butyral, polymethyl vinyl ether, polyhydroxyethyl acrylate, hydroxyethylenosenorose, hydroxypropenoresenorelose, methenoresenorelose.
  • Polyesters such as Polycarbonate, Polyacrylate, Polysulfone, Polyethylene terephthalate, Polyetherenoketone, Polyethersulfone, Polyphenylene sulfide, Polyphenylene oxide, Polylinolenorefone, Polyamideimide, Polyesteroleimide, Polyamide, Polyimide, Polyolefin, Examples include polysalts, celluloses, and norbornene polymers.
  • these binary or ternary copolymers, graft copolymers, blends and the like can be mentioned.
  • These non-liquid crystalline polymers become an oriented product (stretched vinylome) by stretching or the like.
  • Examples of the liquid crystal polymer include main chain type and side chain type liquid crystal polymers in which a conjugated linear atomic group (mesogen) imparting liquid crystal alignment is introduced into the main chain or side chain. It is done.
  • the main chain type liquid crystal polymer has a mesogenic group attached to a part of the spacer that imparts flexibility.
  • a polymer having a combined structure is exemplified.
  • Specific examples of the main chain type liquid crystal polymer include, for example, a nematic alignment polyester liquid crystal polymer, a discotic polymer, and a cholesteric polymer.
  • Specific examples of the side chain type liquid crystal polymer include polysiloxane, polyacrylate, polymetatalylate or polymalonate as a main chain.
  • liquid crystal polymer having a mesogenic part composed of a para-substituted cyclic compound unit having a nematic alignment property via a part of a spacer composed of a conjugated atomic group as a side chain
  • liquid crystal polymers are prepared in the form of a solution.
  • an optical compensation layer exhibiting a predetermined retardation can be formed by spreading the liquid crystal polymer solution on an alignment substrate and subjecting it to a heat treatment.
  • the alignment base material include an alignment base material obtained by rubbing a thin film such as polyimide or polybutyl alcohol formed on a glass plate, and an alignment base material obtained by oblique vapor deposition of silicon oxide.
  • the optical compensation layer is preferably a non-liquid crystalline polymer film.
  • Non-liquid crystalline polymers unlike liquid crystalline materials, form films that exhibit optical uniaxiality, nx> nz or ny> nz, depending on their own properties.
  • an unoriented base material can be used without being limited to the oriented base material.
  • An unoriented substrate does not require a step of applying an alignment film on the surface or a step of laminating an alignment film, unlike an oriented substrate. Therefore, the optical compensation layer can be formed by applying a non-liquid crystalline polymer to the protective film laminated on the polarizer. Therefore, if a non-liquid crystalline polymer is used, the optical compensation layer can be formed directly on the protective film without interposing an adhesive.
  • the molecular weight of the non-liquid crystalline polymer is not particularly limited, but the weight average molecular weight is preferably in the range of 1,000 to 1,000,000, more preferably in the range of 2,000 to 500,000.
  • a preferred specific example of the non-liquid crystalline polymer is a polyimide soluble in an organic solvent having high in-plane orientation.
  • An optical compensation layer can be formed by dissolving the non-liquid crystalline polymer in a suitable solvent, coating the polymer solution on a suitable substrate such as a protective film, and drying the solution.
  • the solvent of the non-liquid crystalline polymer is not particularly limited, and can be appropriately determined according to the type.
  • the solvent include halogenated hydrocarbons such as black mouth form and dichloromethane. Phenols such as phenols; aromatic hydrocarbons such as benzene, toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isoptyl ketone; ester solvents such as ethyl acetate and butyl acetate; t Alcohol solvents such as butyl alcohol and ethylene glycol; Amide solvents such as dimethylformamide; Nitrile solvents such as acetonitrile; Ether solvents such as jetyl ether; Ethyl cellsolve and butylcellsolve. These solvents may be used alone or in combination of two or more.
  • the polymer solution in which the non-liquid crystalline polymer is dissolved in a solvent may further contain various additives such as a stabilizer, a plasticizer, and metals as necessary.
  • the polymer solution may be applied by a conventionally known method.
  • polyimide When polyimide is used as the non-liquid crystalline polymer, it is preferable to apply a thin film of polyurethane or the like on the coated surface of the substrate (such as the protective film) in order to improve the adhesion between the substrate and the polymer.
  • the base material is preferably stretched in any one direction within the plane in order to impart shrinkage in one direction within the plane.
  • a shrinkage force is generated in the direction opposite to the stretching direction.
  • a base material is shrunk by heat-processing to the coating film on the said base material.
  • a refractive index difference is imparted to the non-liquid crystalline polymer forming the coating film. That is, the coating film contracts as the base material contracts, and an optically biaxial optical compensation layer can be formed.
  • the conditions for the heat treatment are not particularly limited, for example, depending on the type of material of the base material, etc. It can be determined as appropriate.
  • the heating temperature is preferably 25 to 300 ° C, more preferably 50 to 200 ° C, and particularly preferably 60 to 180 ° C.
  • the laminate of the substrate and the coating film may be stretched.
  • an optical compensation layer exhibiting optical biaxiality (nx> ny> nz) can be directly formed on the substrate from the same principle as described above.
  • the method for stretching the laminate of the base material and the coating film is not particularly limited.
  • a tenter stretching method in the width direction of the base material a free end longitudinal stretching method in which the base material is uniaxially stretched in the longitudinal direction.
  • Examples thereof include a fixed-end transverse stretching method in which the base material is fixed in the longitudinal direction and uniaxial stretching in the width direction, and a sequential or simultaneous biaxial stretching method in which stretching is performed in both the longitudinal direction and the width direction.
  • the stretching conditions are not particularly limited, and can be determined as appropriate depending on, for example, the type of the forming material of the coating film (optical compensation layer).
  • the draw ratio is preferably more than 1 time and 5 times or less, more preferably more than 1 time and 4 times or less, and particularly preferably more than 1 time and 3 times or less.
  • the phase difference of the optical compensation layer can be set to an appropriate value depending on the purpose of use.
  • the phase difference of the optical compensation layer is set to an appropriate value in accordance with, for example, the purpose of compensating for coloring or vision due to birefringence of the liquid crystal cell.
  • the optical compensation layer may be formed by laminating two or more types of optical compensation layers having different optical characteristics for the purpose of controlling the phase difference and the like.
  • the visual compensation film is a film that widens the viewing angle so that the image can be seen clearly even when the screen of the liquid crystal display device is viewed from an oblique direction.
  • an optical compensation layer is used as a powerful visual compensation film.
  • the visual compensation film is, for example, a bi-directionally stretched biaxially stretched polymer film, a birefringent polymer film, a polymer film with a refractive index controlled in the thickness direction, and a tilted orientation film. A stretched film is used.
  • tilted orientation film examples include a film obtained by bonding a heat shrink film to a polymer film and stretching (or shrinking) the polymer film under the action of heat shrinkage force, and a film obtained by orienting a liquid crystal polymer obliquely. It is done.
  • the optical film obtained by bonding the polarizing plate and the brightness enhancement film is usually provided on the opposite side (backlight side) to the viewing surface of the liquid crystal cell.
  • Brightness enhancement film from backlight When natural light is incident due to, for example, reflection of light, it reflects linearly polarized light having a predetermined polarization axis or circularly polarized light in a predetermined direction, and transmits other light.
  • the brightness enhancement film examples include a dielectric multilayer thin film, a multilayer laminate of thin film films having different refractive index anisotropies, an alignment film of a cholesteric liquid crystal polymer, and a film in which the alignment polymer is supported on a substrate. Is mentioned.
  • the liquid crystal panel of the present invention is usually incorporated in a liquid crystal display device.
  • the liquid crystal display device can be formed according to the conventional method. That is, the liquid crystal display device is generally formed by assembling a liquid crystal panel in which the optical film is attached to a liquid crystal cell via the pressure-sensitive adhesive layer, and a component such as an illumination system.
  • the liquid crystal display device of the present invention is not particularly limited except that the liquid crystal panel is used.
  • the liquid crystal panel (liquid crystal cell) can use any mode such as VA type, IPS type, TN type, STN type, and ⁇ type.
  • the liquid crystal display device of the present invention is used for any appropriate application.
  • Applications include, for example, OA equipment such as personal computer monitors, laptop computers, and copy machines, mobile phones, watches, digital cameras, personal digital assistants (PDAs), mobile devices such as portable game consoles, video cameras, televisions, and microwave ovens.
  • Household electrical equipment such as, back monitors, car navigation system monitors, in-vehicle equipment such as car audio, display equipment such as information monitors for commercial stores, security equipment such as monitoring monitors, nursing monitors, medical care Nursing care, medical equipment, etc.
  • the use of the liquid crystal display device of the present invention is a television.
  • the screen size of the TV is preferably a wide 17 type (373 mm X 224 mm) or more, more preferably a wide 23 type (499 mm X 300 mm) or more, and particularly preferably a wide 32 type (687 mm X 412 mm). That's it.
  • TAC film triacetyl cellulose film
  • Polyimide synthesized from 2,2'_bis (3,4-dicarboxyphenyl) hexafluoropropane and 2,2'-bis (trifluoromethyl) -1,4'-diaminobiphenyl was dissolved in methyl isobutyl ketone (solvent) (solid concentration 15%) and applied to a 40 ⁇ m thick triacetyl cellulose film (TAC film) (coating thickness 20 ⁇ m). Thereafter, it was dried at 100 ° C. for 10 minutes to obtain a polyimide thin film having a thickness of about 2.5 ⁇ . Next, the film was longitudinally stretched 1.05 times at 150 ° C., and the thin film was stretched to form an optical compensation layer.
  • solvent methyl isobutyl ketone
  • TAC film triacetyl cellulose film
  • the above polarizer was bonded to a TAC film on which this optical compensation layer had been laminated via a polybutyl alcohol adhesive (0.5 / m). Note that when the shells are used together, the slow axis direction of the optical compensation layer and the absorption axis direction of the polarizer are arranged in parallel. Furthermore, a 40 / m-thick triacetyl cellulose film was bonded to the opposite surface of the polarizer (the surface on which the optical compensation layer was not laminated) via a polyvinyl alcohol-based adhesive IJ (0.5 ⁇ ). . Thus, a polarizing plate (2) comprising a polyimide optical compensation layer—TAC film—polarizer—TAC film was produced.
  • a film cut to a size of 10 mm X 50 mm is bonded to a glass plate (trade name: EAGLE2000, manufactured by Coung, Inc.) via an adhesive to be measured. C, left in autoclave at 5 atm for 30 minutes. However, the thickness of the adhesive was a dry thickness of 2 O zm, and the adhesive area between the film and the glass plate was 10 mm 2 .
  • the glass plate A is fixed, and a load of 4.9 N (500 gf) is applied to the Finolem B in the vertical direction at 23 ° C, and the film is shifted after 1 hour.
  • n-butyl acrylate 100 parts, acrylic acid; 5 parts, 2-hydroxyethyl acrylate; 0.1 part together with ethyl acetate Then, after reacting at 60 ° C for 4 hours under a nitrogen gas stream, ethyl acetate is added to the reaction solution, and a solution containing an acrylic polymer with a weight average molecular weight of 2.1 million (solid content concentration 30 %).
  • An acrylic pressure-sensitive adhesive (1) was obtained by blending 1 part of tolylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate L) per 100 parts of the solid content of the acrylic polymer solution.
  • An acrylic pressure-sensitive adhesive (2) was obtained in the same manner as the pressure-sensitive adhesive (1) except that the amount of tolylene diisocyanate was changed to 0.6 part.
  • the creep amount of this adhesive (2) was measured and found to be 70 ⁇ m.
  • An acrylic pressure-sensitive adhesive (3) was obtained in the same manner as the pressure-sensitive adhesive (1) except that the amount of tolylene diisocyanate was changed to 0.05 part.
  • the creep amount of the pressure-sensitive adhesive (3) was measured and found to be 150 am.
  • An acrylic pressure-sensitive adhesive (4) was obtained in the same manner as the pressure-sensitive adhesive (1) except that the amount of tolylene diisocyanate was changed to 3 parts.
  • the creep amount of the pressure-sensitive adhesive (4) was measured and found to be 5 am.
  • n_butyl acrylate 99 parts, 4-hydroxybutyl acrylate; 1 part
  • the solution is added together with ethyl acetate and reacted at 60 ° C for 4 hours under a nitrogen gas stream.
  • Ethyl acetate is then added to the reaction solution, and a solution containing an acrylic polymer with a weight average molecular weight of 1.65 million (solid content concentration 30 %).
  • the creep amount of the pressure-sensitive adhesive (5) was measured and found to be 200 am.
  • An acrylic pressure-sensitive adhesive (6) was obtained in the same manner as the adhesive (5) except that the amount of trimethylolpropane xylene diisocyanate was changed to 0.16 part.
  • the creep amount of this pressure-sensitive adhesive (6) was measured and found to be 70 am.
  • the creep amount of the pressure-sensitive adhesive (7) was measured and found to be 500 ⁇ m.
  • An acrylic pressure-sensitive adhesive (8) was obtained in the same manner as the adhesive (7) except that the amount of trimethylolpropane xylene diisocyanate was changed to 0.03 part.
  • the creep amount of the pressure-sensitive adhesive (8) was measured and found to be 2500 ⁇ m.
  • An acrylic pressure-sensitive adhesive (9) was obtained in the same manner as the adhesive (7) except that the amount of trimethylolpropane xylene diisocyanate was changed to 0.01 part.
  • the adhesive (5) is applied (dry thickness 20 / m), and the VA mode liquid crystal cell for 37 inches (length 46 lmm x width 819 mm) (Sharp ( On the surface of the product (trade name: AQUOS) manufactured by Co., Ltd.
  • the adhesive (2) is applied to one side of the optical compensation layer of the polarizing plate (2) (dry thickness 20 ⁇ m) and bonded to the side opposite to the viewing side of the liquid crystal cell to produce a liquid crystal panel.
  • the polarizing plate (1) was bonded so that the absorption axis direction of the polarizer was parallel to the long side of the liquid crystal cell.
  • the polarizing plate (2) was bonded so that the absorption axis direction of the polarizer was parallel to the short side of the liquid crystal cell.
  • a liquid crystal panel was produced in the same manner as in Example 1.
  • Example 4 Example except that the adhesive (6) was used as the adhesive for bonding the polarizing plate (1) and the adhesive (1) was used as the adhesive for bonding the polarizing plate (2).
  • a liquid crystal panel was fabricated in the same manner as in 1.
  • the pressure-sensitive adhesive (5) was used as the pressure-sensitive adhesive for bonding the polarizing plate (1)
  • the pressure-sensitive adhesive (2) was used as the pressure-sensitive adhesive for bonding the polarizing plate (2).
  • the absorption axis direction of the polarizer of (1) is arranged at 45 degrees with respect to the long side of the liquid crystal cell
  • the absorption axis direction of the polarizer of the polarizing plate (2) is the absorption axis of the polarizing plate (1).
  • a liquid crystal panel was produced in the same manner as in Example 1 except that the liquid crystal panel was arranged so as to be orthogonal to the vertical axis.
  • Example except that the adhesive (5) was used as the adhesive for bonding the polarizing plate (1) and the adhesive (4) was used as the adhesive for bonding the polarizing plate (2).
  • a liquid crystal panel was fabricated in the same manner as in 1.
  • Table 2 shows the types of pressure-sensitive adhesives used in Examples:! To 5 and Comparative Examples:! To 3, the ratio of creep displacement (L1 / L2), and the arrangement of the polarizers.
  • Adhesive on the viewing side Adhesive on the opposite side Ratio of misalignment Polarizer on the other side of the viewing side Polarizer Type Misalignment (L1) Type Misalignment (L2) Absorption axis of (L1 / L2) absorption axis
  • Example 1 Adhesive Adhesive (5) 200 Adhesive (2) 70 2.86 Parallel to long side Parallel to short side
  • Example 2 Adhesive (7) 500
  • Adhesive (6) Adhesive (1) 30 2.33 Parallel to long side Parallel to short side
  • Adhesive (5) 200 Adhesive (2) 70 2.86 45 degrees on the long side 135 degrees on the long side Comparative Example 1 Adhesive (2) 70 Adhesive (5) 200 0.35 Parallel to the long side Comparative Example 2 Adhesive (9) 3500 Adhesive (2)
  • the liquid crystal panels of Examples 1 to 5 and Comparative Examples 1 to 3 were each exposed to an environment of remarkable temperature change.
  • the temperature change was that the liquid crystal panel was allowed to stand for 30 minutes in a _30 ° C environment, and then immediately moved to a 70 ° C environment and left for 30 minutes, and this was repeated 100 cycles.
  • the black luminance in the black display state of the liquid crystal panels of Examples 1 to 5 and Comparative Examples 1 to 3 was measured.
  • the measurement was performed in a dark room, and was measured with a measuring instrument (trade name: CA-1500, manufactured by Minolta Co., Ltd.) from a point away from the liquid crystal panel.
  • the luminance could not be measured because the acrylic pressure-sensitive adhesive (9) was foamed between the polarizing plate (1) and the liquid crystal cell.
  • the luminance could not be measured because the acrylic adhesive (4) between the polarizing plate (2) and the liquid crystal cell was broken and the polarizing plate (2) was peeled off. It was.
  • Comparative Example 3 Measurement is impossible due to peeling of the opposite polarizer. Examples:! To 5 were confirmed to have excellent black luminance and little light leakage. In particular, Examples 1 to 4 are excellent in this effect.
  • Comparative Example 1 the black luminance at the corners was inferior, and in Comparative Example 2, the adhesive on the viewing side was too soft and foamed. In Comparative Example 3, the pressure-sensitive adhesive on the opposite side was too hard to cope with the contraction of the polarizing plate, and the pressure-sensitive adhesive layer was destroyed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

明 細 書
液晶パネル、及び液晶表示装置
技術分野
[0001] 本発明は、液晶パネル、及び液晶表示装置に関する。
背景技術
[0002] 従来、液晶表示装置の液晶パネルは、一般に、液晶セルと、液晶セルの両面側に それぞれ配置された偏光板と、を備えている。前記液晶セルは、 2枚の液晶セル基板 と、該 2枚の基板間に介在させたスぺーサ一と、該 2枚の基板の間隙に注入された液 晶材料と、を有する。液晶材料の注入された液晶セルは、それ自体複屈折性を有し 、位相差を生じる。この液晶セルの位相差を補償するため、通常、液晶セルと偏光板 の間に、光学補償層が設けられている (例えば、特許文献 1)。
[0003] これら偏光板などの光学フィルムは、通常、粘着剤を介して液晶セルに貼着されて いる。該光学フィルム用の粘着剤としては、透明性、耐久性の点からアクリル系粘着 剤が一般的に使用される。
特許文献 1 :日本国公開特許公報 2003— 344658号
発明の開示
[0004] ところで、光学フィルムは、加熱条件下や加湿条件下で伸縮し易い。このため、光 学フィルムを貼り付け後、光学フィルムの伸縮に伴って、光学フィルムの浮きや剥が れが生じやすい。
特に、光学フィルムとして延伸フィルムが用いられている場合、熱などが加わること によって、その主たる延伸方向に比較的大きく収縮する。
このように光学フィルムが収縮すると、それに伴って液晶パネルが湾曲するので、 液晶パネルの光漏れが生じやすい。該光漏れによって、例えば、液晶パネルの黒表 示状態に於いて、パネル周縁部の黒表示レベルが低下するという問題点がある。
[0005] 本発明の目的は、光学フィルムの収縮に伴うパネル周縁部の光漏れを抑制できる 液晶パネル、及び液晶表示装置を提供することである。
[0006] 本発明の液晶パネルは、液晶セルの視認側に第 1粘着剤層を介して第 1光学フィ ルムが接着され、且つ液晶セルの反対側に第 2粘着剤層を介して第 2光学フィルム が接着されている液晶パネルであって、第 1粘着剤層のクリープズレ量 (L1)が 50〜 3000 /i m、第 2粘着剤層のクリープズレ量(L2)が 10〜400 μ ΐηであり、第 1粘着剤 層のクリープズレ量 (L1)が第 2粘着剤層のクリープズレ量 (L2)よりも大きいことを特 徴とする。
ただし、クリープズレ量は、粘着剤層の厚み 20 x m、 10mm2の接着面積に於いて 、 23°Cで 4. 9Nの引張りせん断力を加えた場合の 1時間後のズレ量を示す。具体的 な測定方法は、実施例に記載の通りである。
[0007] 本発明の好ましい液晶パネルは、上記第 1光学フィルム及び第 2光学フィルムの少 なくともレ、ずれか一方が偏光子を含む。
また、本発明の好ましい液晶パネルは、上記第 1光学フィルム及び第 2光学フィル ムが偏光子を含む偏光板であり、第 1光学フィルムの偏光子の吸収軸方向が液晶パ ネルの長辺に略平行に配置され、且つ第 2光学フィルムの偏光子の吸収軸方向が 液晶パネルの短辺に略平行に配置されている。
さらに、本発明の好ましい液晶パネルは、上記偏光子が、延伸フィルムを含み、偏 光子の吸収軸が、当該延伸フィルムの主延伸方向に形成される。
[0008] 本発明の好ましい液晶パネルは、上記第 1粘着剤層のクリープズレ量 (L1)と第 2粘 着剤層のクリープズレ量 (L2)の比 (L1/L2)が 30以下であり、好ましくは、第 1粘着 剤層のクリープズレ量 (L1)と第 2粘着剤層のクリープズレ量 (L2)の比 (L1/L2)が 2以上である。
また、本発明の好ましい液晶パネルは、上記第 1粘着剤層のクリープズレ量 (L1)と 第 2粘着剤層のクリープズレ量 (L2)の比(L1/L2)が 5〜20である。
[0009] さらに、本発明の好ましい液晶パネルは、パネル周縁にベゼルを有する。
また、本発明の好ましい液晶パネルは、上記第 1粘着剤層及び第 2粘着剤層が、ァ クリル系粘着剤を主成分とする。
本発明の別の局面では、本発明の液晶表示装置は、上記いずれかの液晶パネル を有する。
[0010] 本発明の液晶パネル及び液晶表示装置は、パネル周縁部に於ける光漏れを防止 して、パネル全体に於いて良好な画像表示を表すことができる。特に、第 1光学フィ ルム及び第 2光学フィルムが延伸フィルムを含む偏光子を含み、第 1光学フィルムの 偏光子の吸収軸方向が液晶パネルの長辺に略平行に配置され、且つ第 2光学フィ ルムの偏光子の吸収軸方向が液晶パネルの短辺に略平行に配置されている液晶パ ネルは、パネル周縁部に於ける光漏れをより防止することができる。
図面の簡単な説明
[0011] [図 1]本発明の液晶パネルの一実施形態を示す分解参考斜視図。
[図 2]本発明の液晶パネルの一実施形態を示す中央部省略縦断面図。
[図 3]視認側の偏光板と反対側の偏光板の配置を示す参考斜視図。
[図 4]液晶パネルの湾曲状態を示す参考図。
[図 5]クリープズレ量の測定方法を示す参考断面図。
発明を実施するための最良の形態
[0012] 本発明の液晶パネルは、液晶セルの視認側に第 1粘着剤層を介して第 1光学フィ ルムが接着され、且つ液晶セルの反対側に第 2粘着剤層を介して第 2光学フィルム が接着され、第 1粘着剤層のクリープズレ量 (L1)が 50〜3000 z m、第 2粘着剤層 のクリープズレ量(L2)が 10〜400 x mであり、第 1粘着剤層のクリープズレ量(L1) が第 2粘着剤層のクリープズレ量 (L2)よりも大きく構成されている。さらに、第 1粘着 斉 IJ層のクリープズレ量(Ll) fま、 80〜2500〃111カ好ましく、 150〜2000 μ m力 Sより 好ましレ、。一方、第 2粘着剤層のクリープズレ量 (L2)は、 20〜200 /1 111カ 子ましく、 更に、 30〜: 150 /i m力 Sより好ましレ、。
本発明の液晶パネルは、第 1光学フィルムの収縮による応力を第 1粘着剤層が緩 和して、液晶セルの変形を防止できる。以下、本発明について、具体的に説明する。 尚、本発明に於いて、粘着剤は、一般に接着剤と呼ばれている剤を含む意味であ る。
また、第 1粘着剤層及び第 2粘着剤層は、これらを総称して「粘着剤層」という場合 がある。第 1光学フィルム及び第 2光学フィルムは、これらを総称して「光学フィルム」と レ、う場合がある。
[0013] <液晶パネルの構成例 > 図 1及び図 2は、本発明の液晶パネルを含む液晶表示装置の一例を示している。
1は、液晶パネルを示し、 10は、この液晶パネル 1の周囲に設けられたべゼルを示 し、 100は、液晶パネル 1に設けられたライトユニットを示す。
べゼル 10は、液晶パネル 1の視認面(画像表示面)を露出させる開口部が形成さ れた公知の枠状部材で構成されている。該べゼル 10は、液晶パネル 1の側部 laを 覆う側面部 11と、該側面部 11から内側に曲がり且つ液晶パネル 1の視認面周縁部 1 bを覆う矩形枠状の正面部 12とを有する。
該べゼル 10は、液晶パネル 1の側部 1 a及び視認面周縁部 1 bに、接する又は僅力 ^ な隙間を有した状態で、液晶パネル 1に取り付けられてレ、る。
ライトユニット 100は、液晶パネル 1の反対側に設けられている(レ、わゆるバックライト ユニットと呼ばれる)。
[0014] 図 2に於いて、 2は、液晶セルを示す。 3は、液晶セル 2の視認側に設けられた第 1 粘着剤層を示す。 4は、第 1粘着剤層 3を介して液晶セル 2に接着された第 1光学フィ ルムを示す。 5は、液晶セルの反対側に設けられた第 2粘着剤層を示す。 6は、第 2 粘着剤層 5を介して液晶セル 2に接着された第 2光学フィルムを示す。
尚、第 1及び第 2という用語は、構成部材を区別するために便宜上付加している。 従って、第 1及び第 2という用語は、光学フィルム及び粘着剤層の順序や優劣などを 意味するわけではない。
液晶パネル 1は、その視認面が正面視長方形状に形成されている。従って、液晶 パネル 1の視認面の横長さは、縦長さよりも長く形成されている。液晶パネル 1の横縦 長さ比は、特に限定されないが、一般的には、横長さ:縦長さ =4 : 3、或いは 16 : 9な どである。
[0015] 液晶セル 2は、従来公知の液晶セルを用いることができる。例えば、液晶セル 2は、 一対の液晶セル基板と、該液晶セル基板の間に介在されたスぺーサ一と、一対の液 晶セル基板の間に入れられた液晶材料と、視認側の液晶セル基板の内面に設けら れたカラーフィルターと、他方の液晶セル基板の内面に設けられた駆動用の TFT基 板などの電極素子と、を有する。
液晶セル基板は、透明性に優れていれば特に限定されなレ、。液晶セル基板は、例 えば、ソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラスな どの透明ガラス板;ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレ ート、エポキシ樹脂などの光学用樹脂板;などの可撓性を有する透明基板を用いるこ とができる。
液晶材料は、液晶相を示す材料であれば特に限定されなレ、。液晶セル 2のモード も適宜に選択し得る。液晶セル 2は、例えば、 VA型、 IPS型、 TN型、 STN型、 OCB 型などの任意のモードを採用できる。中でも VA型(垂直配向型)の液晶セル 2は、非 常に高レ、コントラストを実現できるので好ましレ、。
第 1粘着剤層 3を構成する粘着剤は、第 1粘着剤層 3のクリープズレ量 (L1)が 50〜 3000 z mとなる粘着剤が使用される。好ましくは第 1粘着剤層 3のクリープズレ量 (L 1)が 80〜2500 x mとなる粘着剤が使用され、より好ましくは、前記クリープズレ量が 150〜 2000 μ mとなる粘着剤が使用される。
第 2粘着剤層 5を構成する粘着剤は、第 2粘着剤層 5のクリープズレ量 (L2)が 10〜 400 μ mとなる粘着剤が使用される。好ましくは第 2粘着剤層 5のクリープズレ量 (L2 )が 20〜200 μ ΐηとなる粘着剤が使用され、より好ましくは前記クレープズレ量が 30 〜 150 / mとなる粘着剤が使用される。
また、第 1粘着剤層 3及び第 2粘着剤層 5を構成する粘着剤は、第 1粘着剤層 3のク リーブズレ量 (L1)が第 2粘着剤層 5のクリープズレ量 (L2)よりも大きくなる粘着剤が 使用される。第 1粘着剤層 3のクリープズレ量 (L1)と第 2粘着剤層 5のクリープズレ量 (L2)の比(L1/L2)は、 30以下であり、好ましくは 20以下である。一方、第 1粘着剤 層 3のクリープズレ量 (L1)と第 2粘着剤層 5のクリープズレ量 (L2)の比(L1/L2)は 、 2以上であり、好ましくは 5以上である。前記クリープズレ量の比(L1/L2)は、特に 好ましくは 5〜20である。
第 1粘着剤層 3及び第 2粘着剤層 5の粘着剤としては、例えば、アクリル系粘着剤、 ウレタン系粘着剤、シリコーン系粘着剤などを用レ、ることができる。中でも、透明性、 耐候性などに優れていることから、アクリル系粘着剤が好ましい。
第 1粘着剤層 3及び第 2粘着剤層 5の厚みは特に限定されないが、乾燥膜厚で 5〜 40 μ m程度、好ましくは乾燥膜厚で 10〜30 μ m程度である。 第 1粘着剤層 3及び第 2粘着剤層 5に用いるアクリル系粘着剤については、下記に 詳述する。
[0017] 第 1光学フィルム 4及び第 2光学フィルム 6は、従来公知の各種フィルムが用いられ 得る。例えば、第 1光学フィルム 4として、偏光板 41 (以下、第 1偏光板 41という)が用 レ、られ得る。第 2光学フィルム 6として、光学補償層 65を有する偏光板 61 (以下、第 2 偏光板 61という)が用いられ得る。この光学補償層 65は、単一層で構成されていても よいし、 2層以上の複層で構成されていてもよい。光学補償層 65は、偏光板 61の表 面に直接設けられていてもよいし、従来公知の粘着剤を介して接着されていてもよい
[0018] 第 1偏光板 41は、第 1粘着剤層 3を介して液晶セル 2の視認面に直接接着されてい る。光学補償層 65を有する第 2偏光板 61は、第 2粘着剤層 5を介して液晶セル 2の 反対面に直接接着されている。もっとも、第 1偏光板 41及び Z又は第 2偏光板 61と 液晶セル 2の間に、他の光学フィルムを介在させてもよい。
何れの偏光板 41 , 61も、直線偏光を取り出す偏光子を含む。何れの偏光板 41, 6 1も、好ましくは、偏光子と該偏光子の一面に積層された保護フィルムとを含み、より 好ましくは、偏光子と該偏光子の両面に積層された保護フィルムとを含む。前記偏光 子の種類は、特に限定されないが、好ましくはヨウ素を吸着させた延伸フィルムである 。該延伸フィルムからなる偏光子は、フィルムの主延伸方向に吸収軸が生じる。
図 2では、偏光子 42, 62の両面に保護フィルム 43, 63が積層された第 1偏光板 41 及び第 2偏光板 61を例示している。
第 1偏光板 41は、保護フィルム 43が第 1粘着剤層 3を介して液晶セル 2の視認面に 接着されている。第 2偏光板 61は、光学補償層 65が第 2粘着剤層 5を介して液晶セ ノレ 2の反対面に接着されることにより、液晶セル 2の反対面に接着されている。
なお、上記偏光子、保護フィルム、光学補償層などの光学フィルムの形成材料など については、下記に詳述する。
[0019] 第 1偏光板 41と第 2偏光板 61は、各吸収軸方向が略直交するように配置されてい る。例えば、図 3に示すように、第 1偏光板 41は、偏光子 42の吸収軸方向 A4が液晶 パネルの長辺(横)方向 Xに略平行になるように、液晶セル 2に接着される。一方、第 2偏光板 61は、偏光子 62の吸収軸方向 A6が液晶パネルの短辺(縦)方向 Yに略平 行になるように、液晶セル 2に接着される。ただし、略平行とは、吸収軸方向 A4と長 辺方向 Xの成す角、及び吸収軸方向 A6と短辺方向 Yの成す角力 0度 ± 5度を含む 意味である。
[0020] 本発明の液晶パネル 1は、加熱条件下等に於ける湾曲を防止でき、パネル周縁部 に於ける光漏れを抑制できる。本発明の液晶パネル 1の光漏れ抑制は、次の作用に 起因すると考えられる。
一般に、液晶パネルの駆動時に発生した熱が光学フィルムに加わることによって、 光学フィルムが収縮する。この収縮に伴い、液晶パネルが湾曲する。特に、光学フィ ルムが、延伸フィルムを含む場合、熱などが加わることによって、その延伸方向に大 きく収縮する。このため、その収縮応力が液晶セルに加わる結果、液晶パネルが大き く湾曲する。
上記のように液晶パネルが湾曲すると、パネル周縁部がベゼルに強く接触し、パネ ル周縁部に於いて光漏れが発生する。
[0021] 本発明の液晶パネル 1は、上記のように、第 1偏光板 41の偏光子 42の吸収軸方向 A4が液晶パネル 1の長辺に略平行に配置されている。すなわち、偏光子 42の延伸 方向が液晶パネル 1の長辺に略平行となるように配置されている(延伸フィルムからな る偏光子は、主延伸方向に吸収軸が生じる)。このため、第 1偏光板 41は、加熱条件 下に於いて、液晶パネル 1の長辺方向に大きく収縮する。第 1偏光板 41が、液晶パ ネル 1の長辺方向に収縮すると、液晶パネル 1は、凹状に湾曲する。なお、この凹状 に湾曲するとは、図 4 (a)に示すように、液晶パネル 1の視認面中央部 Cが、視認面 I の反対側に突出するように湾曲することを言う。
この第 1偏光板 41を接着する第 1粘着剤層 3は、第 2粘着剤層 5よりもクリープズレ 量が大きぐ且つそのクリープズレ量(L1)が 50〜3000 z mである。このため、第 1粘 着剤層 3は、上記第 1偏光板 41が長辺方向へ収縮する際の収縮応力を十分に緩和 し、液晶パネル 1が凹状に大きく湾曲することを抑制する。
一方、第 2偏光板 61は、その偏光子 62の吸収軸方向 A6が液晶パネル 1の長辺に 対して略直交方向に配置されている。すなわち、その偏光子 62の延伸方向が液晶 パネル 1の長辺に略直交となるように配置されている。このため、第 2偏光板 61は、加 熱条件下などに於いて、液晶パネル 1の長辺方向に僅かに収縮する。第 2偏光板 61 力 液晶パネル 1の長辺方向に僅かに収縮すると、液晶パネル 1は、凸状に湾曲する 。なお、この凸状に湾曲するとは、図 4 (b)に示すように、液晶パネル 1の視認面中央 部 Cが、視認面 I側に突出するように湾曲することを言う。
この第 2偏光板 61を接着する第 2粘着剤層 5は、第 1粘着剤層 3よりもクリープズレ 量が小さく且つそのクリープズレ量(L2)が 10〜400 z mである。このため、第 2粘着 剤層 5は、上記第 1粘着剤層 3と比べて、収縮応力を緩和し難い。従って、第 2偏光 板 61が長辺方向へ僅かに収縮する際の収縮応力力 液晶セルに加わり易ぐその 結果、液晶パネル 1は、凸状に僅かに湾曲する。
本発明は、第 1偏光板 41の収縮によって液晶セル 2が凹状に大きく湾曲することを 抑制しつつ、第 2偏光板 61の収縮によって液晶セル 2が凸状に僅かに湾曲すること を許容することにより、液晶セル 2の凹状の湾曲と凸状の湾曲とが互いに打ち消しあう 。従って、本発明の液晶パネル 1は、加熱条件下等に於いて、液晶パネル 1全体が 湾曲し難くなる結果 (つまり、フラットな状態を保つ)、パネル周縁部の光漏れを防止 できると考えられる。
[0022] なお、本発明の液晶パネル 1は、上記のように第 1偏光板 41の偏光子 42の吸収軸 方向 A4がパネル 1の長辺に略平行に配置され且つ第 2偏光板 61の偏光子 62の吸 収軸方向 A6が第 1偏光板 41の偏光子 42の吸収軸方向 A4に対して略直交する方 向に配置されていることが好ましい。ただし、本発明の液晶パネル 1は、この配置に 限定されず、様々に変更することができる。
本発明の液晶パネルは、例えば、第 1偏光板の偏光子の吸収軸方向が、液晶パネ ルの長辺方向に対して 45度 ± 5度に配置され、且つ第 2偏光板の偏光子の吸収軸 方向が、第 1偏光板の吸収軸方向に略直交するように配置されていてもよい(図示せ ず)。また、本発明の液晶パネルは、第 1偏光板の偏光子の吸収軸方向が液晶パネ ルの短辺に略平行に配置され且つ第 2偏光板の偏光子の吸収軸方向が該第 1偏光 板の吸収軸方向に対して略直交する方向に配置されてレ、てもよレ、(図示せず)。
[0023] また、上記液晶パネル 1は、第 2光学フィルム 6として光学補償層 65を有する偏光 板 61を例示している力 これに限定されなレ、。例えば、第 1光学フィルム 4として、光 学補償層を備える偏光板を用いることもできる。或いは、第 1光学フィルム 4及び第 2 光学フィルム 6の何れも、光学補償層を備える偏光板を用いることもできる。
なお、第 1光学フィルム 4及び/又は第 2光学フィルム 6は、上記偏光子、保護フィ ルム、光学補償層以外に、その他の層やフィルムを備えていてもよい。
[0024] 次に、バックライトユニット 100は、図 2に示すように、好ましくは、光源 81と、反射フ イノレム 82と、拡散板 83と、プリズムシート 84と、を z少なくとち備免る。
なお、図 2では、バックライトユニット 100が配置された透過型または半透過型の液 晶パネルを例示している。もっとも、本発明は、バックライトユニット 100を有する液晶 パネル 1に限定されない。例えば、本発明の液晶パネル 1は、視認側に光源 (フロント ライト)またはパネル横側に光源 (サイドライト)が配置された透過型または半透過型で もよい(図示せず)。また、本発明の液晶パネル 1は、光源として外部の蛍光灯や太 陽光を利用する反射型でもよレ、 (図示せず)。
[0025] <アクリル系粘着剤について >
本発明の粘着剤を構成するアクリル系粘着剤は、アルキル (メタ)アタリレートのモノ マーユニットを主骨格とする(メタ)アクリル系ポリマーをベースポリマーとする。 尚、(メタ)アクリルとは、アクリルおよび/またはメタクリルを、(メタ)アタリレートは、 アタリレートおよび/またはメタタリレートをいう。
[0026] アクリル系ポリマーの主骨格を構成するアルキル (メタ)アタリレートのアルキル基の 炭素数は:!〜 18程度、好ましくは炭素数 1〜9である。力かるアルキル (メタ)アタリレ ートの具体例としては、例えば、メチル (メタ)アタリレート、ェチル (メタ)アタリレート、 プロピル(メタ)アタリレート、 n_ブチル(メタ)アタリレート、 iso _ブチル(メタ)アタリレ ート、 2 _ェチルへキシル(メタ)アタリレート、 n_オタチル(メタ)アタリレート、 iso—ォ クチル (メタ)アタリレート、ラウリノレ (メタ)アタリレート、イソノニル (メタ)アタリレート、ス テアリノレ (メタ)アタリレート、シクロへキシル (メタ)アタリレートなどを挙げることができる 。アルキル (メタ)アタリレートは、これら単独で又は 2種以上を組み合わせて使用でき る。これらアルキル基の平均炭素数は 3〜9であるのが好ましい。
[0027] (メタ)アクリル系ポリマーには、接着性や耐熱性の改善を目的に、 1種類以上の各 種モノマーが共重合により導入される。そのような共重合モノマーとしては、水酸基含 有 (メタ)アクリル系モノマー;(メタ)アクリル酸などのカルボキシル基含有モノマー;無 水マレイン酸などの酸無水物基含有モノマー;アクリル酸の力プロラタトン付加物;ス チレンスルホン酸などのスルホン酸基含有モノマー;燐酸基含有モノマーなどがあげ られる。これらの中でも、液晶セルへの接着性などの点から、水酸基含有 (メタ)アタリ ル系モノマー、カルボキシル基含有モノマーが好ましく用いられる。
水酸基含有 (メタ)アクリル系モノマーの具体例としては、例えば、 2—ヒドロキシェチ ノレ(メタ)アタリレート、 2—ヒドロキシプロピル(メタ)アタリレート、 4—ヒドロキシブチル( メタ)アタリレート、 6—ヒドロキシへキシル(メタ)アタリレート、 8—ヒドロキシォクチル(メ タ)アタリレート、 10—ヒドロキシデシル(メタ)アタリレート、 12—ヒドロキシラウリル(メタ )アタリレート、 4—ヒドロキシメチルシクロへキシル一メチルアタリレートなどがあげられ る。水酸基含有 (メタ)アクリル系モノマーは、これら単独で又は 2種以上を組み合わ せて使用できる。
[0028] 水酸基含有(メタ)アクリル系モノマーは、好ましくはヒドロキシアルキルにおけるアル キル基が炭素数 4以上である。ヒドロキシアルキルのアルキル基が炭素数 4以上の水 酸基含有 (メタ)アクリル系モノマーを、(メタ)アクリル系ポリマーに導入する場合、ァ ルキル基の炭素数が前記水酸基含有 (メタ)アクリル系モノマーのアルキル基の炭素 数と同数以下のアルキル (メタ)アタリレートを用いることが好ましい。例えば、水酸基 含有 (メタ)アクリル系モノマーとして 4ーヒドロキシブチル (メタ)アタリレートを用いる場 合、ブチル (メタ)アタリレート、または、ブチル (メタ)アタリレートよりもアルキル基の炭 素数が小さいアルキル基を有するアルキル (メタ)アタリレートを用いるのが好ましい。
[0029] 水酸基含有(メタ)アクリル系モノマーなどの共重合モノマーの共重合量は、アルキ ノレ (メタ)アタリレート 100重量部に対して、 0. 01〜: 10重量部である。水酸基含有 (メ タ)アクリル系モノマーの共重合量が 0. 01重量部未満では、イソシァネート架橋剤等 との架橋点が少なくなり、光学フィルムとの密着性や耐久性の点で好ましくないから である。一方、 10重量部を超える場合には、同架橋点が多くなりすぎて好ましくない 。中でも、共重合モノマーの共重合量は、アルキル (メタ)アタリレート 100重量部に対 して、好ましくは 0. 01〜5重量部であり、より好ましくは 0. 03〜3重量部である。 [0030] また、 (メタ)アクリル系ポリマーは、前記アルキル (メタ)アタリレートおよび水酸基含 有 (メタ)アクリル系モノマー以外に、他の共重合成分が含有されていてもよい。他の 共重合成分としては、ベンジノレ (メタ)アタリレート、メトキシェチル (メタ)アタリレート、 アミド、酢酸ビュル、(メタ)アクリロニトリルなどが挙げられる。もっとも、他の共重合成 分は、これらに限定されなレ、。他の共重合成分の共重合量は、アルキル (メタ)アタリ レート 100重量部に対して、 100重量部以下、好ましくは 50重量部以下である。
[0031] (メタ)アクリル系ポリマーの平均分子量は、特に制限されなレ、が、好ましくは重量平 均分子量 50万〜 250万程度である。前記 (メタ)アクリル系ポリマーの製造は、公知 の手法により製造できる。該製法としては、例えば、バルタ重合法、溶液重合法、懸 濁重合法等のラジカル重合法を適宜選択できる。ラジカル重合開始剤としては、ァゾ 系、過酸化物系の各種公知の重合開始剤を使用できる。反応温度は通常 50〜80 °C程度、反応時間は:!〜 8時間とされる。製造法の中でも溶液重合法が好ましい。 (メ タ)アクリル系ポリマーの溶媒としては、一般に酢酸ェチル、トルエン等が用いられる。 溶液濃度は通常 20〜80重量%程度である。
上記重合開始剤として過酸化物を使用した場合、重合反応に使用されずに残存し た過酸化物は、後述する架橋反応に使用することも可能である。
[0032] 本発明のアクリル系粘着剤は、好ましくは架橋剤が更に配合される。架橋剤として は、イソシァネート系化合物や過酸化物などが挙げられる。
イソシァネート系化合物としては、トリレンジイソシァネート、クロルフエ二レンジイソシ ジイソシァネート、キシリレンジイソシァネート、ジフヱニルメタンジイソシァネート、水 添されたジフヱニルメタンジイソシァネートなどのイソシァネートモノマー、これらイソシ ァネートモノマーをトリメチロールプロパンなどの多価アルコールと付加した化合物な どのァダクト系イソシァネート化合物;イソシァヌレート化物;ビュレット型化合物;ポリ エーテルポリオール、ポリエステルポリオール、アクリルポリオール、ポリブタジエンポ リオール、ポリイソプレンポリオールなどを付加反応させたウレタンプレボリマー型のィ ソシァネート;などが挙げられる。これらイソシァネート系化合物のなかでも、光学フィ ルムとの密着性向上の点から、キシリレンジイソシァネート等のァダクト系イソシァネ ート化合物が好ましい。
[0033] イソシァネート系化合物の使用量は、第 1粘着剤層及び第 2粘着剤層が上記タリー プズレ量となるように適宜な量に設定できる。この設定は、 (メタ)アクリル系ポリマーの 形成材料、分子量なども影響するので一概に言えない。一般に、架橋点が多くなる ほど、アクリル系粘着剤のクリープズレ量は小さくなる。従って、一般的には、第 1粘 着剤層を構成するアクリル系粘着剤組成物は、第 2粘着剤層を構成するアクリル系 粘着剤組成物よりも、イソシァネート系化合物の使用量が少量とされる。
なお、通常、イソシァネート系化合物の使用量は、(メタ)アクリル系ポリマー 100重 量部に対して、 0. 00:!〜 2重量部、好ましくは 0. 01〜: 1. 5重量部、さらに好ましくは 0. 02〜1重量部である。イソシァネート系化合物の使用量が 0. 001重量部未満で は、光学フィルムとの密着性や耐久性の点で好ましくなレ、からである。
[0034] 過酸化物を配合する場合、該過酸化物としては、加熱によりラジカルを発生して (メ タ)アクリル系ポリマーの架橋を達成できるものを特に制限なく使用できる。生産性を 考慮した場合、過酸化物は、 1分間半減期温度が 70〜: 170°C程度、好ましくは 90〜 150°Cである。 1分間半減期温度が低すぎる過酸化物を使用すると、粘着剤を塗工 する前に架橋反応が進み、その結果、塗工物の粘度が上昇して塗工不能となる虞れ 力 Sあるからである。一方、 1分間半減期温度が高すぎる過酸化物を使用すると、架橋 反応時の温度が高くなつて他の副作用が生じたり、あるいは、分解不足により目的の 特性が得られなかったり、あるいは、過酸化物が多く残存することによって、その後架 橋反応が進行する虞れがあるためである。
[0035] なお、過酸化物の半減期とは、過酸化物の分解速度を表す指標であって、過酸化 物の分解量が半分になる時間である。任意の時間で半減期を得るための分解温度 や、任意の温度での半減期時間に関しては、メーカーカタログ等に記載されている。 例えば、 日本油脂株式会社の有機過酸化物カタログ第 9版(2003年 5月)に記載さ れている。
[0036] 上記過酸化物としては、ジ(2—ェチルへキシル)パーォキシジカーボネート、ジ(4 _ t _ブチノレシクロへキシノレ)パーォキシジカーボネート、ジ一 sec _ブチノレパーォキ シジカーボネート、 t ブチルパーォキシネオデカノ ト、 t キシ パーォキシ ビバレート、 t ブチルパーォキシビバレート、ジラウロイルパーオキサイド、ジー n— オタタノィルパーオキサイド、 1, 1 , 3, 3—テトラメチルブチルパーォキシイソブチレ ート、ジベンゾィルパーオキサイド(BPO)などが挙げられる。これらのなかでも特に架 橋反応効率に優れることから、ジ(4_t—ブチルシクロへキシル)パーォキシジカル ボネート、ジラウロイルパーオキサイド、ジベンゾィルパーオキサイドが好ましく用いら れる。
[0037] 過酸化物の使用量は、第 1粘着剤層及び第 2粘着剤層が上記クリープズレ量となる ように適宜な量に設定できる。通常、過酸化物の使用量は、(メタ)アクリル系ポリマー 100重量部に対して、 0. 02 2重量部、好ましくは 0. 05 1重量部、さらに好ましく は 0. 06 0. 5重量部である。過酸化物の使用量が、 0. 02重量部未満では、架橋 反応が不十分となり耐久性の点で好ましくないからである。一方、同使用量が 2重量 部を超えると、架橋過多になることがあるからである。
[0038] さらに、本発明のアクリル系粘着剤は、必要に応じて各種添加剤が配合されていて もよレ、。添加剤は、本発明の目的を逸脱しない範囲で配合される。添加剤としては、 例えば、粘着付与剤、可塑剤、充填剤(例えば、ガラス繊維、ガラスビーズ、金属粉、 その他の無機粉末等)、顔料、着色剤、酸化防止剤、紫外線吸収剤、シランカツプリ ング剤等が挙げられる。また、粘着剤に微粒子を含有させることにより、光拡散性を 示す粘着剤を構成することもできる。
[0039] 本発明のアクリル系粘着剤は、好ましくはシランカップリング剤が配合される。シラン カップリング剤は、耐久性、特に加湿環境下で剥がれを抑える効果を粘着剤に付与 できる。シランカップリング剤としては、 3—グリシドキシプロピルトリメトキシシラン、 3 - グリシドキシプロピルメチルジメトキシシラン、 2 _ (3 4_エポキシシクロへキシル)ェ チルトリメトキシシラン等のエポキシ構造を有するケィ素化合物; 3—ァミノプロピルトリ メトキシシラン、 N— (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン、 N— (2- アミノエチル) 3—ァミノプロピルメチルジメトキシシラン等のアミノ基含有ケィ素化合物 ; 3—クロ口プロピルトリメトキシシラン;ァセトァセチル基含有トリメトキシシラン、 3—ァ の(メタ)アクリル基含有シランカップリング剤; 3—イソシァネートプロピルトリエトキシ シランなどのイソシァネート基含有シランカップリング剤などがあげられる。特に、光学 フィルムの剥がれを効果的に抑制できることから、 3—グリシドキシプロピルトリメトキシ シラン、ァセトァセチル基含有トリメトキシシランが好ましレ、。シランカップリング剤の使 用量は、(メタ)アクリル系ポリマー 100重量部に対して、 1重量部以下、好ましくは 0. 01〜1重量部であり、より好ましくは 0. 02-0. 6重量部である。シランカップリング剤 の使用量が多くなると、液晶セルへの接着力が増大しすぎて、リワーク性などに影響 を与えることがある。
[0040] 第 1粘着剤層及び/又は第 2粘着剤層と光学フィルムの間には、アンカーコート層 が設けられていてもよい。アンカーコート層を形成する材料は特に限定されないが、 粘着剤層と光学フィルムのいずれにも良好な密着性を示し、凝集力に優れる皮膜を 形成し得る化合物が好ましい。このような性質を示すアンカーコート層としては、各種 ポリマー類、金属酸化物のゾル、シリカゾル等を使用できる。これらのなかでも特にポ リマー類が好ましい。
[0041] このポリマー類としては、ポリウレタン系樹脂、ポリエステル系樹脂、分子中にアミノ 基を含むポリマー類があげられる。ポリマー類の使用形態は、溶剤可溶型、水分散 型、水溶解型のいずれでもよい。例えば、水溶性ポリウレタン、水溶性ポリエステル、 水溶性ポリアミド、水分散性樹脂(エチレン 酢酸ビュル系ェマルジヨン、(メタ)アタリ ル系ェマルジヨンなど)などが挙げられる。また、水分散型のポリマー類は、ポリウレタ ン、ポリエステル、ポリアミド等の各種の樹脂を乳化剤を用いてェマルジヨン化したポ リマーや、前記樹脂中に、水分散性親水基のァニオン基、カチオン基またはノニオン 基を導入した自己乳化物等を用レ、ることができる。また、イオン高分子錯体を用いる こと力 Sできる。
[0042] 力、かるポリマー類は、好ましくは、アクリル系粘着剤中のイソシァネート系化合物と 反応性のある官能基を有する。該反応性官能基を有するポリマー類としては、好まし くは分子中にアミノ基を有するポリマーが挙げられ、より好ましくは末端に 1級ァミノ基 を有するポリマーが挙げられる。
[0043] 分子中にアミノ基を有するポリマーとしては、ポリエチレンィミン、ポリアリルァミン、ポ リビュルァミン、ポリビュルピリジン、ポリビュルピロリジン、ジメチルアミノエチルアタリ レート等のようなアミノ基含有モノマーの重合体などが挙げられる。これらのなかでも、 アミノ基を有するポリマーとしては、ポリエチレンィミンが好ましい。
[0044] 上記ポリエチレンイミンは、特に限定されず、適宜使用できる。ポリエチレンィミンの 重量平均分子量は、特に制限されないが、通常、 100〜100万程度である。このよう なポリエチレンィミンの市販品の例としては、株式会社日本触媒社製の商品名:ェポ ミン SPシリーズ(SP— 003、 SP006、 SP012、 SP018、 SP103、 SP110、 SP200 等)、ェポミン P_ 1000等があげられる。これらのなかでも、商品名:ェポミン P— 100 0が好適である。
[0045] ポリエチレンイミンは、ポリエチレン構造を有していればよレ、。該ポリエチレンィミン は、例えば、ポリアクリル酸エステルへのエチレンィミン付加物及び Z又はポリェチレ ンィミン付カ卩物があげられる。該ポリアクリル酸エステルは、(メタ)アクリル系ポリマー で例示した各種アルキル (メタ)アタリレートおよびその共重合モノマーを、常法に従 つてェマルジヨン重合することにより得られる。該共重合モノマーとしては、エチレンィ ミン等を反応させるために、カルボキシル基等の官能基を有するモノマーが用いられ る。カルボキシノレ基等の官能基を有するモノマーの使用割合は、反応させるエチレン ィミン等の割合により適宜に調整する。また、共重合モノマーとしては、好ましくはスチ レン系モノマーが用いられる。また、アクリル酸エステル中のカルボキシル基等に、別 途合成したポリエチレンイミンを反応させることにより、ポリエチレンイミンをグラフ M匕 した付加物とすることもできる。該ポリエチレ二ミンの市販品の例としては、株式会社 日本触媒社製のポリメント NK— 380、 350が特に好ましレ、。
[0046] また、ポリエチレンィミンとして、アクリル系重合体ェマルジヨンのエチレンイミン付カロ 物及び/又はポリエチレンィミン付加物等を用いることができる。この市販品の例とし ては、株式会社日本触媒社製のポリメント SK— 1000があげられる。
[0047] 上記ポリアリルァミンとしては、特に制限されず、たとえば、ジァリルアミン塩酸塩一 二酸化硫黄共重合物、ジァリルメチルァミン塩酸塩共重合物、ポリアリルアミン塩酸 塩、ポリアリルアミン等のァリルアミン系化合物、ジエチレントリァミン等のポリアルキレ ンポリアミンとジカルボン酸の縮合物、そのェピハロヒドリンの付加物、ポリビュルアミ ン等があげられる。ポリアリルアミンは、水又はアルコールに可溶性であるため、好ま しく用いられる。ポリアリルァミンの重量平均分子量は特に制限されないが、好ましく は 1万〜 10万程度である。
[0048] また、上記アンカーコート層の形成材料には、分子中にアミノ基を含むポリマー類 に加えて、該ポリマー類と反応する化合物を混合してもよい。該化合物が、アミノ基を 含むポリマー類と架橋することにより、形成されるアンカーコート層の強度を向上させ ること力 Sできる。アミノ基を含むポリマー類と反応する化合物としては、エポキシ化合 物等を例示できる。
[0049] 第 1粘着剤層及び第 2粘着剤層を構成するアクリル系粘着剤は、通常、光学フィル ムの一面に塗工され、粘着剤付き光学フィルムの態様で使用される。粘着剤付き光 学フィルムは、使用に際して、該粘着剤を介して液晶セルに貼着される。
粘着剤層の形成法は、特に限定されず、光学フィルム上に粘着剤溶液を塗布し乾 燥する方法、粘着剤を設けた離型シートによって転写する方法等があげられる。塗布 法は、リバースコーティング、グラビアコーティング等のロールコーティング法、スピン コーティング法、スクリーンコーティング法、フアウンテンコーティング法、デイツビング 法、スプレー法などを採用できる。粘着剤層の厚さは特に限定されないが、好ましく は 10〜40 μ m程度である。
[0050] 上記離型シートとしては、紙、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレ ートなどの合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シート、金属 箔、それらのラミネート体等の薄葉体があげられる。離型シートの表面には、粘着剤 層からの剥離性を高めるため、必要に応じてシリコーン処理、長鎖アルキル処理、フ ッ素処理などの低接着性の剥離処理が施されてレ、てもよレ、。
[0051] アンカーコート層を設ける場合には、光学フィルム上にアンカーコート層を形成した 後に、粘着剤層を形成する。たとえば、ポリエチレンィミン水溶液の如きアンカー成分 の溶液を、コーティング法、デイツビング法、スプレー法などの塗工法を用いて、塗布 、乾燥し、アンカーコート層を形成する。
[0052] アンカーコート層の厚みは、 10〜500nm程度、好ましくは 50〜500nm程度である 。アンカーコート層の厚みが薄すぎると、十分な強度を示さず、十分な密着性が得ら れない場合がある。また、アンカーコート層が厚すぎると、光学特性の低下を招く場 合がある。
[0053] 粘着剤層等の形成にあたり、光学フィルムに活性化処理を施すことができる。活性 化処理は各種方法を採用でき、たとえばコロナ処理、低圧 UV処理、プラズマ処理等 を採用できる。また、光学フィルムに帯電防止層を形成することができる。
[0054] なお、光学フィルムや粘着剤層などの各層は、紫外線吸収性能を有していてもよい 。紫外線吸収性能の各層への付与は、例えば、サリチル酸エステル系化合物、ベン ゾフヱノール系化合物、ベンゾトリアゾール系化合物、シァノアクリレート系化合物、二 ッケル錯塩系化合物等の紫外線吸収剤を各層に処理することが挙げられる。
[0055] <光学フィルムについて >
次に、本発明の液晶パネルに使用される光学フィルムの形成材料について更に詳 述する。
偏光子は、特定の偏光を得るための光学フィルムである。偏光子としては、たとえば 、親水性高分子フィルム(ポリビニルアルコール系フィルム、部分ホルマール化ポリビ ニルアルコール系フィルム、エチレン.酢酸ビニル共重合体系部分ケン化フィルム等
)にヨウ素や二色性染料の二色性物質を吸着させて一軸延伸した延伸フィルム、ポリ ビュルアルコールの脱水処理物やポリ塩化ビュルの脱塩酸処理物等のポリェン系配 向フィルム等があげられる。これらの中でも、偏光子は、ポリビエルアルコール系フィ ルムにヨウ素などの二色性物質を吸着させた延伸フィルムが好適である。偏光子の 厚さは特に限定されないが、一般的に 5〜80 /i m程度である。
[0056] 上記延伸フィルムからなる偏光子は、たとえば、ポリビニルアルコール系フィルムを ヨウ素の水溶液に浸漬することによって染色し、元長の 3〜7倍に延伸することで作製 すること力 Sできる。該偏光子の製造に際しては、必要に応じてホウ酸、硫酸亜鉛、塩 化亜鉛等を含んでいても良いヨウ化カリウムなどの水溶液に浸漬してもよい。さらに、 必要に応じて染色前にポリビュルアルコール系フィルムを水に浸漬して水洗してもよ レ、。このようにポリビュルアルコール系フィルムを水洗することにより、ポリビュルアル コール系フィルム表面の汚れやブロッキング防止剤を洗浄することができ、更に、ポリ ビュルアルコール系フィルムが膨潤するので、染色のムラなどの不均一を防止する効 果もある。延伸処理は、ヨウ素で染色した後に行っても良い。或いは、染色しながら延 伸処理を行っても良い。或いは、延伸処理後にヨウ素で染色しても良レ、。或いは、ホ ゥ酸ゃヨウ化カリウムなどの水溶液中でも延伸処理を行つてもよい。
[0057] 偏光子に設けられる保護フィルムは、透明性、機械的強度、熱安定性、水分遮断 性、等方性などに優れるフィルムが好ましい。保護フィルムとしては、例えば、ポリエ チレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー;ジァセ チノレセノレロース、トリァセチノレセノレロース等のセノレロース系ポリマー;ポリメチノレメタク リレート等のアクリル系ポリマー;ポリスチレン、アクリロニトリル 'スチレン共重合体(AS 樹脂)等のスチレン系ポリマー;ポリカーボネート系ポリマー;ポリエチレン、ポリプロピ レン、シクロ系ないしはノルボルネン構造を有するポリオレフイン、エチレン一プロピレ ン共重合体などのポリオレフイン系ポリマー;塩化ビュル系ポリマー;ナイロン、芳香 族ポリアミド等のアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテル スルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフエ二レンスルフイド 系ポリマー;ビエルアルコール系ポリマー;塩化ビニリデン系ポリマー;ビニルブチラ一 ル系ポリマー;ァリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマ 一;その他、前記ポリマーのブレンド物などのポリマーフィルムがあげられる。保護フィ ノレムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱 硬化型、紫外線硬化型の樹脂の硬化層で形成することもできる。
[0058] また、保護フィルムとして、 日本国公開特許公報 2001— 343529号に記載のポリ マーフィルムを用いることもできる。該ポリマーフィルムは、たとえば、(A)側鎖に置換 および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/ま たは非置換フエニルならびに二トリル基を有する熱可塑性樹脂と、を含有する樹脂組 成物のフィルムである。この具体例としてはイソブチレンと N—メチルマレイミドからな る交互共重合体とアクリロニトリル 'スチレン共重合体とを含有する樹脂組成物のフィ ルムがあげられる。該フィルムは、樹脂組成物の混合押出品などを用いることができ る。
[0059] 保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、 薄膜性などの点から、:!〜 500 x m程度であり、好ましくは 5〜200 x mである。 [0060] また、保護フィルムは、できるだけ色付きがなレ、ことが好ましレ、。このような透明性に 優れた保護フィルムは、好ましくは、 23°Cで可視光におけるフィルム厚み方向の位相 差値(Rth)が、 90nm〜 + 75nmである。厚み方向の位相差値(Rth)がー 90nm 〜 + 75nmの保護フィルムを使用することにより、保護フィルムに起因する偏光板の 着色(光学的な着色)をほぼ解消することができる。該厚み方向位相差値 (Rth)は、 より好ましくは一 80nm〜 + 60nmである、特に好ましくは一 70nm〜 + 45nmである ただし、 Rth= (nx-nz) X dである。この nxはフィルム平面内の遅相軸方向の屈 折率を、 nzはフィルムの厚み方向の屈折率を、 dはフィルム厚み [nm]を、それぞれ 表す。
[0061] 保護フィルムとしては、偏光特性や耐久性などの点から、好ましくはトリァセチルセ ルロース等のセルロース系ポリマーフィルムが用いられる。より好ましくは、保護フィル ムは、トリァセチルセルロースを含むポリマーフィルムである。尚、偏光子の両側に保 護フィルムを設ける場合、両保護フィルムは、同一のポリマーフィルムでもよいし、異 なるポリマーフィルムでもよレ、。
偏光子と保護フィルムは、通常、水系粘着剤等を介して接着される。水系粘着剤と しては、イソシァネート系粘着剤、ポリビニルアルコール系粘着剤、ゼラチン系粘着剤 、ビエル系ラテックス系、水系ポリウレタン、水系ポリエステル等が挙げられる。
[0062] 前記保護フィルムの偏光子を接着させない面には、ハードコート層、反射防止処理 、ステイツキング防止処理、拡散ないしアンチグレアを目的とした処理などを施しても よい。
[0063] ハードコート層は、偏光板表面の傷付き防止などを目的に施される。ハードコート層 は、例えば、アクリル系、シリコーン系などの適宜な紫外線硬化型樹脂などからなる 硬化皮膜を保護フィルムの表面に付加することにより形成することができる。反射防 止処理は、偏光板表面での外光の反射防止を目的に施される。反射防止層は、従 来に準じた反射防止膜などを保護フィルムに付加することにより形成することができる 。また、ステイツキング防止処理は、他の部材の隣接層との密着防止を目的に施され る。 [0064] また、アンチグレア処理は、偏光板の表面で外光が反射して偏光板透過光の視認 を阻害することを防止することなどを目的として施される。アンチグレア処理としては、 例えば、(a)サンドブラスト又はエンボス加工による保護フィルム表面の粗面化、 (b) 保護フィルムの形成材料に透明微粒子を配合する、などの適宜な手段があげられる 。該アンチグレア処理により、保護フィルムの表面に微細凹凸構造を形成することが できる。前記透明微粒子としては、例えば、シリカ、アルミナ、チタニア、ジルコユア、 酸化スズ、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる平均粒径 0. 5 〜50 μ mの無機微粒子 (該無機微粒子は導電性を有する場合もある)、架橋又は未 架橋のポリマー等からなる有機系微粒子(ビーズを含む)、などがあげられる。透明微 粒子の使用量は、透明樹脂 100重量部に対して一般的に 2〜50重量部程度であり 、 5〜25重量部が好ましい。アンチグレア処理は、拡散層(視覚拡大機能など)を兼 ねていてもよい。
[0065] なお、前記反射防止層、ステイツキング防止層、拡散層及びアンチグレア層等は、 保護フィルムそのものに設けることができる。その他、前記反射防止層等を備える別 体の光学層を、保護フィルムに積層することもできる。
[0066] 次に、光学補償層について説明する。
光学補償層は、所定の位相差を示す複屈折層で構成され、位相差板とも呼ばれる 光学補償層としては、直線偏光を円偏光に変える又は円偏光を直線偏光に変える 光学補償層(レ、わゆる 1/4 λ板)や、直線偏光の偏光方向を変える光学補償層(レ、 わゆる 1/2 λ板)などが用いられ得る。また、光学補償層の光学特性として、 (a)厚 み方向の屈折率 (nz)が面内の屈折率 (nx, ny)よりも小さい光学補償層(nx = ny > nz)、(b)厚み方向の屈折率 (nz)が面内の屈折率 (nx, ny)よりも大きい光学補償層 (nx = ny< nz)、 (c)その他の光学的一軸性の光学補償層(nx >ny = nz、 nx< ny = nz)、(d)光学的二軸性の光学補償層(nx >ny >nz、 nx >nz >ny等)、などが用 いられ得る。但し、 nx、 ny及び nzは、 X軸、 Y軸及び Z軸の屈折率をそれぞれ示し、 X軸は、光学補償層の平面内において最大の屈折率を示す軸方向であり、 Y軸は、 同平面内において X軸に対して垂直な軸方向であり、 Z軸は、 X軸及び Y軸に垂直な 厚み方向を示す。
なお、「nx=ny」とは、 nxと nyが完全に同一である場合だけでなぐ実質的に同一 である場合も含まれる。 nxと nyが実質的に同一である場合とは、例えば、 Re [590] 力 ¾nm〜10nmであり、好ましくは 0nm〜5nmである。 Re [590]は、 23°Cで波長 59 Onmに於ける面内位相差値である。
[0067] 光学補償層の形成材料としては、特に限定されず、従来公知の材料が用いられ得 る。光学補償層の形成材料は、例えば、光学補償層を形成した際の複屈折率が、相 対的に高くなる材料を選択することが好ましい。また、光学補償層は、広視野角特性 を実現できることから、好ましくは nx >ny>nzの光学的二軸性である。また、光学補 償層の nz係数(Nz= (nx-nz) / (nx— ny)で求められる)は、好ましくは 2〜20で ある。
光学補償層の形成材料としては、非液晶性ポリマーフィルムを一軸またはニ軸延 伸処理した複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層 を支持したフィルムなどがあげられる。光学補償層の厚さは、特に制限されないが、 一般的には、 1〜: 150 /i m程度である。
[0068] 上記非液晶性ポリマーとしては、たとえば、ポリビュルアルコール、ポリビニルブチラ ール、ポリメチルビニルエーテル、ポリヒドロキシェチルアタリレート、ヒドロキシェチノレ セノレロース、ヒドロキシプロピノレセノレロース、メチノレセノレロース、ポリカーボネート、ポリ ァリレート、ポリスルホン、ポリエチレンテレフタレートなどのポリエステル、ポリエーテ ノレケトン、ポリエーテルスルホン、ポリフエ二レンスルファイド、ポリフエ二レンォキサイ ド、ポリ了リノレスノレホン、ポリアミドイミド、ポリエステノレイミド、ポリアミド、ポリイミド、ポリ ォレフィン、ポリ塩ィ匕ビュル、セルロース系重合体、ノルボルネン系ポリマーなどが挙 げられる。また、これらの二元系又は三元系各種共重合体、グラフト共重合体、ブレ ンド物などがあげられる。これらの非液晶性ポリマーは、延伸等により配向物 (延伸フ イノレム)となる。
[0069] 上記液晶ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子 団(メソゲン)が主鎖や側鎖に導入された主鎖型や側鎖型の液晶ポリマーなどがあげ られる。主鎖型の液晶ポリマーは、屈曲性を付与するスぺーサ一部でメソゲン基を結 合した構造のポリマーが挙げられる。該主鎖型の液晶ポリマーの具体例としては、例 えば、ネマチック配向性のポリエステル系液晶性ポリマー、ディスコティックポリマー、 コレステリックポリマーなどがあげられる。側鎖型の液晶ポリマーの具体例としては、 主鎖としてポリシロキサン、ポリアタリレート、ポリメタタリレート又はポリマロネートを有し
、且つ側鎖として共役性の原子団からなるスぺーサ一部を介してネマチック配向付 与性のパラ置換環状化合物単位からなるメソゲン部を有する液晶ポリマーなどがあ げられる。これらの液晶ポリマーは、溶液状に調製される。該液晶ポリマー溶液を、た とえば、配向基材上に展開して熱処理することにより、所定の位相差を示す光学補 償層を形成できる。前記配向基材としては、例えば、ガラス板上に形成したポリイミド やポリビュルアルコール等の薄膜をラビング処理した配向基材、酸化ケィ素を斜方蒸 着した配向基材などが挙げられる。
[0070] 上記光学補償層としては、非液晶性ポリマーのフィルムが好ましい。非液晶性ポリ マーは、液晶性材料とは異なり、それ自身の性質により nx >nzまたは ny >nzという 光学的一軸性を示す膜を形成する。このため、例えば、光学補償層を作製する際に 使用する基材として、配向基材に限定されることはなぐ未配向基材を用いることもで きる。未配向基材は、配向基材のように、表面に配向膜を塗布する工程や配向膜を 積層する工程等を必要としない。従って、偏光子に積層する保護フィルムに非液晶 性ポリマーを塗工することにより、上記光学補償層を形成できる。よって、非液晶性ポ リマーを用いれば、上記光学補償層を、粘着剤を介在させずに、保護フィルムに直 接的に形成することもできる。
[0071] 上記非液晶性ポリマーの分子量は、特に制限されないが、好ましくは重量平均分 子量が 1千〜 100万の範囲であり、より好ましくは 2千〜 50万の範囲である。
非液晶性ポリマーの好ましい具体例としては、面内配向性が高ぐ有機溶剤に可溶 なポリイミドがあげられる。該非液晶性ポリマーを適当な溶媒に溶解させ、このポリマ 一溶液を保護フィルムなどの適当な基材に塗工し、これを乾燥すれば、光学補償層 を形成できる。
[0072] 非液晶性ポリマーの溶媒としては、特に制限されず、その種類に応じて適宜決定で きる。該溶媒としては、例えば、クロ口ホルム、ジクロロメタン等のハロゲンィ匕炭化水素 類;フエノール等のフエノール類;ベンゼン、トルエン、キシレン等の芳香族炭化水素 類;アセトン、メチルェチルケトン、メチルイソプチルケトン等のケトン系溶媒;酢酸ェ チル、酢酸ブチル等のエステル系溶媒; t ブチルアルコール、エチレングリコール 等のアルコール系溶媒;ジメチルホルムアミド等のアミド系溶媒;ァセトニトリル等の二 トリル系溶媒;ジェチルエーテル等のエーテル系溶媒;ェチルセルソルブ、ブチルセ ルソルブなどがあげられる。これらの溶媒は、 1種単独で、又は 2種以上を併用しても よい。
[0073] 非液晶性ポリマーを溶剤に溶解させたポリマー溶液には、必要に応じて、さらに、 安定剤、可塑剤、金属類等の種々の添加剤を配合してもよい。ポリマー溶液の塗工 方法は、従来公知の方法で行えばよい。
また、非液晶性ポリマーとしてポリイミドを用いる場合には、基材とポリマーの密着性 を高めるため、基材(上記保護フィルムなど)の塗工面にポリウレタンなどを薄く塗工し ておくことが好ましい。
ポリイミドなどの非液晶性ポリマーは、その性質上、基材の配向の有無に関わらず、 nx=ny>nzの光学特性を示す。従って、該非液晶性ポリマーを含む塗工膜は、光 学的一軸性を示す (つまり、厚み方向にのみ位相差を示す)。さらに、前記非液晶性 ポリマーを塗工する基材として、面内の一方向に収縮する基材を用いることにより、該 基材の収縮に伴って、基材上の塗工膜も面方向において収縮する。従って、塗工膜 の面内において屈折差が生じ、光学的二軸性 (nx >ny>nz)を示す光学補償層を 形成できる。
[0074] 具体的には、上記基材は、面内において一方向に収縮性を付与させるため、好ま しくは、面内のいずれか一方向に延伸処理される。このように、基材を予め延伸して おくことによって、前記延伸方向と反対方向に収縮力が発生する。
そして、上記基材上の塗工膜に、加熱処理を施すことによって、基材を収縮させる 。この基材の収縮差を利用し、塗工膜を形成する非液晶性ポリマーに屈折率差を付 与するのである。すなわち、基材の収縮に伴って塗工膜が収縮し、光学的二軸性の 光学補償層を形成できる。
加熱処理の条件としては、特に制限されず、例えば、基材の材料の種類等によって 適宜決定できる。該加熱温度は、好ましくは 25〜300°Cであり、より好ましくは 50〜2 00°Cであり、特に好ましく ίま 60〜: 180°Cである。
[0075] また、基材に上記ポリマー溶液を直接塗工して塗工膜を形成した後、該基材と塗工 膜の積層体を延伸してもよい。かかる方法でも、上記と同様の原理から、光学的二軸 性 (nx>ny>nz)を示す光学補償層を基材に直接形成できる。
[0076] 基材と塗工膜の積層体の延伸方法は、特に制限されないが、例えば、基材の幅方 向へのテンター延伸法、基材の長手方向に一軸延伸する自由端縦延伸法、基材の 長手方向を固定した状態で幅方向に一軸延伸する固定端横延伸法、長手方向およ び幅方向の両方に延伸を行う逐次または同時二軸延伸法、などがあげられる。
[0077] 延伸の条件としては、特に制限されず、例えば、基材ゃ塗工膜 (光学補償層)の形 成材料の種類等に応じて適宜決定できる。具体的には、延伸倍率は、好ましくは 1倍 より大きく 5倍以下であり、より好ましくは 1倍より大きく 4倍以下であり、特に好ましくは 1倍より大きく 3倍以下である。
[0078] 光学補償層の位相差は、使用目的に応じて、適宜な値に設定され得る。例えば、 液晶セルの複屈折などによる着色や視覚を補償する目的などに応じて、光学補償層 の位相差が、適宜な値に設定される。
光学補償層は、その位相差などを制御する目的等で、光学特性の異なる 2種以上 の光学補償層を積層してもよい。
[0079] 視覚補償フィルムは、液晶表示装置の画面を斜め方向から見た場合でも画像が鮮 明に見えるように、視野角を広げるフィルムである。力かる視覚補償フィルムとしては 、光学補償層が用いられる。該視覚補償フィルム (光学補償層)は、例えば、面内方 向に二軸延伸された複屈折を有するポリマーフィルム、厚み方向に屈折率を制御し たポリマーフィルム、傾斜配向フィルムのような二方向延伸フィルム、などが用いられ る。傾斜配向フィルムとしては、例えば、ポリマーフィルムに熱収縮フィルムを接着し、 加熱収縮力の作用下にポリマーフィルムを延伸(又は収縮)したフィルムや、液晶ポリ マーを斜めに配向させたフィルムなどが挙げられる。
[0080] また、偏光板と輝度向上フィルムを貼り合せた光学フィルムは、通常、液晶セルの 視認面と反対側(バックライト側)に設けられる。輝度向上フィルムは、バックライトから の反射などにより自然光が入射すると、所定偏光軸の直線偏光または所定方向の円 偏光を反射し、他の光は透過する特性を有する。
該輝度向上フィルムとしては、例えば、誘電体の多層薄膜、屈折率異方性が相違 する薄膜フィルムの多層積層体、コレステリック液晶ポリマーの配向フィルム、その配 向ポリマーを基材上に支持したフィルムなどが挙げられる。
[0081] <液晶表示装置について >
本発明の液晶パネルは、通常、液晶表示装置に組み込まれる。液晶表示装置の形 成は、従来に準じて行レ、うる。すなわち、液晶表示装置は、一般に、液晶セルに上記 粘着剤層を介して上記光学フィルムが貼着された液晶パネルと、照明システム等の 構成部品と、を組み立てることなどにより形成される。本発明の液晶表示装置は、上 記液晶パネルを用いる点を除いて、特に制限はない。液晶パネル (液晶セル)は、例 えば、 VA型、 IPS型、 TN型や STN型、 π型などの任意なモードを用い得る。
本発明の液晶表示装置は、任意の適切な用途に使用される。その用途は、例えば 、パソコンモニター、ノートパソコン、コピー機などの OA機器、携帯電話、時計、デジ タルカメラ、携帯情報端末 (PDA)、携帯ゲーム機などの携帯機器、ビデオカメラ、テ レビ、電子レンジなどの家庭用電気機器、バックモニター、カーナビゲーシヨンシステ ム用モニター、カーオーディオなどの車載用機器、商業店舗用インフォメーション用 モニターなどの展示機器、監視用モニターなどの警備機器、介護用モニター、医療 用モニターなどの介護 ·医療機器等である。
好ましくは、本発明の液晶表示装置の用途は、テレビである。上記テレビの画面サ ィズは、好ましくはワイド 17型(373mm X 224mm)以上であり、より好ましくはワイド 2 3型(499mm X 300mm)以上であり、特に好ましくはワイド 32型(687mm X 412m m)以上である。
実施例
[0082] 以下、本発明の実施例について具体的に説明する。もっとも、本発明は下記実施 例によって限定されるものではない。なお、各例中の「部」及び「%」は、「重量部」及 び「重量%」を示す。
(偏光子の作製) 厚み 80 μ mのポリビエルアルコールフィルムを速度比の異なるロール間において、 濃度 0. 3%のヨウ素水溶液中(30°C)で 3倍に延伸した。次いで、濃度 4%のホウ酸 及び濃度 10%のヨウ化カリウムを含む水溶液中(60°C)で、総延伸倍率 6倍まで延伸 した。次いで、濃度 1. 5%のヨウ化カリウム水溶液中(30°C)に 10秒間漫漬すること により洗浄した後、 50°Cで 4分間乾燥させて偏光子を得た。
[0083] (偏光板(1)の作製)
上記偏光子の両面に、ポリビュルアルコール系粘着剤(0. 5 z m)を介して、けん 化処理した厚さ 80 μ mのトリアセチルセルロースフィルム(TACフィルム)を貼り合わ せ、 TACフィルム—偏光子— TACフィルムからなる偏光板を作製した。
[0084] (偏光板 (2)の作製)
2, 2' _ビス(3, 4—ジカルボキシフエニル)へキサフルォロプロパン及び 2, 2 '—ビ ス(トリフルォロメチル)一4, 4'—ジアミノビフエニルから合成されたポリイミドをメチル イソプチルケトン (溶媒)に溶解させた溶液(固形分濃度 15%)を、厚み 40 μ mのトリ ァセチルセルロースフィルム(TACフィルム)に塗工した(塗工厚 20 μ m)。その後、 1 00°Cで 10分乾燥し、厚み約 2· 5 μ ΐηのポリイミド薄膜を得た。次に、フィルムを 150 °Cで 1. 05倍に縦延伸して、前記薄膜に延伸処理を施し、光学補償層を形成した。 この光学補償層を積層した TACフィルムに、ポリビュルアルコール系粘着剤(0. 5 / m)を介して、上記偏光子を貼り合わせた。なお、貝占り合わせる際には、光学補償 層の遅相軸方向と偏光子の吸収軸方向が平行になるように配置した。さらに、この偏 光子の反対面(光学補償層が積層されていない面)に、厚み 40 / mのトリァセチルセ ルロースフィルムを、ポリビニルアルコール系粘着斉 IJ (0. 5 μ ΐη)を介して貼り合わせ た。以上により、ポリイミドの光学補償層—TACフィルム—偏光子—TACフィルムか らなる偏光板(2)を作製した。
[0085] (クリープズレ量の測定)
10mm X 50mmのサイズに切断したフィルムを、測定対象となる粘着剤を介して、 ガラス板(コーユング社製、商品名: EAGLE2000)に貼り合わせ、これを、 50。C、 5 気圧のオートクレープ中にて 30分間放置した。ただし、接着剤の厚みは、乾燥厚み 2 O z mとし、前記フィルムとガラス板の接着面積は、 10mm2とした。 その後、図 5 (a)に示すように、ガラス板 Aを固定し、 23°Cにおいて、フイノレム Bに 4. 9N (500gf)の荷重を垂直方向に負荷し、該フィルムの 1時間後のズレ量 t (l時間後 のズレ量 t =初期接着位置— 1時間後の接着位置)を測定した(同図 (b) )。
[0086] (粘着剤(1)の調製)
冷却管、窒素導入管、温度計及び攪拌装置を備えた反応容器に、 n—プチルァク リレート; 100部、アクリル酸; 5部、 2—ヒドロキシェチルアタリレート; 0. 1部を、酢酸 ェチルと共にカ卩え、窒素ガス気流下、 60°Cで 4時間反応させた後、その反応液に酢 酸ェチルを加えて、重量平均分子量 210万のアクリル系ポリマーを含有する溶液(固 形分濃度 30%)を得た。
このアクリル系ポリマー溶液の固形分 100部あたり、トリレンジイソシァネート(日本 ポリウレタン工業 (株)製、商品名:コロネート L)を 1部配合して、アクリル系粘着剤(1) を得た。
この粘着剤(1)のクリープズレ量を上記手法に従って測定したところ、 30 μ mであ つに。
[0087] (粘着剤(2)の調製)
トリレンジイソシァネートの量を 0. 6部に変えた以外は、上記粘着剤(1)と同様にし て、アクリル系粘着剤(2)を得た。
この粘着剤(2)のクリープズレ量を測定したところ、 70 μ mであった。
[0088] (粘着剤(3)の調製)
トリレンジイソシァネートの量を 0. 05部に変えた以外は、上記粘着剤(1)と同様に して、アクリル系粘着剤(3)を得た。
この粘着剤(3)のクリープズレ量を測定したところ、 150 a mであった。
[0089] (粘着剤 (4)の調製)
トリレンジイソシァネートの量を 3部に変えた以外は、上記粘着剤(1)と同様にして、 アクリル系粘着剤 (4)を得た。
この粘着剤(4)のクリープズレ量を測定したところ、 5 a mであった。
[0090] (粘着剤(5)の調製)
反応容器に、 n_ブチルアタリレート; 99部、 4—ヒドロキシブチルアタリレート; 1部を 、酢酸ェチルと共に加え、窒素ガス気流下、 60°Cで 4時間反応させた後、その反応 液に酢酸ェチルを加えて、重量平均分子量 165万のアクリル系ポリマーを含有する 溶液(固形分濃度 30%)を得た。
このアクリル系ポリマー溶液の固形分 100部あたり、トリメチロールプロパンキシレン ジイソシァネート(三井武田ケミカル (株)製、商品名:タケネート D110N)を 0. 02部 、過酸化ベンゾィルを 0. 3部配合して、アクリル系粘着剤(5)を得た。
この粘着剤(5)のクリープズレ量を測定したところ、 200 a mであった。
[0091] (粘着剤 (6)の調製)
トリメチロールプロパンキシレンジイソシァネートの量を 0. 16部に変えた以外は、上 記接着剤(5)と同様にして、アクリル系粘着剤(6)を得た。
この粘着剤(6)のクリープズレ量を測定したところ、 70 a mであった。
[0092] (粘着剤(7)の調製)
反応容器に、 iso—ォクチル (メタ)アタリレート; 99部、 6—ヒドロキシへキシルアタリ レート; 1部を、酢酸ェチルと共に加え、窒素ガス気流下、 60°Cで 4時間反応させた 後、その反応液に酢酸ェチルを加えて、重量平均分子量 160万のアクリル系ポリマ 一を含有する溶液(固形分濃度 30%)を得た。
このアクリル系ポリマー溶液の固形分 100部あたり、トリメチロールプロパンキシレン ジイソシァネート(三井武田ケミカル (株)製、商品名:タケネート D110N)を 0. 1部配 合して、アクリル系粘着剤(7)を得た。
この粘着剤(7)のクリープズレ量を測定したところ、 500 μ mであった。
[0093] (粘着剤 (8)の調製)
トリメチロールプロパンキシレンジイソシァネートの量を 0. 03部に変えた以外は、上 記接着剤(7)と同様にして、アクリル系粘着剤(8)を得た。
この粘着剤(8)のクリープズレ量を測定したところ、 2500 μ mであった。
[0094] (粘着剤(9)の調製)
トリメチロールプロパンキシレンジイソシァネートの量を 0. 01部に変えた以外は、上 記接着剤(7)と同様にして、アクリル系粘着剤(9)を得た。
この粘着剤(9)のクリープズレ量を測定したところ、 3500 μ mであった。 尚、粘着剤(1 )〜(9)の組成及びクリープズレ量を表 1に示す。
[0095] [表 1]
Figure imgf000031_0001
[0096] 実施例 1
偏光板(1 )の保護フィルムの一面に、粘着剤(5)を塗工(乾燥厚 20 / m)し、 37ィ ンチ用(縦 46 lmm X横 819mm)の VAモードの液晶セル(シャープ(株)製、商品名 : AQUOS)の視認面に、貝占り合わせた。他方、偏光板(2)の光学補償層の一面に、 粘着剤(2)を塗工 (乾燥厚 20 μ m)し、上記液晶セルの視認面と反対面に貼り合わ せ、液晶パネルを作製した。但し、偏光板(1 )は、その偏光子の吸収軸方向が液晶 セルの長辺に平行となるように貼り合わせた。偏光板(2)は、その偏光子の吸収軸方 向が液晶セルの短辺に平行となるように貼り合わせた。
[0097] 実施例 2
偏光板(1 )を貼り合わせる粘着剤として、粘着剤(7)を用いたこと、及び、偏光板(2 )を貼り合わせる粘着剤として、粘着剤(2)を用レ、たこと以外は、実施例 1と同様にし て液晶パネルを作製した。
[0098] 実施例 3
偏光板(1 )を貼り合わせる粘着剤として、粘着剤(8)を用いたこと、及び、偏光板(2 )を貼り合わせる粘着剤として、粘着剤(3)を用レ、たこと以外は、実施例 1と同様にし て液晶パネルを作製した。
[0099] 実施例 4 偏光板(1)を貼り合わせる粘着剤として、粘着剤 (6)を用いたこと、及び、偏光板 (2 )を貼り合わせる粘着剤として、粘着剤(1)を用いたこと以外は、実施例 1と同様にし て液晶パネルを作製した。
[0100] 実施例 5
偏光板(1)を貼り合わせる粘着剤として、粘着剤(5)を用いたこと、及び、偏光板(2 )を貼り合わせる粘着剤として、粘着剤(2)を用いたこと、及び、偏光板(1)の偏光子 の吸収軸方向を液晶セルの長辺に対して 45度に配置したこと、及び、偏光板(2)の 偏光子の吸収軸方向を前記偏光板(1)の吸収軸に直交するように配置したこと以外 は、実施例 1と同様にして液晶パネルを作製した。
[0101] 比較例 1
偏光板(1)を貼り合わせる粘着剤として、粘着剤(2)を用いたこと、及び、偏光板(2 )を貼り合わせる粘着剤として、粘着剤(5)を用いたこと以外は、実施例 1と同様にし て液晶パネルを作製した。
[0102] 比較例 2
偏光板(1)を貼り合わせる粘着剤として、粘着剤(9)を用いたこと、及び、偏光板 (2 )を貼り合わせる粘着剤として、粘着剤(2)を用いたこと以外は、実施例 1と同様にし て液晶パネルを作製した。
[0103] 比較例 3
偏光板(1)を貼り合わせる粘着剤として、粘着剤(5)を用いたこと、及び、偏光板 (2 )を貼り合わせる粘着剤として、粘着剤 (4)を用いたこと以外は、実施例 1と同様にし て液晶パネルを作製した。
実施例:!〜 5及び比較例:!〜 3で用いた粘着剤の種類、クリープズレ量の比(L1/ L2)、及び偏光子の配置を表 2に示す。
[0104] [表 2] 視認側の粘着剤 反対側の粘着剤 ズレ量の比 視認側偏光子反対側偏光子 種類 ズレ量(L1 ) 種類 ズレ量 (L2) (L1 /-L2) の吸収軸 の吸収軸 実施例 1 粘着剤 (5) 200 粘着剤(2) 70 2.86 長辺に平行 短辺に平行 実施例 2 粘着剤 (7) 500 粘着剤(2) 70 7.14 長辺に平行 短辺に平行 実施例 3 粘着剤 (8) 2500 粘着剤 (3) 150 16.67 長辺に平行 短辺に平行 実施例 4 粘着剤 (6) 70 粘着剤(1 ) 30 2.33 長辺に平行 短辺に平行 実施例 5 粘着剤 (5) 200 粘着剤 (2) 70 2.86 長辺に 45度 長辺に 135度 比較例 1 粘着剤 (2) 70 粘着剤 (5) 200 0.35 長辺に平行 短辺に平行 比較例 2 粘着剤 (9) 3500 粘着剤(2) 70 50.0 長辺に平行 短辺に平行 比較例 3 粘着剤 (5) 200 粘着剤 (4) 5 40.0 長辺に平行 短辺に平行
[0105] (光漏れ試験)
上記実施例 1〜 5及び比較例 1〜 3の液晶パネルを、それぞれ著しレ、温度変化の 環境下に曝した。温度変化は、 _ 30°C環境下に液晶パネルを 30分間放置し、直後 に 70°C環境下に移して 30分間放置することを 1サイクルとし、これを 100サイクル繰り 返した。
その後、実施例 1〜 5及び比較例 1〜 3の液晶パネルの黒表示状態に於ける黒輝 度を測定した。測定は、暗室で行い、液晶パネルから lm離れた地点から測定機器( ミノルタ (株)製、商品名: CA— 1500)で測定した。
[0106] 測定後、液晶パネルの 5mm間隔で輝度を抽出し、液晶パネルの左上角部、左端 中央部、左下角部及び中央部の 3cm四方の範囲に於ける輝度の平均値を求めた。 その結果を、表 3に示す。
ただし、比較例 2の液晶パネルについては、偏光板(1)と液晶セルの間に於けるァ クリル系粘着剤(9)が発泡を生じたため、輝度を測定することができなかった。比較 例 3の液晶パネルについては、偏光板(2)と液晶セルの間に於けるアクリル系粘着剤 (4)が破断して偏光板(2)が剥離したため、輝度を測定することができなかった。
[0107] [表 3] 光漏れ試験
左上角部 左下角部 左端中央部 中央部 実施例 1 0.28 0.29 0.27 0.27
実施例 2 0.28 0.28 0.27 0.27
実施例 3 0.27 0.28 0.27 0.27
実施例 4 0.29 0.29 0.27 0.27
実施例 5 0.30 0.29 0.35 0.28
比較例 1 0.56 0.40 0.31 0.30
比較例 2 視認側粘着剤の発泡によって、測定不可
比較例 3 反対側偏光子の剥離によって、測定不可 実施例:!〜 5は、黒輝度に優れ、光漏れが少ないことが確認された。特に、実施例 1 〜4は、この効果に優れている。
一方、比較例 1では、角部に於ける黒輝度に劣り、比較例 2は、視認側の粘着剤が 柔らかすぎて発泡を生じた。比較例 3は、反対側の粘着剤が硬すぎて偏光板の収縮 に対応できず、粘着剤層の破壊を生じた。

Claims

請求の範囲
[1] 液晶セルの視認側に第 1粘着剤層を介して第 1光学フィルムが接着され、且つ液晶 セルの反対側に第 2粘着剤層を介して第 2光学フィルムが接着されている液晶パネ ノレであって、第 1粘着剤層のクリープズレ量 (L1)が 50〜3000 z m、第 2粘着剤層の クリープズレ量 (L2)が 10〜400 z mであり、第 1粘着剤層のクリープズレ量 (L1)が 第 2粘着剤層のクリープズレ量 (L2)よりも大きいことを特徴とする液晶パネル。
クリープズレ量は、粘着剤層の厚み 20 /i m、 10mm2の接着面積に於いて、 23°C で 4. 9Nの引張りせん断力をカ卩えた場合の 1時間後のズレ量を示す。
[2] 第 1光学フィルム及び第 2光学フィルムの少なくともいずれか一方が偏光子を含む 偏光板である請求項 1に記載の液晶パネル。
[3] 第 1光学フィルム及び第 2光学フィルムが偏光子を含む偏光板であり、第 1光学フィ ルムの偏光子の吸収軸方向が液晶パネルの長辺に略平行に配置され、且つ第 2光 学フィルムの偏光子の吸収軸方向が液晶パネルの短辺に略平行に配置されている 請求項 2に記載の液晶パネル。
[4] 偏光子力 S、延伸フィルムを含み、当該延伸フィルムの主延伸方向が偏光子の吸収 軸方向となる請求項 2または 3に記載の液晶パネル。
[5] 第 1粘着剤層のクリープズレ量 (L1)と第 2粘着剤層のクリープズレ量 (L2)の比 (L1
/L2)が 30以下である請求項 1〜4のいずれかに記載の液晶パネル。
[6] さらに、第 1粘着剤層のクリープズレ量 (L1)と第 2粘着剤層のクリープズレ量 (L2) の比 (L1/L2)が 2以上である請求項 5に記載の液晶パネル。
[7] 第 1粘着剤層のクリープズレ量 (L1)と第 2粘着剤層のクリープズレ量 (L2)の比 (L1
/L2)が 5〜20である請求項 5または 6に記載の液晶パネル。
[8] パネル周縁にベゼルを有する請求項 1〜7のいずれかに記載の液晶パネル。
[9] 第 1粘着剤層及び第 2粘着剤層が、アクリル系粘着剤を主成分とする請求項:!〜 8 のレ、ずれかに記載の液晶パネル。
[10] 請求項:!〜 9のいずれかに記載の液晶パネルを有する液晶表示装置。
PCT/JP2007/061600 2006-07-03 2007-06-08 Panneau à cristaux liquides et appareil d'affichage à cristaux liquides WO2008004403A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800240037A CN101479652B (zh) 2006-07-03 2007-06-08 液晶面板和液晶显示装置
US12/306,847 US8189149B2 (en) 2006-07-03 2007-06-08 Liquid crystal panel and liquid crystal display apparatus
EP07744920.5A EP2037317B1 (en) 2006-07-03 2007-06-08 Liquid crystal panel and liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006183018A JP4986211B2 (ja) 2006-07-03 2006-07-03 液晶パネル、及び液晶表示装置
JP2006-183018 2006-07-03

Publications (1)

Publication Number Publication Date
WO2008004403A1 true WO2008004403A1 (fr) 2008-01-10

Family

ID=38894375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061600 WO2008004403A1 (fr) 2006-07-03 2007-06-08 Panneau à cristaux liquides et appareil d'affichage à cristaux liquides

Country Status (7)

Country Link
US (1) US8189149B2 (ja)
EP (1) EP2037317B1 (ja)
JP (1) JP4986211B2 (ja)
KR (1) KR101045722B1 (ja)
CN (1) CN101479652B (ja)
TW (1) TW200811504A (ja)
WO (1) WO2008004403A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230115A (ja) * 2008-02-29 2009-10-08 Nitto Denko Corp 光学フィルムの製造方法、光学フィルム、偏光板、液晶パネルおよび液晶表示装置
US20100238370A1 (en) * 2009-03-23 2010-09-23 Hitachi Displays, Ltd. Liquid crystal display device and manufacturing method thereof
US8179500B2 (en) 2008-04-09 2012-05-15 Beijing Boe Optoelectronics Technology Co., Ltd. Polarization film
RU2494564C1 (ru) * 2009-08-21 2013-09-27 Зте Корпорэйшн Комплексное компьютерно-телекоммуникационное устройство обмена данными, система и способ передачи ассоциированных с каналом связи данных между агентом и автоматическим сервисом

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314439B2 (ja) * 2008-01-25 2013-10-16 日東電工株式会社 粘着型光学フィルムの剥離方法、及び粘着型光学フィルム
JP5376283B2 (ja) * 2008-03-26 2013-12-25 大日本印刷株式会社 位相差体及びその製造方法
JP5507858B2 (ja) * 2008-05-29 2014-05-28 日東電工株式会社 光学部材用粘着剤組成物、粘着型光学部材および画像表示装置
JP5431077B2 (ja) * 2009-09-03 2014-03-05 富士フイルム株式会社 投写レンズおよび投写型表示装置
KR101204135B1 (ko) * 2010-11-10 2012-11-22 주식회사 엘지화학 광학 소자
US20120113361A1 (en) * 2010-11-10 2012-05-10 Tpk Touch Solutions Inc. Optical Level Composite Pressure-Sensitive Adhesive and an Apparatus Therewith
KR101768718B1 (ko) * 2010-11-24 2017-08-16 주식회사 엘지화학 터치패널용 점착제 조성물, 점착필름 및 터치패널
US9244282B2 (en) * 2011-10-12 2016-01-26 Corning Incorporated Curved bezel-concealing display device covers and bezel-free display devices
JPWO2013121865A1 (ja) * 2012-02-16 2015-05-11 日本電気硝子株式会社 ガラスセル、液晶素子、ガラスセルの製造方法及び液晶素子の製造方法
AU2013228905B2 (en) * 2012-03-06 2015-09-03 Mitsui Chemicals, Inc. Plastic polarized lens and method of producing same
JP5890249B2 (ja) * 2012-05-14 2016-03-22 カルソニックカンセイ株式会社 表示装置保持構造
KR101378913B1 (ko) 2012-09-27 2014-03-28 신화인터텍 주식회사 광학 필름 및 그 제조 방법
JP6048297B2 (ja) * 2013-04-24 2016-12-21 住友化学株式会社 光学積層体及びそれを用いた表示装置
JP6202427B2 (ja) * 2013-06-06 2017-09-27 テクノダイナミックス株式会社 物品搬送装置
KR101706820B1 (ko) * 2014-07-03 2017-02-14 삼성에스디아이 주식회사 액정표시장치용 모듈 및 이를 포함하는 액정표시장치
JP2016062027A (ja) * 2014-09-19 2016-04-25 日東電工株式会社 粘着剤層付き偏光板
JP6692599B2 (ja) * 2014-09-19 2020-05-13 日東電工株式会社 粘着剤層付き偏光板
CN107735721B (zh) 2015-06-15 2020-11-10 堺显示器制品株式会社 显示装置
JP6797163B2 (ja) * 2018-10-11 2020-12-09 住友化学株式会社 光学積層体及び表示装置
JP7229006B2 (ja) * 2018-12-17 2023-02-27 日東電工株式会社 画像表示パネル、画像表示装置および粘着剤層付き光学フィルム
CN113574428A (zh) * 2019-03-18 2021-10-29 住友化学株式会社 层叠体和包含其的显示装置
WO2020189146A1 (ja) * 2019-03-18 2020-09-24 住友化学株式会社 積層体およびそれを含む表示装置
WO2021065075A1 (ja) * 2019-09-30 2021-04-08 日東電工株式会社 偏光板のセットおよび該セットを含む画像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272541A (ja) * 2000-03-27 2001-10-05 Nitto Denko Corp 光学補償フィルム付き偏光板及び液晶表示装置
JP2001343529A (ja) 2000-03-30 2001-12-14 Kanegafuchi Chem Ind Co Ltd 偏光子保護フィルムおよびその製造方法
JP2002236213A (ja) * 2001-02-08 2002-08-23 Nitto Denko Corp 偏光板及びこれを用いた液晶表示装置
JP2003050313A (ja) * 2001-08-07 2003-02-21 Nitto Denko Corp 偏光板及び液晶表示素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350020A (ja) * 2000-06-06 2001-12-21 Nitto Denko Corp 光学補償フィルム付き粘着偏光板及び液晶表示装置
JP2003307621A (ja) * 2002-04-18 2003-10-31 Nitto Denko Corp 粘着型光学フィルムおよび画像表示装置
JP4077244B2 (ja) * 2002-05-24 2008-04-16 日東電工株式会社 Vaモード用光学フィルムと積層偏光板、及びそれを用いた画像表示装置
JP4301544B2 (ja) * 2003-01-07 2009-07-22 日東電工株式会社 画像表示装置の製造方法、画像表示装置および粘着型光学フィルム
US7379131B2 (en) * 2003-03-28 2008-05-27 Fujifilm Corporation Liquid crystal display device
JP2005062810A (ja) * 2003-03-28 2005-03-10 Fuji Photo Film Co Ltd 液晶表示装置
KR100677050B1 (ko) * 2003-10-22 2007-01-31 주식회사 엘지화학 +a-플레이트와 +c-플레이트를 이용한 시야각보상필름을 포함하는 면상 스위칭 액정 표시장치
JP2005331909A (ja) * 2004-04-22 2005-12-02 Fuji Photo Film Co Ltd 偏光板および液晶表示装置
JP2005338736A (ja) 2004-05-31 2005-12-08 Fuji Photo Film Co Ltd 偏光板、偏光板一体型光学補償フィルム、液晶表示装置および自発光型表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272541A (ja) * 2000-03-27 2001-10-05 Nitto Denko Corp 光学補償フィルム付き偏光板及び液晶表示装置
JP2001343529A (ja) 2000-03-30 2001-12-14 Kanegafuchi Chem Ind Co Ltd 偏光子保護フィルムおよびその製造方法
JP2002236213A (ja) * 2001-02-08 2002-08-23 Nitto Denko Corp 偏光板及びこれを用いた液晶表示装置
JP2003050313A (ja) * 2001-08-07 2003-02-21 Nitto Denko Corp 偏光板及び液晶表示素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Organic Peroxide Catalogue", May 2003, NOF CORPORATION
See also references of EP2037317A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230115A (ja) * 2008-02-29 2009-10-08 Nitto Denko Corp 光学フィルムの製造方法、光学フィルム、偏光板、液晶パネルおよび液晶表示装置
US8179500B2 (en) 2008-04-09 2012-05-15 Beijing Boe Optoelectronics Technology Co., Ltd. Polarization film
US8692958B2 (en) 2008-04-09 2014-04-08 Beijing Boe Optoelectronics Technology Co., Ltd. Polarization film
US20100238370A1 (en) * 2009-03-23 2010-09-23 Hitachi Displays, Ltd. Liquid crystal display device and manufacturing method thereof
RU2494564C1 (ru) * 2009-08-21 2013-09-27 Зте Корпорэйшн Комплексное компьютерно-телекоммуникационное устройство обмена данными, система и способ передачи ассоциированных с каналом связи данных между агентом и автоматическим сервисом

Also Published As

Publication number Publication date
KR20080106460A (ko) 2008-12-05
CN101479652A (zh) 2009-07-08
TWI370280B (ja) 2012-08-11
JP2008014988A (ja) 2008-01-24
JP4986211B2 (ja) 2012-07-25
US20090322994A1 (en) 2009-12-31
EP2037317A4 (en) 2010-11-24
CN101479652B (zh) 2011-03-23
US8189149B2 (en) 2012-05-29
EP2037317B1 (en) 2014-03-05
EP2037317A1 (en) 2009-03-18
TW200811504A (en) 2008-03-01
KR101045722B1 (ko) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2008004403A1 (fr) Panneau à cristaux liquides et appareil d&#39;affichage à cristaux liquides
KR101041765B1 (ko) 광학용 점착제, 점착제 부착 광학 필름 및 화상 표시 장치
JP5571953B2 (ja) 複合偏光板、積層光学部材及びそれらを用いた画像表示装置
JP3916638B2 (ja) 粘着型光学フィルムおよび画像表示装置
TW200911536A (en) Adhesive sheet for optical film, its manufacturing method, adhesive optical film and image display apparatus
WO2007108363A1 (ja) 粘着型光学フィルム、積層光学フィルムおよび画像表示装置
JP5160674B2 (ja) 光学フィルム用粘着剤層、光学フィルム用粘着剤層の製造方法、粘着型光学フィルムおよび画像表示装置
JP4780647B2 (ja) 光学フィルム用粘着剤、光学フィルム用粘着剤層およびその製造方法、粘着型光学フィルム、ならびに画像表示装置
JP4849625B2 (ja) 光学フィルム用粘着剤層の製造方法および粘着型光学フィルムの製造方法
JP4775851B2 (ja) 光学補償層付偏光板およびそれを用いた画像表示装置
JP4177077B2 (ja) 光学補償板、それを用いた光学補償層付偏光板、前記光学補償板の製造方法、および、それらを用いた液晶表示装置
JP2008299316A (ja) 粘着剤層付光学フィルムおよびその製造方法、粘着剤層付光学フィルムを備える液晶パネルおよび液晶表示装置
JP6825848B2 (ja) 曲面画像表示パネル用偏光板
TW202023809A (zh) 影像顯示面板及影像顯示裝置
JP2007246717A (ja) 被膜フィルムの製造方法、被膜フィルムおよび画像表示装置
JP2008282020A (ja) 光学補償板、それを用いた光学補償層付偏光板、前記光学補償板の製造方法、および、それらを用いた液晶表示装置
JP7389656B2 (ja) 画像表示装置およびその製造方法
WO2020162298A1 (ja) 画像表示装置およびその製造方法
TWI842824B (zh) 圖像顯示裝置及其製造方法
TW202426983A (zh) 附相位差層之偏光板及包含附相位差層之偏光板的影像顯示裝置
KR20240088853A (ko) 위상차층 부착 편광판
TW202024277A (zh) 附邊框之影像顯示面板及影像顯示裝置
JP2003014936A (ja) 光学部材及び液晶表示装置
JP2008203432A (ja) 粘着型光学フィルムおよび画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024003.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007744920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12306847

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU