WO2008001741A1 - Nickel fine particle, method for producing the same, and fluid composition using the same - Google Patents

Nickel fine particle, method for producing the same, and fluid composition using the same Download PDF

Info

Publication number
WO2008001741A1
WO2008001741A1 PCT/JP2007/062741 JP2007062741W WO2008001741A1 WO 2008001741 A1 WO2008001741 A1 WO 2008001741A1 JP 2007062741 W JP2007062741 W JP 2007062741W WO 2008001741 A1 WO2008001741 A1 WO 2008001741A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
nickel
nickel fine
compound
reducing agent
Prior art date
Application number
PCT/JP2007/062741
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Tomonari
Kiyonobu Ida
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to JP2008522579A priority Critical patent/JP5294851B2/en
Publication of WO2008001741A1 publication Critical patent/WO2008001741A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to nickel fine particles, a method for producing the same, and a flowable composition using the same, and particularly nickel fine particles suitably used for producing an electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and the like. And a method for producing the same and a fluid composition using the same.
  • Metallic nickel fine particles are an inexpensive material having good electrical conductivity, and are excellent in oxidation resistance and corrosion resistance. For this reason, it is widely used as a material for ensuring electrical continuity, such as circuit forming members for printed wiring boards, various electrical contact members, external electrode members such as capacitors, etc. It is also beginning to be used for electrodes.
  • Multilayer ceramic capacitors are rapidly spreading compared to other types of capacitors, such as electrolytic capacitors and film capacitors, because they are easy to obtain large capacities, are easy to mount, and have high safety and stability. With the recent miniaturization of electronic devices, multilayer ceramic capacitors are also in the direction of miniaturization. However, to maintain a large capacity, it is necessary to reduce the size without reducing the number of ceramic sheets stacked, such as strength. In this respect, there is a limit to the thinning of the sheet, so the internal ceramic electrode is made thin by using fine metallic nickel particles to realize a miniaturization of the multilayer ceramic capacitor.
  • nickel fine particles are usually dispersed in a solvent or mixed with a binder such as an epoxy resin to form a paste, paint or ink.
  • a fluid composition such as paste “paint” ink.
  • the flowable composition is coated with a pattern of a circuit or an electrode on the substrate by a method such as screen printing or ink jet printing, and then heated to form a metallic nickel particulate. Are fused to form a fine electrode.
  • the fluid composition is applied onto a thin ceramic sheet, the sheets are laminated, and then heated and fired to form the internal electrode. Forming.
  • a hydrazine-based reducing agent is added and mixed in a liquid medium containing a nickel compound such as nickel carbonate, nickel chloride, nickel acetate, etc., and the temperature is 100 ° C or lower.
  • a method of heating by heating see Patent Document 1.
  • a noble metal compound such as palladium chloride is added as a reaction initiator to a mixed aqueous solution of nickel, a reducing agent, and a complexing agent to cause a reduction reaction, and then nickel ions, a reducing agent, and pH are adjusted.
  • a method of adding an agent is also known.
  • Patent Document 1 JP-A-53-95165
  • Patent Document 2 Japanese Patent Laid-Open No. 63-274706
  • Patent Documents 1 and 2 Although the techniques described in Patent Documents 1 and 2 produce fine metallic nickel fine particles, the primary particles of the metallic nickel particles are not monodispersed but are generated in a significantly aggregated state, or the shape of the secondary particles is It is agglomerate, and the size and shape are uneven. As a result, there is a problem that defects having poor fillability are likely to occur when a circuit, an electrode, or the like in which the resulting metal nickel fine particles are not sufficiently dispersible in the fluid composition are formed, resulting in a multilayer ceramic capacitor. It is difficult to cope with the thinning of one internal electrode and the miniaturization of printed circuit boards. Accordingly, there is a demand for fine metal nickel particles that are fine but have a uniform particle shape with almost no aggregated particles and excellent dispersibility.
  • the inventors of the present invention have intensively studied focusing on a method for reducing the nickel compound as a raw material to solve these problems.
  • the medium liquid contains at least a protective colloid, a reducing agent, and a nickel compound that is hardly soluble in the liquid medium.
  • the present inventors have found that fine nickel particles having a uniform primary particle size, a monodispersed and almost uniform aggregated particle shape, and a uniform particle shape can be obtained.
  • the present invention provides: (1) The average particle diameter (D) measured with an electron microscope is in the range of 0.001 to 0.5 / m, and the average particle diameter (d) calculated from the specific surface area is 0.001 to 0.5 / im. And nickel fine particles having a d / D in the range of 0.85 to 1.30,
  • a fluid composition characterized by containing at least the nickel fine particles and the dispersion medium of (1).
  • the nickel fine particles obtained by the method of the present invention are fine, hardly contain aggregated particles, have a uniform particle shape, and are excellent in dispersibility.
  • This material is useful as an electrode material for electronic equipment, and the nickel fine particles are used as a fluid composition to produce, for example, an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and other electrodes. Then, a high-density electrode etc. are obtained with a smooth thin film.
  • the present invention is a method for producing nickel fine particles, comprising at least a protective colloid, a reducing agent, and a nickel compound that is hardly soluble in a liquid medium, followed by aging, Including a second step of adding at least one selected from a noble metal and its compound and a reducing agent to the liquid after the step, wherein about 70% or more of the sparingly soluble nickel compound comprises the first step and the second step. And finally reduced to metallic nickel.
  • the first step is a step in which at least a protective colloid, a reducing agent, and a nickel-compound that is hardly soluble in the liquid medium are mixed and contained in the liquid medium, and ripened.
  • This is a pre-process for producing metallic nickel with small crystallites that can be crystallized, or adjusting the solubility of the hardly soluble nickel compound by the solvent composition or the like.
  • the raw material to be used is mixed with a liquid medium.
  • the temperature of the mixed liquid at that time may be in the range of 10 ° C to the boiling point of the used liquid, but in the range of 40 to 95 ° C when the boiling point of the medium is about 100 ° C or higher. 60-95 because it is easy to obtain nickel micronuclear crystals
  • the range of 80 ° C is more preferable.
  • the range of 80 to 95 ° C is more preferable.
  • the mixing time in the first step can be set by controlling the addition time of raw materials such as a reducing agent and protective colloid, and for example, about 10 minutes to 6 hours is appropriate.
  • the reducing agent In the first step, it is preferable to add the reducing agent after first adding the hardly soluble nickel compound and the protective colloid to the medium. If significant foaming is observed when the reducing agent is added, an antifoaming agent such as silicone, polyacrylic, polyvinylic, fluorine or wax may be used. In addition, it is preferable to add a complexing agent, which will be described later, to facilitate control of the particle size distribution and particle shape.
  • an antifoaming agent such as silicone, polyacrylic, polyvinylic, fluorine or wax may be used.
  • a complexing agent which will be described later, to facilitate control of the particle size distribution and particle shape.
  • the aging temperature is preferably 40 ° C or more, more preferably in the range of 40 to 95 ° C, more preferably in the range of 60 to 95 ° C, and still more preferably in the range of 80 to 95 ° C. It is industrially preferable to perform the reaction and aging in the first step at the same temperature.
  • the aging time is preferably in the range of 5 minutes to 2 hours, more preferably in the range of 10 minutes to 1 hour.
  • the amount of metal nickel micronuclear crystals produced in the first step can be adjusted as appropriate depending on the type of reducing agent, the temperature of the medium, the temperature of aging, the time, and the like.
  • the formation rate of metallic nickel micronuclear crystals in this process is: (the amount of metallic nickel produced in the first step by X-ray diffraction) / (theoretical amount of metallic nickel calculated from the amount of Nikkenole compound in the raw material) X 100 (% 0 to 50% by weight is preferred, and about 0 to 30% by weight is more preferred. 0 to about 10% by weight is more preferred.
  • the metal nickel micronuclear crystal is too fine, and its formation is not confirmed by X-ray diffraction. On the other hand, if the production rate is higher than 50% by weight, aggregated particles that are difficult to control the reduction reaction are easily produced, which is not preferable.
  • an aqueous or organic solvent medium such as alcohol
  • an aqueous medium is preferably used.
  • An aqueous medium liquid is an aqueous solvent or a mixed medium liquid of water mainly composed of water and a hydrophilic organic solvent. In this case, water is usually a mixed medium. If the liquid contains 50% by weight or more, preferably 80% by weight or more, it is good.
  • the “slightly soluble nickel compound” is one that does not completely dissolve when added to a room temperature medium at a predetermined reaction rate, and is about 50% by weight or more, preferably about 75% by weight or more of the amount added. More preferably, about 90% by weight or more, more preferably about 95% by weight or more remains as a solid content. If an aqueous medium is used as the medium, nickel carbonate, nickel oxide, nickel hydroxide, nickel phosphate, nickel sulfide, nickel carbonyl and the like can be used. In the present invention, the rate of the reduction reaction is controlled by using a poorly soluble compound in the nickel compound. When a highly soluble nickel compound is used, the nickel ion elutes all at once and contacts with the reducing agent.
  • the reduction reaction proceeds, and a large amount of metallic nickel microcrystals are distributed in a non-uniform concentration distribution. Generate. For this reason, the particle growth also becomes uneven, the shape of the nickel fine particles becomes uneven, and the generation of aggregated particles cannot be suppressed. Since the hardly soluble nickel compound reacts with the reducing agent as it is gradually dissolved in the liquid medium, the reduction reaction can be easily controlled. For this reason, when water is used as the medium, it is preferable that the solubility in 100 g of water at 25 ° C. is in the range of 0.001-0.lg. Examples of such hardly soluble nickel compounds include nickel carbonate. For nickel carbonate, any known power of basic salt, acid salt, and normal salt can be used without limitation.
  • the solubility of the nickel compound when it is necessary to improve the solubility of the nickel compound, it can be adjusted by using an acid, an alkali, an organic solvent, or the like, or by heating.
  • the “protective colloid” used in the first step acts as a dispersion stabilizer for the formed metal nickel micronuclear crystals, and prevents aggregation of the formed micronuclear crystals.
  • the protective colloid known ones can be used. For example, gelatin, gum arabic, casein, strength protein such as sodium zelate, ammonium caseinate, etc., natural high concentrations such as starch, dextrin, agar, sodium alginate, etc.
  • sulreloses such as hydroxyethyl cellulose, carboxymethylenosenorose, methinoresenorelose, ethinoresenololose, butyls such as polyvinyl alcohol and polybutylpyrrolidone, poly (sodium acrylate), poly (poly (allyl) acid)
  • acrylic acid such as ammonium
  • synthetic polymers such as polyethylene glycol. One or more of these may be used.
  • High molecular protective colloid Since the effect of stabilization is high, when reacting in an aqueous medium where it is preferable to use this, it is preferable to use a water-soluble one, especially gelatin, polybutyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol. preferable.
  • a water-soluble one especially gelatin, polybutyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol. preferable.
  • the amount used is in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the nickel compound, the range of 2 to 50 parts by weight is more preferable because the formed micronuclear crystals are easily dispersed and stabilized.
  • a known compound can be used as the “reducing agent” used in the first step.
  • a hydrazine reducing agent ((a) hydrazine or a hydrate thereof, (b) a hydrazine compound) (Eg, hydrazine hydrochloride, hydrazine sulfate, etc.)), (2) hydrogen compounds (eg, sodium borohydride), (3) low-order inorganic oxygen acids (eg, sulfurous acid, nitrous acid, hyponitrous acid, nitrous acid, etc.) Phosphoric acid, hypophosphorous acid, etc.) and their hydrates (eg, bisulfite) or their salts (eg, alkali metal salts such as sodium), (4) aldehydes ((a) aliphatic aldehydes ( For example, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyl aldehyde, etc.), (b)
  • the hydrazine reducing agent (1) is preferred because of its strong reduction reactivity.
  • the amount of the reducing agent used is preferably 0.05 to 3.0 range power S, more preferably 0.2 to 2.0 mol, with respect to one monoke of Eckenole contained in the nickel compound. If the amount used is larger than this range, the formation of micronuclear crystals will be non-uniform, and it will be difficult to obtain monodispersed and finely-shaped nickel fine particles, and the subsequent operation will be difficult due to significant foaming. If the amount is too small, the desired state will not be achieved.
  • the production rate of the metallic nickel micronuclear crystals can be within the above range. preferable.
  • the second step is a subsequent step of generating metallic nickel by adding at least one kind selected from a noble metal and its compound power and a reducing agent to the liquid after the first step.
  • the second step is a step of reducing the unreacted Nikkenore compound in the first step to grow micronuclear grains, and the noble metal or the compound acts as a reaction accelerator. The compound can be reduced almost completely.
  • the temperature of the second step can be the same as the temperature of the first step, or the boiling point of the medium can be adjusted to the range of 10 ° C to the boiling point of the medium. If the temperature is about 1 oo ° C or more, it is preferable because the fine nickel fine particles can be obtained in the range of 40 to 95 ° C.
  • the time for the second step can be set by controlling the addition time of raw materials such as a reducing agent, for example, about 10 minutes to 6 hours is appropriate.
  • a reducing agent after first adding at least one selected from precious metals and compounds thereof to the liquid after the first step. If significant foaming is observed when a reducing agent is added, antifoaming agents such as silicones, polyaryls, polybules, fluorines and waxes can be used. Further, it is preferable to add a complexing agent which will be described later because it is easier to control the particle size distribution and particle shape.
  • the protective colloid can be added during the reaction in the second step, if necessary.
  • a slightly soluble nickel compound may be added as appropriate in order to enlarge the generated metal nickel fine particles.
  • the aging temperature is preferably 40 ° C or higher, more preferably in the range of 40 to 95 ° C, more preferably in the range of 60 to 95 ° C, and still more preferably in the range of 80 to 95 ° C. It is industrially preferable that the temperature of the second step and aging are performed at the same temperature.
  • the aging time is preferably in the range of 5 minutes to 2 hours, and more preferably in the range of 10 minutes to 1 hour.
  • the reducing agent used in the second step the reducing agent described in the first step can be used, and since the reduction reactivity is strong, a hydrazine reducing agent ((a) hydrazine or a hydrate thereof, ( b) Hydrazine compounds (for example, hydrazine hydrochloride, hydrazine sulfate, etc.) are preferred.
  • the reducing agent may be added at once, and the unreacted nickel-rich compound may be reduced or divided. In the case of divided addition, the same type of reducing agent can be used, or two or more different types of reducing agents can be used.
  • the amount of reducing agent used should be such that almost all of the Nikkenore compound is reduced, and a range of 0.2 to 5.0 moles per mole of nickel contained in the nickel compound is preferred. That's right. If the amount used is larger than this range, the formation of micronuclear crystals becomes non-uniform, and it is difficult to obtain monodispersed and finely-shaped nickel fine particles, and the subsequent operation becomes difficult due to significant foaming.
  • the amount of unreacted nickel compound can be reduced almost completely if the amount used is at least within the above range. .
  • a more preferable range is 1.0 to 3.0 mol. If two or more reducing agents are used, the total amount is within the above range, and the amount used is appropriately distributed.
  • the precious metal and its compound used in the second step work as a reaction accelerator, and when a hydrazine-based reducing agent is used as the reducing agent, it also acts as a decomposition inhibitor for hydrazine-based compounds. .
  • the metallic nickel acts as a decomposition catalyst for the hydrazine-based reducing agent and inhibits the reduction reaction.
  • noble metals and their compounds suppress the decomposition of the hydrazine-based compound, making it difficult to inhibit the reduction reaction.
  • the noble metal and its compound at least one selected from metals of gold, silver, copper, platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, platinum) and compounds thereof can be used.
  • noble metal compounds include noble metal salts, bromides, sulfates, nitrates, oxides, sulfides, acetates, and complex salts.
  • At least one selected from palladium, gold, platinum and their compounds is preferred because it has a higher effect of addition.
  • the precious metal or compound used is not particularly limited in terms of its properties and size, such as powder or agglomerate, but is preferably easily dispersed or colloidal or easily dissolved in a liquid medium. .
  • the palladium compounds include palladium chloride, palladium nitrate, palladium sulfate, palladium acetate, palladium propionate, palladium oxide, palladium sulfide, palladium hydride, palladium complexes (dinitrodiammine palladium, tetraammine paradichlorodichloride, Tetraamminepalladium dinitrate, tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, dichloro (1,3-bis (diphenylphosphine) propane) palladium, bis (tricyclohexylphosphine) paradium , Di- ⁇ -Black-mouthed bis (-aryl) palladium, bis (acetylacetonato) palladium, dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium ,
  • Gold compounds include gold chloride, gold bromide, gold oxide, gold sulfide, gold complex (halogenated gold acid and its salts, gold cyanide complex, cystinato gold, black mouth (diethylenetriamine) gold salt, [ Bis (2-aminoethyl) amido] chromate, tetraammine gold salt, dioctadecyldimethylammonium bis (1,3-dithiol-2-thione-4,5_dithiolate) gold and the like.
  • Platinum compounds include platinum chloride, platinum oxide, platinum sulfate, platinum nitrate, platinum complexes (halogenated platinic acid and its salts, hydroxoplatinic acid and its salts, tetraammineplatinum dichloride, dinitrodiammineplatinum, bis (pentane-1,2, 4-dione) platinum, tetrakis (thiourea) platinum, bis (acetamidine) diammineplatinum, dichlorobis (oxalato) platinate, bis (tetra-n-butylammonium) bis (1,3 dithiol-2 thione 4,5 dichloro ) Platinum etc.).
  • complexes are preferable because they have a large effect of inhibiting decomposition.
  • the palladium complex it is more preferable that at least one ligand such as dinitrodiammine palladium, tetraamine palladium dichloride, tetraammine palladium dinitrate, etc. is an amine.
  • the gold complex is more preferably chloroauric acid, preferably haloauric acid and its salt.
  • the platinum complex it is more preferable if the halogenated platinic acid and its salt are preferred salts.
  • a noble metal such as palladium metal, gold metal or platinum, or a noble metal compound other than a complex such as palladium chloride, gold chloride or platinum chloride is mixed with a complexing agent described later.
  • a complex may be formed in the second step.
  • the amount of precious metal and its compound used is preferably 0.0 :! to 2 parts by weight in terms of precious metal with respect to 100 parts by weight of the reducing agent used in the second step. The range of parts by weight is even better.
  • the first step and / or the second step be carried out in the presence of a complexing agent because it is easier to control the particle size distribution and particle shape.
  • the complexing agent is a nickel compound that elutes nickel ions from the nickel compound or the nickel oleore compound and reduces the nickel metal content.
  • Examples of the donor atom possessed by the “complexing agent” include nitrogen, oxygen, sulfur and the like.
  • Complexing agents in which nitrogen is a donor atom include (a) amines (for example, primary amines such as ptylamine, ethynoleamine, propylamine, and ethylenediamine, dibutylamine, jetinoamine, dipropylamine, and piperidine. Secondary amines such as imines such as pyrrolidine, tertiary amines such as tribubutanolamine, triethylamine, tripropylamine, etc., 1 to tertiary amine in one molecule of jethylenetriamine and triethylenetetramine.
  • amines for example, primary amines such as ptylamine, ethynoleamine, propylamine, and ethylenediamine, dibutylamine, jetinoamine, dipropylamine, and piperidine. Secondary amines such as imines such as pyrrolidine, tertiary amines such as tribubutanolamine, trie
  • (B) Nitrogen-containing heterocyclic compounds eg, imidazole, pyridine, bipyridine, etc.
  • (d) Anne Mona and ammonium compounds eg, ammonium chloride, ammonium sulfate, etc.
  • (2) Complexing agents in which oxygen is a donor atom include (a) carboxylic acids (for example, oxycarboxylic acids such as citrate, lingoic acid, tartaric acid and lactic acid, monocarboxylic acids such as acetic acid and formic acid, oxalic acid, Dicarboxylic acids such as malonic acid, aromatic carboxylic acids such as benzoic acid, etc.), (b) ketones (eg monoketones such as acetone, diketones such as acetylacetone and benzoylacetone), (c) Aldehydes, (d) alcohols (monohydric alcohols, glycols, glycerols, etc.), (e) quinones, (f) ethers, (g) phosphoric acid (normal phosphoric acid) and phosphoric acid compounds (For example, hexametaphosphoric acid, pyrophosphoric acid, phosphorous acid, hypophosphorous acid, etc.), (h) sulfonic acid
  • Complexing agents in which sulfur is a donor atom include (a) aliphatic thiols (for example, methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, ⁇ -butyl mercaptan, aryl mercaptan) , Dimethyl mercaptan, etc.), (b) alicyclic thiols (such as cyclohexenolethiol), (c) aromatic thiols (such as thiophenol), (d) thioketones, (e) thioethers, (f) Polythiols, (g) thiocarbonates (trithiocarbonates), (h) sulfur-containing heterocyclic compounds (eg, dithiols, thiophenes, Opiran, etc.), (thiocyanates and isothiocyanates, (j) inorganic sulfur compounds (for example, sodium sulfide
  • Complexing agents having two or more types of donor atoms include: (a) amino acids (donor atoms are nitrogen and oxygen: for example, neutral amino acids such as glycine and alanine, bases such as histidine and arginine) Amino acids, acidic amino acids such as aspartic acid and glutamic acid), (b) amino polycarboxylic acids (donor atoms are nitrogen and oxygen: for example, ethylenediaminetetraacetic acid (EDTA), ditrimethyl triacetic acid (NTA), iminodiacetic acid (IDA), ethylenediaminediacetic acid (EDDA), ethylene glycol jetyl ether diaminetetraacetic acid (GEDA), etc.) (c) alkanolamines (the donor atom is nitrogen and oxygen: for example, ethanolamine, (Tanolanolamine, triethanolamine, etc.), (d) Nitro compounds, nitroso compounds and nitrosyl compounds (donor atoms are nitrogen and oxygen) (E) amino
  • salts and derivatives of the above-mentioned compounds include, for example, alkali metal salts such as trisodium citrate, sodium potassium tartrate, sodium hypophosphite, disodium ethylenediaminetetraacetate, and carboxylic acids. And esters such as phosphoric acid and sulfonic acid.
  • complexing agents at least one kind can be used, and among them, alkenol amine is preferred because it easily forms a complex with nickel ions or metallic nickel.
  • carboxylic acids are easy to form complexes with noble metals and their compounds.
  • the amount of the complexing agent used can be set as appropriate. In each of the first step and the second step, complexing occurs when the Nikkenore compound is set in the range of 0.01 to 150 parts by weight per 100 parts by weight. Since the effect of the agent is easily obtained, it is preferable. Within the above range, if the use amount of the complexing agent is reduced, the primary particle size of the nickel fine particles can be reduced, and if the use amount is increased, the primary particle size can be increased. A more preferred dosage is in the range of 0.1 to 100 parts by weight.
  • the order of addition of the respective raw materials is not limited.
  • the method (3) is particularly preferable because the methods (2) and (3) are preferable because the reaction is easily controlled.
  • “Simultaneous parallel addition” refers to a method in which raw materials are added separately at the same time during the reaction period. In addition to adding both continuously during the reaction period, one or both are intermittently added. It may be added to the product.
  • the second step (I) a method in which at least one selected from a noble metal and its compound is added to the liquid after the first step, and then a reducing agent is added; (II) the first step A method in which a complexing agent is added to the subsequent liquid before, during or after the addition of the noble metal or its compound, and then a reducing agent is added; (III) the liquid after the first step And a method of adding a reducing agent after adding the mixed solution of the noble metal or its compound and a complexing agent. Since the complexing agent also acts as a raw material for the complex as described above, when the metal compound other than the metal complex is used, the method (III) is preferable because the complex is easily formed.
  • the separation means such as gravity filtration, pressure filtration, vacuum filtration, suction filtration, centrifugal filtration, and natural sedimentation, but industrially preferred are pressure filtration, vacuum filtration, and suction filtration. Therefore, it is preferable to use a filter such as a filter press or a roll press.
  • a filter such as a filter press or a roll press.
  • the flocculant As the flocculant, known ones can be used. Specifically, anionic flocculants (for example, polyacrylamide partial hydrolysis products, acrylamide'sodium acrylate copolymer, sodium alginate, etc.), Cationic flocculants (eg, polyacrylamide, dimethylenoethyl acetylmethacrylate, dimethylaminoethyl acrylate, polyamidine, chitosan, etc.), amphoteric flocculants (eg, acrylamide 'dimethylaminoethyl acrylate / acrylic acid copolymer, etc.) ) And the like.
  • the addition amount of the flocculant can be appropriately set according to need.
  • the range of 0.5 to 100 parts by weight is preferable with respect to 1000 parts by weight of the nickel fine particles, and the range of 1 to 50 parts by weight is preferable. Further preferred.
  • a protective colloid remover may be added to the medium to remove the protective colloid to aggregate the nickel fine particles, and then separate.
  • Protective colloid remover is a compound that decomposes or dissolves the protective colloid to suppress the action of the protective colloid. If the liquid protective colloid cannot be completely removed, it can be removed. An effect is obtained.
  • the type of protective colloid remover is appropriately selected according to the protective colloid used.
  • serine protease eg, trypsin, chymotrypsin, etc.
  • thiol protease eg, papain, etc.
  • acidic protease eg, pepsin, etc.
  • metalloprotease etc.
  • Proteolytic enzymes can be used, starch-degrading enzymes such as amylase and maltase can be used for starch systems, and cellulose-degrading enzymes such as cellulase and cellobiase can be used for cellulose systems.
  • protective colloids such as bulle, acrylic acid, and polyethylene glycol
  • organic solvents such as honolemamide, glycerin, and glycol, acids, alkalis, and the like can be used.
  • the amount of protective colloid remover added depends on the type of protective colloid, as long as it can remove nickel so that it can aggregate and separate nickel particles. On the other hand, the force in the range of 0.001 to 1000 lbs. S is preferred ⁇ , 0.01 to 200 Part by weight is more preferred 0.01-: More preferably 100 parts by weight.
  • the temperature of the medium at the time of adding the protective colloid remover can be set as appropriate, and the reduction reaction temperature may be maintained or it may be within the range of 10 ° C to the boiling point of the medium used.
  • the temperature is in the range of 40 to 95 ° C.
  • the protective colloid can be decomposed if the state is appropriately maintained. For example, about 10 minutes to 10 hours is appropriate.
  • After removing the protective colloid preferably adjust the pH or add an aggregating agent, and then sort by the usual method.
  • the obtained solid particles of the nickel fine particles are used, for example, dispersed in an organic solvent medium such as aqueous or alcohol, preferably in an aqueous medium.
  • an organic solvent medium such as aqueous or alcohol
  • the solid matter of nickel fine particles may be dried by a usual method, and after further drying, it may be used, for example, in an aqueous solvent or an organic solvent medium such as alcohol, preferably dispersed in an aqueous medium.
  • pulverization may be performed as necessary.
  • the nickel powder is heated to a temperature of 200 to 1200 ° C in a reducing atmosphere such as hydrogen or in an inert atmosphere such as nitrogen or argon.
  • a sintering inhibitor such as an alkali metal salt or an alkaline earth metal salt may be mixed with the nickel powder.
  • the present invention is a nickel fine particle having a metallic substance containing at least metallic nickel, and contains impurities or the like on the surface of the nickel fine particle or inside thereof to such an extent that it does not interfere with the use. It may also contain components such as the aforementioned raw materials.
  • the nickel fine particles of the present invention are fine, hardly contain aggregated particles, and have a uniform particle shape.
  • the nickel fine particles of the present application have an average particle diameter (cumulative 50./. Diameter) (D) in the range of 0.001 to 0.5 xm by electron microscopy, and the shape of the nickel fine particles is truly spherical.
  • the average particle diameter (d) obtained from the following formula using the specific surface area is in the range of 0.001-0. 5 zm, and the dZD is in the range of 0.85 to 1.30. It is.
  • p is the specific gravity of metallic nickel and is 8.9 g / cm 3 .
  • S is the specific surface The product value (m 2 / g). The specific surface area is determined by nitrogen adsorption based on the BET method.
  • the average particle size (D), (d) is fine within the above range, and d / D is very close to 1 within the above range, so the degree of aggregation is low.
  • the dispersibility in the fluid composition is excellent.
  • Such nickel fine particles can be obtained by the production method described above.
  • d / D may be smaller than d / D force S1 because the measurement method of force (D) and (d), which normally takes a value of 1 or more, is different.
  • the shape of the nickel fine particles of the present invention can be observed with an electron microscope, and has a spherical or substantially spherical particle shape.
  • the preferred range for (D) is 0.01 to 0.3 zm
  • the preferred range for (d) is 0.01 to 0.3 xm
  • the preferred d / D range the range f to 0.85 to 1. 2.
  • the present invention is a fluid composition such as ink, paint, paste, and the like, and contains at least the nickel fine particles and the dispersion medium.
  • the amount of nickel fine particles should be at least about 1% by weight, preferably a high concentration of 5% by weight or more, more preferably 10% by weight or more, and even more preferably 15% by weight or more.
  • the dispersion medium for dispersing the nickel fine particles is appropriately selected according to the affinity with the nickel fine particles to be used.
  • hydrophilic organic solvents such as water solvents, alcohols, and ketones
  • linear hydrocarbons such as hydrocarbons and aromatic hydrocarbons
  • cyclic Hydrophobic organic solvents such as hydrocarbons and aromatic hydrocarbons
  • water and a hydrophobic organic solvent can be mixed and used using a hydrophilic organic solvent as a compatibilizing agent.
  • alcohols include methanol, ethanol, propynole alcohol, isopropyl alcohol, butanol, isobutanol, and monoterbinol.
  • ketones include cyclohexanone, methylcyclohexanone, and 2-butanone.
  • a preferable dispersion medium used for inks and paints is an aqueous solvent or a mixed dispersion medium with a hydrophilic organic solvent mainly composed of water.
  • water is usually 50% by weight or more in the mixed dispersion medium. , Preferably 80 weight If it is contained more than%.
  • the relative permittivity is 35 or more, preferably in the range of 35 to 200, as necessary.
  • an organic solvent having a boiling point of 100 ° C or higher, preferably 100 to 250 ° C is added, a uniform and high density is obtained in which surface defects such as shrinkage are not easily generated during heating and baking. It is preferable because a coated product is easily obtained.
  • N_methylformamide (dielectric constant 190, boiling point 197 ° C), dimethyl sulfoxide (relative dielectric constant 45, boiling point 189 ° C), ethylene glycol (relative dielectric constant 38, boiling point 226 ° C) ), 4_Butyloraton (relative permittivity 39, boiling point 204 ° C), acetoamide (relative permittivity 65, boiling point 222 ° C), 1,3 dimethyl-2-imidazolidinone (relative permittivity 38, boiling point 226 ° C) , Formamide (dielectric constant 111, boiling point 210 ° C), N-methylacetamide (dielectric constant 175, boiling point 205 ° C), furfural (dielectric constant 40, boiling point 161 ° C), etc.
  • N-methylformamide (surface tension 38 X 10 _3 N / m), surface tension of 50 X 10 _3 N / m or less, dimethyl sulfoxide (surface tension 43 X 10 _3 N / m), ethylene glycol (surface tension 48 X 10 " 3 N / m), 4 Butyrolatatone (surface tension 44 X 10" 3 N / m), Acetamide (surface tension 39 X 10 _3 N / m), 1, 3 Dimethyl-2 imidazolidinone (surface tension 41 X 10 — 3 N / m) and the like are more effective and preferable.
  • These organic solvents having a high relative dielectric constant and a high boiling point are preferably contained in the dispersion medium excluding water in the range of 20 to 100% by weight, and more preferably in the range of 40 to 100% by weight.
  • additives such as a surfactant, a dispersant, a thickener, a plasticizer, and an antifungal agent are appropriately blended in the fluid composition of the present invention. You can also.
  • the surface active agent has the effect of further improving the dispersion stability of the nickel fine particles and the rheological properties of the flowable composition to improve the coatability.
  • a quaternary ammonium salt is used.
  • Cationic salts such as carboxylic acid salts, carboxylate salts, sulfonate salts, sulfate ester salts, phosphoric acid ester salts, and other nonionic materials such as ether types, ether ester types, ester types, and nitrogen-containing types are used. One or more selected from these can be used.
  • the compounding amount of the surfactant is set appropriately according to the coating composition. Generally, the range of 0.01 to 0.5 parts by weight is 1 part by weight of nickel fine particles. I like it.
  • Organic curable binders such as cellulose resins such as resins, furan resins, urea resins, polyurethane resins, melamine resins, silicone resins, and ethyl cellulose may be contained.
  • the amount of the curable binder can be set as appropriate according to the usage situation. When forming an electrode or wiring pattern, the curable binder is not added, or 0 to 0.5% by weight based on 1 part by weight of the nickel fine particles. A range of about is suitable, and a range of 0 to 0.1% by weight is more suitable.
  • the flowable composition of the present invention can be produced by mixing nickel fine particles and a dispersion medium and further other additives by a known method. For example, wet mixing such as stirring and mixing, colloid mill, etc. A method such as pulverization and mixing can be used.
  • the fluid composition obtained in this way can be used for various applications, for example, by applying it to a substrate by a method such as screen printing or ink jet printing, followed by heating and baking, and a circuit of a printed wiring board, It can be used as other fine conductive members.
  • Example 2 In the first step of Example 1, 0.24 g of monoethanolamine as a complexing agent and hydrazine monohydrate as a reducing agent were simultaneously added to the mixed solution of nickel carbonate and gelatin. Except for this, in the same manner as in Example 1, nickel fine particles (sample B) of the present invention were obtained. It was confirmed that almost all of Sample B was metallic nickel.
  • Example 2 nickel fine particles (sample C) of the present invention were obtained in the same manner as in Example 2 except that the amount of monoethanolamine used was 0.48 g.
  • Example 2 in place of palladium dinitrodiammine, 0.012 mol / Lit Nore metal palladium colloid (particle diameter 20 nm) was added in the same manner as in Example 2 except that 14 ml of metal palladium colloid (particle diameter 20 nm) was added. Sample D) was obtained.
  • the first step was used in the same manner as in Example 1 and the second step described below. (Second process)
  • the solution after the first step was added to a 0.01 mol / liter palladium chloride solution 12 mm.
  • nickel nickel carbonate fine particles were produced by reacting until nickel carbonate was completely disappeared.
  • Example 1 nickel fine particles (sample F) of the present invention were obtained in the same manner as in Example 1 except that tetrachlorophthalic acid was used instead of palladium dinitrodiammine.
  • Nickel microparticles (sample G) of the present invention were obtained in the same manner as in Example 1 except that hexachloroplatinic acid was used instead of palladium dinitrodiammine in Example 1. It was confirmed that almost all of Sample G was metallic nickel.
  • the first step was used in the same manner as in Example 1 and the second step described below. (Second process)
  • This sample I was confirmed to contain unreacted nickel carbonate in addition to metallic nickel.
  • Nickel carbonate l lg was added to 200 ml of pure water, mixed, heated to 90 ° C, and then stirred, 33.3 g of 60% hydrazine monohydrate (4.5 moles per mole of nickel) And then aged by holding for 2 hours while maintaining a temperature of 90 ° C. Thereafter, filtration and washing were performed in the same manner as in Comparative Example 1 and drying was performed, so that Sample J for comparison was obtained.
  • the first step was performed in the same manner as in Comparative Example 3 except that the concentration of the palladium chloride aqueous solution used in the first step of Comparative Example 3 was 0.1 mol / liter. Then same as Comparative Example 3 Then, when the second step was performed, when Nikkenore sulfate and hydrazine monohydrate were added, foaming occurred, and the reaction was continued until foaming subsided. Next, filtration, washing, and drying were performed in the same manner as in Comparative Example 1 to obtain comparative nickel fine particles (sample K).
  • this sample K contained unreacted nickel sulfate in addition to metallic nickel.
  • Nickel chloride (47.59g) as a water-soluble nickel compound, gelatin (1.18g) as a protective colloid, and ammonia water (90milliliter) were mixed with 250 milliliters of pure water, mixed and heated to 90 ° C. Then, with stirring, 8.39 g of 60% hydrazine monohydrate (0.5 mol with respect to 1 mol of nickel) was added all at once, and aged for 30 minutes.
  • Comparative Example 1 2 4 5 The average particle size (D) of the sample AL obtained in 5 was measured by electron microscopy, and the average particle size (d) was measured using a specific surface area measuring device (micromeritics flow method). It was calculated from the BET specific surface area measured with a tube 2300 (manufactured by SHIMADZU). The results are shown in Table 1.
  • the nickel fine particles obtained from the present invention have fine average particle diameter (D) and average particle diameter (d), and d / D is close to 1, indicating that almost no aggregated particles are contained.
  • Comparative Example 1 2 4 5 In the yield of nickel fine particles (the obtained two The amount of nickel particles / theoretical amount of nickel metal calculated from the raw material Nikkenore compound) X 10 0 (%). The results are shown in Table 1. In Comparative Examples 2, 4, and 5, it was difficult to separate the nickel fine particles from the unreacted nickelore compound, and measurement was not possible. From this result, it can be seen that the production method of the present invention has a high yield. Among them, the method of Example 8, that is, the method of adding sodium hypophosphite after adding hydrazine in the second step was particularly excellent in yield.
  • Example 8 and Comparative Example 1 Samples H and I synthesized in Example 8 and Comparative Example 1 were kneaded with three rolls having the composition shown in Table 2 and pasty. Apply the resulting paste to a PET film with a 2mil applicator. It was dried at 0 ° C for 1 hour to obtain a dried coating film.
  • the surface roughness Ra of these dried coating films was calculated according to the “arithmetic average roughness” of JIS B0601 (1994) using an ultra-deep shape measuring microscope (VK-8550: manufactured by KEYEN CE). Table 3 shows the results obtained. From this result, it was found that the dry coating film using the nickel fine particles of the present invention was smooth with a small surface roughness Ra as compared with the comparative example. This is considered to be because the dispersibility of the nickel fine particles of the present invention when the paste is made with less aggregated particles is excellent.
  • the nickel fine particles of the present invention are useful as electrode materials for electronic devices, and are particularly useful for internal electrodes of multilayer ceramic capacitors, circuits of printed wiring boards, and other electrodes.
  • FIG. 1 is an electron micrograph (magnification: 20,000 times) of the nickel fine particles (sample A) obtained in Example 1.
  • FIG. 2 shows an electron micrograph of the nickel fine particles (sample B) obtained in Example 2 (magnification 2). Million times).
  • Fig. 3 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample C) obtained in Example 3.
  • Fig. 4 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample D) obtained in Example 4.
  • FIG. 5 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample E) obtained in Example 5.
  • FIG. 6 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample F) obtained in Example 6.
  • Fig. 7 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample G) obtained in Example 7.
  • FIG. 8 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample H) obtained in Example 8.
  • Figure 9 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample I) obtained in Comparative Example 1.
  • Figure 10 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample J) obtained in Comparative Example 2.
  • FIG. 11 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample K) obtained in Comparative Example 4.
  • Fig. 12 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample L) obtained in Comparative Example 5.

Abstract

Disclosed is a method for producing nickel metal fine particles by reacting a nickel compound with a reducing agent in a liquid medium. In this method, a liquid medium is added with at least a protective colloid, a reducing agent and a nickel compound which is poorly soluble in the liquid medium, and the resulting liquid is aged, and then a reducing agent and at least one substance selected from noble metals and their compounds are added into the aged liquid, thereby producing nickel metal fine particles. As the noble metals and their compounds, at least one substance selected from palladium, gold, platinum and their compounds is preferable. The thus-produced nickel metal fine particles have an average particle diameter (D) as measured by an electron microscope of 0.001-0.5 μm and an average particle diameter (d) as calculated from the specific surface area of 0.001-0.5 μm. The value of d/D is within the range of 0.85-1.30. The nickel metal fine particles are very fine while having a regular shape, and hardly contain agglomerated particles. Consequently, the nickel metal fine particles are useful as an electrode material for electronic devices and the like.

Description

明 細 書  Specification
エッケノレ微粒子及びその製造方法並びにそれを用いた流動性組成物 技術分野  Eckenole fine particles, method for producing the same, and flowable composition using the same
[0001] 本発明は、ニッケル微粒子及びその製造方法並びにそれを用いた流動性組成物 に関し、特に積層セラミックスコンデンサーの電極や、プリント配線基板の回路等を製 造する際に好適に用いられるニッケル微粒子及びその製造方法並びにそれを用い た流動性組成物に関する。  TECHNICAL FIELD [0001] The present invention relates to nickel fine particles, a method for producing the same, and a flowable composition using the same, and particularly nickel fine particles suitably used for producing an electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and the like. And a method for producing the same and a fluid composition using the same.
背景技術  Background art
[0002] 金属ニッケル微粒子は、良好な電気伝導性を有する廉価な材料であり、耐酸化性 、耐食性にも優れている。このため、プリント配線板の回路形成部材、各種電気的接 点部材、コンデンサ一等の外部電極部材などの電気的導通を確保するための材料と して幅広く用いられ、近年、積層セラミックスコンデンサーの内部電極にも用いられ始 めている。積層セラミックスコンデンサ一は、電解コンデンサー、フィルムコンデンサー 等他の形式のコンデンサーと比較して、大容量が得られ易ぐ実装性に優れ、安全 性'安定性が高いので、急速に普及している。最近の電子機器の小型化に伴い、積 層セラミックスコンデンサーも小型化する方向にあるが、大容量を維持するには、セラ ミックスシートの積層数を減らさずに小型化する必要があり、強度等の点でシートの薄 層化には限界があるため微細な金属ニッケル粒子を用い内部電極を薄層化すること で、積層セラミックスコンデンサーの小型化を実現している。  [0002] Metallic nickel fine particles are an inexpensive material having good electrical conductivity, and are excellent in oxidation resistance and corrosion resistance. For this reason, it is widely used as a material for ensuring electrical continuity, such as circuit forming members for printed wiring boards, various electrical contact members, external electrode members such as capacitors, etc. It is also beginning to be used for electrodes. Multilayer ceramic capacitors are rapidly spreading compared to other types of capacitors, such as electrolytic capacitors and film capacitors, because they are easy to obtain large capacities, are easy to mount, and have high safety and stability. With the recent miniaturization of electronic devices, multilayer ceramic capacitors are also in the direction of miniaturization. However, to maintain a large capacity, it is necessary to reduce the size without reducing the number of ceramic sheets stacked, such as strength. In this respect, there is a limit to the thinning of the sheet, so the internal ceramic electrode is made thin by using fine metallic nickel particles to realize a miniaturization of the multilayer ceramic capacitor.
[0003] 金属ニッケル微粒子を電気的導通を確保する材料として用いるには、通常ニッケル 微粒子を溶媒に分散したり、エポキシ樹脂などのバインダーと混合してペースト化、 塗料化、またはインキ化して、ニッケルペースト'塗料'インキ等の流動性組成物とす る。そして、例えば、プリント配線基板の回路等の形成では、前記の流動性組成物を スクリーン印刷、インクジェット印刷等の手法で基板上に回路や電極のパターンを塗 布した後、加熱して金属ニッケル微粒子を融着させ、微細な電極を形成している。ま た、積層セラミックスコンデンサーの内部電極の形成では、薄層のセラミックスシート 上に前記の流動性組成物を塗布し、シートを積層した後、加熱焼成して内部電極を 形成している。 [0003] In order to use metallic nickel fine particles as a material for ensuring electrical continuity, nickel fine particles are usually dispersed in a solvent or mixed with a binder such as an epoxy resin to form a paste, paint or ink. A fluid composition such as paste “paint” ink. For example, in the formation of a circuit or the like of a printed wiring board, the flowable composition is coated with a pattern of a circuit or an electrode on the substrate by a method such as screen printing or ink jet printing, and then heated to form a metallic nickel particulate. Are fused to form a fine electrode. Also, in forming the internal electrode of the multilayer ceramic capacitor, the fluid composition is applied onto a thin ceramic sheet, the sheets are laminated, and then heated and fired to form the internal electrode. Forming.
[0004] 金属ニッケル微粒子の製造方法としては、炭酸ニッケル、塩化ニッケル、酢酸ニッ ケノレ等のニッケルィ匕合物を含む媒液中に、ヒドラジン系還元剤を添加、混合し、 100 °C以下の温度で加熱する方法(特許文献 1参照)が知られている。また、ニッケルィォ ン、還元剤及び錯化剤よりなる混合水溶液中に、塩化パラジウム等の貴金属化合物 を反応開始剤として添加して、還元反応を生ぜしめた後、ニッケルイオン、還元剤及 び pH調整剤を添加する方法(特許文献 2参照)も知られている。  [0004] As a method for producing metal nickel fine particles, a hydrazine-based reducing agent is added and mixed in a liquid medium containing a nickel compound such as nickel carbonate, nickel chloride, nickel acetate, etc., and the temperature is 100 ° C or lower. There is known a method of heating by heating (see Patent Document 1). In addition, a noble metal compound such as palladium chloride is added as a reaction initiator to a mixed aqueous solution of nickel, a reducing agent, and a complexing agent to cause a reduction reaction, and then nickel ions, a reducing agent, and pH are adjusted. A method of adding an agent (see Patent Document 2) is also known.
[0005] 特許文献 1 :特開昭 53— 95165号公報  [0005] Patent Document 1: JP-A-53-95165
特許文献 2:特開昭 63— 274706号公報  Patent Document 2: Japanese Patent Laid-Open No. 63-274706
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 特許文献 1、 2に記載の技術では微細な金属ニッケル微粒子が得られるものの、金 属ニッケル粒子の一次粒子が単分散ではなぐ著しく凝集した状態で生成したり、二 次粒子の形状が粒塊状で、大きさも形状も不揃いになったりする。その結果、得られ る金属ニッケル微粒子の流動性組成物への分散性が十分でなぐ回路、電極等を形 成した際に充填性が悪ぐ欠陥が生じ易いという問題があり、積層セラミックスコンデ ンサ一の内部電極の薄層化や、プリント配線板の回路の極細化にも対応でき難い。 従って、金属ニッケル微粒子としては、微細であるにもかかわらず、凝集粒子がほと んどなぐ粒子形状が整い、分散性に優れたものが要望されている。 [0006] Although the techniques described in Patent Documents 1 and 2 produce fine metallic nickel fine particles, the primary particles of the metallic nickel particles are not monodispersed but are generated in a significantly aggregated state, or the shape of the secondary particles is It is agglomerate, and the size and shape are uneven. As a result, there is a problem that defects having poor fillability are likely to occur when a circuit, an electrode, or the like in which the resulting metal nickel fine particles are not sufficiently dispersible in the fluid composition are formed, resulting in a multilayer ceramic capacitor. It is difficult to cope with the thinning of one internal electrode and the miniaturization of printed circuit boards. Accordingly, there is a demand for fine metal nickel particles that are fine but have a uniform particle shape with almost no aggregated particles and excellent dispersibility.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、これらの問題点を解決すベぐ原料のニッケル化合物の還元方法を 中心に鋭意研究を重ねた。その結果、ニッケルィ匕合物と還元剤とを媒液中で反応さ せ金属ニッケル微粒子を生成させる方法において、媒液に、少なくとも保護コロイドと 還元剤とこの媒液に難溶なニッケル化合物とを含有させ、熟成し、次いで、この液に 、貴金属及びその化合物から選ばれる少なくとも 1種と還元剤とを添加することにより[0007] The inventors of the present invention have intensively studied focusing on a method for reducing the nickel compound as a raw material to solve these problems. As a result, in the method of reacting a nickel compound and a reducing agent in a liquid medium to produce metallic nickel fine particles, the medium liquid contains at least a protective colloid, a reducing agent, and a nickel compound that is hardly soluble in the liquid medium. By adding and aging, and then adding at least one selected from precious metals and their compounds and a reducing agent to this liquid
、微細で、一次粒子径が均一で、凝集粒子をほとんど含まない単分散の、しかも粒子 形状の整ったニッケル微粒子が得られることを見出し、本発明を完成した。 The present inventors have found that fine nickel particles having a uniform primary particle size, a monodispersed and almost uniform aggregated particle shape, and a uniform particle shape can be obtained.
[0008] 即ち、本発明は、 (1)電子顕微鏡で測定した平均粒子径 (D)が 0. 001-0. 5 / mの範囲にあり、比 表面積より算出した平均粒子径(d)が 0. 001-0. 5 /i mの範囲にあり、且つ、 d/D が 0. 85〜: 1. 30の範囲であるニッケル微粒子、 That is, the present invention provides: (1) The average particle diameter (D) measured with an electron microscope is in the range of 0.001 to 0.5 / m, and the average particle diameter (d) calculated from the specific surface area is 0.001 to 0.5 / im. And nickel fine particles having a d / D in the range of 0.85 to 1.30,
(2)少なくとも保護コロイドと還元剤と媒液に難溶なニッケルィ匕合物とを媒液に含有 させ、熟成する第一の工程、次いで、第一の工程後の液に、貴金属及びその化合物 力 選ばれる少なくとも 1種と還元剤とを添加する第二の工程を含むことを特徴とする ニッケル微粒子の製造方法、  (2) The first step in which at least a protective colloid, a reducing agent, and a nickel-compound that is hardly soluble in the liquid medium are contained in the liquid medium and then aged, and then the liquid after the first step is mixed with a noble metal and its compound. A method for producing nickel fine particles, comprising a second step of adding at least one selected from a force and a reducing agent,
(3)前記(1)のニッケル微粒子と分散媒を少なくとも含有することを特徴とする流動 性組成物、などである。  (3) A fluid composition characterized by containing at least the nickel fine particles and the dispersion medium of (1).
発明の効果  The invention's effect
[0009] 本発明の方法により得られるニッケル微粒子は、微細で、凝集粒子をほとんど含ま ず、粒子形状が整っており、分散性に優れている。このものは、電子機器の電極材料 等として有用であり、このニッケル微粒子を流動性組成物にして、例えば、積層セラミ ックスコンデンサーの内部電極、プリント配線基板の回路、その他の電極等を作製す ると、平滑な薄膜で高密度の電極等が得られる。  [0009] The nickel fine particles obtained by the method of the present invention are fine, hardly contain aggregated particles, have a uniform particle shape, and are excellent in dispersibility. This material is useful as an electrode material for electronic equipment, and the nickel fine particles are used as a fluid composition to produce, for example, an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and other electrodes. Then, a high-density electrode etc. are obtained with a smooth thin film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明は、ニッケル微粒子の製造方法であって、少なくとも保護コロイドと還元剤と 媒液に難溶なニッケル化合物とを媒液に含有させ、熟成する第一の工程、次いで、 第一の工程後の液に、貴金属及びその化合物から選ばれる少なくとも 1種と還元剤と を添加する第二の工程を含み、難溶性ニッケル化合物の約 70%以上は第一の工程 、第二の工程を経て、最終的に金属ニッケルに還元される。 [0010] The present invention is a method for producing nickel fine particles, comprising at least a protective colloid, a reducing agent, and a nickel compound that is hardly soluble in a liquid medium, followed by aging, Including a second step of adding at least one selected from a noble metal and its compound and a reducing agent to the liquid after the step, wherein about 70% or more of the sparingly soluble nickel compound comprises the first step and the second step. And finally reduced to metallic nickel.
[0011] 第一の工程は、少なくとも保護コロイドと還元剤と媒液に難溶なニッケルィ匕合物とを 媒液に混合して含有させ、熟成する工程であって、この工程では、微核晶となり得る 結晶子の小さな金属ニッケルを生成したり、あるいは、難溶性ニッケル化合物の溶解 度を溶媒組成等により調整したりする前段工程である。 [0011] The first step is a step in which at least a protective colloid, a reducing agent, and a nickel-compound that is hardly soluble in the liquid medium are mixed and contained in the liquid medium, and ripened. This is a pre-process for producing metallic nickel with small crystallites that can be crystallized, or adjusting the solubility of the hardly soluble nickel compound by the solvent composition or the like.
第一の工程では用いる原材料を媒液と混合する。その際の混合媒液の温度は、 10 °C〜用いた媒液の沸点の範囲であれば良いが、媒液の沸点が 100°C程度以上の場 合は 40〜95°Cの範囲であればニッケル微核晶が得られ易いため好ましぐ 60〜95 °Cの範囲がより好ましぐ 80〜95°Cの範囲が更に好ましい。第一の工程の混合時間 は、還元剤、保護コロイド等の原材料の添加時間などで制御して設定することができ 、例えば、 10分〜 6時間程度が適当である。第一の工程では、難溶性ニッケル化合 物、保護コロイドをまず媒液に添加した後に、還元剤を添加するのが好ましい。還元 剤を添加する際に著しい発泡が認められるなら、シリコーン系、ポリアクリル系、ポリビ ニル系、フッ素系、ワックス系等の消泡剤を用いても良い。また、後述の錯化剤を添 加すると、粒度分布や粒子形状の制御が一層行い易く好ましい。 In the first step, the raw material to be used is mixed with a liquid medium. The temperature of the mixed liquid at that time may be in the range of 10 ° C to the boiling point of the used liquid, but in the range of 40 to 95 ° C when the boiling point of the medium is about 100 ° C or higher. 60-95 because it is easy to obtain nickel micronuclear crystals The range of 80 ° C is more preferable. The range of 80 to 95 ° C is more preferable. The mixing time in the first step can be set by controlling the addition time of raw materials such as a reducing agent and protective colloid, and for example, about 10 minutes to 6 hours is appropriate. In the first step, it is preferable to add the reducing agent after first adding the hardly soluble nickel compound and the protective colloid to the medium. If significant foaming is observed when the reducing agent is added, an antifoaming agent such as silicone, polyacrylic, polyvinylic, fluorine or wax may be used. In addition, it is preferable to add a complexing agent, which will be described later, to facilitate control of the particle size distribution and particle shape.
原材料の混合後に、媒液を加温しながら一定の時間保持する熟成を行う。熟成は ニッケル微核晶の形状を整えるため、あるいは、第一の工程の液組成を整えるため に行う操作であり、熟成することでその後の第二の工程で球状や略球状の金属ニッ ケル微粒子が得られる。熟成温度は 40°C以上が好ましぐ 40〜95°Cの範囲がより好 ましぐ 60〜95°Cの範囲が更に好ましぐ 80〜95°Cの範囲が一層好ましレ、。第一の 工程の反応と熟成を同じ温度で行うのが工業的に好ましい。熟成時間は、 5分〜 2時 間の範囲が好ましぐ 10分〜 1時間の範囲が更に好ましい。  After mixing the raw materials, aging is carried out for a certain period of time while heating the medium. Aging is an operation performed to adjust the shape of the nickel micronuclear crystals or to adjust the liquid composition of the first step. After aging, spherical or substantially spherical metal nickel fine particles are formed in the second step. Is obtained. The aging temperature is preferably 40 ° C or more, more preferably in the range of 40 to 95 ° C, more preferably in the range of 60 to 95 ° C, and still more preferably in the range of 80 to 95 ° C. It is industrially preferable to perform the reaction and aging in the first step at the same temperature. The aging time is preferably in the range of 5 minutes to 2 hours, more preferably in the range of 10 minutes to 1 hour.
第一の工程での金属ニッケル微核晶の生成量は、還元剤の種類、量ゃ媒液の温 度、熟成の温度、時間等で適宜調整できる。この工程での金属ニッケル微核晶の生 成率は、(X線回折による第一の工程での金属ニッケル生成量) / (原料のニッケノレ 化合物量から算出した金属ニッケル理論量) X 100 (%)で表して、 0〜50重量%程 度が好ましぐ 0〜30重量%程度がより好ましぐ 0〜: 10重量%程度が更に好ましレ、 。金属ニッケル微核晶が細かすぎて X線回折ではその生成が確認されなレ、場合もあ るので 0重量%を含む。また、生成率が 50重量%よりも大きくなると、還元反応の制 御ができ難ぐ凝集粒子が生成し易くなるため好ましくない。  The amount of metal nickel micronuclear crystals produced in the first step can be adjusted as appropriate depending on the type of reducing agent, the temperature of the medium, the temperature of aging, the time, and the like. The formation rate of metallic nickel micronuclear crystals in this process is: (the amount of metallic nickel produced in the first step by X-ray diffraction) / (theoretical amount of metallic nickel calculated from the amount of Nikkenole compound in the raw material) X 100 (% 0 to 50% by weight is preferred, and about 0 to 30% by weight is more preferred. 0 to about 10% by weight is more preferred. The metal nickel micronuclear crystal is too fine, and its formation is not confirmed by X-ray diffraction. On the other hand, if the production rate is higher than 50% by weight, aggregated particles that are difficult to control the reduction reaction are easily produced, which is not preferable.
なお、第一の工程でパラジウム、金、白金等の貴金属やその化合物を用いると、還 元反応が進み過ぎ、未反応のニッケノレ化合物を残留させることが困難になるので好 ましくない。  If a noble metal such as palladium, gold or platinum or a compound thereof is used in the first step, the reduction reaction proceeds too much, and it is difficult to leave an unreacted Nikkenore compound.
第一の工程で用いる媒液としては、例えば、水系またはアルコール等の有機溶媒 系媒液が用いられ、好ましくは水系媒液を用いる。水系媒液とは、水溶媒または水を 主体とする水と親水性有機溶媒との混合媒液であり、この場合、水は通常、混合媒 液中に 50重量%以上、好ましくは 80重量%以上含まれてレ、れば良レ、。 As the medium used in the first step, for example, an aqueous or organic solvent medium such as alcohol is used, and an aqueous medium is preferably used. An aqueous medium liquid is an aqueous solvent or a mixed medium liquid of water mainly composed of water and a hydrophilic organic solvent. In this case, water is usually a mixed medium. If the liquid contains 50% by weight or more, preferably 80% by weight or more, it is good.
「難溶性ニッケル化合物」とは、室温の媒液に所定の反応割合で添加した場合に完 全に溶解しないものであって、添加量の 50重量%程度以上、好ましくは 75重量%程 度以上、より好ましくは 90重量%程度以上、更に好ましくは 95重量%程度以上が固 形分として残るものをいう。媒液に水系媒液を用いるのであれば、炭酸ニッケル、酸 ィ匕ニッケル、水酸化ニッケル、リン酸ニッケル、硫化ニッケル、ニッケルカルボニル等 が挙げられる。本発明では、ニッケルィ匕合物に難溶性化合物を用いることによって、 還元反応速度を制御している。溶解度の高いニッケルィ匕合物を用いると、ニッケルィ オンが一度に溶出し、還元剤と接触すると同時に還元反応が進行して、反応液中に 多量の金属ニッケルの微結晶が不均一な濃度分布で生成する。このため、粒子成長 も不均一になり、ニッケル微粒子の形状が不揃いになったり、凝集粒子の生成を抑 制できなくなる。難溶性ニッケル化合物は、徐々に媒液に溶解するに従って還元剤と 反応するので、還元反応の制御が容易である。このようなことから、媒液として水を使 用する場合、 25°Cの水 100gに対する溶解度が 0· 001-0. lgの範囲であるものが 好ましレ、。そのような難溶性ニッケル化合物としては、炭酸ニッケルが挙げられる。炭 酸ニッケルには、塩基性塩、酸性塩、正塩が知られている力 いずれも制限なく用い ること力 Sできる。  The “slightly soluble nickel compound” is one that does not completely dissolve when added to a room temperature medium at a predetermined reaction rate, and is about 50% by weight or more, preferably about 75% by weight or more of the amount added. More preferably, about 90% by weight or more, more preferably about 95% by weight or more remains as a solid content. If an aqueous medium is used as the medium, nickel carbonate, nickel oxide, nickel hydroxide, nickel phosphate, nickel sulfide, nickel carbonyl and the like can be used. In the present invention, the rate of the reduction reaction is controlled by using a poorly soluble compound in the nickel compound. When a highly soluble nickel compound is used, the nickel ion elutes all at once and contacts with the reducing agent. At the same time, the reduction reaction proceeds, and a large amount of metallic nickel microcrystals are distributed in a non-uniform concentration distribution. Generate. For this reason, the particle growth also becomes uneven, the shape of the nickel fine particles becomes uneven, and the generation of aggregated particles cannot be suppressed. Since the hardly soluble nickel compound reacts with the reducing agent as it is gradually dissolved in the liquid medium, the reduction reaction can be easily controlled. For this reason, when water is used as the medium, it is preferable that the solubility in 100 g of water at 25 ° C. is in the range of 0.001-0.lg. Examples of such hardly soluble nickel compounds include nickel carbonate. For nickel carbonate, any known power of basic salt, acid salt, and normal salt can be used without limitation.
一方、ニッケルィ匕合物の溶解性を向上させる必要がある場合には、酸、アルカリ、 有機溶媒等を用いたり、加熱するなどして、調整すること力 Sできる。  On the other hand, when it is necessary to improve the solubility of the nickel compound, it can be adjusted by using an acid, an alkali, an organic solvent, or the like, or by heating.
第一の工程で用いる「保護コロイド」は、生成する金属ニッケル微核晶の分散安定 化剤として作用するものであり、生成した微核晶の凝集を防いでいる。保護コロイドと しては、公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、力 ゼイン酸ソーダ、カゼイン酸アンモニゥム等のタンパク質系、デンプン、デキストリン、 寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシェチルセルロース、カルボキ シメチノレセノレロース、メチノレセノレロース、ェチノレセノレロース等のセノレロース系、ポリビ ニルアルコール、ポリビュルピロリドン等のビュル系、ポリアクリル酸ソーダ、ポリアタリ ル酸アンモニゥム等のアクリル酸系、ポリエチレングリコール等の合成高分子等が挙 げられ、これらを 1種または 2種以上を用いても良い。高分子の保護コロイドは分散安 定化の効果が高いので、これを用いるのが好ましぐ水系媒液中で反応させる場合、 水溶性のものを用いるのが好ましぐ特にゼラチン、ポリビュルアルコール、ポリビニ ノレピロリドン、ポリエチレングリコールが好ましい。その使用量をニッケル化合物 100 重量部に対し 1〜 100重量部の範囲にすると、生成した微核晶が分散安定化し易レ、 ので好ましぐ 2〜50重量部の範囲が更に好ましい。 The “protective colloid” used in the first step acts as a dispersion stabilizer for the formed metal nickel micronuclear crystals, and prevents aggregation of the formed micronuclear crystals. As the protective colloid, known ones can be used. For example, gelatin, gum arabic, casein, strength protein such as sodium zelate, ammonium caseinate, etc., natural high concentrations such as starch, dextrin, agar, sodium alginate, etc. Molecules, sulreloses such as hydroxyethyl cellulose, carboxymethylenosenorose, methinoresenorelose, ethinoresenololose, butyls such as polyvinyl alcohol and polybutylpyrrolidone, poly (sodium acrylate), poly (poly (allyl) acid) Examples include acrylic acid such as ammonium, and synthetic polymers such as polyethylene glycol. One or more of these may be used. High molecular protective colloid Since the effect of stabilization is high, when reacting in an aqueous medium where it is preferable to use this, it is preferable to use a water-soluble one, especially gelatin, polybutyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol. preferable. When the amount used is in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the nickel compound, the range of 2 to 50 parts by weight is more preferable because the formed micronuclear crystals are easily dispersed and stabilized.
[0014] 第一の工程で用いる「還元剤」は、公知の化合物を用いることができ、例えば、(1) ヒドラジン系還元剤((a)ヒドラジンまたはその水和物、(b)ヒドラジン系化合物(例えば 、塩酸ヒドラジン、硫酸ヒドラジン等)等)、(2)水素化合物(例えば、水素化ホウ素ナト リウム等)、(3)低次無機酸素酸 (例えば、亜硫酸、亜硝酸、次亜硝酸、亜リン酸、次 亜リン酸等)及びその水化物(例えば、亜硫酸水素)またはそれらの塩 (例えば、ナトリ ゥム等のアルカリ金属塩)、(4)アルデヒド類((a)脂肪族アルデヒド類 (例えば、ホル ムァノレデヒド、ァセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチル アルデヒド等)、(b)芳香族アルデヒド類 (例えば、ベンズアルデヒド等)、(c)複素環式 アルデヒド類等)、(5)還元糖 (例えば、ショ糖、トレパース、マルトース、ラタトース等) 、等が挙げられ、これらから選ばれる 1種以上を用いることができる。還元反応性が強 いため(1)のヒドラジン系還元剤が好ましい。還元剤の使用量は、ニッケル化合物中 に含まれるエッケノレ 1モノレに対し 0. 05〜3. 0モノレの範囲力 S好ましく、 0. 2〜2. 0モ ルの範囲がより好ましい。使用量がこの範囲より多いと、微核晶の生成が不均一にな り、単分散で粒子形状の整ったニッケル微粒子が得られ難ぐまた、著しく発泡して 以後の操作が困難になるため好ましくなぐ少ないと所望の状態とはならないため好 ましくなレ、。本発明では、難溶性ニッケノレ化合物を用いているので、第一の工程では 還元剤の使用量が少なくとも前記範囲であれば、金属ニッケル微核晶の生成率を前 記範囲とすることができるため好ましい。 As the “reducing agent” used in the first step, a known compound can be used. For example, (1) a hydrazine reducing agent ((a) hydrazine or a hydrate thereof, (b) a hydrazine compound) (Eg, hydrazine hydrochloride, hydrazine sulfate, etc.)), (2) hydrogen compounds (eg, sodium borohydride), (3) low-order inorganic oxygen acids (eg, sulfurous acid, nitrous acid, hyponitrous acid, nitrous acid, etc.) Phosphoric acid, hypophosphorous acid, etc.) and their hydrates (eg, bisulfite) or their salts (eg, alkali metal salts such as sodium), (4) aldehydes ((a) aliphatic aldehydes ( For example, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyl aldehyde, etc.), (b) aromatic aldehydes (eg, benzaldehyde, etc.), (c) heterocyclic aldehydes, etc.), (5) Mototo (e.g., sucrose, Torepasu, maltose, Ratatosu etc.), etc., and can be used one or more selected from these. The hydrazine reducing agent (1) is preferred because of its strong reduction reactivity. The amount of the reducing agent used is preferably 0.05 to 3.0 range power S, more preferably 0.2 to 2.0 mol, with respect to one monoke of Eckenole contained in the nickel compound. If the amount used is larger than this range, the formation of micronuclear crystals will be non-uniform, and it will be difficult to obtain monodispersed and finely-shaped nickel fine particles, and the subsequent operation will be difficult due to significant foaming. If the amount is too small, the desired state will not be achieved. In the present invention, since the hardly soluble Nikkenore compound is used, in the first step, if the amount of the reducing agent used is at least within the above range, the production rate of the metallic nickel micronuclear crystals can be within the above range. preferable.
[0015] 次いで、第二の工程は、第一の工程後の液に、少なくとも、貴金属及びその化合物 力 選ばれる少なくとも 1種と還元剤とを添加して金属ニッケルを生成する後段工程 である。第二の工程では、第一の工程で未反応のニッケノレ化合物を還元して微核晶 を粒子成長させる工程であって、前記貴金属またはその化合物が反応促進剤とし作 用するので、難溶性ニッケルィ匕合物をほぼ完全に還元することができる。 第二の工程の温度は、第一の工程と同じ程度の温度で行っても良ぐあるいは、 10 °C〜用レ、た媒液の沸点の範囲に調整しても良ぐ媒液の沸点が 1 oo°c程度以上の 場合は 40〜95°Cの範囲であれば微細なニッケル微粒子が得られるため好ましぐ 6 0〜95°Cの範囲がより好ましぐ 80〜95°Cの範囲が更に好ましレ、。第二の工程の時 間は、還元剤等の原材料の添カ卩時間などで制御して設定することができ、例えば、 1 0分〜 6時間程度が適当である。第二の工程では、貴金属及びその化合物から選ば れる少なくとも 1種をまず第 1工程後の液に添加した後に、還元剤を添加するのが好 ましい。還元剤を添加する際に著しい発泡が認められるなら、シリコーン系、ポリアタリ ル系、ポリビュル系、フッ素系、ワックス系等の消泡剤を用いても良レ、。また、後述の 錯化剤を添加すると、粒度分布や粒子形状の制御が一層行い易く好ましい。また、 前記の保護コロイドを必要に応じて第二の工程の反応時にも追加することができる。 更に、生成する金属ニッケル微粒子を大きくするために必要に応じて、難溶性ニッケ ル化合物を適宜添加しても良レ、。 [0015] Next, the second step is a subsequent step of generating metallic nickel by adding at least one kind selected from a noble metal and its compound power and a reducing agent to the liquid after the first step. The second step is a step of reducing the unreacted Nikkenore compound in the first step to grow micronuclear grains, and the noble metal or the compound acts as a reaction accelerator. The compound can be reduced almost completely. The temperature of the second step can be the same as the temperature of the first step, or the boiling point of the medium can be adjusted to the range of 10 ° C to the boiling point of the medium. If the temperature is about 1 oo ° C or more, it is preferable because the fine nickel fine particles can be obtained in the range of 40 to 95 ° C. 60 to 95 ° C is more preferable. The range is even better. The time for the second step can be set by controlling the addition time of raw materials such as a reducing agent, for example, about 10 minutes to 6 hours is appropriate. In the second step, it is preferable to add a reducing agent after first adding at least one selected from precious metals and compounds thereof to the liquid after the first step. If significant foaming is observed when a reducing agent is added, antifoaming agents such as silicones, polyaryls, polybules, fluorines and waxes can be used. Further, it is preferable to add a complexing agent which will be described later because it is easier to control the particle size distribution and particle shape. In addition, the protective colloid can be added during the reaction in the second step, if necessary. Furthermore, if necessary, a slightly soluble nickel compound may be added as appropriate in order to enlarge the generated metal nickel fine particles.
第二の工程で金属ニッケル微粒子を生成させた後、必要に応じて更に熟成しても 良レ、。熟成温度は 40°C以上が好ましぐ 40〜95°Cの範囲がより好ましぐ 60〜95°C の範囲が更に好ましぐ 80〜95°Cの範囲が一層好ましい。第二の工程の温度と熟成 を同じ温度で行うのが工業的に好ましい。熟成時間は、 5分〜 2時間の範囲が好まし く、 10分〜 1時間の範囲が更に好ましい。  After the formation of metallic nickel fine particles in the second step, it can be further aged if necessary. The aging temperature is preferably 40 ° C or higher, more preferably in the range of 40 to 95 ° C, more preferably in the range of 60 to 95 ° C, and still more preferably in the range of 80 to 95 ° C. It is industrially preferable that the temperature of the second step and aging are performed at the same temperature. The aging time is preferably in the range of 5 minutes to 2 hours, and more preferably in the range of 10 minutes to 1 hour.
第二の工程で用いる「還元剤」は、前記第一の工程に記載の還元剤を用いることが でき、還元反応性が強いためヒドラジン系還元剤((a)ヒドラジンまたはその水和物、( b)ヒドラジン系化合物(例えば、塩酸ヒドラジン、硫酸ヒドラジン等)等)が好ましい。還 元剤の添加は、 1回で行なって未反応のニッケルィヒ合物を還元しても良ぐ分割して 行っても良い。分割添加の場合、同種の還元剤を用いることも、異種の還元剤を 2種 以上用いることもできる。ヒドラジン系還元剤を添加した後、更に次亜リン酸またはそ の塩 (例えば、アルカリ金属塩、アルカリ土類金属塩等)を用いるのが好ましぐ中で も次亜リン酸ナトリウムを添加すると、ニッケル微粒子の収率が向上するので一層好 ましい。還元剤の使用量はニッケノレ化合物のほぼ全量が還元される程度であれば良 く、ニッケル化合物中に含まれるニッケル 1モルに対し 0. 2〜5. 0モルの範囲が好ま しい。使用量がこの範囲より多いと、微核晶の生成が不均一になり、単分散で粒子形 状の整ったニッケル微粒子が得られ難ぐまた、著しく発泡して以後の操作が困難に なるため好ましくなぐ少ないと所望の状態とはならないため好ましくない。第二のェ 程では、貴金属及びその化合物から選ばれる少なくとも 1種を用いているので、少な くとも前記範囲の使用量であれば、未反応のニッケル化合物をほぼ完全に還元する こと力 Sできる。より好ましい範囲は、 1. 0〜3. 0モルの範囲である。 2種以上の還元剤 を用いるのであれば、総量を前記範囲内とし、それぞれの使用量を適宜配分する。 第二の工程で用いる貴金属及びその化合物は、前述のように反応促進剤としてば 力、りでなぐ還元剤にヒドラジン系還元剤を用いる場合には、ヒドラジン系化合物の分 解抑制剤としても働く。金属ニッケル微粒子が生成すると、金属ニッケルはヒドラジン 系還元剤の分解触媒として作用して還元反応が阻害されるが、貴金属やその化合 物により、ヒドラジン系化合物の分解が抑制され還元反応が阻害され難くなる。貴金 属及びその化合物としては、金、銀、銅、白金族元素 (ルテニウム、ロジウム、パラジゥ ム、オスミウム、イリジウム、白金)の金属及びそれらの化合物から選ばれる少なくとも 1種を用いることができる。貴金属化合物としては貴金属の塩ィ匕物、臭化物、硫酸塩 、硝酸塩、酸化物、硫化物、酢酸塩、錯塩等が挙げられる。パラジウム、金、白金及 びそれらの化合物から選ばれる少なくとも 1種がより高い添加効果を有するため好ま しい。用いる貴金属またはその化合物は粉体状、粒塊状等その性状や大きさなど特 に制限されなレ、が、分散し易レ、コロイド状のものまたは媒液に溶解し易レ、ものが好ま しい。また、ノ ジウム化合物としては、塩化パラジウム、硝酸パラジウム、硫酸パラジ ゥム、酢酸パラジウム、プロピオン酸パラジウム、酸化パラジウム、硫化パラジウム、水 素化パラジウム、パラジウム錯体(ジニトロジアンミンパラジウム、テトラアンミンパラジ ゥムジクロライド、テトラアンミンパラジウムジニトレート、テトラキス(トリフエニルホスフィ ン)パラジウム、ジクロロビス(トリフエニルホスフィン)パラジウム、ジクロロ(1 , 3—ビス( ジフエ二ルホスフィン)プロパン)パラジウム、ビス(トリシクロへキシルホスフィン)パラジ ゥム、ジ— μ—クロ口ビス( —ァリル)パラジウム、ビス(ァセチルァセトナト)パラジゥ ム、ジクロロビス(ァセトニトリル)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、 トリス(ジベンジリデンアセトン)パラジウム、ビス(ジベンジリデンアセトン)パラジウム、 1 , 1,一ビス(ジフエニルホスフイノ)フエ口センパラジウムクロライド、ジクロロ(1 , 5—シ クロォクタジェン)パラジウム、ジクロロ(オルトフエナント口リン)パラジウム、ジクロロ(ェ チレン 1 , 2—ビスォキサゾリン)パラジウム、パラジウムペンタジオナート、カノレボニ ルパラジウムジクロライド、ニトロシノレパラジウムジクロライド等)等が挙げられる。金化 合物としては、塩化金、臭化金、酸化金、硫化金、金錯体 (ハロゲン化金酸及びその 塩、シアン化金錯塩、システィナト金、クロ口(ジエチレントリァミン)金塩、 [ビス(2—ァ ミノェチル)アミド]クロ口金塩、テトラアンミン金塩、ジォクタデシルジメチルアンモニゥ ムビス(1, 3-ジチオール— 2—チオン— 4, 5_ジチォラート)金等)等が挙げられる。 白金化合物としては、塩化白金、酸化白金、硫酸白金、硝酸白金、白金錯体 (ハログ ン化白金酸及びその塩、ヒドロキソ白金酸及びその塩、テトラアンミン白金ジクロライド 、ジニトロジアンミン白金、ビス(ペンタン一2, 4—ジオン)白金、テトラキス(チォ尿素 )白金、ビス(ァセトアミジン)ジアンミン白金、ジクロロビス(ォキサラト)白金酸塩、ビス (テトラー n ブチルアンモニゥム)ビス(1, 3 ジチオールー2 チオン 4, 5 ジク ロロ)白金等)、等が挙げられる。これらの化合物の中でも錯体は、分解抑制効果が 大きいので好ましい。パラジウム錯体としては、ジニトロジアンミンパラジウム、テトラァ ンミンパラジウムジクロライド、テトラアンミンパラジウムジニトレート等の少なくとも一つ の配位子がァミンであれば一層好ましレ、。金錯体としては、ハロゲン化金酸及びその 塩が好ましぐ塩化金酸であれば一層好ましい。 白金錯体としては、ハロゲン化白金 酸及びその塩が好ましぐ塩ィ匕白金酸であれば一層好ましい。 As the “reducing agent” used in the second step, the reducing agent described in the first step can be used, and since the reduction reactivity is strong, a hydrazine reducing agent ((a) hydrazine or a hydrate thereof, ( b) Hydrazine compounds (for example, hydrazine hydrochloride, hydrazine sulfate, etc.) are preferred. The reducing agent may be added at once, and the unreacted nickel-rich compound may be reduced or divided. In the case of divided addition, the same type of reducing agent can be used, or two or more different types of reducing agents can be used. After adding the hydrazine-based reducing agent, it is preferable to use sodium hypophosphite even though it is preferable to use hypophosphorous acid or a salt thereof (for example, alkali metal salt, alkaline earth metal salt, etc.). It is more preferable because the yield of nickel fine particles is improved. The amount of reducing agent used should be such that almost all of the Nikkenore compound is reduced, and a range of 0.2 to 5.0 moles per mole of nickel contained in the nickel compound is preferred. That's right. If the amount used is larger than this range, the formation of micronuclear crystals becomes non-uniform, and it is difficult to obtain monodispersed and finely-shaped nickel fine particles, and the subsequent operation becomes difficult due to significant foaming. If the amount is preferably too small, the desired state is not obtained, which is not preferable. In the second step, since at least one selected from precious metals and compounds thereof is used, the amount of unreacted nickel compound can be reduced almost completely if the amount used is at least within the above range. . A more preferable range is 1.0 to 3.0 mol. If two or more reducing agents are used, the total amount is within the above range, and the amount used is appropriately distributed. As described above, the precious metal and its compound used in the second step work as a reaction accelerator, and when a hydrazine-based reducing agent is used as the reducing agent, it also acts as a decomposition inhibitor for hydrazine-based compounds. . When metallic nickel fine particles are produced, the metallic nickel acts as a decomposition catalyst for the hydrazine-based reducing agent and inhibits the reduction reaction. However, noble metals and their compounds suppress the decomposition of the hydrazine-based compound, making it difficult to inhibit the reduction reaction. Become. As the noble metal and its compound, at least one selected from metals of gold, silver, copper, platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, platinum) and compounds thereof can be used. Examples of noble metal compounds include noble metal salts, bromides, sulfates, nitrates, oxides, sulfides, acetates, and complex salts. At least one selected from palladium, gold, platinum and their compounds is preferred because it has a higher effect of addition. The precious metal or compound used is not particularly limited in terms of its properties and size, such as powder or agglomerate, but is preferably easily dispersed or colloidal or easily dissolved in a liquid medium. . In addition, the palladium compounds include palladium chloride, palladium nitrate, palladium sulfate, palladium acetate, palladium propionate, palladium oxide, palladium sulfide, palladium hydride, palladium complexes (dinitrodiammine palladium, tetraammine paradichlorodichloride, Tetraamminepalladium dinitrate, tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, dichloro (1,3-bis (diphenylphosphine) propane) palladium, bis (tricyclohexylphosphine) paradium , Di-μ-Black-mouthed bis (-aryl) palladium, bis (acetylacetonato) palladium, dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium , Tris (dibenzylideneacetone) palladium, bis (dibenzylideneacetone) palladium, 1,1,1bis (diphenylphosphino) phenolic palladium chloride, dichloro (1,5-cyclopentagen) palladium, dichloro (orthophenantorporin) palladium, dichloro (ethylene 1,2-bisoxazoline) palladium Palladium pentadionate, canolebonyl palladium dichloride, nitrocinolepalladium dichloride, etc.). Gold compounds include gold chloride, gold bromide, gold oxide, gold sulfide, gold complex (halogenated gold acid and its salts, gold cyanide complex, cystinato gold, black mouth (diethylenetriamine) gold salt, [ Bis (2-aminoethyl) amido] chromate, tetraammine gold salt, dioctadecyldimethylammonium bis (1,3-dithiol-2-thione-4,5_dithiolate) gold and the like. Platinum compounds include platinum chloride, platinum oxide, platinum sulfate, platinum nitrate, platinum complexes (halogenated platinic acid and its salts, hydroxoplatinic acid and its salts, tetraammineplatinum dichloride, dinitrodiammineplatinum, bis (pentane-1,2, 4-dione) platinum, tetrakis (thiourea) platinum, bis (acetamidine) diammineplatinum, dichlorobis (oxalato) platinate, bis (tetra-n-butylammonium) bis (1,3 dithiol-2 thione 4,5 dichloro ) Platinum etc.). Among these compounds, complexes are preferable because they have a large effect of inhibiting decomposition. As the palladium complex, it is more preferable that at least one ligand such as dinitrodiammine palladium, tetraamine palladium dichloride, tetraammine palladium dinitrate, etc. is an amine. The gold complex is more preferably chloroauric acid, preferably haloauric acid and its salt. As the platinum complex, it is more preferable if the halogenated platinic acid and its salt are preferred salts.
あるいは第二の工程において、金属パラジウム、金属金、金属白金等の貴金属や 塩化パラジウム、塩化金、塩化白金等の錯体以外の貴金属化合物を用い、これらと 後述の錯ィ匕剤とを混合して、第二の工程中で錯体を生成させても良い。貴金属及び その化合物の使用量は、第二の工程で使用する還元剤 100重量部に対し、貴金属 換算で 0. 0:!〜 2重量部の範囲が好ましぐ 0. 03〜: 1. 5重量部の範囲が更に好まし レ、。  Alternatively, in the second step, a noble metal such as palladium metal, gold metal or platinum, or a noble metal compound other than a complex such as palladium chloride, gold chloride or platinum chloride is mixed with a complexing agent described later. A complex may be formed in the second step. The amount of precious metal and its compound used is preferably 0.0 :! to 2 parts by weight in terms of precious metal with respect to 100 parts by weight of the reducing agent used in the second step. The range of parts by weight is even better.
本発明では、第一の工程及び/または第二の工程を、錯化剤の存在下で行うと、 粒度分布や粒子形状の制御が一層行い易く好ましい。錯化剤は、ニッケル化合物か らニッケルイオンが溶出するカ またはニッケノレ化合物が還元されて金属ニッケルが 生成する過程で作用し、還元反応速度を制御すると考えられ、これが有する配位子 のドナー原子とニッケルイオンまたは金属エッケノレと結合してニッケル錯体化合物を 形成し得る化合物をいう。 In the present invention, it is preferable that the first step and / or the second step be carried out in the presence of a complexing agent because it is easier to control the particle size distribution and particle shape. The complexing agent is a nickel compound that elutes nickel ions from the nickel compound or the nickel oleore compound and reduces the nickel metal content. A compound that acts in the process of formation and is thought to control the rate of the reduction reaction, and can form a nickel complex compound by binding a donor atom of the ligand and nickel ions or metal echenole.
「錯化剤」が有するドナー原子としては、例えば、窒素、酸素、硫黄等が挙げられる 具体的には、  Examples of the donor atom possessed by the “complexing agent” include nitrogen, oxygen, sulfur and the like.
(1)窒素がドナー原子である錯化剤としては、(a)アミン類 (例えば、プチルァミン、ェ チノレアミン、プロピルァミン、エチレンジァミン等の 1級ァミン類、ジブチルァミン、ジェ チノレアミン、ジプロピルァミン、及び、ピぺリジン、ピロリジン等のイミン類等の 2級アミ ン類、トリブチノレアミン、トリェチルァミン、トリプロピルアミン等の 3級ァミン類、ジェチ レントリアミン、トリエチレンテトラミンの 1分子内に 1〜3級ァミンを 2種以上有するもの 等)、(b)窒素含有複素環式化合物 (例えば、イミダゾール、ピリジン、ビピリジン等)、 (c)二トリル類(例えば、ァセトニトリル、ベンゾニトリル等)及びシアン化合物、(d)アン モニァ及びアンモニゥム化合物(例えば、塩化アンモニゥム、硫酸アンモニゥム等)、 ( e)ォキシム類等が挙げられる。  (1) Complexing agents in which nitrogen is a donor atom include (a) amines (for example, primary amines such as ptylamine, ethynoleamine, propylamine, and ethylenediamine, dibutylamine, jetinoamine, dipropylamine, and piperidine. Secondary amines such as imines such as pyrrolidine, tertiary amines such as tribubutanolamine, triethylamine, tripropylamine, etc., 1 to tertiary amine in one molecule of jethylenetriamine and triethylenetetramine. (B) Nitrogen-containing heterocyclic compounds (eg, imidazole, pyridine, bipyridine, etc.), (c) Nitriles (eg, acetonitrile, benzonitrile, etc.) and cyanide compounds, (d) Anne Mona and ammonium compounds (eg, ammonium chloride, ammonium sulfate, etc.), (e) oxime Etc. The.
(2)酸素がドナー原子である錯化剤としては、(a)カルボン酸類 (例えば、クェン酸、リ ンゴ酸、酒石酸、乳酸等のォキシカルボン酸類、酢酸、ギ酸等のモノカルボン酸類、 シユウ酸、マロン酸等のジカルボン酸類、安息香酸等の芳香族カルボン酸類等)、 (b )ケトン類(例えば、アセトン等のモノケトン類、ァセチルアセトン、ベンゾィルアセトン 等のジケトン類等)、(c)アルデヒド類、(d)アルコール類(1価アルコール類、グリコー ル類、グリセリン類等)、 (e)キノン類、(f)エーテル類、(g)リン酸(正リン酸)及びリン 酸系化合物(例えば、へキサメタリン酸、ピロリン酸、亜リン酸、次亜リン酸等)、(h)ス ルホン酸またはスルホン酸系化合物等が挙げられる。  (2) Complexing agents in which oxygen is a donor atom include (a) carboxylic acids (for example, oxycarboxylic acids such as citrate, lingoic acid, tartaric acid and lactic acid, monocarboxylic acids such as acetic acid and formic acid, oxalic acid, Dicarboxylic acids such as malonic acid, aromatic carboxylic acids such as benzoic acid, etc.), (b) ketones (eg monoketones such as acetone, diketones such as acetylacetone and benzoylacetone), (c) Aldehydes, (d) alcohols (monohydric alcohols, glycols, glycerols, etc.), (e) quinones, (f) ethers, (g) phosphoric acid (normal phosphoric acid) and phosphoric acid compounds (For example, hexametaphosphoric acid, pyrophosphoric acid, phosphorous acid, hypophosphorous acid, etc.), (h) sulfonic acid or sulfonic acid compounds, and the like.
(3)硫黄がドナー原子である錯化剤としては、(a)脂肪族チオール類 (例えば、メチ ルメルカプタン、ェチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタ ン、 η—ブチルメルカプタン、ァリルメルカブタン、ジメチルメルカプタン等)、(b)脂環 式チオール類(シクロへキシノレチオール等)、(c)芳香族チオール類(チオフヱノール 等)、(d)チオケトン類、 (e)チォエーテル類、(f)ポリチオール類、 (g)チォ炭酸類(ト リチォ炭酸類)、 (h)硫黄含有複素環式化合物 (例えば、ジチオール、チォフェン、チ ォピラン等)、( チオシアナート類及びイソチオシアナート類、(j)無機硫黄化合物( 例えば、硫化ナトリウム、硫化カリウム、硫化水素等)等が挙げられる。 (3) Complexing agents in which sulfur is a donor atom include (a) aliphatic thiols (for example, methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, η-butyl mercaptan, aryl mercaptan) , Dimethyl mercaptan, etc.), (b) alicyclic thiols (such as cyclohexenolethiol), (c) aromatic thiols (such as thiophenol), (d) thioketones, (e) thioethers, (f) Polythiols, (g) thiocarbonates (trithiocarbonates), (h) sulfur-containing heterocyclic compounds (eg, dithiols, thiophenes, Opiran, etc.), (thiocyanates and isothiocyanates, (j) inorganic sulfur compounds (for example, sodium sulfide, potassium sulfide, hydrogen sulfide, etc.) and the like.
(4) 2種以上のドナー原子を有する錯ィ匕剤としては、 (a)アミノ酸類(ドナー原子が窒 素及び酸素:例えば、グリシン、ァラニン等の中性アミノ酸類、ヒスチジン、アルギニン 等の塩基性アミノ酸類、ァスパラギン酸、グルタミン酸等の酸性アミノ酸類)、 (b)ァミノ ポリカルボン酸類(ドナー原子が窒素及び酸素:例えば、エチレンジアミンテトラ酢酸 (EDTA)、二トリ口トリ酢酸(NTA)、イミノジ酢酸(IDA)、エチレンジアミンジ酢酸(E DDA)、エチレングリコールジェチルエーテルジァミンテトラ酢酸(GEDA)等)、 (c) アルカノールァミン類(ドナー原子が窒素及び酸素:例えば、エタノールァミン、ジェ タノーノレアミン、トリエタノールァミン等)、 (d)ニトロ化合物、ニトロソ化合物及びニトロ シル化合物(ドナー原子が窒素及び酸素)、 (e)メルカプトカルボン酸類(ドナーが硫 黄及び酸素:例えば、メルカプトプロピオン酸、メルカプト酢酸、チォジプロピオン酸、 メルカプトコハク酸、ジメルカプトコハク酸、チォ酢酸、チォジグリコール酸等)、(f)チ オダリコール類(ドナーが硫黄及び酸素:例えば、メルカプトエタノーノレ、チオジェチ レンダリコール等)、(g)チオン酸類 (ドナーが硫黄及び酸素)、 (h)チォ炭酸類 (ドナ 一原子が硫黄及び酸素:例えば、モノチォ炭酸、ジチォ炭酸、チオン炭酸)、 (i)アミ ノチオール類(ドナーが硫黄及び窒素:アミノエチルメルカプタン、チオジェチルアミ ン等)、(j)チオアミド類(ドナー原子が硫黄及び窒素:例えば、チォホルムアミド等)、 (k)チォ尿素類 (ドナー原子が硫黄及び窒素)、 (1)チアゾール類(ドナー原子が硫黄 及び窒素:例えばチアゾール、ベンゾチアゾール等)、 (m)含硫黄アミノ酸類(ドナー が硫黄、窒素及び酸素:システィン、メチォニン等)等が挙げられる。 (4) Complexing agents having two or more types of donor atoms include: (a) amino acids (donor atoms are nitrogen and oxygen: for example, neutral amino acids such as glycine and alanine, bases such as histidine and arginine) Amino acids, acidic amino acids such as aspartic acid and glutamic acid), (b) amino polycarboxylic acids (donor atoms are nitrogen and oxygen: for example, ethylenediaminetetraacetic acid (EDTA), ditrimethyl triacetic acid (NTA), iminodiacetic acid (IDA), ethylenediaminediacetic acid (EDDA), ethylene glycol jetyl ether diaminetetraacetic acid (GEDA), etc.) (c) alkanolamines (the donor atom is nitrogen and oxygen: for example, ethanolamine, (Tanolanolamine, triethanolamine, etc.), (d) Nitro compounds, nitroso compounds and nitrosyl compounds (donor atoms are nitrogen and oxygen) (E) Mercaptocarboxylic acids (donor is sulfur and oxygen: for example, mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, dimercaptosuccinic acid, thioacetic acid, thiodiglycolic acid, etc.), (f ) Thiodaricols (donor is sulfur and oxygen: for example, mercaptoethanol, thiojetylendral, etc.), ( g ) Thionic acids (donor is sulfur and oxygen), (h) Thiocarbonates (donor atom is sulfur and oxygen) : For example, monothio carbonate, dithio carbonate, thio carbonate, (i) aminothiols (donor is sulfur and nitrogen: aminoethyl mercaptan, thiojetylamine, etc.), (j) thioamides (donor atoms are sulfur and nitrogen: (K) Thioureas (donor atoms are sulfur and nitrogen), (1) Thiazoles (donor) Child sulfur and nitrogen: for example thiazole, benzothiazole, etc.), (m) sulfur-containing amino acids (the donor sulfur, nitrogen and oxygen: cysteine include Mechionin etc.) and the like.
(5)上記の化合物の塩や誘導体としては、例えば、クェン酸トリナトリウム、酒石酸ナト リウム 'カリウム、次亜リン酸ナトリウム、エチレンジアミンテトラ酢酸ジナトリウム等のそ れらのアルカリ金属塩や、カルボン酸、リン酸、スルホン酸等のエステル等が挙げら れる。  (5) Examples of salts and derivatives of the above-mentioned compounds include, for example, alkali metal salts such as trisodium citrate, sodium potassium tartrate, sodium hypophosphite, disodium ethylenediaminetetraacetate, and carboxylic acids. And esters such as phosphoric acid and sulfonic acid.
このような錯ィ匕剤のうち、少なくとも 1種を用いることができ、中でもアル力ノールアミ ンはニッケルイオンまたは金属ニッケルと錯体を形成し易いので好ましレ、。また、カル ボン酸類は貴金属やその化合物と錯体を形成し易いので、貴金属錯体の原料として も用いることができるため好ましい。錯ィ匕剤の使用量は適宜設定することができ、第 一の工程及び第二の工程のそれぞれにおいてニッケノレ化合物 100重量部に対し 0. 01〜: 150重量部の範囲に設定すると、錯化剤の効果が得られ易いので好ましい。前 記範囲内で、錯化剤の使用量を少なくすると、ニッケル微粒子の一次粒子を小さくす ること力 Sでき、使用量を多くすると、一次粒子を大きくすることができる。より好ましい使 用量は、 0. 1〜: 100重量部の範囲である。 Among these complexing agents, at least one kind can be used, and among them, alkenol amine is preferred because it easily forms a complex with nickel ions or metallic nickel. In addition, carboxylic acids are easy to form complexes with noble metals and their compounds. Can also be used. The amount of the complexing agent used can be set as appropriate. In each of the first step and the second step, complexing occurs when the Nikkenore compound is set in the range of 0.01 to 150 parts by weight per 100 parts by weight. Since the effect of the agent is easily obtained, it is preferable. Within the above range, if the use amount of the complexing agent is reduced, the primary particle size of the nickel fine particles can be reduced, and if the use amount is increased, the primary particle size can be increased. A more preferred dosage is in the range of 0.1 to 100 parts by weight.
[0019] それぞれの原材料の添加順序には制限はなぐ例えば、第一の工程では、(1)ニッ ケル化合物、保護コロイドを含み、必要に応じて錯ィ匕剤を更に含む媒液に、還元剤 を添加する方法、(2)ニッケル化合物、保護コロイドを含む媒液に、錯化剤と還元剤 とを同時並行的に添加する方法、(3)ニッケルィヒ合物、保護コロイドを含む媒液に、 錯化剤と還元剤の混合液を添加する方法等が挙げられる。中でも(2)、(3)の方法が 反応を制御し易いので好ましぐ(3)の方法が特に好ましい。なお、「同時並行的添 カロ」とは、反応期間中において原材料をそれぞれ別々に同時期に添加する方法をい レ、、両者を反応期間中継続して添加する他に、一方あるいは両者を間欠的に添加す ることち含む。 [0019] The order of addition of the respective raw materials is not limited. For example, in the first step, (1) reduction to a liquid medium containing a nickel compound and a protective colloid and further containing a complexing agent as necessary. (2) A method in which a complexing agent and a reducing agent are added simultaneously to a liquid medium containing a nickel compound and a protective colloid. (3) In a liquid medium containing a nickel-rich compound and a protective colloid. And a method of adding a mixed solution of a complexing agent and a reducing agent. Among them, the method (3) is particularly preferable because the methods (2) and (3) are preferable because the reaction is easily controlled. “Simultaneous parallel addition” refers to a method in which raw materials are added separately at the same time during the reaction period. In addition to adding both continuously during the reaction period, one or both are intermittently added. It may be added to the product.
また、第二の工程では、 (I)第一の工程後の液に、貴金属及びその化合物から選 ばれる少なくとも 1種を添加し、その後、還元剤を添加する方法、(II)第一の工程後 の液に、前記貴金属またはその化合物の添加前、添加中、添加後のいずれかで錯 化剤を添加し、その後、還元剤を添加する方法、 (III)第一の工程後の液に、前記貴 金属またはその化合物と錯化剤の混合液を添加後、還元剤を添加する方法等が挙 げられる。錯化剤は、前述のように錯体の原料としても作用するので、前記金属ゃ錯 体以外の前記金属化合物を用いた場合、 (III)の方法が錯体を生成させ易いので好 ましい。  In the second step, (I) a method in which at least one selected from a noble metal and its compound is added to the liquid after the first step, and then a reducing agent is added; (II) the first step A method in which a complexing agent is added to the subsequent liquid before, during or after the addition of the noble metal or its compound, and then a reducing agent is added; (III) the liquid after the first step And a method of adding a reducing agent after adding the mixed solution of the noble metal or its compound and a complexing agent. Since the complexing agent also acts as a raw material for the complex as described above, when the metal compound other than the metal complex is used, the method (III) is preferable because the complex is easily formed.
[0020] ニッケル微粒子を生成させた後は、必要に応じて分別、洗浄を行う。分別手段は特 に制限はなぐ重力濾過、加圧濾過、真空濾過、吸引濾過、遠心濾過、自然沈降な どの手段をとり得るが、工業的には加圧濾過、真空濾過、吸引濾過が好ましぐ脱水 能力が高く大量に処理できるので、フィルタープレス、ロールプレス等の濾過機を用 レ、るのが好ましい。分別する際に、酸を用いて媒液の pHを 6以下の範囲に調整し、 ニッケル微粒子を凝集させると、収率が向上するので好ましい。 pHが 3より低いと、濾 過装置を腐食させたりするので、 3〜6の範囲が好ましレ、 pH領域であり、 4〜6の範囲 とすると酸の使用量を減らせるので更に好ましい。 [0020] After the nickel fine particles are generated, separation and washing are performed as necessary. There are no particular restrictions on the separation means such as gravity filtration, pressure filtration, vacuum filtration, suction filtration, centrifugal filtration, and natural sedimentation, but industrially preferred are pressure filtration, vacuum filtration, and suction filtration. Therefore, it is preferable to use a filter such as a filter press or a roll press. When fractionating, adjust the pH of the liquid medium to 6 or less with acid, Aggregating the nickel fine particles is preferable because the yield is improved. If the pH is lower than 3, the filtration device is corroded, so the range of 3 to 6 is preferable. The range of 4 to 6 is more preferable because the amount of acid used can be reduced.
[0021] pH調整に替えて凝集剤を用いても、同様の収率の改良効果が得られる。凝集剤と しては公知のものを用いることができ、具体的には、ァニオン系凝集剤(例えば、ポリ アクリルアミドの部分加水分解生成物、アクリルアミド 'アクリル酸ナトリウム共重合体、 アルギン酸ソーダ等)、カチオン系凝集剤(例えば、ポリアクリルアミド、ジメチノレアミノ ェチルメタタリレート、ジメチルアミノエチルアタリレート、ポリアミジン、キトサン等)、両 性凝集剤(例えば、アクリルアミド'ジメチルアミノエチルアタリレート'アクリル酸共重 合体等)等が挙げられる。凝集剤の添加量は、必要に応じた量を適宜設定することが でき、ニッケル微粒子 1000重量部に対し、 0. 5〜: 100重量部の範囲が好ましぐ 1 〜50重量部の範囲が更に好ましい。  [0021] Even if a flocculant is used instead of pH adjustment, the same yield improving effect can be obtained. As the flocculant, known ones can be used. Specifically, anionic flocculants (for example, polyacrylamide partial hydrolysis products, acrylamide'sodium acrylate copolymer, sodium alginate, etc.), Cationic flocculants (eg, polyacrylamide, dimethylenoethyl acetylmethacrylate, dimethylaminoethyl acrylate, polyamidine, chitosan, etc.), amphoteric flocculants (eg, acrylamide 'dimethylaminoethyl acrylate / acrylic acid copolymer, etc.) ) And the like. The addition amount of the flocculant can be appropriately set according to need. The range of 0.5 to 100 parts by weight is preferable with respect to 1000 parts by weight of the nickel fine particles, and the range of 1 to 50 parts by weight is preferable. Further preferred.
[0022] ニッケル微粒子を分別する際に必要に応じて、媒液に保護コロイド除去剤を添加し 保護コロイドを除去してニッケル微粒子を凝集させ、次いで、分別することもできる。 「 保護コロイド除去剤」は、保護コロイドを分解または溶解して保護コロイドの作用を抑 制する化合物であり、媒液力 保護コロイドを完全に除去できなくても一部でも除去 できるのであればこの効果が得られる。保護コロイド除去剤の種類は、用いる保護コ ロイドに応じて適宜選択する。具体的には、タンパク質系の保護コロイドに対しては、 セリンプロテアーゼ(例えば、トリプシン、キモトリブシン等)、チオールプロテア一ゼ( 例えば、パパイン等)、酸性プロテアーゼ(例えば、ペプシン等)、金属プロテアーゼ 等のタンパク質分解酵素を用いることができ、デンプン系に対しては、アミラーゼ、マ ルターゼ等のデンプン分解酵素を用いることができ、セルロース系にはセルラーゼ、 セロビアーゼ等のセルロース分解酵素を用いることができる。ビュル系、アクリル酸系 、ポリエチレングリコール等の保護コロイドには、ホノレムアミド、グリセリン、グリコール 等の有機溶剤や、酸、アルカリ等を用いることができる。保護コロイド除去剤の添加量 はニッケル微粒子を凝集させ分別できる程度に保護コロイドを除去できる量であれば 良ぐその種類によって異なるが、タンパク質分解酵素であれば、タンパク質系保護 コロイド 1000重量咅 Wこ対し 0. 001〜1000重量咅の範囲力 S好まし <、 0. 01〜200 重量部がより好ましぐ 0. 01〜: 100重量部が更に好ましい。保護コロイド除去剤を添 加する際の媒液の温度は適宜設定することができ、還元反応温度を保持した状態で も良ぐあるいは、 10°C〜用いた媒液の沸点の範囲であれば、保護コロイドの除去が 進み易いので好ましぐ媒液の沸点が 100°C程度以上の場合は 40〜95°Cの範囲で あれば更に好ましい。保護コロイド除去剤を添加した後、その状態を適宜保持すれ ば保護コロイドを分解することができ、例えば 10分〜 10時間程度が適当である。保 護コロイドを除去後、好ましくは pH調整を行ったり、凝集剤を添加するなどしてから、 通常の方法で分別する。 [0022] When separating the nickel fine particles, if necessary, a protective colloid remover may be added to the medium to remove the protective colloid to aggregate the nickel fine particles, and then separate. “Protective colloid remover” is a compound that decomposes or dissolves the protective colloid to suppress the action of the protective colloid. If the liquid protective colloid cannot be completely removed, it can be removed. An effect is obtained. The type of protective colloid remover is appropriately selected according to the protective colloid used. Specifically, for protein-based protective colloids, serine protease (eg, trypsin, chymotrypsin, etc.), thiol protease (eg, papain, etc.), acidic protease (eg, pepsin, etc.), metalloprotease, etc. Proteolytic enzymes can be used, starch-degrading enzymes such as amylase and maltase can be used for starch systems, and cellulose-degrading enzymes such as cellulase and cellobiase can be used for cellulose systems. As protective colloids such as bulle, acrylic acid, and polyethylene glycol, organic solvents such as honolemamide, glycerin, and glycol, acids, alkalis, and the like can be used. The amount of protective colloid remover added depends on the type of protective colloid, as long as it can remove nickel so that it can aggregate and separate nickel particles. On the other hand, the force in the range of 0.001 to 1000 lbs. S is preferred <, 0.01 to 200 Part by weight is more preferred 0.01-: More preferably 100 parts by weight. The temperature of the medium at the time of adding the protective colloid remover can be set as appropriate, and the reduction reaction temperature may be maintained or it may be within the range of 10 ° C to the boiling point of the medium used. When the boiling point of the preferred liquid medium is about 100 ° C or higher, it is more preferable that the temperature is in the range of 40 to 95 ° C. After the protective colloid remover is added, the protective colloid can be decomposed if the state is appropriately maintained. For example, about 10 minutes to 10 hours is appropriate. After removing the protective colloid, preferably adjust the pH or add an aggregating agent, and then sort by the usual method.
[0023] ニッケル微粒子を必要に応じて固液分離した後、得られたニッケル微粒子の固形 物を例えば水系またはアルコール等の有機溶媒系媒液に、好ましくは水系媒液に分 散して用いることができる。あるいは、ニッケル微粒子の固形物を通常の方法により乾 燥しても良ぐ更に乾燥した後、例えば水系またはアルコール等の有機溶媒系媒液 に、好ましくは水系媒液に分散して用いることもできる。乾燥後は、必要に応じて粉砕 を行っても良い。また、必要に応じて、乾燥したニッケノレ粉末を熱処理しても良い。熱 処理によってニッケル微粒子の結晶性を良くすることができ、例えば、水素等の還元 雰囲気中あるいは窒素、アルゴン等の不活性雰囲気中で、 200〜: 1200°C程度の温 度にニッケル粉末を加熱する。この熱処理の際に、アルカリ金属塩、アルカリ土類金 属塩等の焼結防止剤をニッケル粉末と混合しても良い。 [0023] After solid-liquid separation of the nickel fine particles as necessary, the obtained solid particles of the nickel fine particles are used, for example, dispersed in an organic solvent medium such as aqueous or alcohol, preferably in an aqueous medium. Can do. Alternatively, the solid matter of nickel fine particles may be dried by a usual method, and after further drying, it may be used, for example, in an aqueous solvent or an organic solvent medium such as alcohol, preferably dispersed in an aqueous medium. . After drying, pulverization may be performed as necessary. Moreover, you may heat-process the dried Nikkenore powder as needed. The heat treatment can improve the crystallinity of the nickel fine particles. For example, the nickel powder is heated to a temperature of 200 to 1200 ° C in a reducing atmosphere such as hydrogen or in an inert atmosphere such as nitrogen or argon. To do. During the heat treatment, a sintering inhibitor such as an alkali metal salt or an alkaline earth metal salt may be mixed with the nickel powder.
[0024] 次に、本発明はニッケル微粒子であって、少なくとも金属ニッケルを含有した金属 質を有するものであり、用途に差し支えない程度にニッケル微粒子の表面やその内 部に不純物等を含んでいても良ぐ前記の原材料等の成分が含まれていても良い。 本発明のニッケル微粒子は微細で、凝集粒子をほとんど含まず、粒子形状が整って いる。これらの指標として、本願のニッケル微粒子は、電子顕微鏡法による平均粒子 径(累積 50。/。径)(D)が 0. 001〜0. 5 x mの範囲にあり、ニッケル微粒子の形状を 真球状と近似し、比表面積を用いる下式から求めた平均粒子径(d)が 0. 001-0. 5 z mの範囲にあり、且つ、 dZDが 0. 85〜: 1. 30の範囲にあるものである。  [0024] Next, the present invention is a nickel fine particle having a metallic substance containing at least metallic nickel, and contains impurities or the like on the surface of the nickel fine particle or inside thereof to such an extent that it does not interfere with the use. It may also contain components such as the aforementioned raw materials. The nickel fine particles of the present invention are fine, hardly contain aggregated particles, and have a uniform particle shape. As an indicator of these, the nickel fine particles of the present application have an average particle diameter (cumulative 50./. Diameter) (D) in the range of 0.001 to 0.5 xm by electron microscopy, and the shape of the nickel fine particles is truly spherical. The average particle diameter (d) obtained from the following formula using the specific surface area is in the range of 0.001-0. 5 zm, and the dZD is in the range of 0.85 to 1.30. It is.
(d) ( z m) =6/ ( p -S)  (d) (z m) = 6 / (p -S)
上記式において、 pは金属ニッケルの比重であり 8. 9g/cm3である。 Sは比表面 積値 (m2/g)である。比表面積は BET法に基づく窒素吸着により求める。 In the above formula, p is the specific gravity of metallic nickel and is 8.9 g / cm 3 . S is the specific surface The product value (m 2 / g). The specific surface area is determined by nitrogen adsorption based on the BET method.
本発明のニッケル微粒子は、平均粒子径 (D)、(d)が前記範囲の微細なものであり 、 d/Dが前記範囲の非常に 1に近似していることから凝集の程度が低いので、流動 性組成物への分散性が優れている。このようなニッケル微粒子は前記の製造方法に よって得られる。なお、 d/Dは、通常は 1以上の値をとる力 (D)、(d)の測定方法が それぞれ異なるため、 d/D力 S1より小さくなる場合もある。本発明のニッケル微粒子 の形状は、電子顕微鏡により観察することができ、球状または略球状の整った粒子形 状を有している。 (D)の好ましい範囲は 0. 01〜0. 3 z m、 (d)の好ましい範囲は 0. 01〜0. 3 x m、 d/Dの好ましレ、範囲 fま 0. 85〜: 1. 2である。  In the nickel fine particles of the present invention, the average particle size (D), (d) is fine within the above range, and d / D is very close to 1 within the above range, so the degree of aggregation is low. The dispersibility in the fluid composition is excellent. Such nickel fine particles can be obtained by the production method described above. Note that d / D may be smaller than d / D force S1 because the measurement method of force (D) and (d), which normally takes a value of 1 or more, is different. The shape of the nickel fine particles of the present invention can be observed with an electron microscope, and has a spherical or substantially spherical particle shape. The preferred range for (D) is 0.01 to 0.3 zm, the preferred range for (d) is 0.01 to 0.3 xm, the preferred d / D range, the range f to 0.85 to 1. 2.
なお、特開昭 63— 274706号公報の実施例には、平均粒径と比表面積値を記載 しているが、 dZDが 0. 85より小さレ、力 \あるいは 1. 30より大きいものであり、 d/D が 0. 85〜: 1. 30の範囲にあるものはなレ、。  In the examples of JP-A-63-274706, the average particle size and specific surface area are described, but the dZD is smaller than 0.85, the force \ or larger than 1.30. , D / D is between 0.85 and 1.30.
次いで、本発明はインキ、塗料、ペースト等の流動性組成物であって、前記のニッ ケル微粒子と分散媒を少なくとも含有する。ニッケル微粒子の配合量は少なくとも 1重 量%程度であれば良ぐ 5重量%以上の高濃度が好ましぐ 10重量%以上がより好 ましぐ 15重量%以上が更に好ましい。ニッケル微粒子を分散させる分散媒としては 、用いるニッケル微粒子との親和性に応じて適宜選択し、例えば、水溶媒、アルコー ル類、ケトン類等の親水性有機溶媒、直鎖状炭化水素類、環状炭化水素類、芳香族 炭化水素類等の疎水性有機溶媒等を用いることができ、これらから選ばれる 1種を用 レ、ても、または相溶性を有する 2種以上を混合分散媒として用いても良ぐあるいは、 親水性有機溶媒を相溶化剤として用いて水と疎水性有機溶媒を混合して用いること もできる。具体的には、アルコール類としては例えばメタノール、エタノール、プロピノレ アルコール、イソプロピルアルコール、ブタノール、イソブタノール、 ひ一テルビネオ一 ルが挙げられ、ケトン類としては例えばシクロへキサノン、メチルシクロへキサノン、 2 —ブタノン、メチルイソプチルケトン、アセトンが挙げられる。更に有機溶媒としてトル ェン、ミネラルスピリットなども好適に用いることができる。インキ、塗料に用いられる好 ましい分散媒としては、水溶媒または水を主体とする親水性有機溶媒との混合分散 媒であり、この場合、水は通常、混合分散媒中に 50重量%以上、好ましくは 80重量 %以上含まれていれば良い。 Next, the present invention is a fluid composition such as ink, paint, paste, and the like, and contains at least the nickel fine particles and the dispersion medium. The amount of nickel fine particles should be at least about 1% by weight, preferably a high concentration of 5% by weight or more, more preferably 10% by weight or more, and even more preferably 15% by weight or more. The dispersion medium for dispersing the nickel fine particles is appropriately selected according to the affinity with the nickel fine particles to be used. For example, hydrophilic organic solvents such as water solvents, alcohols, and ketones, linear hydrocarbons, cyclic Hydrophobic organic solvents such as hydrocarbons and aromatic hydrocarbons can be used, and one type selected from these can be used, or two or more types having compatibility can be used as a mixed dispersion medium. Alternatively, water and a hydrophobic organic solvent can be mixed and used using a hydrophilic organic solvent as a compatibilizing agent. Specifically, examples of alcohols include methanol, ethanol, propynole alcohol, isopropyl alcohol, butanol, isobutanol, and monoterbinol. Examples of ketones include cyclohexanone, methylcyclohexanone, and 2-butanone. , Methyl isobutyl ketone, and acetone. Further, toluene, mineral spirit, etc. can be suitably used as the organic solvent. A preferable dispersion medium used for inks and paints is an aqueous solvent or a mixed dispersion medium with a hydrophilic organic solvent mainly composed of water. In this case, water is usually 50% by weight or more in the mixed dispersion medium. , Preferably 80 weight If it is contained more than%.
[0026] 本発明の流動性組成物において、水を分散媒として用いる場合、水は表面張力が 大きいので、必要に応じて、比誘電率が 35以上、好ましくは 35〜200の範囲であつ て、沸点が 100°C以上、好ましくは 100〜250°Cの範囲の有機溶媒を添カ卩すると、加 熱焼成時に塗布物にシヮゃ縮み等の表面欠陥が生じ難ぐ均一で密度の高い塗布 物が得られ易いので好ましい。このような有機溶媒として N_メチルホルムアミド(比 誘電率 190、沸点 197°C)、ジメチルスルホキシド(比誘電率 45、沸点 189°C)、ェチ レンダリコール(比誘電率 38、沸点 226°C)、 4_ブチロラタトン(比誘電率 39、沸点 2 04°C)、ァセトアミド(比誘電率 65、沸点 222°C)、 1, 3 ジメチル— 2 イミダゾリジノ ン(比誘電率 38、沸点 226°C)、ホルムアミド(比誘電率 111、沸点 210°C)、 N メチ ルァセトアミド(比誘電率 175、沸点 205°C)、フルフラール(比誘電率 40、沸点 161 °C)等が挙げられ、これらから選ばれる 1種以上を用いることができる。中でも、表面 張力が 50 X 10_3N/m以下の N—メチルホルムアミド(表面張力 38 X 10_3N/m) 、ジメチルスルホキシド(表面張力 43 X 10_3N/m)、エチレングリコール(表面張力 48 X 10"3N/m)、 4 ブチロラタトン(表面張力 44 X 10"3N/m)、ァセトアミド(表 面張力 39 X 10_3N/m)、 1 , 3 ジメチルー 2 イミダゾリジノン(表面張力 41 X 10 _3N/m)等であれば、更に効果が高く好ましい。これらの高比誘電率、高沸点の有 機溶媒は、水を除く分散媒中に 20〜100重量%の範囲で含まれているのが好ましく 、 40〜: 100重量%の範囲が更に好ましい。 In the flowable composition of the present invention, when water is used as a dispersion medium, water has a large surface tension, so that the relative permittivity is 35 or more, preferably in the range of 35 to 200, as necessary. When an organic solvent having a boiling point of 100 ° C or higher, preferably 100 to 250 ° C is added, a uniform and high density is obtained in which surface defects such as shrinkage are not easily generated during heating and baking. It is preferable because a coated product is easily obtained. N_methylformamide (dielectric constant 190, boiling point 197 ° C), dimethyl sulfoxide (relative dielectric constant 45, boiling point 189 ° C), ethylene glycol (relative dielectric constant 38, boiling point 226 ° C) ), 4_Butyloraton (relative permittivity 39, boiling point 204 ° C), acetoamide (relative permittivity 65, boiling point 222 ° C), 1,3 dimethyl-2-imidazolidinone (relative permittivity 38, boiling point 226 ° C) , Formamide (dielectric constant 111, boiling point 210 ° C), N-methylacetamide (dielectric constant 175, boiling point 205 ° C), furfural (dielectric constant 40, boiling point 161 ° C), etc. One or more types can be used. Among them, N-methylformamide (surface tension 38 X 10 _3 N / m), surface tension of 50 X 10 _3 N / m or less, dimethyl sulfoxide (surface tension 43 X 10 _3 N / m), ethylene glycol (surface tension 48 X 10 " 3 N / m), 4 Butyrolatatone (surface tension 44 X 10" 3 N / m), Acetamide (surface tension 39 X 10 _3 N / m), 1, 3 Dimethyl-2 imidazolidinone (surface tension 41 X 10 — 3 N / m) and the like are more effective and preferable. These organic solvents having a high relative dielectric constant and a high boiling point are preferably contained in the dispersion medium excluding water in the range of 20 to 100% by weight, and more preferably in the range of 40 to 100% by weight.
[0027] 本発明の流動性組成物には、前記のニッケル微粒子、分散媒の他に、界面活性剤 、分散剤、増粘剤、可塑剤、防カビ剤等の添加剤を、適宜配合することもできる。界 面活性剤は、ニッケル微粒子の分散安定性を更に高める作用や、流動性組成物の レオロジー特性を制御し、塗工性を改良する作用を有するものであって、例えば、第 4級アンモニゥム塩等のカチオン系、カルボン酸塩、スルホン酸塩、硫酸エステル塩 、リン酸エステル塩等のァニオン系、エーテル型、エーテルエステル型、エステル型、 含窒素型等のノニオン系等の公知のものを用いることができ、これらから選ばれる 1 種以上を用いることができる。界面活性剤の配合量は、塗料組成に応じて適宜設定 する力 一般的にはニッケル微粒子 1重量部に対し、 0. 01-0. 5重量部の範囲が 好ましレ、。また、必要に応じ、本発明の効果を阻害しない範囲で、フエノール樹脂、 エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジァリルフタレート榭 脂、オリゴエステルアタリレート樹脂、キシレン樹脂、ビスマレイミドトリアジン樹脂、フラ ン樹脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコーン樹脂、ェチルセル口 ース等のセルロース系樹脂などの有機系の硬化性バインダーが含まれていても良い 。硬化性バインダーの配合量は使用場面に応じて適宜設定でき、電極や配線パター ンを形成する場合は、硬化性バインダーを配合しないか、ニッケル微粒子 1重量部に 対し、 0〜0. 5重量%程度の範囲が適当であり、 0〜0. 1重量%の範囲がより適当で ある。 [0027] In addition to the nickel fine particles and the dispersion medium, additives such as a surfactant, a dispersant, a thickener, a plasticizer, and an antifungal agent are appropriately blended in the fluid composition of the present invention. You can also. The surface active agent has the effect of further improving the dispersion stability of the nickel fine particles and the rheological properties of the flowable composition to improve the coatability. For example, a quaternary ammonium salt is used. Cationic salts such as carboxylic acid salts, carboxylate salts, sulfonate salts, sulfate ester salts, phosphoric acid ester salts, and other nonionic materials such as ether types, ether ester types, ester types, and nitrogen-containing types are used. One or more selected from these can be used. The compounding amount of the surfactant is set appropriately according to the coating composition. Generally, the range of 0.01 to 0.5 parts by weight is 1 part by weight of nickel fine particles. I like it. Further, if necessary, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleimide triazine, as long as the effects of the present invention are not impaired. Organic curable binders such as cellulose resins such as resins, furan resins, urea resins, polyurethane resins, melamine resins, silicone resins, and ethyl cellulose may be contained. The amount of the curable binder can be set as appropriate according to the usage situation. When forming an electrode or wiring pattern, the curable binder is not added, or 0 to 0.5% by weight based on 1 part by weight of the nickel fine particles. A range of about is suitable, and a range of 0 to 0.1% by weight is more suitable.
[0028] 本発明の流動性組成物は、ニッケル微粒子と分散媒とを、更にはその他の添加剤 を公知の方法により混合して製造することができ、例えば、撹拌混合、コロイドミル等 の湿式粉砕混合などの方法を用いることができる。このようにして得られた流動性組 成物は種々の用途に用いることができ、例えば、スクリーン印刷、インクジェット印刷 等の方法により、基板に塗布後、加熱焼成してプリント配線基板の回路や、その他の 微細な導電部材として用いることができる。  [0028] The flowable composition of the present invention can be produced by mixing nickel fine particles and a dispersion medium and further other additives by a known method. For example, wet mixing such as stirring and mixing, colloid mill, etc. A method such as pulverization and mixing can be used. The fluid composition obtained in this way can be used for various applications, for example, by applying it to a substrate by a method such as screen printing or ink jet printing, followed by heating and baking, and a circuit of a printed wiring board, It can be used as other fine conductive members.
実施例  Example
[0029] 以下に実施例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施 例により制限されるものではない。  [0029] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0030] 実施例 1 [0030] Example 1
(第一の工程)  (First step)
難溶性ニッケル化合物として炭酸ニッケル 50. 16g、保護コロイドとしてゼラチン 2. 35gを 250ミリリットルの純水に添加、混合し、消泡剤(サンノプコ社製 SNデフォーマ 一 261)を 6滴添加した後、 20分かけて室温から 90°Cまで昇温した。昇温後、撹拌し ながら、 60%のヒドラジン一水和物 12. 45g (ニッケル 1モルに対し 0. 375モルの量) を 30ミリリットノレの純水に混合した液を添加し、 30分かけて撹拌した。その後、 90°C の温度を維持しながら 30分間保持して熟成させた。この液を予備的に濾過し、乾燥 して X線回折で分析したところ、金属エッケノレの存在は確認できなかった力 S、金属二 ッケル微核晶は約 1重量%程度と推定された。 [0031] (第二の工程) After adding 50.16g of nickel carbonate as a sparingly soluble nickel compound and 2.35g of gelatin as a protective colloid to 250ml of pure water, mixing, adding 6 drops of antifoaming agent (San Nopco SN deformer 261), 20 The temperature was raised from room temperature to 90 ° C over a period of minutes. After the temperature rise, with stirring, add 60% hydrazine monohydrate 12.45g (0.375 mol per 1 mol of nickel) mixed with 30 milliliters of pure water over 30 minutes. Stir. Thereafter, it was aged by maintaining it at 90 ° C for 30 minutes. This solution was preliminarily filtered, dried, and analyzed by X-ray diffraction. As a result, it was estimated that the presence of the force S and the metal nickel micronuclear crystal were about 1% by weight. [0031] (Second step)
引き続き、第一の工程後の液に、 0. 01モル/リットノレのパラジウムジニトロジアンミ ン溶液 12ミリリットルを添加した後、更に 60%のヒドラジン一水和物 50. lg (ニッケル 1モルに対し 1. 5モルの量)を添カ卩し、炭酸ニッケノレが完全に消失するまで反応させ (上澄み液の色が緑色から無色透明に変化することにより確認)、金属ニッケル微粒 子を生成させた。その後、 90°Cの温度を維持しながら 2時間かけて熟成させ、次いで 、濾過して、濾液比導電率が 100 μ S/cm以下になるまで洗浄し、 60°Cの温度で 8 時間かけて乾燥して、本発明のニッケル微粒子 (試料 A)を得た。  Subsequently, 12 ml of a 0.01 mol / litnorole palladium dinitrodiammine solution was added to the solution after the first step, and then another 60% hydrazine monohydrate 50.lg (1 mol per 1 mol of nickel). 5 mol amount) was added and reacted until the nickel carbonate was completely disappeared (confirmed when the color of the supernatant liquid changed from green to colorless and transparent) to produce metallic nickel fine particles. Thereafter, aging is performed for 2 hours while maintaining a temperature of 90 ° C., then filtered, washed until the filtrate has a specific conductivity of 100 μS / cm or less, and is heated at a temperature of 60 ° C. for 8 hours. And dried to obtain nickel fine particles (sample A) of the present invention.
この試料 Aのほぼ全量が金属ニッケルであることを X線回折により確認した(以下、 確認方法は同じ)。  It was confirmed by X-ray diffraction that almost the entire amount of Sample A was metallic nickel (hereinafter, the confirmation method is the same).
[0032] 実施例 2  [0032] Example 2
実施例 1の第一の工程において、炭酸ニッケルとゼラチンを混合した液に、錯化剤 としてモノエタノールァミン 0. 24gと還元剤のヒドラジン一水和物とを同時並行的に添 カロしたこと以外は実施例 1と同様にして、本発明のニッケル微粒子 (試料 B)を得た。 この試料 Bのほぼ全量が金属ニッケルであることを確認した。  In the first step of Example 1, 0.24 g of monoethanolamine as a complexing agent and hydrazine monohydrate as a reducing agent were simultaneously added to the mixed solution of nickel carbonate and gelatin. Except for this, in the same manner as in Example 1, nickel fine particles (sample B) of the present invention were obtained. It was confirmed that almost all of Sample B was metallic nickel.
[0033] 実施例 3 [0033] Example 3
実施例 2において、モノエタノールァミンの使用量を 0. 48gとしたこと以外は実施例 2と同様にして、本発明のニッケル微粒子 (試料 C)を得た。  In Example 2, nickel fine particles (sample C) of the present invention were obtained in the same manner as in Example 2 except that the amount of monoethanolamine used was 0.48 g.
この試料 Cのほぼ全量が金属ニッケルであることを確認した。  It was confirmed that almost all of Sample C was metallic nickel.
[0034] 実施例 4 [0034] Example 4
実施例 2において、パラジウムジニトロジアンミンに替えて 0. 012モル/リットノレの 金属パラジウムコロイド (粒子径 20nm) 14ミリリットルを添カ卩したこと以外は実施例 2と 同様にして、本発明のニッケル微粒子 (試料 D)を得た。  In Example 2, in place of palladium dinitrodiammine, 0.012 mol / Lit Nore metal palladium colloid (particle diameter 20 nm) was added in the same manner as in Example 2 except that 14 ml of metal palladium colloid (particle diameter 20 nm) was added. Sample D) was obtained.
この試料 Dのほぼ全量が金属ニッケルであることを確認した。  It was confirmed that almost the entire amount of Sample D was metallic nickel.
[0035] 実施例 5 [0035] Example 5
第一の工程を実施例 1と同様に行レ、、次に記載する第二の工程に供した。 (第二の工程)  The first step was used in the same manner as in Example 1 and the second step described below. (Second process)
引き続き、第一の工程後の液に、 0. 01モル/リットルの塩化パラジウム溶液 12ミリ リットルと錯ィ匕剤としてクェン酸三ナトリウム 0. 58gを純水に溶解した混合水溶液を添 加した後、更に 60%のヒドラジン一水和物 50. lg (ニッケル 1モルに対し 1. 5モノレの 量)を添加し、炭酸ニッケノレが完全に消失するまで反応させ、金属ニッケル微粒子を 生成させた。その後は実施例 1と同様に、濾過洗浄、乾燥し、本発明のニッケル微粒 子 (試料 E)を得た。 Subsequently, the solution after the first step was added to a 0.01 mol / liter palladium chloride solution 12 mm. After adding a mixed aqueous solution of 0.58 g of trisodium citrate as a complexing agent in pure water and adding 50 l of hydrazine monohydrate (1.5 And nickel nickel carbonate fine particles were produced by reacting until nickel carbonate was completely disappeared. Thereafter, in the same manner as in Example 1, it was filtered, washed and dried to obtain the nickel fine particles (sample E) of the present invention.
この試料 Eのほぼ全量が金属ニッケルであることを確認した。  It was confirmed that almost the entire amount of Sample E was metallic nickel.
[0036] 実施例 6 [0036] Example 6
実施例 1において、パラジウムジニトロジアンミンに替えてテトラクロ口金酸を用いた こと以外は実施例 1と同様にして、本発明のニッケル微粒子 (試料 F)を得た。  In Example 1, nickel fine particles (sample F) of the present invention were obtained in the same manner as in Example 1 except that tetrachlorophthalic acid was used instead of palladium dinitrodiammine.
この試料 Fのほぼ全量が金属ニッケルであることを確認した。  It was confirmed that almost the whole amount of Sample F was metallic nickel.
[0037] 実施例 7 [0037] Example 7
実施例 1において、パラジウムジニトロジアンミンに替えてへキサクロ口白金酸を用 レ、たこと以外は実施例 1と同様にして、本発明のニッケル微粒子 (試料 G)を得た。 この試料 Gのほぼ全量が金属ニッケルであることを確認した。  Nickel microparticles (sample G) of the present invention were obtained in the same manner as in Example 1 except that hexachloroplatinic acid was used instead of palladium dinitrodiammine in Example 1. It was confirmed that almost all of Sample G was metallic nickel.
[0038] 実施例 8 [0038] Example 8
第一の工程を実施例 1と同様に行レ、、次に記載する第二の工程に供した。 (第二の工程)  The first step was used in the same manner as in Example 1 and the second step described below. (Second process)
引き続き、第一の工程後の液に、 0. 01モル/リットノレのパラジウムジニトロジアンミ ン溶液 12ミリリットルを添加した後、更に 60%のヒドラジン一水和物 33. 33g (二ッケ ノレ 1モルに対し 1 · 0モルの量)を添加した。その後、更に次亜リン酸ナトリウム 21 · Og (ニッケル 1モルに対し 0· 5モルの量)を添加し、炭酸ニッケルが完全に消失するまで 反応させ、金属ニッケル微粒子を生成させた。その後は実施例 1と同様に、濾過洗浄 、乾燥し、本発明のニッケル微粒子 (試料 Η)を得た。  Subsequently, 12 ml of a 0.01 mol / litnorole palladium dinitrodiammine solution was added to the liquid after the first step, and then 33.33 g of 60% hydrazine monohydrate (1 mol of Nikkenoole 1 mol). In an amount of 1 · 0 mol). Thereafter, sodium hypophosphite 21 · Og (a quantity of 0.5 · 5 mol with respect to 1 mol of nickel) was further added and reacted until the nickel carbonate completely disappeared to produce metal nickel fine particles. Thereafter, in the same manner as in Example 1, it was filtered, washed, and dried to obtain nickel fine particles (sample IV) of the present invention.
この試料 Ηのほぼ全量が金属ニッケルであることを確認した。  It was confirmed that almost the entire amount of the sample soot was metallic nickel.
[0039] 比較例 1 [0039] Comparative Example 1
炭酸エッゲノレ 50. 16g、保護 ロイドとしてゼラチン 2. 35gを 300ミリリットノレの純水 に添加、混合し、 90°Cまで昇温した後、撹拌しながら、 60%のヒドラジン一水和物 50 g (ニッケル 1モルに対し 1. 5モルの量)と錯化剤としてアミノエタノール 2. 4gを添カロし た。その後、 90°Cの温度を維持しながら 2時間保持して熟成させた。次いで、濾過し 、濾液比導電率が 100 μ S/cm以下になるまで洗浄し、窒素雰囲気中で 60°Cの温 度で 8時間かけて乾燥し、比較対象のニッケル微粒子 (試料 I)を得た。 50. 16 g of Eggenore carbonate and 2.35 g of gelatin as a protective loid were added to 300 milliliters of pure water, mixed, heated to 90 ° C, stirred and mixed with 50 g of 60% hydrazine monohydrate (Nickel 1.5 mol per mol) and 2.4 g of aminoethanol as a complexing agent It was. Thereafter, the mixture was aged by maintaining for 2 hours while maintaining a temperature of 90 ° C. Next, it is filtered, washed until the filtrate has a specific conductivity of 100 μS / cm or less, dried in a nitrogen atmosphere at a temperature of 60 ° C. for 8 hours, and the nickel fine particles (sample I) to be compared are removed. Obtained.
この試料 Iには、金属ニッケルのほかに、未反応の炭酸ニッケルが含まれることを確 認した。  This sample I was confirmed to contain unreacted nickel carbonate in addition to metallic nickel.
[0040] 比較例 2 [0040] Comparative Example 2
炭酸ニッケル l lgを 200ミリリットルの純水に添加、混合し、 90°Cまで昇温した後、 撹拌しながら、 60%のヒドラジン一水和物 33. 3g (ニッケル 1モルに対し 4. 5モルの 量)を添加し、次いで、 90°Cの温度を維持しながら 2時間保持して熟成させた。その 後は、比較例 1と同様にして濾過洗浄、乾燥し、比較対象の試料 Jを得た。  Nickel carbonate l lg was added to 200 ml of pure water, mixed, heated to 90 ° C, and then stirred, 33.3 g of 60% hydrazine monohydrate (4.5 moles per mole of nickel) And then aged by holding for 2 hours while maintaining a temperature of 90 ° C. Thereafter, filtration and washing were performed in the same manner as in Comparative Example 1 and drying was performed, so that Sample J for comparison was obtained.
この試料 Jには、未反応の炭酸ニッケノレが多く残存し、金属ニッケノレを得ることはで きなかった。  In this sample J, a large amount of unreacted carbonic acid nickenole remained, and metal nickenole could not be obtained.
[0041] 比較例 3 [0041] Comparative Example 3
(第一の工程)  (First step)
水溶性ニッケル化合物として硫酸ニッケル 10. 6g、錯化剤としてクェン酸三ナトリウ ム 5· 88g、 60%のヒドラジン一 禾ロ物 10· 0g (二ッゲノレ 1モノレに対し 3· 0モノレの量) を 200ミリリットルの純水に添加、混合し、 80°Cまで昇温した。昇温後、 0. 01モル/リ ットルの塩化パラジウム水溶液 5. 9ミリリットルを添カ卩し、発泡がおさまるまで反応させ た。発泡がおさまった後、反応液中には硫酸ニッケノレは認められず、完全に反応した ことが確認された。  10.6 g of nickel sulfate as a water-soluble nickel compound, 5 · 88 g of trisodium citrate as a complexing agent, and 1 · 0 g of 60% hydrazine monochloride (amount of 3 · 0 monole per 2 Beggenole 1 monole) The mixture was added to 200 ml of pure water, mixed, and heated to 80 ° C. After the temperature increase, 0.01 mol / liter of palladium chloride aqueous solution (5.9 ml) was added, and the reaction was continued until foaming stopped. After the bubbling subsided, no Nikkenole sulfate was observed in the reaction solution, confirming complete reaction.
[0042] (第二の工程)  [0042] (Second step)
引き続き、第一の工程後の液に、硫酸ニッケル 42gを純水 100ミリリットルと、 60% のヒドラジン一水和物 208g (ニッケル 1モルに対し 2. 5モルの量)を同時並行的に添 カロした。その後、 90°Cの温度を維持しながら 2時間かけて熟成させた。しかし、発泡 が認められず、添カ卩した硫酸ニッケルもほとんど反応せず残留してレ、た。  Subsequently, 42 g of nickel sulfate and 100 ml of pure water and 208 g of 60% hydrazine monohydrate (2.5 mol per mol of nickel) were added simultaneously to the liquid after the first step. did. Thereafter, the mixture was aged for 2 hours while maintaining a temperature of 90 ° C. However, no foaming was observed, and the added nickel sulfate remained almost unreacted.
[0043] 比較例 4  [0043] Comparative Example 4
比較例 3の第一の工程で用いる塩化パラジウム水溶液の濃度を 0. 1モル/リットル としたこと以外は比較例 3と同様にして第一の工程を行った。次いで、比較例 3と同様 にして第二の工程を行ったところ、硫酸ニッケノレとヒドラジン一水和物を添加すると、 発泡したので、発泡がおさまるまで反応させた。次いで、比較例 1と同様にして濾過 洗浄、乾燥し、比較対象のニッケル微粒子 (試料 K)を得た。 The first step was performed in the same manner as in Comparative Example 3 except that the concentration of the palladium chloride aqueous solution used in the first step of Comparative Example 3 was 0.1 mol / liter. Then same as Comparative Example 3 Then, when the second step was performed, when Nikkenore sulfate and hydrazine monohydrate were added, foaming occurred, and the reaction was continued until foaming subsided. Next, filtration, washing, and drying were performed in the same manner as in Comparative Example 1 to obtain comparative nickel fine particles (sample K).
この試料 Kには、金属ニッケルのほ力に、未反応の硫酸ニッケルが含まれることを 確認した。  It was confirmed that this sample K contained unreacted nickel sulfate in addition to metallic nickel.
[0044] 比較例 5  [0044] Comparative Example 5
(第一の工程)  (First step)
水溶性ニッケル化合物として塩化ニッケル 47. 59g、保護コロイドとしてゼラチン 1. 18g、アンモニア水 90ミリリットノレを 250ミリリットノレの純水に添カロ、混合し 90°Cまで昇 温させた。その後、撹拌しながら、 60%のヒドラジン一水和物 8. 39g (ニッケル 1モル に対し 0. 5モル)を一括添加し、 30分間保持して熟成させた。  Nickel chloride (47.59g) as a water-soluble nickel compound, gelatin (1.18g) as a protective colloid, and ammonia water (90milliliter) were mixed with 250 milliliters of pure water, mixed and heated to 90 ° C. Then, with stirring, 8.39 g of 60% hydrazine monohydrate (0.5 mol with respect to 1 mol of nickel) was added all at once, and aged for 30 minutes.
(第二の工程)  (Second process)
引き続き、第一の工程後の液に、 0. 01モル/リットルの塩化パラジウム溶液 5. 8ミ リリットルを一括添加し、さらに 60%のヒドラジン一水和物 33. 34g (ニッケル 1モルに 対し 2· 0モル)を 30分かけて添加した。その後、 90°Cの温度を維持しながら 2時間か けて熟成させ、次いで、濾過して、濾液比導電率が 100 / S/cm以下になるまで洗 浄し、 60°Cの温度で 8時間かけて乾燥して、比較対象のニッケル微粒子 (試料 L)を 得た。  Subsequently, 5.8 milliliters of 0.01 mol / liter palladium chloride solution was added all at once to the solution after the first step, and 33.34 g of 60% hydrazine monohydrate (2 per 1 mole of nickel). · 0 mol) was added over 30 minutes. Thereafter, it is aged for 2 hours while maintaining a temperature of 90 ° C, then filtered, washed until the filtrate has a specific conductivity of 100 / S / cm or less, and is heated at a temperature of 60 ° C. The nickel fine particles (sample L) for comparison were obtained by drying over time.
この試料 Lには、金属ニッケルのほ力に、未反応の塩化ニッケルが含まれることを確 口 '[^し 7  It is confirmed that this sample L contains unreacted nickel chloride in addition to metallic nickel.
[0045] 評価 1:ニッケル微粒子の平均粒子径の測定  [0045] Evaluation 1: Measurement of average particle diameter of nickel fine particles
実施例:!〜 8、比較例 1 2 4 5で得られた試料 A Lの平均粒子径 (D)を電子顕 微鏡法により測定し、平均粒子径(d)を比表面積測定装置 (micromeriticsフローソ ーブ Π2300: SHIMADZU製)で測定した BET比表面積から算出した。結果を表 1 に示す。本発明より得られたニッケル微粒子は、平均粒子径 (D)、平均粒子径(d)も 微細であり、 d/Dが 1に近似しており、ほとんど凝集粒子を含まないことが判る。  Examples:! To 8, Comparative Example 1 2 4 5 The average particle size (D) of the sample AL obtained in 5 was measured by electron microscopy, and the average particle size (d) was measured using a specific surface area measuring device (micromeritics flow method). It was calculated from the BET specific surface area measured with a tube 2300 (manufactured by SHIMADZU). The results are shown in Table 1. The nickel fine particles obtained from the present invention have fine average particle diameter (D) and average particle diameter (d), and d / D is close to 1, indicating that almost no aggregated particles are contained.
[0046] 評価 2:ニッケル微粒子の収率の測定 [0046] Evaluation 2: Measurement of the yield of nickel fine particles
実施例:!〜 8、比較例 1 2 4 5において、ニッケル微粒子の収率を、(得られた二 ッケル微粒子の量/原料のニッケノレ化合物から算出した金属ニッケル理論量) X 10 0 (%)の式で算出した。結果を表 1に示す。比較例 2、 4、 5については、未反応ニッ ケノレ化合物からニッケル微粒子を分離することが困難であり、測定できなかった。こ の結果から、本発明の製造方法は、収率が高いことが判る。中でも実施例 8の方法、 即ち、第二工程でヒドラジンを添加後、更に次亜リン酸ナトリウムを添加する方法は、 特に収率が優れていた。 Examples:! To 8, Comparative Example 1 2 4 5 In the yield of nickel fine particles (the obtained two The amount of nickel particles / theoretical amount of nickel metal calculated from the raw material Nikkenore compound) X 10 0 (%). The results are shown in Table 1. In Comparative Examples 2, 4, and 5, it was difficult to separate the nickel fine particles from the unreacted nickelore compound, and measurement was not possible. From this result, it can be seen that the production method of the present invention has a high yield. Among them, the method of Example 8, that is, the method of adding sodium hypophosphite after adding hydrazine in the second step was particularly excellent in yield.
[表 1] [table 1]
Figure imgf000024_0001
Figure imgf000024_0001
[0048] 評価 3:ニッケル微粒子の粒子形状の確認  [0048] Evaluation 3: Confirmation of particle shape of nickel fine particles
実施例:!〜 8、比較例 1、 2、 4、 5で得られた試料 A〜Lの電子顕微鏡写真を撮影し た。その結果を図 1〜: 12に示す。本発明により得られたニッケル微粒子は、球状の整 つた粒子形状を有することが判る。  Examples:! To 8, and electron micrographs of Samples A to L obtained in Comparative Examples 1, 2, 4, and 5 were taken. The results are shown in Figs. It can be seen that the nickel fine particles obtained by the present invention have a spherical and uniform particle shape.
[0049] 評価 4 :乾燥塗膜の平滑性評価 [0049] Evaluation 4: Evaluation of smoothness of dried coating film
実施例 8及び比較例 1で合成した試料 H、 Iを、表 2の組成で 3本ロールにて混練し 、ペーストイ匕した。得られたペーストを 2milアプリケーターで PETフィルムに塗布し、 8 0°Cで 1時間乾燥し、乾燥塗膜を得た。 Samples H and I synthesized in Example 8 and Comparative Example 1 were kneaded with three rolls having the composition shown in Table 2 and pasty. Apply the resulting paste to a PET film with a 2mil applicator. It was dried at 0 ° C for 1 hour to obtain a dried coating film.
これらの乾燥塗膜の表面粗さ Raを超深度形状測定顕微鏡 (VK— 8550: KEYEN CE製)を用い、 JIS B0601 (1994)の「算術平均粗さ」に準じて算出した。得られた 結果を表 3に示す。この結果から、本発明のニッケル微粒子を用いた乾燥塗膜は、 比較例のものに比して、表面粗さ Raが小さぐ平滑であることが判った。この原因は、 本発明のニッケル微粒子に凝集粒子が少なぐペーストにした際の分散性に優れて いるためと考えられる。  The surface roughness Ra of these dried coating films was calculated according to the “arithmetic average roughness” of JIS B0601 (1994) using an ultra-deep shape measuring microscope (VK-8550: manufactured by KEYEN CE). Table 3 shows the results obtained. From this result, it was found that the dry coating film using the nickel fine particles of the present invention was smooth with a small surface roughness Ra as compared with the comparative example. This is considered to be because the dispersibility of the nickel fine particles of the present invention when the paste is made with less aggregated particles is excellent.
[表 2]  [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
[0051] [表 3] [0051] [Table 3]
Figure imgf000025_0002
産業上の利用可能性
Figure imgf000025_0002
Industrial applicability
[0052] 本発明のニッケル微粒子は、電子機器の電極材料等として有用であり、特に積層 セラミックスコンデンサーの内部電極、プリント配線基板の回路、その他の電極等に 有用である。  [0052] The nickel fine particles of the present invention are useful as electrode materials for electronic devices, and are particularly useful for internal electrodes of multilayer ceramic capacitors, circuits of printed wiring boards, and other electrodes.
図面の簡単な説明  Brief Description of Drawings
[0053] [図 1]図 1は実施例 1で得られたニッケル微粒子 (試料 A)の電子顕微鏡写真 (倍率 2 万倍)である。  [0053] FIG. 1 is an electron micrograph (magnification: 20,000 times) of the nickel fine particles (sample A) obtained in Example 1.
[図 2]図 2は実施例 2で得られたニッケル微粒子 (試料 B)の電子顕微鏡写真 (倍率 2 万倍)である。 [FIG. 2] FIG. 2 shows an electron micrograph of the nickel fine particles (sample B) obtained in Example 2 (magnification 2). Million times).
園 3]図 3は実施例 3で得られたニッケル微粒子 (試料 C)の電子顕微鏡写真 (倍率 2 万倍)である。 3] Fig. 3 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample C) obtained in Example 3.
園 4]図 4は実施例 4で得られたニッケル微粒子 (試料 D)の電子顕微鏡写真 (倍率 2 万倍)である。 4] Fig. 4 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample D) obtained in Example 4.
園 5]図 5は実施例 5で得られたニッケル微粒子 (試料 E)の電子顕微鏡写真 (倍率 2 万倍)である。 5] FIG. 5 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample E) obtained in Example 5.
園 6]図 6は実施例 6で得られたニッケル微粒子 (試料 F)の電子顕微鏡写真 (倍率 2 万倍)である。 6] FIG. 6 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample F) obtained in Example 6.
園 7]図 7は実施例 7で得られたニッケル微粒子 (試料 G)の電子顕微鏡写真 (倍率 2 万倍)である。 7] Fig. 7 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample G) obtained in Example 7.
園 8]図 8は実施例 8で得られたニッケル微粒子 (試料 H)の電子顕微鏡写真 (倍率 2 万倍)である。 8] FIG. 8 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample H) obtained in Example 8.
園 9]図 9は比較例 1で得られたニッケル微粒子 (試料 I)の電子顕微鏡写真 (倍率 2万 倍)である。 9] Figure 9 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample I) obtained in Comparative Example 1.
園 10]図 10は比較例 2で得られたニッケル微粒子 (試料 J)の電子顕微鏡写真 (倍率 2万倍)である。 En 10] Figure 10 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample J) obtained in Comparative Example 2.
[図 11]図 11は比較例 4で得られたニッケル微粒子 (試料 K)の電子顕微鏡写真 (倍率 2万倍)である。  FIG. 11 is an electron micrograph (magnification of 20,000 times) of the nickel fine particles (sample K) obtained in Comparative Example 4.
園 12]図 12は比較例 5で得られたニッケル微粒子 (試料 L)の電子顕微鏡写真 (倍率 2万倍)である。 12] Fig. 12 is an electron micrograph (magnification 20,000 times) of the nickel fine particles (sample L) obtained in Comparative Example 5.

Claims

請求の範囲 The scope of the claims
[I] 電子顕微鏡で測定した平均粒子径 (D)が 0. 001〜0. 5 μ mの範囲にあり、比表 面積より算出した平均粒子径(d)が 0. 001-0. 5 z mの範囲にあり、且つ、 d/Dが 0. 85〜: 1. 30の範囲であるニッケル微粒子。  [I] The average particle diameter (D) measured with an electron microscope is in the range of 0.001 to 0.5 μm, and the average particle diameter (d) calculated from the specific surface area is 0.001 to 0.5 zm. Nickel fine particles having a d / D in the range of 0.85 to 1.30.
[2] 少なくとも保護コロイドと還元剤と媒液に難溶なニッケル化合物とを媒液に含有させ [2] At least a protective colloid, a reducing agent, and a nickel compound that is hardly soluble in the medium are contained in the medium.
、熟成する第一の工程、次いで、第一の工程後の液に、貴金属及びその化合物から 選ばれる少なくとも 1種と還元剤とを添加する第二の工程を含むことを特徴とするニッ ケル微粒子の製造方法。 A nickel fine particle comprising a first step of aging, and then a second step of adding at least one kind selected from a noble metal and a compound thereof and a reducing agent to the liquid after the first step. Manufacturing method.
[3] 媒液が水系媒液であり、ニッケノレ化合物が炭酸ニッケノレであることを特徴とする請 求項 2記載のニッケル微粒子の製造方法。 [3] The method for producing nickel fine particles according to claim 2, wherein the medium liquid is an aqueous medium liquid and the Nikkenore compound is Nikkenore carbonate.
[4] 第一の工程及び/または第二の工程で用いる還元剤がヒドラジン系還元剤である ことを特徴とする請求項 2記載のニッケル微粒子の製造方法。 4. The method for producing nickel fine particles according to claim 2, wherein the reducing agent used in the first step and / or the second step is a hydrazine reducing agent.
[5] 前記の貴金属及びその化合物が、パラジウム、金、白金及びそれらの化合物から 選ばれる少なくとも 1種であることを特徴とする請求項 2記載のニッケル微粒子の製造 方法。 5. The method for producing nickel fine particles according to claim 2, wherein the noble metal and the compound thereof are at least one selected from palladium, gold, platinum and a compound thereof.
[6] 第二の工程において、 2種以上の還元剤を分割して添加することを特徴とする請求 項 2記載のニッケル微粒子の製造方法。  6. The method for producing nickel fine particles according to claim 2, wherein in the second step, two or more kinds of reducing agents are added separately.
[7] 第二の工程において、ヒドラジン系還元剤を添加後、更に次亜リン酸またはその塩 を添加することを特徴とする請求項 6記載のニッケル微粒子の製造方法。 [7] The method for producing nickel fine particles according to [6], wherein in the second step, after adding the hydrazine-based reducing agent, hypophosphorous acid or a salt thereof is further added.
[8] 第一の工程において、熟成を 40°C以上の温度の範囲で 5分〜 2時間の範囲で行う ことを特徴とする請求項 2記載のニッケル微粒子の製造方法。 [8] The method for producing nickel fine particles according to [2], wherein in the first step, aging is carried out at a temperature of 40 ° C or higher for 5 minutes to 2 hours.
[9] 保護コロイドがタンパク質系保護剤であることを特徴とする請求項 2記載のニッケル 微粒子の製造方法。 [9] The method for producing nickel fine particles according to [2], wherein the protective colloid is a protein-based protective agent.
[10] 第一の工程でニッケル化合物に含まれるニッケル 1モルに対し、 0. 05〜3. 0モル の範囲の還元剤を用いることを特徴とする請求項 2記載のニッケル微粒子の製造方 法。  [10] The method for producing nickel fine particles according to claim 2, wherein a reducing agent in the range of 0.05 to 3.0 mol is used for 1 mol of nickel contained in the nickel compound in the first step. .
[II] 第一の工程及び/または第二の工程を錯ィヒ剤の存在下で行うことを特徴とする請 求項 2記載のニッケル微粒子の製造方法。 [II] The method for producing nickel fine particles according to claim 2, wherein the first step and / or the second step is performed in the presence of a complexing agent.
[12] 錯化剤としてアル力ノールアミン類を用いることを特徴とする請求項 11記載のニッケ ノレ微粒子の製造方法。 [12] The method for producing Nikkenore fine particles according to [11], wherein an alkenolamine is used as the complexing agent.
[13] 錯化剤としてカルボン酸類を用いることを特徴とする請求項 11記載のニッケル微粒 子の製造方法。  13. The method for producing nickel fine particles according to claim 11, wherein a carboxylic acid is used as the complexing agent.
[14] 請求項 1に記載のニッケル微粒子と分散媒を少なくとも含有する流動性組成物。  [14] A fluid composition comprising at least the nickel fine particles according to claim 1 and a dispersion medium.
PCT/JP2007/062741 2006-06-27 2007-06-26 Nickel fine particle, method for producing the same, and fluid composition using the same WO2008001741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522579A JP5294851B2 (en) 2006-06-27 2007-06-26 Method for producing nickel fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006176753 2006-06-27
JP2006-176753 2006-06-27

Publications (1)

Publication Number Publication Date
WO2008001741A1 true WO2008001741A1 (en) 2008-01-03

Family

ID=38845505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062741 WO2008001741A1 (en) 2006-06-27 2007-06-26 Nickel fine particle, method for producing the same, and fluid composition using the same

Country Status (3)

Country Link
JP (1) JP5294851B2 (en)
TW (1) TW200806408A (en)
WO (1) WO2008001741A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043350A (en) * 2008-08-11 2010-02-25 Samsung Electro Mechanics Co Ltd Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
JP2010185112A (en) * 2009-02-12 2010-08-26 Noritake Co Ltd Nickel particulate and production method therefor
JP2012511627A (en) * 2008-12-12 2012-05-24 ビック−ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing metal nanoparticles, nanoparticles obtained thereby and use thereof
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same
KR20150011573A (en) * 2013-07-23 2015-02-02 삼성전기주식회사 Nickel powder for internal electrode, multi-layered ceramic capacitor and circuit board for mounting the same
WO2015122315A1 (en) * 2014-02-17 2015-08-20 住友金属鉱山株式会社 Production method for seed crystal used in production of hydrogen-reduced nickel powder
WO2015159846A1 (en) * 2014-04-15 2015-10-22 住友金属鉱山株式会社 Method for producing nickel powder having low carbon concentration and low sulfur concentration
WO2017069067A1 (en) * 2015-10-19 2017-04-27 住友金属鉱山株式会社 Nickel powder production method
JP2017150074A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
JP2017150073A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
JP2017189771A (en) * 2017-04-28 2017-10-19 エム・テクニック株式会社 Production method of fine particle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352259B2 (en) * 2009-01-30 2013-11-27 三井金属鉱業株式会社 Nickel hydroxide-coated nickel particles and method for producing the same
EP2614070B1 (en) * 2010-09-07 2017-07-26 Invista Technologies S.à r.l. Nickel compositions for preparing nickel metal and nickel complexes
TWI617533B (en) 2016-12-09 2018-03-11 財團法人工業技術研究院 Surface-treated ceramic powder and applications thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543921A (en) * 1991-08-12 1993-02-23 Murata Mfg Co Ltd Production of nickel fine powder
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor
JPH1088205A (en) * 1996-09-10 1998-04-07 Sumitomo Metal Mining Co Ltd Production of metallic nickel powder
JP2006161128A (en) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd Nickel slurry, production method therefor, and nickel paste or nickel ink using the nickel slurry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2554213B2 (en) * 1991-06-11 1996-11-13 川崎製鉄株式会社 Method for producing spherical nickel ultrafine powder
JP4066247B2 (en) * 2002-10-07 2008-03-26 日本ペイント株式会社 Nickel colloid solution and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543921A (en) * 1991-08-12 1993-02-23 Murata Mfg Co Ltd Production of nickel fine powder
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor
JPH1088205A (en) * 1996-09-10 1998-04-07 Sumitomo Metal Mining Co Ltd Production of metallic nickel powder
JP2006161128A (en) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd Nickel slurry, production method therefor, and nickel paste or nickel ink using the nickel slurry

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496873B2 (en) 2008-08-11 2013-07-30 Samsung Electro-Mechanics Co., Ltd. Alloy nanoparticles of SN-CU-AG, preparation method thereof and ink or paste using the alloy nanoparticles
JP2010043350A (en) * 2008-08-11 2010-02-25 Samsung Electro Mechanics Co Ltd Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
JP2012511627A (en) * 2008-12-12 2012-05-24 ビック−ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing metal nanoparticles, nanoparticles obtained thereby and use thereof
JP2010185112A (en) * 2009-02-12 2010-08-26 Noritake Co Ltd Nickel particulate and production method therefor
JP5883433B2 (en) * 2011-03-17 2016-03-15 新日鉄住金化学株式会社 Composite nickel nanoparticles and method for producing the same
CN103429369A (en) * 2011-03-17 2013-12-04 新日铁住金化学株式会社 Composite nickel nanoparticles and method for producing same
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same
KR20150011573A (en) * 2013-07-23 2015-02-02 삼성전기주식회사 Nickel powder for internal electrode, multi-layered ceramic capacitor and circuit board for mounting the same
KR102248526B1 (en) * 2013-07-23 2021-05-06 삼성전기주식회사 Nickel powder for internal electrode, multi-layered ceramic capacitor and circuit board for mounting the same
WO2015122315A1 (en) * 2014-02-17 2015-08-20 住友金属鉱山株式会社 Production method for seed crystal used in production of hydrogen-reduced nickel powder
US9700942B2 (en) 2014-02-17 2017-07-11 Sumitomo Metal Mining Co., Ltd. Method for producing seed crystals used for producing hydrogen-reduced nickel powder
CN105992662A (en) * 2014-02-17 2016-10-05 住友金属矿山株式会社 Production method for seed crystal used in production of hydrogen-reduced nickel powder
AU2015216321B2 (en) * 2014-02-17 2016-10-13 Sumitomo Metal Mining Co., Ltd. Production method for seed crystal used in production of hydrogen-reduced nickel powder
CN106163707A (en) * 2014-04-15 2016-11-23 住友金属矿山株式会社 The manufacture method of the nikel powder that the concentration of carbon and sulfur is low
JP2015212411A (en) * 2014-04-15 2015-11-26 住友金属鉱山株式会社 Manufacturing method of nickel powder with low concentration of carbon and sulfur
US10500644B2 (en) 2014-04-15 2019-12-10 Sumitomo Metal Mining Co., Ltd. Method for producing nickel powder having low carbon concentration and low sulfur concentration
WO2015159846A1 (en) * 2014-04-15 2015-10-22 住友金属鉱山株式会社 Method for producing nickel powder having low carbon concentration and low sulfur concentration
WO2017069067A1 (en) * 2015-10-19 2017-04-27 住友金属鉱山株式会社 Nickel powder production method
US10850330B2 (en) 2015-10-19 2020-12-01 Sumitomo Metal Mining Co., Ltd. Process for producing nickel powder
JP2017150074A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
JP2017150073A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
JP2017189771A (en) * 2017-04-28 2017-10-19 エム・テクニック株式会社 Production method of fine particle

Also Published As

Publication number Publication date
JP5294851B2 (en) 2013-09-18
TW200806408A (en) 2008-02-01
JPWO2008001741A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5412551B2 (en) Copper fine particles and method for producing the same
JP5294851B2 (en) Method for producing nickel fine particles
JP2009521598A (en) Synthesis of metal nanoparticle dispersions
JP2009144197A (en) Silver fine particle, method for producing the same, and method for producing conductive film
WO2016152017A1 (en) Conductive coated composite body and method for producing same
JP4242176B2 (en) Copper fine particles and method for producing the same
JP5944668B2 (en) Method for producing sintered metal copper film
JP4252349B2 (en) Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode
JP2007039765A (en) Method for producing metal particulate
JP4176627B2 (en) Colloidal metal particles, method for producing the same, fluid composition containing the same, and electrode formed using the fluid composition
JP4616599B2 (en) Fluid composition, electrode formed using the same, and wiring pattern
JP7006337B2 (en) Nickel powder manufacturing method
JP2019044268A (en) Coarse particle reduction method of wet type nickel powder
JP7336649B2 (en) Method for producing nickel powder slurry
TWI487753B (en) Inkjet method and kit for manufacturing silver films
JP7212256B2 (en) Nickel powder manufacturing method
JP6973155B2 (en) Nickel powder manufacturing method
KR100429851B1 (en) A conductive ink containing an ultrafine particle metal and method for preparing the same
JP2022152785A (en) Nickel powder and method for producing nickel powder
JP2023079721A (en) Method for producing nickel powder
JP2020100858A (en) Nickel powder and method for producing the same
JP2005060778A (en) Copper powder, its production method, and copper paste, paint and electrode obtained by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522579

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767547

Country of ref document: EP

Kind code of ref document: A1