WO2007148452A1 - ダイバーシティ受信装置およびダイバーシティ受信方法 - Google Patents

ダイバーシティ受信装置およびダイバーシティ受信方法 Download PDF

Info

Publication number
WO2007148452A1
WO2007148452A1 PCT/JP2007/054270 JP2007054270W WO2007148452A1 WO 2007148452 A1 WO2007148452 A1 WO 2007148452A1 JP 2007054270 W JP2007054270 W JP 2007054270W WO 2007148452 A1 WO2007148452 A1 WO 2007148452A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
carrier
transmission control
value
demodulation
Prior art date
Application number
PCT/JP2007/054270
Other languages
English (en)
French (fr)
Inventor
Shigeru Soga
Shunsuke Sakai
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07737827A priority Critical patent/EP2040403A1/en
Priority to BRPI0713569-6A priority patent/BRPI0713569A2/pt
Priority to JP2008522318A priority patent/JP4875078B2/ja
Priority to US12/304,019 priority patent/US8335281B2/en
Publication of WO2007148452A1 publication Critical patent/WO2007148452A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a diversity receiving apparatus and a diversity receiving method for receiving a frequency multiplexed signal, particularly an orthogonal frequency division multiplexed signal (hereinafter referred to as “OFDM signal”) used for terrestrial digital broadcasting.
  • OFDM signal orthogonal frequency division multiplexed signal
  • OFDM signals have strong characteristics in multipath, and in order to improve reception accuracy in reception, it has been proposed to perform diversity reception for each carrier multiplexed on the frequency axis. (For example, see Patent Document 1).
  • each of the included demodulating means must have all the elements from analog-digital conversion of the received signal to carrier demodulation by time-frequency conversion independently. For this reason, in the prior art, it is necessary to separately provide an element for detecting demodulation and frame synchronization of the transmission control carrier including control information such as a modulation method for each branch.
  • the diversity receiver for each carrier based on this conventional technique has a problem that the circuit scale of the receiver increases. Also, when demodulating transmission control carriers, memory is required for demodulation, and memory is also required for determination when detecting frame synchronization. Since these memories also need to be provided independently for each demodulation means, the circuit scale increases more and more. [0006] Further, when frame synchronization for transmission control carrier decoding is provided separately for each demodulator, a plurality of results can be obtained for detection of frame synchronization for transmission control signal decoding in one receiving device. It will be. However, since the receiving apparatus handles only one result, if there are multiple results, it is difficult to judge the reliability of the result, and until the actual demodulation process starts after receiving the result. There is a problem that the processing procedure becomes complicated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-242191
  • an object of the present invention is to provide a diversity receiving apparatus and a diversity receiving method that suppress an increase in circuit scale and improve the reliability and ease of use of detection results of decoding of transmission control signals and frame synchronization.
  • a diversity receiver includes a receiving unit that receives a frequency multiplexed signal in which a carrier group including a data carrier, a pilot carrier, and a transmission control carrier is multiplexed and outputs a received signal; and a received signal
  • the first demodulating means for demodulating the received signal and outputting the first data carrier
  • the second demodulating means for demodulating the received signal and outputting the second data carrier
  • the carrier group demodulated by the first demodulating means (2)
  • a timing adjustment unit that synchronizes the processing timing of the carrier group demodulated by the demodulation unit, and a synthesis / selection unit that combines or selects the first data carrier and the second data carrier.
  • Each of the demodulating means includes an analog-digital converter that converts the received signal from an analog signal to a digital signal, a detector that detects the output of the analog-digital converter, and a detector
  • a time frequency converter that converts the output of the time axis signal to the frequency axis signal
  • one of the first demodulator and the second demodulator is configured to transmit a transmission control signal from the output of the time frequency converter.
  • a decoding unit for decoding the frame and a detection unit for detecting frame synchronization With this configuration, it is possible to suppress an increase in circuit scale due to an increase in demodulation means in the diversity receiver. Furthermore, the reliability in detecting the frame synchronization can be improved if the transmission control signal is decoded. In addition, the ease of processing when using the decoding result of the transmission control signal and the detection result of the frame synchronization can be improved.
  • a diversity receiving apparatus includes a receiving unit that receives a frequency multiplexed signal in which a carrier group including a data carrier, a pilot carrier, and a transmission control carrier is multiplexed, and outputs a received signal; First demodulation means for demodulating the first data carrier and the first transmission control carrier, second demodulation means for demodulating the received signal and outputting the second data carrier and the second transmission control carrier, (1) A timing adjustment unit that synchronizes the processing timing of the carrier group demodulated by the demodulator and the carrier group demodulated by the second demodulator, and a first combiner that combines or selects the first transmission control carrier and the second transmission control carrier.
  • control carrier comprising a decoding unit for decoding the transmission control signal, a detector for detecting frame synchronization.
  • the decoding unit decodes the transmission control signal using the transmission control carrier combined by the first combining / selecting unit, and detects the transmission control signal.
  • the output unit detects frame synchronization using the transmission control carrier combined by the first combining / selecting unit.
  • the first demodulator means the first demodulator that shows the reliability of the first transmission control carrier and the first data carrier, instead of the first to third aspects of the invention.
  • a first waveform equalization unit for calculating a reliability value is provided, and the second demodulation means is a second unit for calculating a second reliability value indicating reliability for the second transmission control carrier and the second data carrier.
  • a waveform equalization unit is provided.
  • carrier selection and synthesis can be performed appropriately in at least one of the first synthesis 'selection unit and the second synthesis' selection unit. As a result, reception accuracy in reception is improved.
  • the first combining 'selection unit performs the first transmission control based on the first reliability value and the second reliability value. Select either the carrier or the second transmission control carrier.
  • the first combining 'selecting unit is configured to transmit the first transmission carrier based on the first reliability value and the second reliability value. And the second transmission carrier.
  • the second synthesis' selecting unit is based on the first reliability value and the second reliability value, in contrast to any of the fourth to sixth aspects of the invention. Select either the first data carrier or the second data carrier.
  • the second synthesis' selecting unit is based on the first reliability value and the second reliability value, in spite of any of the fourth to sixth inventions.
  • the first data carrier and the second data carrier are combined at the maximum ratio.
  • the frequency multiplexed signal has a unit of one symbol for each predetermined number of carriers, and timing adjustment is performed.
  • the unit synchronizes the symbol processing timing in the first demodulation means and the second demodulation means.
  • each of the first demodulating means and the second demodulating means converts the received signal into an analog signal power digital signal.
  • Analog-to-digital converter to convert, detector to detect output of analog-to-digital converter, storage to store output from detector, and output from storage to signal on time axis and signal on frequency axis
  • the timing adjustment unit includes a time frequency conversion unit, and a signal stored in the storage unit included in the first demodulation unit and a signal stored in the storage unit included in the second demodulation unit And synchronize the processing timing of the carrier group demodulated by the first demodulation means and the carrier group demodulated by the second demodulation means.
  • the first demodulator includes a first determination unit for determining a reception state in the first demodulator.
  • the second demodulator has a second determination unit that determines the reception state of the second demodulator, and the first demodulator and the second demodulator according to the determination results of the first determination unit and the second determination unit.
  • a control unit for controlling at least one of the means, the first synthesis / selection unit, and the second synthesis / selection unit.
  • the first determination unit determines the reception state based on at least one of the amplitude value and the change value of the first pilot carrier
  • the second determination unit determines the reception state based on at least one of the amplitude value and the change value of the second pilot carrier.
  • the first determination unit is configured such that at least one of the amplitude value and the change value of the first pilot carrier is greater than a predetermined threshold value. Is determined to be appropriate, and if it is less than or equal to the threshold value, it is determined to be inappropriate. Is determined to be appropriate if at least one of the amplitude value and the change value of the second pilot carrier is greater than a predetermined threshold value, and is determined to be inappropriate if it is less than or equal to the threshold value, and the determination result is sent to the control unit. Output.
  • the reception state can be appropriately determined.
  • control unit initializes and stores the stored value stored in the demodulating means for the demodulating means determined to be inappropriate. And at least one of reducing the clock signal supplied to the demodulating means.
  • each of the first demodulating means and the second demodulating means corrects the frequency offset amount with respect to the received signal.
  • the first determination unit determines whether the reception state at the first demodulation unit is appropriate or inappropriate, and the second determination unit determines whether the reception state at the second demodulation unit is appropriate or inappropriate.
  • the control unit initializes the stored value stored in the demodulation unit and supplies it to the demodulation unit while retaining the frequency offset amount stored in the correction unit for the demodulation unit determined to be inappropriate. At least one of the reduction of the clock signal is performed.
  • each of the first determination unit and the second determination unit includes an amplitude of each of the first pilot carrier and the second pilot carrier.
  • the control unit stores the memory stored in the demodulation unit for the demodulation unit determined to be inappropriate. Less initialization of the value and reduction of the clock signal supplied to the demodulation means Do at least one.
  • the first determination unit integrates the amplitude values of a predetermined number of first pilot carriers and sets the predetermined number of first data carriers. If the integrated value of the first pilot carrier is greater than the integrated value of the first data carrier, the amplitude value is integrated, and it is determined that the integrated value of the first pilot carrier is the integrated value of the first data carrier. In the following cases, it is determined as inappropriate, and the second determination unit accumulates the amplitude values of a predetermined number of second pilot carriers and also accumulates the amplitude values of a predetermined number of second data carriers. Is determined to be appropriate if the integrated value of the second data carrier is larger than the integrated value of the second data carrier, and is inappropriate if the integrated value of the second pilot carrier is less than or equal to the integrated value of the second data carrier. judge.
  • the first carrier group demodulated by the first demodulator and the second demodulator demodulated by the second demodulator A correction unit is further provided for detecting a frequency offset amount based on at least one of the two carrier groups.
  • an increase in circuit scale can be suppressed even when the number of demodulation means increases.
  • the decoding of the transmission control signal and the detection of the frame synchronization are performed in common even when there are many demodulation means, the processing load using the decoding result and the detection result is light. It's cool. Further, by combining or selecting the transmission control carriers based on the reliability value, the decoding accuracy in decoding the transmission control signal and the detection accuracy in detecting frame synchronization are improved.
  • the power consumption of a branch having a bad reception state can be reduced based on the determination of the reception state for each branch. An appropriate balance of improvement is achieved.
  • FIG. 1 is a block diagram of a diversity receiver in Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram for explaining an OFDM signal in Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram of the timing adjustment unit and its surroundings in the first embodiment of the present invention.
  • FIG. 4 is a timing chart illustrating timing adjustment in the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing maximum ratio combining in Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram of a diversity receiving apparatus in Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram of a diversity receiver in Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram of a diversity receiver in Embodiment 2 of the present invention.
  • FIG. 9 is an explanatory diagram explaining maximum ratio combining of transmission control carriers in Embodiment 2 of the present invention.
  • FIG. 10 is a block diagram of a diversity receiver in Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram of a diversity receiver in Embodiment 4 of the present invention.
  • FIG. 12 is an internal block diagram of a first determination unit in Embodiment 4 of the present invention.
  • FIG. 13 is an internal block diagram of a first determination unit in Embodiment 4 of the present invention.
  • FIG. 14 is a block diagram of a first determination unit and a second determination unit in Embodiment 4 of the present invention.
  • FIG. 15 is a block diagram of a first determination unit in Embodiment 4 of the present invention. Explanation of symbols
  • Embodiment 1 will be described with reference to FIGS.
  • FIG. 1 is a block diagram of the diversity receiver in Embodiment 1 of the present invention
  • FIG. 2 is an explanatory diagram for explaining an OFDM signal in Embodiment 1 of the present invention.
  • an OFDM signal specified by the ISDB-T standard which is a standard for terrestrial digital broadcasting, will be described as an example of a frequency multiplexed signal.
  • the OFDM signal a plurality of carriers are orthogonally multiplexed on the frequency axis, and the OFDM signal is a data carrier in which image and audio data are modulated, and a noise for determining reception characteristics. Includes a lot carrier and a transmission control carrier that contains information such as the communication method .
  • the OFDM signal is merely an example of the frequency multiplexed signal in the present invention, and the frequency multiplexed signal in the present invention broadly includes communication signals such as FDM signals and SS-OFDM signals.
  • Diversity receiver 1 demodulates the received signal in the same way as receiver 4 that receives the OFDM signal and outputs the received signal, and first demodulator 5 that demodulates the received signal and outputs the first data carrier group.
  • the second demodulating means 6 for outputting the second data carrier group and the combining / selecting unit 8 for combining or selecting the first data carrier group and the second data carrier group are provided.
  • each of the first demodulating means 5 and the second demodulating means 6 includes an analog-to-digital converter 20 or 30 that converts the received signal from an analog signal to a digital signal (in the figure, an “AD converter”).
  • And detectors 21 and 31 that detect the outputs of the analog-to-digital converters 20 and 30, and a high-speed Fourier transform unit that converts the outputs of the detectors 21 and 31 from time-axis signals to frequency-axis signals ( (Hereinafter referred to as “FFT”) 22 and 32.
  • FFT frequency-axis signals
  • the FFT is an example of an element that performs time-frequency conversion, and an element that performs time-frequency conversion by applying a fractal other than FFT may be used.
  • the first demodulating means 5 includes a decoding unit 13 that demodulates a transmission control signal from a transmission control carrier included in the output of the FFT 22, and a detection unit 14 that detects frame synchronization.
  • the decoding unit 13 and the detection unit 14 are provided only in the first demodulation unit 5 of the two demodulation units. This is because the OFDM signals received by antennas 2 and 3 are the same signal, and the decoding of the transmission control signal and the detection of frame synchronization cannot be performed by any demodulation means.
  • the decoding unit 13 provided only in the first demodulating means 5 decodes the transmission control signal, and detects the detection unit 14 power frame synchronization.
  • the second demodulating means 6 does not perform decoding of the transmission control signal and detection of frame synchronization, and does not include a decoding unit and a detection unit necessary for these.
  • the decoding unit 13 and the detection unit 14 provided in the first demodulating means 5 perform common processing for the diversity receiver 1.
  • the decoding unit 13 outputs the decoding result to the control unit 10.
  • the detection unit 14 outputs the detection result to the control unit 10.
  • the control unit 10 determines the modulation method and broadcast method. to decide.
  • the control unit 10 notifies the receiving unit 4, the first demodulating unit 5, the second demodulating unit 6, the error correcting unit 9, etc., of the demodulation process according to the determination result.
  • the control unit 10 notifies the reception unit, the first demodulation unit 5, the second demodulation unit 6, the error correction unit 9, and the like of reception and demodulation delimiters.
  • the diversity receiver 1 can appropriately receive and demodulate the transmitted broadcast signal.
  • control unit 10 can determine the broadcasting method and the process delimiter based only on the transmission control signal output from the first demodulating unit 5 and the frame synchronization, which is one of the plurality of demodulating units.
  • the processing load on the control unit 10 is small.
  • the transmission control signal decoding and the frame synchronization detection required in the diversity receiver 1 are performed.
  • Antennas 2 and 3 receive OFDM signals. Antennas 2 and 3 corresponding to the number of demodulation means are provided. In FIG. 1, the first demodulating means 5 and the second demodulating means 6 are provided as the demodulating means! /. Therefore, the antenna is provided with two antennas 2 and 3.
  • a tuner 11 is connected to the antenna 2, and a tuner 12 is connected to the antenna 3. In either case, a specific band of the OFDM signal received by antennas 2 and 3 is selected and received based on the center frequency corresponding to the broadcast band.
  • the tuners 11 and 12 receive the OFDM signals received in the specific band as received signals.
  • the first demodulating means 5 and the second demodulating means 6 are provided with analog-digital converters 20 and 30, respectively. It is.
  • the analog / digital conversion unit 20 converts the reception signal from the tuner 11 from an analog signal to a digital signal.
  • the analog / digital converter 30 converts the received signal from the tuner 12 from an analog signal to a digital signal.
  • the analog-digital converters 20 and 30 have a resolution corresponding to the specification of the diversity receiver 1.
  • the analog / digital conversion units 20 and 30 output the converted digital signals to the detection units 21 and 31.
  • Each of the first demodulating means 5 and the second demodulating means 6 includes detectors 21 and 31.
  • the detection units 21 and 31 perform quadrature detection on the received signal converted into the digital signal.
  • the detectors 21 and 31 output the quadrature-detected signals to the FFTs 22 and 32.
  • Each of the first demodulating means 5 and the second demodulating means 6 includes an FFT 22 and an FFT 23.
  • F Each of FT22 and 32 is an example of a time-frequency converter that converts the output of the detectors 21 and 31 from a time-axis signal to a frequency-axis signal.
  • a time frequency conversion unit using a fractal may be used as long as it has a function capable of being performed.
  • the FFT 22 demodulates the carrier group multiplexed on the frequency axis by converting the received signal in the first demodulation means 5 from the time axis to the frequency axis signal.
  • the carrier group demodulated by the FFT 22 is referred to as a first carrier group.
  • the first carrier group includes a plurality of carriers, and each of the plurality of carriers is multiplexed orthogonally to each other.
  • the first carrier group includes a data carrier, a pilot carrier, and a transmission control carrier corresponding to the OFDM signal in the ISDB-T standard.
  • the FFT 22 outputs the demodulated first carrier group to the waveform equalization unit 23, the decoding unit 13, and the detection unit 14.
  • the data carrier group demodulated by the FFT 22 is referred to as a first data carrier group.
  • the FFT 32 demodulates the carrier group multiplexed on the frequency axis by converting the received signal in the second demodulating means 6 from a time axis to a frequency axis signal.
  • the carrier group demodulated by FFT32 is called the second carrier group, and the second carrier group includes a plurality of carriers. Each of the plurality of carriers is multiplexed orthogonally to each other.
  • the second carrier group which is the same as the first carrier group, includes a data carrier, a pilot carrier, and a transmission control carrier corresponding to the OFDM signal in the ISDB-T standard.
  • the data carrier group demodulated by FFT32 is called the second data carrier group.
  • the FFT 32 outputs the demodulated second carrier group to the waveform equalizer 33.
  • the FFTs 22 and 32 receive the outputs of the detection units 21 and 31 and perform time-frequency conversion, it is preferable that the FFTs 22 and 32 have a function of adjusting the cutout range (window position).
  • the OFDM signal demodulated by the FFTs 22 and 32 is schematically shown in FIG.
  • the horizontal axis is the frequency axis
  • the vertical axis is the time axis.
  • Each circle in Fig. 2 indicates an individual carrier included in the carrier group.
  • Each of the carriers is multiplexed on the frequency axis, and on the time axis, a plurality of these multiplexed carriers are regarded as one symbol, and this symbol is multiplexed on the time axis.
  • the transmission control carrier is decoded by the decoding unit 13, and the control unit 10 determines the broadcasting method and the modulation method.
  • the detection unit 14 detects frame synchronization using a transmission control carrier.
  • the frame is a unit based on a predetermined number of symbols.
  • the carrier group includes a data carrier in which image and audio data are modulated, a pilot carrier, and a transmission control carrier, and each includes waveform equalization units 23 and 33, and a decoding unit. 13 and output to the detector 14.
  • Each of the first demodulating means 5 and the second demodulating means 6 includes waveform equalizing sections 23 and 33.
  • the waveform equalization unit 23 receives the first carrier group, performs amplitude phase control of the first carrier group based on the pilot carrier included in the first carrier group, and performs reliability of the first data carrier.
  • the first reliability value that indicates the sex is calculated.
  • the pilot carrier has a known amplitude and phase
  • the actual pilot carrier force received by the waveform equalization unit 23 is received by complex division with a pilot carrier having a known amplitude and phase.
  • the amount of fluctuation of the pilot carrier amplitude and phase is calculated.
  • the transmission line response is estimated from this variation.
  • the waveform equalizer 23 is demodulated by the FFT 22 based on the estimated transmission path response! Correct the amplitude and phase of the first data carrier group to improve reception accuracy in reception.
  • the waveform equalization unit 23 outputs the first data carrier group with the corrected amplitude and phase and the calculated first reliability value to the synthesis / selection unit 8.
  • the waveform equalizing unit 33 included in the second demodulating means 6 also has the same function as the waveform equalizing unit 23 and performs the same processing.
  • the waveform equalizing unit 33 calculates a second reliability value indicating the reliability of the second data carrier.
  • the timing adjustment unit 7 synchronizes the processing timing of the carriers demodulated by the FFT 22 and the FFT 32. As is clear from FIG. 2, since the OFDM signal has a symbol unit, the timing adjustment unit 7 performs symbol input to the FFT 22 included in the first demodulation means 5 and the FFT 32 included in the second demodulation means 6. The top position of is adjusted over time.
  • the carrier processing timings of the first data carrier group and the second data carrier group input to the synthesis / selection unit 8 described later are synchronized.
  • the timing adjustment unit 7 will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a block diagram of the timing adjustment unit and its surroundings in the first embodiment of the present invention.
  • FIG. 4 is a timing chart for explaining the timing adjustment in the first embodiment of the present invention.
  • the first demodulator 5 includes a storage unit 24 that stores the output of the detector 21, and the second demodulator 6 includes a storage unit 34 that stores the output of the detector 31.
  • Each of the storage unit 24 and the storage unit 34 stores a reception signal for one symbol.
  • the timing adjustment unit 7 reads out the received signals stored in both the storage unit 24 and the storage unit 34 at a predetermined same timing in symbol units, and outputs them to the FFT 22 and the FFT 32. As a result, when demodulation is started in FFT22 and FFT32, the head position power demodulation of the same symbol can be performed, and the carrier processing timing in the demodulation is synchronized.
  • FIG. 4 shows timing adjustment using the storage units 24 and 34.
  • the upper half timing chart shows the processing in the first demodulation means 5
  • the lower half timing chart shows the processing in the second demodulation means 6.
  • the storage unit 24 and the storage unit 34 store the Nth OFDM symbol individually. That is, at a certain point, each of the storage unit 24 and the storage unit 34 stores the Nth OFDM symbol.
  • the timing adjustment unit 7 sends the same output timing pulse to both the storage unit 24 and the storage unit 34. Based on the output timing pulse at the same time, the storage unit 24 and the storage unit 34 output the stored Nth OFDM symbol to the FFT 22 and the FFT 32, respectively. As a result, in the FFT22 and FFT32, demodulation can be started simultaneously from the beginning position of the same symbol. That is, the processing timings of FFT22 and FFT32 are synchronized.
  • the combining / selecting unit 8 can perform combining or selecting for each carrier after the corresponding positions of the data carriers in the first demodulating unit 5 and the second demodulating unit 6 are aligned.
  • timing adjustment described with reference to FIGS. 3 and 4 is an example, and other methods may be used.
  • the synthesis / selection unit 8 uses the first reliability value output from the waveform equalization unit 23 and the second reliability value output from the waveform equalization unit 33 to output the first data carrier group and the second data. Select or synthesize the carriers included in each carrier group. At this time, the composition 'selection unit 8 determines the power to select or compose according to the set instruction. The setting is performed by the program and register settings read into the CPU.
  • the first demodulating means 5 outputs the first data carrier group to the combining “selecting section 8, and the second demodulating means 6 outputs the second data carrier group to the combining“ selecting section 8. Similarly, the first demodulating means 5 outputs the first reliability value for the carrier of the first data carrier group to the combining 'selecting section 8 and the second demodulating means 6 outputs the second reliability to the combining' selecting section 8. Outputs the second reliability value for the carrier in the data carrier group.
  • Combining 'selection unit 8 corresponds to the first reliability value for an arbitrary carrier included in the first data carrier group, and corresponds to this on the frequency axis (the carrier on the frequency axis). Compare the second reliability values for the carriers included in the second carrier group and select the carrier with the larger value (if the value is larger and the one is more reliable). Then output.
  • Combining 'selection unit 8 combines a certain carrier included in the first data carrier group and a carrier included in the second data carrier group corresponding to the carrier in the maximum ratio based on the reliability value.
  • the maximum ratio combining is to combine the carriers of the first data carrier group and the second data carrier group by calculating an average value according to the reliability value.
  • FIG. 5 is an explanatory diagram showing maximum ratio combining in Embodiment 1 of the present invention.
  • the reliability value has three values from “1” to "3". The higher the reliability value, the higher the reliability. That is, the reliability value “3” indicates higher reliability than the reliability value “1”.
  • the carrier included in the first data carrier group is “C1”, and the carrier included in the second data carrier group is “C2”.
  • the top row in the row indicates the first reliability value that is the reliability value of the carrier "C1", and the left column in the column indicates the second reliability value that is the reliability value of the carrier "C2". Show me.
  • the synthesis' selection unit 8 calculates the maximum ratio synthesis based on the reliability value and outputs the result. For example, when the first reliability value of the carrier “C1” is the value “2” and the second reliability value of the carrier “C2” is the value “1”, the synthesis / selection unit 8 selects (2 ⁇ Cl + C 2) Calculate with Z3 and output. In other cases, it is as shown in FIG.
  • combining / selecting unit 8 combines the carriers included in the first data carrier group and the carriers included in the second data carrier group at a fixed ratio. May be performed.
  • the synthesis / selection unit 8 performs selection and synthesis for each carrier.
  • Combining 'selection unit 8 outputs the result to error correction unit 9.
  • the error correction unit 9 corrects errors in the demodulated carrier and digital data included in the carrier.
  • the error correction unit 9 performs Viterbi decoding, Reed-Solomon decoding, and the like to detect and correct carrier and data errors. Error-corrected digital data is output as bucket data for images and sounds.
  • the decoding unit 13 is provided only in the first demodulating means 5 and transmits from the transmission control carrier (a predetermined number of transmission control carriers are included in one symbol) output from the FFT 22. Decode the control signal.
  • the transmission control carrier is modulated by various modulation schemes. In the ISDB-T standard, the transmission control carrier is modulated by the BPSK scheme.
  • the decoding unit 13 decodes the transmission control signal by a method corresponding to this modulation method.
  • Decoding unit 13 outputs the decoded transmission control signal to control unit 10.
  • the transmission control signal includes various information necessary for reception such as a broadcast system, a modulation system, and an error correction system.
  • the detection unit 14 detects frame synchronization from the transmission control carrier that is the output of the FFT 22.
  • an OFDM signal has a unit called a frame, and demodulation, error correction, and video / audio reproduction are performed in this frame unit.
  • Diversity receiver 1 requires this frame synchronization as a reference for processing delimiters in reception and demodulation.
  • the detection unit 14 outputs the detection result to the control unit 10.
  • the control unit 10 controls the diversity receiver 1 as a whole.
  • Diversity receiver 1 needs to determine the frame synchronization, which is a processing unit, and the broadcast method and modulation method when receiving and demodulating an OFDM signal. After the control unit 10 determines these, the diversity receiver 1 can perform processing corresponding to the broadcast system and modulation system of the OFDM signal received!
  • the control unit 10 determines the broadcasting method and transmission method. Determine the expression. Similarly, the control unit 10 determines a processing break from the frame synchronization detected by the detection unit 14. The control unit 10 notifies the determination result to the reception unit 4, the first demodulation unit 5, the second demodulation unit 6, the error correction unit 9, and the like.
  • the video / audio decoding unit 40 decodes the packet data output from the error correction unit 9 by a predetermined method.
  • the decoded packet data is reproduced as an image and sound, and can be viewed by a user on a mobile terminal or mobile terminal provided with the diversity receiver 1.
  • First demodulation means 5 demodulates the OFDM signal received by antenna 2 and tuner 11 (demodulates by the operation of each element described in detail in each section), and outputs the first carrier group .
  • the second demodulator 6 demodulates the OFDM signal received by the antenna 3 and the tuner 12 and outputs a second carrier group.
  • the first data carrier group included in the first carrier group and the second data carrier group included in the second carrier group are combined or selected by the combining / selecting unit 8.
  • the decoding unit 13 provided only in the first demodulation means 5 decodes the transmission control signal, and detects the detection unit 14 force frame synchronization. Based on the decoding result, the control unit 10 determines the broadcasting method and modulation method, and performs demodulation processing according to the determination result to the receiving unit 4, the first demodulating unit 5, the second demodulating unit 6, and the error correcting unit 9. Notify. Similarly, based on the frame synchronization, the control unit 10 notifies the reception unit, the first demodulation unit 5, the second demodulation unit 6, the error correction unit 9, and the like of reception and demodulation delimiters. As a result, the diversity receiver 1 can perform reception processing appropriately corresponding to the broadcast state to be transmitted.
  • control unit 10 determines the broadcasting method and the delimiter of processing based only on the transmission control signal output from the first demodulating means 5 and the frame synchronization, which is one of the plurality of demodulating means. Because there is no complication in judging the broadcasting system and processing breaks!
  • the diversity receiver 1 includes a third demodulation unit (or more demodulation unit) having the same configuration as the second demodulation unit 6 that does not include the decoding unit 13 and the detection unit 14.
  • the decoding unit 13 and the detection unit 14 are provided in common regardless of the number of branches.
  • FIG. 6 is a block diagram of the diversity receiver in the second embodiment of the present invention.
  • the diversity receiver 1 shown in FIG. 6 includes a selector 50 that selects either the first transmission control carrier output from the FFT 22 or the second transmission control carrier output from the FFT 32.
  • the selection unit 50 selects either the first transmission control carrier or the second transmission control carrier according to a predetermined setting.
  • the control unit 10 has a processor, and the processor reads a predetermined program, and in the setting of the read program, selection of either the first transmission carrier or the second transmission carrier is instructed. .
  • the decoding unit 13 Based on the transmission control carrier selected by the selection unit 50, the decoding unit 13 decodes the transmission control signal and outputs the decoding result to the control unit 10, and the detection unit 14 performs frame synchronization. Detect and output the detection result to the control unit 10. Detailed operations of the decoding unit 13 and the detection unit 14 are as described in the first embodiment. [0134] Based on the received decoding result, the control unit 10 determines the broadcast method and the modulation method, and performs demodulation processing according to the determination result to the receiving unit 4, the first demodulation unit 5, the second demodulation unit 6, Notify the error correction section 9 etc.
  • the control unit 10 notifies the receiving unit 4, the first demodulating unit 5, the second demodulating unit 6, the error correcting unit 9, and the like, of processing intervals for reception and demodulation.
  • the diversity receiver 1 can perform reception processing appropriately corresponding to the broadcast state to be transmitted.
  • one of the plurality of transmission control carriers output from the plurality of demodulation means is selected and a decoding unit 13 and a detection unit provided in common are selected.
  • the transmission control signal is decoded and the frame synchronization is detected. For this reason, even if the number of branches increases due to diversity reception, an increase in circuit scale is suppressed.
  • control unit 10 can determine the broadcasting method and the processing break based only on one transmission control signal and frame synchronization, the complexity in determining the broadcasting method and the processing break is reduced.
  • FIG. 7 is a block diagram of the diversity receiver in Embodiment 2 of the present invention.
  • the second composition 'selection unit 8 is given the ⁇ first' 'to distinguish it from the first composition' selection unit 60, but it has the same function as the composition 'selection unit 8 described in the first embodiment. have. That is, the second combining / selecting unit 8 combines or selects the first data carrier and the second data carrier based on the first reliability value and the second reliability value.
  • the first synthesis / selection unit 60 synthesizes or selects the first transmission control carrier output from the FFT 22 and the second transmission control carrier output from the FFT 32, and sends it to the decoding unit 13 and the detection unit 14. Output.
  • the decoding unit 13 and the detection unit 14 are provided in any of a plurality of demodulation means. One in common.
  • the first combining / selecting unit 60 combines the first transmission control carrier and the second transmission control carrier at a predetermined ratio. Alternatively, the first combining / selecting unit 60 selects either the first transmission control carrier or the second transmission control carrier according to a predetermined setting. As a result, only one transmission control carrier is used in the decoding unit 13 and the detection unit 14.
  • the first combining / selecting unit 60 may combine or select signals that have been subjected to symbol delay detection separately for each carrier group.
  • the decoding unit 13 decodes the transmission control signal based on the transmission control carrier combined or selected by the first combining / selecting unit 60.
  • the decoding unit 13 outputs the decoding result to the control unit 10.
  • the detection unit 14 detects frame synchronization based on the transmission control carrier combined or selected by the first combining / selecting unit 60 and outputs the detection result to the control unit 10. That is, the control unit 10 only needs to handle one decoding result and detection result even when there are a plurality of branches.
  • the control unit 10 determines the broadcast method and the modulation method, and performs demodulation processing according to the determination result to the receiving unit 4, the first demodulation unit 5, and the second demodulation unit. 6. Notify the error correction unit 9 etc. Similarly, the control unit 10 notifies the reception unit 4, the first demodulation unit 5, the second demodulation unit 6, the error correction unit 9, and the like of the reception and demodulation delimiters based on the received frame synchronization. As a result, the diversity receiver 1 can perform reception processing appropriately corresponding to the broadcast state to be transmitted.
  • decoding unit 13 and detection unit 14 decode the transmission control signal using the transmission control carrier combined or selected, and detect frame synchronization. For this reason, even if the number of branches required for diversity reception increases, the number of decoding units 13 and detection units 14 does not increase, so that an increase in the circuit scale of the diversity reception device 1 as a whole can be suppressed.
  • control unit 10 can determine the broadcasting method and the separation of processing based only on one transmission control signal and frame synchronization, the processing with less complexity is reduced.
  • FIG. 8 is a block diagram of the diversity receiver in Embodiment 2 of the present invention.
  • the second composition 'selection unit 8 is given the ⁇ second' 'to distinguish it from the first composition' selection unit 60, but has the same function as the composition 'selection unit 8 described in the first embodiment. have. That is, the second combining / selecting unit 8 combines or selects the first data carrier and the second data carrier based on the first reliability value and the second reliability value.
  • the first synthesis selection unit 60 includes the first reliability value from the first waveform equalization unit 23 and the first carrier group, and the second combination from the second waveform equalization unit 33. 2 Input reliability value and 2nd carrier group. That is, unlike the diversity receiver 1 shown in FIG. 7, in the diversity receiver 1 shown in FIG. 8, the first combining / selecting unit 60 uses the first reliability value and the second reliability value, Combine or select the first transmission control carrier and the second transmission control carrier.
  • the first waveform equalization unit 23 calculates and outputs a first reliability value for both the first data carrier and the first transmission control carrier.
  • the second waveform equalization unit 33 calculates and outputs a second reliability value for both the second data carrier and the second transmission control carrier.
  • the first combining / selecting unit 60 can combine or select the first transmission control carrier and the second transmission control carrier using the first reliability value and the second reliability value.
  • the first combining / selecting unit 60 combines or selects the first transmission control carrier and the second transmission control carrier based on the values of the first reliability value and the second reliability value.
  • the first combining / selecting unit 60 compares the first reliability value and the second reliability value, and selects a transmission control carrier corresponding to the reliability value having a large value. select. For example, when the first reliability value is larger than the second reliability value, the first combining / selecting unit 60 selects and outputs the first transmission control carrier.
  • the first combining / selecting unit 60 When combining, the first combining / selecting unit 60 combines the transmission control carriers with a predetermined ratio, performs equal ratio combining with the same ratio, or sets the reliability value.
  • the maximum ratio synthesis is performed.
  • the maximum ratio combining is performed by the same process as the data carrier maximum ratio combining described with reference to FIG.
  • FIG. 9 illustrates maximum ratio combining of transmission control carriers in Embodiment 2 of the present invention. It is explanatory drawing.
  • the first transmission control carrier is Tl
  • the second transmission control carrier is ⁇ 2.
  • the reliability value has three values from “1” to “3”. The higher the reliability value, the higher the reliability. That is, the reliability value “3” indicates higher reliability than the reliability value “1”.
  • the top row in the row indicates the first reliability value that is the reliability value of the first transmission control carrier “ ⁇ 1”, and the left column in the column indicates the reliability value of the second transmission control carrier “ ⁇ 2”. The second reliability value is shown.
  • the first composition / selection unit 60 calculates the maximum ratio composition based on the reliability value and outputs the result. For example, when the first reliability value of the carrier “ ⁇ 1” is the value “2” and the second reliability value of the carrier “ ⁇ 2” is the value “1”, the first synthesis / selection unit 60 selects ( 2 ⁇ 1 + ⁇ 2) Calculate with ⁇ 3 and output. In other cases, it is as shown in FIG.
  • the carrier processing timing in the demodulation in FFT22 and FFT32 is synchronized by the processing of the timing adjustment unit 7, the first transmission control corresponding to the same time is performed in the first synthesis' selection unit 60.
  • the carrier and the second transmission control carrier are input in the same time zone.
  • the first combining / selecting unit 60 combines or selects, so that the reception accuracy in receiving the transmission control carrier is increased. That is, the transmission control carrier that becomes the output of the first synthesis 'selection unit 60 by the synthesis and selection based on the reliability value is higher than the transmission control carrier before being input to the first synthesis' selection unit 60. Can be high. In particular, when combining is performed, correlated carriers are combined with uncorrelated noise, so an improvement in CZN ratio of at least 3 dB is expected.
  • the transmission control carrier with improved CZN ratio (and converged to only one in the entire diversity receiver 1) is input to the decoding unit 13 and the detection unit 14, it has very high accuracy. Then, the transmission control signal is decoded and the frame synchronization is detected. In addition, since the control unit 10 receives only one transmission control signal and frame synchronization detection result, the processing load using these is reduced. Of course, since only one decoder 13 and one detector 14 need to be shared by the diversity receiver 1 regardless of the increase in the number of branches, the circuit scale is also reduced. From the above, in diversity receiver 1 shown in FIG. 8, in addition to reducing the circuit scale and processing load on control unit 10, the transmission control signal decoding accuracy is improved and the frame synchronization detection accuracy is improved.
  • the reception accuracy in reception is improved.
  • the improvement in reception accuracy due to diversity reception for each carrier performed in the second combining / selection unit 8 compared with the diversity reception device in the prior art.
  • an improvement in the reception accuracy is realized.
  • control unit 10 determines the broadcast method and the modulation method based on the received decoding result, and performs demodulation processing according to the determination result in the receiving unit 4, the first demodulation unit 5, the first 2 Notify the demodulator 6 and error corrector 9. Similarly, on the basis of the received frame synchronization, the control unit 10 notifies the reception unit, the first demodulation unit 5, the second demodulation unit 6, the error correction unit 9, and the like, of processing intervals for reception and demodulation. As a result, the diversity receiver 1 can perform reception processing appropriately corresponding to the broadcast state to be transmitted.
  • FIG. 10 is a block diagram of the diversity receiver in the third embodiment of the present invention.
  • the diversity receiver 1 shown in FIG. 10 includes a local oscillator (indicated as “LOJ” in the figure) 70, an automatic frequency adjuster (hereinafter referred to as “AFC (Auto Frequency). 71, and a third synthesis / selection unit 72. Elements having the same reference numerals as in FIG. 8 have the same functions.
  • LOJ local oscillator
  • AFC Automatic Frequency
  • element for correcting frequency offset amount which is the difference between the frequency generated by local transmitter 70 that sets tuners 11 and 12, and the channel frequency of the transmitted OFDM signal However, it is common regardless of the number of branches.
  • the local transmitter 70 outputs a transmission frequency corresponding to the selected channel to the tuners 11 and 12.
  • the tuners 11 and 12 select a channel based on the transmission frequency and output a desired OFDM signal.
  • This OFDM signal is output to the first demodulation means 5 and the second demodulation means 6 as a received signal.
  • the local transmitter 70 is provided in common.
  • the frequency offset amount generated in each of the first demodulating means 5 and the second demodulating means 6 is the same.
  • the third synthesis' selection unit 72 synthesizes or selects the first carrier group from FFT22 and the second carrier group from FFT32 and outputs the result to AFC71.
  • the AFC 71 uses the output from the third synthesis / selection unit 72 to detect the frequency offset amount.
  • the AFC 71 notifies the detection units 21 and 31 of the detected frequency offset amount.
  • the detectors 21 and 31 can perform accurate quadrature detection of the received signal using the notified frequency offset amount.
  • the third combining / selecting unit 72 may combine or select signals obtained by performing symbol delay detection separately for each carrier group.
  • the signal is input to the output signal power AFC 71 of the third synthesis / selection unit 72.
  • the output signal of the first synthesis “selection unit 60 or the second synthesis” selection unit 8 may be input to the AFC 71.
  • the diversity receiving apparatus excludes, from among a plurality of branches provided in the diversity receiving apparatus, branches whose reception status is inappropriate from the diversity targets. Power! Appropriate processing is performed for branches with an incorrect reception status.
  • FIG. 11 is a block diagram of the diversity receiver in Embodiment 4 of the present invention.
  • the first demodulator 5 includes a first determination unit 25 that determines the reception state in the first demodulator 5, and the second demodulator 6 includes the second demodulator 6.
  • a second determination unit 35 for determining the reception state in means 6 is provided.
  • the first determination unit 25 and the second determination unit 35 each output a determination result to the control unit 10.
  • the control unit 10 controls at least one of the first demodulation unit 5, the second demodulation unit 6, the first synthesis / selection unit 60, and the second synthesis / selection unit 8 according to the determination result.
  • the first determination unit 25 determines that the reception state of the first demodulation means 5 is appropriate or inappropriate, and outputs the determination result to the control unit 10.
  • the second determination unit 35 determines that the reception state of the second demodulator 6 is appropriate or inappropriate, and outputs the determination result to the control unit 10.
  • proper is determined to be a branch that can be used in diversity reception
  • inappropriate is determined to be a branch that should not be used in diversity reception. Is Rukoto.
  • the first determination unit 25 determines the reception state based on at least one of the amplitude value and the change value of the pilot carrier (hereinafter referred to as “first pilot carrier”) included in the first carrier group output from the FFT 22. To do.
  • the second determination unit 35 is based on at least one of the amplitude value and the change value of a pilot carrier (hereinafter referred to as “second pilot carrier” t) included in the second carrier group output from the FFT 32.
  • the reception state is determined.
  • FIG. 12 is an internal block diagram of the first determination unit in Embodiment 4 of the present invention.
  • the internal block diagram of the second determination unit 35 is the same as that in FIG.
  • the output of the FFT 22 is input to the delay circuit 25a and the complex multiplication circuit 25c.
  • the delay circuit 25a delays the FFT22 output by 4 symbols and outputs it.
  • the complex conjugate circuit 25b calculates the complex conjugate of the output of the delay circuit 25a.
  • the complex multiplication circuit 25c performs complex multiplication on the output of the FFT 11 and the output of the complex conjugate circuit 25b.
  • the signal modulated to the pilot carrier has a characteristic of a constant phase and a constant amplitude
  • the output vector of the complex multiplier circuit 25c has the same direction.
  • the complex adder circuit 25d performs an analog addition operation on the pilot carrier multiplied by the complex over the entire symbol of the OFDM signal.
  • the amplitude calculation circuit 25e calculates the magnitude of the pilot carrier vector using the output of the complex addition circuit 25d. The magnitude of this vector indicates the amplitude value of the first pilot carrier included in the first carrier group.
  • the determination circuit 25f compares this amplitude value with a predetermined threshold value. When the amplitude value is larger than a predetermined threshold value, the determination circuit 25f determines that the reception state is appropriate and the amplitude value is predetermined. If it is less than or equal to the threshold value, it is determined that the reception state is inappropriate.
  • the determination unit shown in FIG. 13 calculates a change value that is a change state of the amplitude value.
  • FIG. 13 is an internal block diagram of the first determination unit in Embodiment 4 of the present invention.
  • the internal block diagram of the second determination unit 35 is the same as that in FIG.
  • the amplitude value of the first pilot carrier is calculated for the output of the FFT 22 by processing from the delay circuit 25a to the amplitude calculation circuit 25e.
  • the delay circuit 25g delays the output of the amplitude calculation circuit 25e in symbol units.
  • the subtraction circuit 25h calculates the difference between the output of the amplitude calculation circuit 25e and the output of the delay circuit 25g. That is, the difference between the amplitude value of the first pilot carrier one symbol before and the current amplitude value of the first pilot carrier is obtained. This corresponds to a change value of the amplitude value.
  • the determination circuit 25i compares the amplitude value of the first pilot carrier included in the current symbol with a predetermined threshold value 1. That is, the determination circuit 25i determines whether the reception state is appropriate or inappropriate from the amplitude value of the first pilot carrier included in the current symbol.
  • the determination circuit 23 ⁇ 4 compares the output of the subtraction circuit 25h, that is, the difference value of the amplitude value of the first pilot carrier included in the current symbol and the previous symbol with the threshold value 2. By comparing the difference value with threshold 2, the change in reception status can be determined.
  • the determination circuit 25i grasps the current reception state
  • the determination circuit 23 ⁇ 4 grasps the change in the reception state
  • the AND circuit 25k outputs the determination result with the reception state being appropriate when the results of both the determination circuit 25i and the determination circuit 23 ⁇ 4 are appropriate. Even if the reception state changes suddenly due to, for example, fading, the determination unit shown in FIG. 13 properly recognizes the change in the reception state in the branch, and the reception state is appropriate. Or improper.
  • the reception state can be determined to be inappropriate, and more accurate reception is possible.
  • the state can be determined.
  • the determination unit shown in FIG. 14 determines the reception status of each branch based on the difference in the reception status of each branch.
  • FIG. 14 is a block diagram of the first determination unit and the second determination unit in the fourth embodiment of the present invention.
  • a subtraction circuit 80 for grasping the difference between the first demodulation means 5 and the second demodulation means 6, and a determination circuit for determining based on the difference 81 is provided.
  • the subtraction circuit 80 calculates a difference between the amplitude calculation circuit 25e and the amplitude calculation circuit 35e. This difference represents the difference in the reception level of the received pilot carrier between the first demodulation means 5 and the second demodulation means 6.
  • the determination circuit 81 compares the subtraction result in the subtraction circuit 80 with a predetermined threshold value 3, and outputs the determination result to the AND circuits 25m and 35m. Since the determination circuit 81 compares the difference in reception level between the two branches calculated by the subtraction circuit 80 with a predetermined threshold 3, the determination circuit 81 determines the reception level difference between the two branches. Can be judged. Furthermore, it is possible to determine the force with which the reception state of any branch is low.
  • the determination circuit 81 When the reception level of the branch including the first demodulation means 5 is higher than the reception level of the branch including the second demodulation means 6 and the difference is equal to or greater than the threshold 3, the determination circuit 81 The AND circuit 25m outputs an appropriate judgment result, and the AND circuit 35m outputs an inappropriate judgment result. As a result, even if the pilot carrier amplitude in the second demodulating means 6 is more than a certain level, if the difference in the reception level in the first demodulating means 5 is too large, reception at the branch including the second demodulating means 6 is not possible. It is determined as inappropriate.
  • the determination unit shown in FIG. 15 determines the reception state of the branch by comparing the amplitude of the data carrier included in the demodulated carrier group and the amplitude of the pilot carrier.
  • FIG. 15 is a block diagram of the first determination unit in Embodiment 4 of the present invention. Same as Figure 12 Elements with the same reference numerals have the same functions as those described in FIG.
  • the output of the complex multiplication circuit 25c is input to the complex addition circuit 25d and the complex addition circuit 25 ⁇ , respectively.
  • the complex addition circuit 25d performs complex addition of pilot carriers in the carrier group, and the amplitude calculation circuit 25e calculates the amplitude of the pilot carrier.
  • the complex addition circuit 25 ⁇ performs complex addition of the data carriers in the carrier group, and the amplitude calculation circuit 25 ⁇ calculates the amplitude of the data carrier.
  • the ideal carrier has ideally the same amplitude and phase, so that the output of the complex addition circuit 25d has a constant magnitude as time passes. However, when the reception state is poor, the amplitude and phase of the pilot carrier tend to be random, so that the output of the complex adder circuit 25d decreases with time.
  • the output of the complex adder circuit 25 ⁇ converges to the value “0” over time.
  • Comparison circuit 25 ⁇ compares the amplitude value of the pilot carrier included in the carrier group with the amplitude value of the data carrier. Further, the comparison circuit 25 ⁇ compares the difference value between the pilot carrier amplitude value and the data carrier amplitude value with the threshold value 4.
  • the comparison circuit 25 ⁇ determines that the reception state is appropriate when the amplitude value of the pilot carrier is larger than the amplitude value of the data carrier and the difference is larger than the predetermined threshold value 4.
  • the power described for the determination of the reception state based on the four modes is not limited to these.
  • the control unit 10 transmits the first demodulation unit 5, the second demodulation unit 6, the first synthesis / selection unit 60, the second synthesis / selection unit 8 and Control at least one of the receivers 4.
  • the control unit 10 uses the first combining 'selecting unit 60 and the second combining' selecting unit 8 to determine the carrier group demodulated by the demodulating means included in the branch that has been determined to be inappropriate.
  • Use Control Data carriers and transmission control carriers that are included in the carrier group of the demodulation means that has been judged to be inadequate may have a better power not to be used for combining or selecting because of poor reception.
  • “not used in synthesis” means that, in addition to not using the carrier at the time of synthesis, the calculation is performed with the carrier set to the value “0”, or the value of the carrier is extremely small. In addition, it includes a wide range of processing for performing a composite operation by reducing the contribution of the reliability value corresponding to the carrier. Naturally, when selection processing is performed in the synthesis / selection unit, processing is performed so that the carrier that outputs the demodulation means power that has been determined to be inappropriate is also unselected.
  • control unit 10 performs control to reduce the contribution at the time of combining / selecting the carrier output from the demodulation means that has been determined to be inappropriate.
  • control unit 10 performs control for power consumption reduction on the demodulation means determined to be inappropriate in the first demodulation means 5 and the second demodulation means 6.
  • the control unit 10 initializes the stored value stored in the storage unit included in the first demodulation means 5. If the stored value in the demodulation means determined to be inappropriate remains unchanged, the demodulating process is performed when the improper state returns to the appropriate state (or when the improper state is forcibly shifted to the appropriate state). It is also a force that can cause an inappropriate value in the result of. By the initialization, the demodulation result can be obtained early and appropriately after the return.
  • each of the first demodulating means 5 and the second demodulating means 6 includes an AFC unit that corrects the frequency offset amount with respect to the reception frequency
  • the initial value of the frequency offset amount is It is preferable that the stored frequency offset value is maintained as it is without being initialized at the time of conversion. The frequency offset is often maintained at a constant value over time. For this reason, it is more efficient that the stored offset value is used as it is after the return than when it is initialized and recalculated after the return.
  • the control unit 10 reduces or stops the clock signal supplied to the first demodulation means 5. This is because the demodulation result of the first demodulator 5 is unnecessary in the diversity receiver 1 because the reception state is determined to be inappropriate.
  • the circuit diversity is stopped by stopping the clock signal, so that the power diversity reduction apparatus 1 is efficient for reducing power consumption.
  • the first demodulating means 5 enters the return state.
  • the recovery state the supply of the previously stopped clock signal is resumed.
  • the clock signal is restarted, the stored frequency offset amount is used.
  • the initialization state ends, and the demodulation process is continued while the value of the storage unit is updated in accordance with the demodulation process in the first demodulating means 5.
  • the demodulation result of the first demodulation means 5 is used again in the diversity receiver 1.
  • the reception state of each branch is determined, and for the branch in which the reception state is determined to be inappropriate, the power consumption is reduced by reducing or stopping the clock signal.
  • the stored value is initialized prior to the reduction or stoppage of the clock signal, thereby preventing malfunction after the return.
  • the diversity receiver 1 including two demodulation means, the first demodulation means 5 and the second demodulation means 6, has been described as an example, but three or more demodulation means ( It ’s okay to have a branch).
  • part or all of the diversity receiver 1 may be configured by hardware or software. Further, part or all of the diversity receiver 1 may be configured by a semiconductor integrated circuit.
  • the operation of reducing or stopping the clock signal is not only controlled based on the reception state of any demodulation means, but the reception operation of a certain demodulation means is stopped (in diversity reception). It may be controlled when it is determined that there is sufficient reception accuracy. In this case, for the demodulating means with a reduced clock signal, even if the reduced clock signal is restored if it is desired to improve reception accuracy by diversity reception using the branch including the demodulating means. Yo ...
  • the CPU reads a program stored in the ROM or RAM. Next !, the CPU uses the read program to receive the OFDM signal, demodulate the OFDM signal, decode the transmission control signal, detect frame synchronization, and process diversity reception.
  • the present invention can be suitably used, for example, in the field of diversity receivers included in mobile terminals and mobile terminals that receive terrestrial digital broadcasts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

 キャリア群が多重化された周波数多重信号を受信する受信部(4)と、第1データキャリアと第1伝送制御キャリアを出力する第1復調手段(5)と、第2データキャリアと第2伝送制御キャリアを出力する第2復調手段(6)と、第1復調手段(5)と第2復調手段(6)の処理タイミングを同期させるタイミング調整部(7)と、第1伝送制御キャリアと第2伝送制御キャリアを合成もしくは選択する第1合成・選択部(60)と、第1データキャリアと第2データキャリアを合成もしくは選択する第2合成・選択部(8)と、第1合成・選択部(60)で選択された伝送制御キャリアを用いて、伝送制御信号を復号する復号部(13)と、フレーム同期を検出する検出部(14)を備える。

Description

明 細 書
ダイバーシティ受信装置およびダイバーシティ受信方法
技術分野
[0001] 本発明は、周波数多重信号、特に地上デジタル放送に用いられる直交周波数分 割多重信号 (以下、「OFDM信号」 ヽぅ)を受信するダイバーシティ受信装置および ダイバーシティ受信方法に関するものである。
背景技術
[0002] 日本国においては、 2003年より ISDB— T方式により地上デジタル放送が開始さ れた。また、欧州、北米、南米、アジア圏を始め、世界各国でアナログ放送がデジタ ル化され、地上デジタル放送が開始されつつある。これらに国の多くにおいて、日本 における ISDB— T方式と同等、あるいは準拠された技術が用いられ、特に、多数の キャリアが周波数軸にぉ 、て直交多重化された OFDM信号が用いられて 、る。
[0003] OFDM信号は、マルチパスに強い特徴を有している力 更に受信における受信精 度を高めるために、周波数軸上に多重化されたキャリア毎のダイバーシティ受信を行 うことが提案されている (例えば、特許文献 1参照)。
[0004] し力しながら、キャリア毎のダイバーシティ受信を行うためには、アンテナとこれに対 応する復調手段 (以下、「ブランチ」と呼ぶ)が複数個必要であり、複数のブランチの それぞれに含まれる復調手段の各々において、受信信号のアナログデジタル変換か ら時間周波数変換によるキャリア復調までの要素の全てを独立して備える必要がある 。このため、従来の技術においては、変調方式などの制御情報を含む伝送制御キヤ リアの復調やフレーム同期を検出する要素もブランチ毎に独立して備える必要があつ た。
[0005] この従来の技術に基づくキャリア毎のダイバーシティ受信装置では、受信装置の回 路規模が増加する問題があった。また、伝送制御キャリアの復調においては、復調に メモリが必要となり、フレーム同期の検出においても、判定のためにメモリが必要とな る。これらのメモリも、復調手段毎に独立して備える必要があるので、回路規模がます ます増加する。 [0006] また、伝送制御キャリアの復号ゃフレーム同期が、復調手段毎に別々に設けられる と、一つの受信装置において、伝送制御信号の復号ゃフレーム同期の検出につい て、複数の結果が得られることになる。し力しながら、受信装置においては、一つの結 果しか取り扱われないので、結果が複数になると、結果に対する信頼性の判断の困 難性や、結果を受けて実際の復調処理を開始するまでの処理手順の煩雑性が生じ る問題がある。
[0007] 特に、近年、移動端末における受信精度の向上のために、ダイバーシティ受信に 用いられるブランチの個数を 3以上にすることも検討されており、回路規模の増大や 処理の煩雑性の問題が、更に顕著になっている。
特許文献 1:特開 2004 - 242191号公報
発明の開示
発明が解決しょうとする課題
[0008] そこで本発明は、回路規模の増大を抑えると共に伝送制御信号の復号ゃフレーム 同期の検出結果の信頼性と利用容易性を高める、ダイバーシティ受信装置およびダ ィバーシティ受信方法を提供することを目的とする。
課題を解決するための手段
[0009] 第 1の発明に係るダイバーシティ受信装置は、データキャリアとパイロットキャリアと 伝送制御キャリアを含むキャリア群が多重化された周波数多重信号を受信して受信 信号を出力する受信部と、受信信号を復調して第 1データキャリアを出力する第 1復 調手段と、受信信号を復調して第 2データキャリアを出力する第 2復調手段と、第 1復 調手段で復調されるキャリア群と第 2復調手段で復調されるキャリア群の処理タイミン グを同期させるタイミング調整部と、第 1データキャリアと第 2データキャリアを合成もし くは選択する合成 ·選択部を備え、第 1復調手段と第 2復調手段のそれぞれは、受信 信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部と、アナ口 グデジタル変換部の出力を検波する検波部と、検波部の出力を時間軸の信号から 周波数軸の信号に変換する時間周波数変換部を備え、第 1復調手段と第 2復調手 段のいずれか一方は、時間周波数変換部の出力から、伝送制御信号を復号する復 号部と、フレーム同期を検出する検出部を備える。 [0010] この構成により、ダイバーシティ受信装置における復調手段の増加による回路規模 の増大を抑えることができる。更に、伝送制御信号の復号ゃフレーム同期の検出に おける信頼性を高めることができる。カロえて、伝送制御信号の復号結果や、フレーム 同期の検出結果を利用する際の処理の容易性を高めることができる。
[0011] 第 2の発明に係るダイバーシティ受信装置は、データキャリアとパイロットキャリアと 伝送制御キャリアを含むキャリア群が多重化された周波数多重信号を受信して受信 信号を出力する受信部と、受信信号を復調して第 1データキャリアと第 1伝送制御キ ャリアを出力する第 1復調手段と、受信信号を復調して第 2データキャリアと第 2伝送 制御キャリアを出力する第 2復調手段と、第 1復調手段で復調されるキャリア群と第 2 復調手段で復調されるキャリア群の処理タイミングを同期させるタイミング調整部と、 第 1伝送制御キャリアと第 2伝送制御キャリアを合成もしくは選択する第 1合成 '選択 部と、第 1データキャリアと第 2データキャリアを合成もしくは選択する第 2合成'選択 部と、第 1合成 ·選択部で合成もしくは選択された伝送制御キャリアを用いて、伝送制 御信号を復号する復号部と、フレーム同期を検出する検出部を備える。
[0012] この構成により、ダイバーシティ受信装置における復調手段の増加による回路規模 の増大を抑えることができる。更に、伝送制御信号の復号ゃフレーム同期の検出に おける信頼性を高めることができる。カロえて、伝送制御信号の復号結果や、フレーム 同期の検出結果を利用する際の処理の容易性を高めることができる。
[0013] 第 3の発明に係るダイバーシティ受信装置では、第 2の発明に加えて、復号部は、 第 1合成 ·選択部で合成された伝送制御キャリアを用いて伝送制御信号を復号し、検 出部は、第 1合成 ·選択部で合成された伝送制御キャリアを用いてフレーム同期を検 出する。
[0014] この構成により、伝送制御信号の復号とフレーム同期の検出における検出精度を 高めることができる。
[0015] 第 4の発明に係るダイバーシティ受信装置では、第 1から第 3のいずれかの発明に カロえて、第 1復調手段は、第 1伝送制御キャリアと第 1データキャリアに対する信頼性 を示す第 1信頼性値を算出する第 1波形等化部を備え、第 2復調手段は、第 2伝送 制御キャリアと第 2データキャリアに対する信頼性を示す第 2信頼性値を算出する第 2 波形等化部を備える。
[0016] この構成により、第 1合成'選択部および第 2合成'選択部の少なくとも一方におい て、キャリアの選択や合成を適切に行うことができる。結果として、受信における受信 精度が向上する。
[0017] 第 5の発明に係るダイバーシティ受信装置では、第 4の発明に加えて、第 1合成'選 択部は、第 1信頼性値と第 2信頼性値に基づいて、第 1伝送制御キャリアと第 2伝送 制御キャリアの 、ずれか一方を選択する。
[0018] この構成により、受信状態のよい伝送制御キャリアが選択されて、伝送制御信号の 復号とフレーム同期の検出が行われるので、伝送制御キャリアの復号における復号 精度とフレーム同期の検出における検出精度が向上する。
[0019] 第 6の発明に係るダイバーシティ受信装置では、第 4の発明に加えて、第 1合成'選 択部は、第 1信頼性値と第 2信頼性値に基づいて、第 1伝送キャリアと第 2伝送キヤリ ァを最大比合成する。
[0020] この構成により、伝送制御キャリアの CZN比が向上し、伝送制御信号の復号にお ける復号精度と、フレーム同期の検出における検出精度が向上する。
[0021] 第 7の発明に係るダイバーシティ受信装置では、第 4から第 6のいずれかの発明に カロえて、第 2合成'選択部は、第 1信頼性値と第 2信頼性値に基づいて、第 1データキ ャリアと第 2データキャリアの 、ずれか一方を選択する。
[0022] この構成により、受信状態の良いデータキャリアが選択されて、画像や音声データ など、データキャリアに含まれるデータが復調されるので、受信における受信精度が 向上する。
[0023] 第 8の発明に係るダイバーシティ受信装置では、第 4から第 6の 、ずれかの発明に カロえて、第 2合成'選択部は、第 1信頼性値と第 2信頼性値に基づいて、第 1データキ ャリアと、第 2データキャリアを最大比合成する。
[0024] この構成により、データキャリアの CZN比が向上し、受信精度が向上する。
[0025] 第 9の発明に係るダイバーシティ受信装置では、第 1から第 8のいずれかの発明に カロえて、周波数多重信号は、所定数のキャリア毎に 1シンボルの単位を有し、タイミン グ調整部は、第 1復調手段と第 2復調手段でのシンボルの処理タイミングを同期させ る。
[0026] この構成により、複数の復調手段から出力されるキャリアにおいて、周波数軸上で 対応するキャリア同士により、合成もしくは選択が行われる。
[0027] 第 10の発明に係るダイバーシティ受信装置では、第 1から第 9のいずれかの発明 に加えて、第 1復調手段と第 2復調手段のそれぞれは、受信信号をアナログ信号力 デジタル信号に変換するアナログデジタル変換部と、アナログデジタル変換部の出 力を検波する検波部と、検波部の出力を記憶する記憶部と、記憶部の出力を時間軸 の信号力 周波数軸の信号に変換する時間周波数変換部を備え、タイミング調整部 は、第 1復調手段に含まれる記憶部に記憶されている信号と第 2復調手段に含まれ る記憶部に記憶されている信号を、所定の同一タイミングで読み出して、第 1復調手 段で復調されるキャリア群と第 2復調手段で復調されるキャリア群の処理タイミングを 同期させる。
[0028] この構成により、複数の復調手段から出力されるキャリアにおいて、周波数軸上で 対応するキャリア同士により、合成もしくは選択が行われる。
[0029] 第 11の発明に係るダイバーシティ受信装置では、第 1から第 10のいずれかの発明 に加えて、第 1復調手段は、第 1復調手段での受信状態を判定する第 1判定部を有 し、第 2復調手段は、第 2復調手段での受信状態を判定する第 2判定部を有し、第 1 判定部と第 2判定部の判定結果に従い、第 1復調手段、第 2復調手段、第 1合成,選 択部および第 2合成 ·選択部の少なくとも一つを制御する制御部を備える。
[0030] この構成により、受信状態の悪い復調手段が存在する場合には、ダイバーシティ受 信によって生じうる受信精度の劣化を防止できる。
[0031] 第 12の発明に係るダイバーシティ受信装置では、第 11の発明に加えて、第 1判定 部は、第 1パイロットキャリアの振幅値および変化値の少なくとも一方に基づいて受信 状態を判定し、第 2判定部は、第 2パイロットキャリアの振幅値および変化値の少なく とも一方に基づいて受信状態を判定する。
[0032] 第 13の発明に係るダイバーシティ受信装置では、第 12の発明に加えて、第 1判定 部は、第 1パイロットキャリアの振幅値および変化値の少なくも一方が所定の閾値より も大きい場合には適正と判定し、閾値以下の場合には不適正と判定し、第 2判定部 は、第 2パイロットキャリアの振幅値および変化値の少なくも一方が所定の閾値よりも 大きい場合には適正と判定し、閾値以下の場合には不適正と判定して、判定結果を 制御部に出力する。
[0033] これらの構成により、受信状態を適切に判定できる。
[0034] 第 14の発明に係るダイバーシティ受信装置では、第 13の発明に加えて、制御部は 、不適正と判定された復調手段に対して、復調手段の記憶する記憶値の初期化およ び復調手段に供給されるクロック信号の低減の少なくとも一つを行う。
[0035] この構成により、ダイバーシティ受信による受信精度の向上と、消費電力の削減の 適切なバランスが実現される。特に、受信精度の向上が見込まれない状態において は、消費電力の削減が優先され、ユーザピリティの高いダイバーシティ受信装置が実 現される。また、クロック信号の停止により動作が停止された復調手段が、その動作を 復帰させる場合には、停止前の記憶値が初期化されているので、復帰時に誤動作が 生じない。
[0036] 第 15の発明に係るダイバーシティ受信装置では、第 11から第 14のいずれかの発 明に加えて、第 1復調手段と第 2復調手段のそれぞれは、受信信号に対する周波数 オフセット量を補正する補正部を備え、第 1判定部は、第 1復調手段での受信状態を 適正もしくは不適正と判定し、第 2判定部は、第 2復調手段での受信状態を適正もし くは不適正と判定し、制御部は、不適正と判定された復調手段に対して、補正部の 記憶する周波数オフセット量を保持したまま、復調手段の記憶する記憶値の初期化 および復調手段に供給されるクロック信号の低減の少なくとも一つを行う。
[0037] この構成により、動作停止が行われた後に復帰する復調手段が誤動作を起こしにく いことにカ卩えて、時間経過の影響を受けにくい周波数オフセット量については、復帰 後に即座に利用可能であるので、復帰後から実動作までの時間を短縮できる。
[0038] 第 16の発明に係るダイバーシティ受信装置では、第 11の発明に加えて、第 1判定 部と第 2判定部のそれぞれは、第 1パイロットキャリアと第 2パイロットキャリアのそれぞ れの振幅値の差分が所定の閾値以上の場合には、振幅値の低い復調手段につい ては不適正と判定し、制御部は、不適正と判定された復調手段に対して、復調手段 の記憶する記憶値の初期化および復調手段に供給されるクロック信号の低減の少な くとも一つを行う。
[0039] この構成により、個々の復調手段の受信状態に加えて、復調手段ごとの受信状態 の差を考慮して復調手段の受信状態の適正と不適正を判定できる。結果として、受 信状態に乖離のある復調手段の復調結果を、ダイバーシティ受信力 排除でき、ダ ィバーシティ受信による受信精度の向上を更に図ることができる。
[0040] 第 17の発明に係るダイバーシティ受信装置では、第 11の発明に加えて、第 1判定 部は、所定数の第 1パイロットキャリアの振幅値を積算すると共に所定数の第 1データ キャリアの振幅値を積算し、第 1パイロットキャリアの積算値が、第 1データキャリアの 積算値よりも大きい場合には、適正と判定し、第 1パイロットキャリアの積算値が、第 1 データキャリアの積算値以下の場合には、不適正と判定し、第 2判定部は、所定数の 第 2パイロットキャリアの振幅値を積算すると共に所定数の第 2データキャリアの振幅 値を積算し、第 2パイロットキャリアの積算値が、第 2データキャリアの積算値よりも大 きい場合には、適正と判定し、第 2パイロットキャリアの積算値が、第 2データキャリア の積算値以下の場合には、不適正と判定する。
[0041] この構成により、パイロットキャリアとデータキャリアとから、容易に受信状態の適正と 不適正を判定できる。
[0042] 第 18の発明に係るダイバーシティ受信装置では、第 1から第 18のいずれかの発明 に加えて、第 1復調手段で復調された第 1キャリア群および第 2復調手段で復調され た第 2キャリア群の少なくとも一方に基づいて周波数オフセット量を検出する補正部 を更に備える。
[0043] この構成により、オフセット量補正部が復調手段の増カロにもかかわらず共通化され 、ダイバーシィ受信装置の回路規模の増大を抑えることができる。 発明の効果
[0044] 本発明によれば、周波数多重信号のキャリア毎のダイバーシティを行うダイバーシ ティ受信装置において、復調手段の個数が増加する場合であっても、回路規模の増 加を抑制できる。
[0045] 更に、伝送制御信号の復号とフレーム同期の検出が、復調手段が多数ある場合で あっても、共通して行われるので、復号結果や検出結果を用いた処理の負荷が少な くてすむ。また、伝送制御キャリアが信頼性値に基づいて合成もしくは選択されること により、伝送制御信号の復号における復号精度とフレーム同期の検出における検出 精度とが向上する。
[0046] また、ローカル発信器と AFC回路力 復調手段の個数の増加にかかわらず共通化 されることで、ダイバーシティ受信装置の回路規模の増大が抑制される。
[0047] 更に、複数のブランチを備えるダイバーシティ受信装置における、ブランチ毎の受 信状態の判定に基づいて、受信状態の悪いブランチの消費電力を削減できるので、 ダイバーシティ受信装置の消費電力と、受信精度の向上の適切なバランスが図られ る。
図面の簡単な説明
[0048] [図 1]本発明の実施の形態 1におけるダイバーシティ受信装置のブロック図である。
[図 2]本発明の実施の形態 1における OFDM信号を説明する説明図である。
[図 3]本発明の実施の形態 1におけるタイミング調整部とその周辺のブロック図である
[図 4]本発明の実施の形態 1におけるタイミング調整を説明するタイミングチャートで ある。
[図 5]本発明の実施の形態 1における最大比合成を示す説明図である。
[図 6]本発明の実施の形態 2におけるダイバーシティ受信装置のブロック図である。
[図 7]本発明の実施の形態 2におけるダイバーシティ受信装置のブロック図である。
[図 8]本発明の実施の形態 2におけるダイバーシティ受信装置のブロック図である。
[図 9]本発明の実施の形態 2における伝送制御キャリアの最大比合成を説明する説 明図である。
[図 10]本発明の実施の形態 3におけるダイバーシティ受信装置のブロック図である。
[図 11]本発明の実施の形態 4におけるダイバーシティ受信装置のブロック図である。
[図 12]本発明の実施の形態 4における第 1判定部の内部ブロック図である。
[図 13]本発明の実施の形態 4における第 1判定部の内部ブロック図である。
[図 14]本発明の実施の形態 4における第 1判定部と第 2判定部のブロック図である。
[図 15]本発明の実施の形態 4における第 1判定部のブロック図である。 符号の説明
[0049] 1 ダイバーシティ受信装置
2、 3 アンテナ
4 受信部
5 第 1復調手段
6 第 2復調手段
7 タイミング調整部
8 合成,選択部
9 誤り訂正部
10 制御部
13 復号部
14 検出部
20、 30 アナログデジタル変換部
21、 31 検波部
22、 32 FFT
23、 33 波形等化部
40 画像音声復号部
発明を実施するための最良の形態
[0050] 以下、図面を参照しながら、本発明の実施の形態を説明する。
[0051] (実施の形態 1)
図 1〜図 5を用いて実施の形態 1について説明する。
[0052] 図 1は、本発明の実施の形態 1におけるダイバーシティ受信装置のブロック図であり 、図 2は、本発明の実施の形態 1における OFDM信号を説明する説明図である。
[0053] なお、本明細書において、地上デジタル放送の規格である ISDB— T規格により規 定されている OFDM信号を周波数多重信号の例として説明する。また、 OFDM信 号においては、複数のキャリアが周波数軸上において直交されて多重化されており、 OFDM信号は、画像や音声データが変調されたデータキャリアと、受信特性を判定 するためのノ ィロットキャリアと、通信方式などの情報を含む伝送制御キャリアを含む 。なお、 OFDM信号は、本発明における周波数多重信号の一例に過ぎず、本発明 における周波数多重信号は、 FDM信号や SS— OFDM信号などの通信信号を幅 広く含むものである。
[0054] (全体概要)
ダイバーシティ受信装置 1は、 OFDM信号を受信して受信信号を出力する受信部 4と、この受信信号を復調して第 1データキャリア群を出力する第 1復調手段 5と、同じ く受信信号を復調して第 2データキャリア群を出力する第 2復調手段 6と、第 1データ キャリア群と第 2データキャリア群を合成もしくは選択する合成'選択部 8を備えている 。更に、第 1復調手段 5と第 2復調手段 6のそれぞれは、受信信号をアナログ信号か らデジタル信号に変換するアナログデジタル変換部 20、 30 (図中にお ヽては「AD変 換部」と表記)と、アナログデジタル変換部 20、 30の出力を検波する検波部 21、 31と 、検波部 21、 31の出力を時間軸の信号から周波数軸の信号に変換する高速フーリ ェ変換部(以下、「FFT」という) 22、 32とを備えている。
[0055] なお、ここで FFTは、時間周波数変換を行う要素の一例であり、 FFT以外のフラク タルを応用して時間周波数変換を行う要素が用いられてもよ 、。
[0056] また、第 1復調手段 5は、 FFT22の出力に含まれる伝送制御キャリアから伝送制御 信号を復調する復号部 13と、フレーム同期を検出する検出部 14を備えている。
[0057] 復号部 13と検出部 14は、二つの復調手段の内、第 1復調手段 5のみに備えられて いる。アンテナ 2、 3で受信される OFDM信号は同じ信号であり、伝送制御信号の復 号と、フレーム同期の検出は、いずれの復調手段において行われても力まわないか らである。
[0058] 第 1復調手段 5のみに備えられた復号部 13が伝送制御信号を復号し、検出部 14 力 フレーム同期を検出する。これに対して、第 2復調手段 6は、伝送制御信号の復 号とフレーム同期の検出は行わず、これらに必要な復号部、検出部を備えない。第 1 復調手段 5に備えられた復号部 13と検出部 14力 ダイバーシティ受信装置 1にお!/、 て共通の処理を行う。
[0059] 復号部 13は、復号結果を制御部 10に出力する。検出部 14は、検出結果を制御部 10に出力する。制御部 10は、受け取った復号結果を元に、変調方式や放送方式を 判断する。制御部 10は、判断結果に応じた復調処理を、受信部 4、第 1復調手段 5、 第 2復調手段 6、誤り訂正部 9などに通知する。同様に、フレーム同期に基づいて、制 御部 10は、受信や復調の区切りを、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り 訂正部 9などに通知する。この結果、ダイバーシティ受信装置 1は、送信される放送 信号に対して適切な受信と復調を行える。このとき、制御部 10は、複数の復調手段 の内の一つである第 1復調手段 5より出力される伝送制御信号とフレーム同期のみに 基づいて、放送方式や処理の区切りを判断できるので、制御部 10での処理負荷は 小さい。
[0060] カロえて、図 1に示される実施の形態 1におけるダイバーシティ受信装置 1では、ブラ ンチ数の増加にもかかわらず、復号部 13と検出部 14を一つずつ備えればよ 、ので
、回路規模の増加も抑制される。
[0061] 以上のように、処理負荷の低減と回路規模増加の抑制が図られるにもかかわらず、 ダイバーシティ受信装置 1において必要となる、伝送制御信号の復号とフレーム同期 の検出が行われる。
[0062] 次に、各要素の詳細について説明する。
[0063] (アンテナ)
アンテナ 2、 3は、 OFDM信号を受信する。復調手段の個数に対応した個数である アンテナ 2、 3が設けられる。図 1においては、復調手段が第 1復調手段 5と第 2復調 手段 6の 2つが設けられて!/、るので、アンテナもアンテナ 2とアンテナ 3の 2つのアンテ ナが設けられている。
[0064] (チューナ)
アンテナ 2にはチューナ 11が、アンテナ 3にはチューナ 12が接続されている。いず れも、放送帯域に応じた中心周波数に基づき、アンテナ 2、 3で受信された OFDM信 号の特定帯域を選択して受信する。
[0065] チューナ 11、 12は、特定帯域において受信した OFDM信号を、受信信号として第
1復調手段 5と第 2復調手段 6に出力する。
[0066] (アナログデジタル変換部)
第 1復調手段 5と第 2復調手段 6は、それぞれアナログデジタル変換部 20、 30を備 えている。
[0067] アナログデジタル変換部 20は、チューナ 11からの受信信号を、アナログ信号から デジタル信号に変換する。同様に、アナログデジタル変換部 30は、チューナ 12から の受信信号を、アナログ信号からデジタル信号に変換する。アナログデジタル変換 部 20、 30は、ダイバーシティ受信装置 1の仕様に応じた分解能を有する。
[0068] アナログデジタル変換部 20、 30は、変換したデジタル信号を、検波部 21、 31に出 力する。
[0069] (検波部)
第 1復調手段 5と第 2復調手段 6のそれぞれは、検波部 21、 31を備えている。
[0070] 検波部 21、 31は、デジタル信号に変換された受信信号を、直交検波する。検波部 21、 31は、直交検波した信号を FFT22、 32に出力する。
[0071] (FFT)
第 1復調手段 5と第 2復調手段 6のそれぞれは、 FFT22、 FFT23を備えている。 F FT22、 32のそれぞれは、検波部 21、 31の出力を、時間軸の信号から周波数軸の 信号に変換する時間周波数変換部の一例であり、時間軸の信号力 周波数軸の信 号に変換できる機能を有したものであれば、フラクタルを利用した時間周波数変換部 であっても良い。
[0072] FFT22は、第 1復調手段 5における受信信号を、時間軸から周波数軸の信号に変 換することで、周波数軸に多重化されているキャリア群を復調する。ここで、 FFT22 が復調するキャリア群を第 1キャリア群といい、第 1キャリア群は複数のキャリアを含み 、複数のキャリアのそれぞれは、相互に直交して多重化されている。
[0073] 第 1キャリア群は、 ISDB—T規格における OFDM信号に対応して、データキャリア とパイロットキャリアと伝送制御キャリアを含む。
[0074] FFT22は、復調した第 1キャリア群を波形等化部 23、復号部 13、検出部 14に出 力する。ここで、 FFT22が復調したデータキャリア群を、第 1データキャリア群と呼ぶ。
[0075] FFT32は、第 2復調手段 6における受信信号を、時間軸から周波数軸の信号に変 換することで、周波数軸上で多重化されているキャリア群を復調する。ここで、 FFT3 2が復調するキャリア群を第 2キャリア群といい、第 2キャリア群は、複数のキャリアを含 んでおり、複数のキャリアのそれぞれは、相互に直交して多重化されている。
[0076] 第 1キャリア群と同じぐ第 2キャリア群は、 ISDB—T規格における OFDM信号に対 応して、データキャリア、パイロットキャリア、伝送制御キャリアを含む。ここで、 FFT32 が復調したデータキャリア群を、第 2データキャリア群と呼ぶ。
[0077] FFT32は、復調した第 2キャリア群を波形等化部 33に出力する。
[0078] なお、 FFT22、 32は、検波部 21、 31の出力を受けて時間周波数変換を行うので、 その切り出し範囲(窓位置)を調整する機能も有して 、ることが好ま 、。
[0079] この FFT22、 32により復調された OFDM信号は、図 2により模式的に示される。
[0080] 図 2の横軸は周波数軸であり、縦軸は時間軸である。図 2に記載の〇印のそれぞれ は、キャリア群に含まれる個々のキャリアを示している。キャリアのそれぞれは、周波 数軸上に多重化されており、時間軸においては、これら多重化された複数のキャリア を 1シンボルとして、このシンボルが時間軸において多重化されている。伝送制御キ ャリアは、復号部 13で復号されて、制御部 10において放送方式や変調方式が判断 される。同様に、検出部 14は、伝送制御キャリアを用いて、フレーム同期を検出する 。ここで、フレームとは、所定の数のシンボルを基準とした単位である。
[0081] 図 2にから明らかな通り、キャリア群は、画像や音声データが変調されたデータキヤ リアと、パイロットキャリア、伝送制御キャリアを含んでおり、それぞれ、波形等化部 23 、 33、復号部 13、検出部 14に出力される。
[0082] (波形等化部)
第 1復調手段 5と第 2復調手段 6のそれぞれは、波形等化部 23、 33を備えている。
[0083] 波形等化部 23は、第 1キャリア群を受けて、第 1キャリア群に含まれるパイロットキヤ リアを元に、第 1キャリア群の振幅位相制御を行うと共に、第 1データキャリアの信頼 性を示す第 1信頼性値を算出する。
[0084] ノィロットキャリアは、既知の振幅と位相を有しており、波形等化部 23において受信 した実際のパイロットキャリア力 既知の振幅と位相を有するパイロットキャリアで複素 除算されることで、受信したパイロットキャリアの振幅と位相の変動量が算出される。こ の変動量から伝送路応答が推定される。
[0085] 波形等化部 23は、この推定された伝送路応答に基づ!/、て、 FFT22で復調された 第 1データキャリア群のそれぞれの振幅と位相を補正して、受信における受信精度を 向上させる。
[0086] 波形等化部 23は、振幅や位相を補正した第 1データキャリア群と、算出した第 1信 頼性値を合成 ·選択部 8に出力する。
[0087] 第 2復調手段 6に含まれる波形等化部 33も、波形等化部 23と同じ機能を有し、同じ 処理を行う。波形等化部 33は、第 2データキャリアの信頼性を示す第 2信頼性値を算 出する。
[0088] (タイミング調整部)
タイミング調整部 7は、 FFT22と FFT32での FFTにより復調されるキャリアの処理 タイミングを同期させる。図 2により明らかな通り、 OFDM信号はシンボルの単位を有 しているので、タイミング調整部 7は、第 1復調手段 5に含まれる FFT22と、第 2復調 手段 6に含まれる FFT32に入力するシンボルの先頭位置を時間上で合わせる。
[0089] このタイミング調整により、後述する合成 ·選択部 8に入力する第 1データキャリア群 と第 2データキャリア群のキャリアの処理タイミングが同期する。
[0090] 図 3と図 4を用いてタイミング調整部 7について説明する。
[0091] 図 3は、本発明の実施の形態 1におけるタイミング調整部とその周辺のブロック図で ある。図 4は、本発明の実施の形態 1におけるタイミング調整を説明するタイミングチ ヤートである。
[0092] 第 1復調手段 5は、検波部 21の出力を記憶する記憶部 24を備え、第 2復調手段 6 は、検波部 31の出力を記憶する記憶部 34を備えている。記憶部 24と記憶部 34のそ れぞれは、 1シンボル分の受信信号を記憶する。タイミング調整部 7は、所定の同一 タイミングで記憶部 24と記憶部 34の両方から、記憶されて 、る受信信号をシンボル 単位で読み出して、 FFT22と FFT32に出力する。この結果、 FFT22と FFT32で復 調を開始する場合には、同一シンボルの先頭位置力 復調を行えることになり、復調 におけるキャリアの処理タイミングが同期する。
[0093] 図 4に、記憶部 24と 34を用いたタイミング調整が示されている。
[0094] 図 4では、上半分のタイミングチャートが、第 1復調手段 5での処理を示し、下半分 のタイミングチャートが、第 2復調手段 6での処理を示している。第 1復調手段 5と第 2 復調手段 6は、それぞれ独立して OFDM信号を受信するので、記憶部 24と記憶部 3 4に入力する OFDMシンボルは、時間的なずれを持っている。記憶部 24と、記憶部 34は、それぞれ個別にある N番目の OFDMシンボルを記憶する。すなわち、ある時 点で、記憶部 24と記憶部 34のそれぞれは、 N番目の OFDMシンボルを記憶してい ることになる。
[0095] 次いで、タイミング調整部 7は、記憶部 24と記憶部 34の両方に、同一の出カタイミ ングパルスを送る。記憶部 24と記憶部 34は、この同一の時刻における出力タイミング パルスに基づいて、記憶している N番目の OFDMシンボルを、それぞれ FFT22と F FT32に出力する。この結果、 FFT22と FFT32においては、同一シンボルの先頭位 置から同時に復調を開始できる。すなわち、 FFT22と FFT32とでの処理タイミングが 同期する。
[0096] 結果として、合成 ·選択部 8においては、第 1復調手段 5と第 2復調手段 6とのデータ キャリアの対応位置が揃った上で、キャリア毎の合成もしくは選択ができる。
[0097] なお、図 3、図 4において説明したタイミング調整は一例であり、他の方法が用いら れてもよい。
[0098] (合成'選択部)
合成 ·選択部 8は、波形等化部 23から出力される第 1信頼性値と、波形等化部 33 力 出力される第 2信頼性値を用いて、第 1データキャリア群と第 2データキャリア群 のそれぞれに含まれるキャリアを選択もしくは合成する。このとき、合成'選択部 8は、 設定された指示に従い、選択をするか合成をする力決定する。設定は、 CPUに読み 込まれたプログラムやレジスタ設定により行われる。
[0099] まず、選択を行う場合につ!、て説明する。
[0100] 第 1復調手段 5は、合成'選択部 8に、第 1データキャリア群を出力し、第 2復調手段 6は、合成'選択部 8に、第 2データキャリア群を出力する。同様に、第 1復調手段 5は 、合成'選択部 8に、第 1データキャリア群のキャリアに対する第 1信頼性値を出力し、 第 2復調手段 6は、合成'選択部 8に、第 2データキャリア群のキャリアに対する第 2信 頼性値を出力する。合成'選択部 8は、第 1データキャリア群に含まれる任意のキヤリ ァに対する第 1信頼性値と、これに周波数軸上で対応する (周波数軸におけるキヤリ ァ位置が同じである)第 2キャリア群に含まれるキャリアに対する第 2信頼性値を比較 して、値の大き 、 (値が大き 、方を信頼性が高 、とする場合に)キャリアを選択して出 力する。
[0101] 次に、合成を行う場合について説明する。
[0102] 合成'選択部 8は、第 1データキャリア群に含まれるあるキャリアと、これに対応する 第 2データキャリア群に含まれるキャリアを、信頼性値に基づいて最大比合成する。 最大比合成とは、信頼性値に従った平均値を算出することで、第 1データキャリア群 と第 2データキャリア群のキャリアを合成することである。
[0103] 図 5を用いて説明する。図 5は、本発明の実施の形態 1における最大比合成を示す 説明図である。
[0104] 図 5では、信頼性値が値「1」〜値「3」までの 3段階の値を持っている。信頼性値の 値が大きい方が、信頼性が高いものとする。すなわち、信頼性値「3」は信頼性値「1」 よりも信頼性が高いことを示す。また第 1データキャリア群に含まれるキャリアを「C1」 とし、第 2データキャリア群に含まれるキャリアを「C2」としている。
[0105] 横列の最上位列は、キャリア「C1」の信頼性値である第 1信頼性値を示し、縦列の 左列は、キャリア「C2」の信頼性値である第 2信頼性値を示して 、る。
[0106] 合成'選択部 8は、図 5に示されるように、信頼性値に基づいて最大比合成の計算 を行い、その結果を出力する。例えば、キャリア「C1」の第 1信頼性値が値「2」であり 、キャリア「C2」の第 2信頼性値が値「1」の場合には、合成'選択部 8は、 (2xCl + C 2) Z3との計算を行って、出力する。他の場合には、図 5に示されるとおりである。
[0107] また、合成 ·選択部 8は、最大比合成以外にも、第 1データキャリア群に含まれるキ ャリアと第 2データキャリア群に含まれるキャリアを、一定の比率で合成する等比合成 を行っても良い。
[0108] なお、合成'選択部 8は、キャリア毎に、選択や合成を行う。
[0109] このような合成 ·選択部 8でのキャリア毎の選択や合成により、受信における受信精 度が向上し、ビットエラーレートなどが減少して、受信性能が向上する。
[0110] 合成'選択部 8は、結果を誤り訂正部 9に出力する。
[0111] (誤り訂正部) 誤り訂正部 9は、復調されたキャリアやキャリアに含まれるデジタルデータの誤りを 訂正する。
[0112] 誤り訂正部 9は、ビタビ復号やリードソロモン復号などを行い、キャリアやデータの誤 りを検出し訂正する。誤り訂正されたデジタルデータが、画像や音声に関するバケツ トデータとして、出力される。
[0113] (復号部)
復号部 13は、第 1復調手段 5のみに備えられ、 FFT22の出力する伝送制御キヤリ ァ(図 2に示されるように、 1シンボル中に所定の個数の伝送制御キャリアが含まれる) から、伝送制御信号を復号する。伝送制御キャリアは、種々の変調方式で変調され ているが、 ISDB—T規格においては、伝送制御キャリアは、 BPSK方式で変調され ている。復号部 13は、この変調方式に対応する方式で伝送制御信号を復号する。
[0114] 復号部 13は、復号した伝送制御信号を、制御部 10に出力する。なお、伝送制御信 号には、放送方式、変調方式、誤り訂正方式など、受信に必要な種々の情報が含ま れている。
[0115] (検出部)
検出部 14は、 FFT22の出力である伝送制御キャリアから、フレーム同期を検出す る。 ISDB— T規格においては、 OFDM信号は、フレームと呼ばれる単位を有してお り、このフレーム単位での復調、誤り訂正および画像音声の再生が行われる。受信や 復調における処理区切りの基準として、ダイバーシティ受信装置 1は、このフレーム同 期を必要とする。
[0116] 検出部 14は、検出結果を制御部 10に出力する。
[0117] (制御部)
制御部 10は、ダイバーシティ受信装置 1全体の制御を行う。ダイバーシティ受信装 置 1は、 OFDM信号を受信して復調するに際して、処理単位であるフレーム同期と、 放送方式や変調方式を判断する必要がある。制御部 10が、これらを判断した上で、 ダイバーシティ受信装置 1が、受信して!/ヽる OFDM信号の放送方式や変調方式に 対応した処理を行えるようになる。
[0118] 制御部 10は、復号部 13から出力された伝送制御信号を元に、放送方式や伝送方 式を判断する。同様に、制御部 10は、検出部 14で検出されたフレーム同期から、処 理の区切りを判断する。制御部 10は、受信部 4、第 1復調手段 5、第 2復調手段 6、誤 り訂正部 9などに、判断結果を通知する。
[0119] (画像音声復号部)
画像音声復号部 40は、誤り訂正部 9から出力されたパケットデータを、所定の方式 により復号する。復号されたパケットデータは、画像、音声として再生され、ダイバー シティ受信装置 1を備える携帯端末や移動端末において、ユーザが視聴できるように なる。
[0120] (ダイバーシティ受信装置の動作)
次に、実施の形態 1におけるダイバーシティ受信装置 1の動作について説明する。
[0121] 第 1復調手段 5は、アンテナ 2およびチューナ 11で受信された OFDM信号を復調 し (各部の詳細で説明した、各要素の動作により復調処理を行う)、第 1キャリア群を 出力する。同様に、第 2復調手段 6は、アンテナ 3およびチューナ 12で受信された O FDM信号を復調し、第 2キャリア群を出力する。第 1キャリア群に含まれる第 1データ キャリア群と、第 2キャリア群に含まれる第 2データキャリア群は、合成'選択部 8にお いて、合成もしくは選択される。
[0122] ここで、第 1復調手段 5のみが備える復号部 13が伝送制御信号を復号し、検出部 1 4力 フレーム同期を検出する。制御部 10は、この復号結果に基づいて、放送方式 や変調方式を判断し、判断結果に応じた復調処理を、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り訂正部 9などに通知する。同様に、フレーム同期に基づいて、制御 部 10は、受信や復調の区切りを、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り訂 正部 9などに通知する。この結果、ダイバーシティ受信装置 1は、送信される放送状 態に適切に対応した受信処理を行える。
[0123] このとき、制御部 10は、複数の復調手段の内の一つである第 1復調手段 5より出力 される伝送制御信号とフレーム同期のみに基づいて、放送方式や処理の区切りを判 断できるので、放送方式や処理区切りの判断における煩雑性がな!、。
[0124] カロえて、図 1に示される実施の形態 1におけるダイバーシティ受信装置 1では、ブラ ンチ数の増加にもかかわらず、復号部 13と検出部 14を一つずつ備えればよ 、ので 、回路規模の増加も抑制される。
[0125] 以上のように、処理負荷の低減と回路規模増加の抑制が図られるにもかかわらず、 ダイバーシティ受信装置 1において必要となる伝送制御信号の復号と、フレーム同期 の検出が行われる。
[0126] なお、実施の形態 1においては、ブランチの個数が 2つの場合について説明したが 、ブランチが 3以上であっても同様である。この場合には、ダイバーシティ受信装置 1 は、復号部 13と検出部 14を備えない第 2復調手段 6と同じ構成を有する第 3復調手 段 (あるいはそれ以上の復調手段)を備える。
[0127] (実施の形態 2)
次に、実施の形態 2について説明する。
[0128] 実施の形態 2では、復号部 13と検出部 14が、ブランチの個数にかかわらず、共通 に備えられている。
[0129] (第 1例)
まず、図 6を用いて説明する。図 6は、本発明の実施の形態 2におけるダイバーシテ ィ受信装置のブロック図である。
[0130] 図 1と同じ符号を付した要素は、実施の形態 1において説明したのと同等の機能を 有する。
[0131] 図 6に示されるダイバーシティ受信装置 1は、 FFT22から出力される第 1伝送制御 キャリアと、 FFT32から出力される第 2伝送制御キャリアのいずれかを選択する選択 部 50を備えている。
[0132] 選択部 50は、所定の設定に従い、第 1伝送制御キャリアか第 2伝送制御キャリアの いずれかを選択する。例えば、制御部 10は、プロセッサを有しており、プロセッサは 所定のプログラムを読み込んで、この読み込まれたプログラムの設定において、第 1 伝送キャリアと第 2伝送キャリアのいずれかの選択が指示される。
[0133] 選択部 50で選択された伝送制御キャリアに基づ 、て、復号部 13は、伝送制御信 号を復号して復号結果を制御部 10に出力し、検出部 14は、フレーム同期を検出し て、検出結果を制御部 10に出力する。復号部 13、検出部 14の詳細な動作は、実施 の形態 1に説明したとおりである。 [0134] 制御部 10は、受け取った復号結果に基づいて、放送方式や変調方式を判断し、 判断結果に応じた復調処理を、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り訂正 部 9などに通知する。同様に、受け取ったフレーム同期に基づいて、制御部 10は、受 信や復調の処理区切りを、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り訂正部 9 などに通知する。この結果、ダイバーシティ受信装置 1は、送信される放送状態に適 切に対応した受信処理を行える。
[0135] 図 6に示されるダイバーシティ受信装置 1においては、複数の復調手段から出力さ れる複数の伝送制御キャリアの 、ずれか一つを選択して、共通に設けられた復号部 13と検出部 14により、伝送制御信号の復号と、フレーム同期の検出が行われる。こ のため、ダイバーシティ受信のためにブランチ数が増加しても、回路規模の増大が抑 制される。
[0136] また、制御部 10は、一つの伝送制御信号とフレーム同期のみに基づいて、放送方 式や処理区切りを判断できるので、放送方式や処理区切りの判断における煩雑性が 減る。
[0137] なお、合成 ·選択部 8におけるキャリア毎のダイバーシティ受信や、誤り訂正部 9に おける誤り訂正、画像音声復号部 40における処理は、実施の形態 1で説明したのと 同様である。
[0138] (第 2例)
次に、図 7を用いて、別の態様のダイバーシティ受信装置 1について説明する。図 7 は、本発明の実施の形態 2におけるダイバーシティ受信装置のブロック図である。
[0139] 図 1と同じ符号を付した要素は、実施の形態 1において説明したのと同等の機能を 有する。第 2合成'選択部 8は、第 1合成'選択部 60との区別上のために「第 1」を付し ているが、実施の形態 1で説明された合成'選択部 8と同じ機能を有している。すなわ ち、第 2合成 ·選択部 8は、第 1データキャリアと第 2データキャリアを、第 1信頼性値と 第 2信頼性値に基づいて、合成もしくは選択する。
[0140] 第 1合成 ·選択部 60は、 FFT22から出力される第 1伝送制御キャリアと、 FFT32か ら出力される第 2伝送制御キャリアを合成もしくは選択して、復号部 13と検出部 14に 出力する。復号部 13と検出部 14は、複数の復調手段のいずれにも備えられておら ず、共通に一つずつ設けられている。
[0141] 第 1合成 ·選択部 60は、所定の比率で第 1伝送制御キャリアと第 2伝送制御キャリア を合成する。もしくは、第 1合成'選択部 60は、所定の設定に従い、第 1伝送制御キヤ リアと第 2伝送制御キャリアのいずれかを選択する。結果として、復号部 13と検出部 1 4で用いられる伝送制御キャリアは一つだけになる。
[0142] なお、第 1合成'選択部 60は、各キャリア群で別々にシンボル遅延検波を行った信 号について、合成もしくは選択してもよい。
[0143] 復号部 13は、第 1合成 ·選択部 60で合成もしくは選択された伝送制御キャリアを元 に、伝送制御信号を復号する。復号部 13は、復号結果を制御部 10に出力する。検 出部 14は、第 1合成.選択部 60で合成もしくは選択された伝送制御キャリアを元に、 フレーム同期を検出し、検出結果を制御部 10に出力する。すなわち、制御部 10は、 ブランチの個数が複数であっても、一つの復号結果と検出結果のみを取り扱うだけで すむ。
[0144] 制御部 10は、受け取った復号結果に基づ 、て、放送方式や変調方式を判断し、 判断結果に応じた復調処理を、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り訂正 部 9などに通知する。同様に、制御部 10は、受け取ったフレーム同期に基づいて、受 信や復調の区切りを、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り訂正部 9など に通知する。この結果、ダイバーシティ受信装置 1は、送信される放送状態に適切に 対応した受信処理を行える。
[0145] 図 7に示されるダイバーシティ受信装置 1においては、複数の復調手段から出力さ れる複数の伝送制御キャリアが合成もしくは選択される。共通に設けられた復号部 13 と検出部 14は、合成もしくは選択された伝送制御キャリアを用いて、伝送制御信号を 復号し、フレーム同期を検出する。このため、ダイバーシティ受信に必要となるブラン チ数が増加しても、復号部 13と検出部 14は増加しないので、ダイバーシティ受信装 置 1全体の回路規模の増加が抑えられる。
[0146] また、制御部 10は、一つの伝送制御信号とフレーム同期のみに基づいて、放送方 式や処理の区切りを判断できるので、煩雑性もなぐ処理が軽くなる。
[0147] (第 3例) 次に、図 8を用いて、別の態様のダイバーシティ受信装置 1について説明する。図 8 は、本発明の実施の形態 2におけるダイバーシティ受信装置のブロック図である。
[0148] 図 1と同じ符号を付した要素は、実施の形態 1において説明したのと同等の機能を 有する。第 2合成'選択部 8は、第 1合成'選択部 60との区別上のために「第 2」を付し ているが、実施の形態 1で説明された合成'選択部 8と同じ機能を有している。すなわ ち、第 2合成 ·選択部 8は、第 1データキャリアと第 2データキャリアを、第 1信頼性値と 第 2信頼性値に基づいて、合成もしくは選択する。
[0149] 図 7と異なり、第 1合成選択部 60には、第 1波形等化部 23からの第 1信頼性値およ び第 1キャリア群と、第 2波形等化部 33からの第 2信頼性値および第 2キャリア群が入 力する。すなわち、図 7に示されたダイバーシティ受信装置 1と異なり、図 8に示される ダイバーシティ受信装置 1では、第 1合成 ·選択部 60は、第 1信頼性値と第 2信頼性 値を用いて、第 1伝送制御キャリアと第 2伝送制御キャリアを合成もしくは選択する。
[0150] なお、第 1波形等化部 23は、第 1データキャリアと第 1伝送制御キャリアの両方に対 する第 1信頼性値を算出して出力する。同様に、第 2波形等化部 33は、第 2データキ ャリアと第 2伝送制御キャリアの両方に対する第 2信頼性値を算出して出力する。この 結果、第 1合成,選択部 60は、第 1信頼性値と第 2信頼性値を用いて、第 1伝送制御 キャリアと第 2伝送制御キャリアの合成もしくは選択を行うことができる。
[0151] 第 1合成'選択部 60は、第 1信頼性値と第 2信頼性値の値に基づいて、第 1伝送制 御キャリアと第 2伝送制御キャリアの合成もしくは選択を行う。
[0152] 選択を行う場合には、第 1合成 ·選択部 60は、第 1信頼性値と第 2信頼性値の値を 比較して、値の大きな信頼性値に対応する伝送制御キャリアを選択する。例えば、第 1信頼性値が第 2信頼性値よりも大きい場合には、第 1合成'選択部 60は、第 1伝送 制御キャリアを選択して出力する。
[0153] 合成を行う場合には、第 1合成 ·選択部 60は、伝送制御キャリアに対して、所定の 比率で合成したり、同じ比率による等比合成を行ったり、信頼性値の値に従った最大 比合成を行ったりする。最大比合成は、図 5を用いて説明したデータキャリアの最大 比合成と同じ処理により行われる。
[0154] 図 9は、本発明の実施の形態 2における伝送制御キャリアの最大比合成を説明する 説明図である。第 1伝送制御キャリアを Tl、第 2伝送制御キャリアを Τ2としている。
[0155] 図 9では、信頼性値が値「1」〜値「3」までの 3段階の値を持っている。信頼性値の 値が大きい方が、信頼性が高いものとする。すなわち、信頼性値「3」は信頼性値「1」 よりも信頼性が高いことを示す。
[0156] 横列の最上位列は、第 1伝送制御キャリア「Τ1」の信頼性値である第 1信頼性値を 示し、縦列の左列は、第 2伝送制御キャリア「Τ2」の信頼性値である第 2信頼性値を 示している。
[0157] 第 1合成 ·選択部 60は、図 9に示されるように、信頼性値に基づいて最大比合成の 計算を行い、その結果を出力する。例えば、キャリア「Τ1」の第 1信頼性値が値「2」で あり、キャリア「Τ2」の第 2信頼性値が値「1」の場合には、第 1合成'選択部 60は、 (2 χΤ1 +Τ2) Ζ3との計算を行って、出力する。他の場合には、図 9に示されるとおりで ある。
[0158] なお、タイミング調整部 7の処理により、 FFT22と FFT32での復調におけるキャリア の処理タイミングは同期しているので、第 1合成'選択部 60においては、同一時間に 対応する第 1伝送制御キャリアと第 2伝送制御キャリアが、同一時間帯に入力する。
[0159] 第 1合成'選択部 60が、合成もしくは選択することで、伝送制御キャリアの受信にお ける受信精度が高くなる。すなわち、信頼性値に基づいた合成、選択により、第 1合 成'選択部 60の出力になる伝送制御キャリアは、第 1合成'選択部 60に入力する前 の伝送制御キャリアよりも、 CZN比が高くなりうる。特に、合成が行われた場合には、 無相関のノイズに対して、相関のあるキャリアが合成されるので、少なくとも 3dB程度 の CZN比の改善が見込まれる。
[0160] このように、 CZN比の改善された (加えて、ダイバーシティ受信装置 1全体で一つ だけに収束した)伝送制御キャリアが復号部 13と検出部 14に入力するので、非常に 高い精度で伝送制御信号の復号と、フレーム同期検出が行われる。また、制御部 10 が受け取る伝送制御信号とフレーム同期の検出結果は一つだけであるので、これら を用いた処理の負荷が軽減する。勿論、復号部 13と検出部 14は、ブランチの個数 の増カロにもかかわらず、ダイバーシティ受信装置 1で共通に一つだけ持てばよいの で、回路規模も削減される。 [0161] 以上より、図 8に示されるダイバーシティ受信装置 1においては、回路規模の削減 や制御部 10における処理負荷の軽減に加えて、伝送制御信号の復号精度の向上と フレーム同期検出精度の向上が実現される。この結果、受信における受信精度の向 上が図られ、特に、第 2合成'選択部 8において行われるキャリア毎のダイバーシティ 受信による受信精度の向上とあいまって、従来の技術におけるダイバーシティ受信 装置に比較して、その受信精度の高い向上が実現される。
[0162] なお、制御部 10は、受け取った復号結果に基づ 、て、放送方式や変調方式を判 断し、判断結果に応じた復調処理を、受信部 4、第 1復調手段 5、第 2復調手段 6、誤 り訂正部 9などに通知する。同様に、受け取ったフレーム同期に基づいて、制御部 10 は、受信や復調の処理区切りを、受信部 4、第 1復調手段 5、第 2復調手段 6、誤り訂 正部 9などに通知する。この結果、ダイバーシティ受信装置 1は、送信される放送状 態に適切に対応した受信処理を行える。
[0163] (実施の形態 3)
次に、実施の形態 3について図 10を用いて説明する。
[0164] 図 10は、本発明の実施の形態 3におけるダイバーシティ受信装置のブロック図であ る。
[0165] 図 10に示されるダイバーシティ受信装置 1は、ローカル発信器(図中においては「L OJと表記) 70、周波数自動調整器(以下および図中にお 、ては「AFC (Auto Fre quency Control」と表記) 71、第 3合成'選択部 72を備えている。図 8と同じ符号を 付した要素は、同等の機能を有する。
[0166] 実施の形態 3におけるダイバーシティ受信装置 1では、チューナ 11、 12を設定する ローカル発信器 70が発生する周波数と送信される OFDM信号のチャネル周波数と の差分である周波数オフセット量を補正する要素が、ブランチ数の増加にかかわらず 、共通化されている。
[0167] ローカル発信器 70は、選択したチャネルに応じた発信周波数を、チューナ 11、 12 に出力する。チューナ 11、 12は、発信周波数に基づいてチャネルを選択し、所望の OFDM信号を出力する。この OFDM信号は、受信信号として、第 1復調手段 5、第 2 復調手段 6に出力される。このようにローカル発信器 70が共通に設けられて 、ること により、第 1復調手段 5と第 2復調手段 6のそれぞれにおいて発生する周波数オフセ ット量は同じになる。
[0168] 第 3合成'選択部 72は、 FFT22からの第 1キャリア群と FFT32からの第 2キャリア群 を合成もしくは選択して、 AFC71に出力する。 AFC71は、第 3合成'選択部 72から の出力を用いて、周波数オフセット量を検出する。 AFC71は、検出された周波数ォ フセット量を、検波部 21、 31に通知する。検波部 21、 31は、この通知された周波数 オフセット量を用いて、受信信号の正確な直交検波を行える。
[0169] なお、第 3合成 ·選択部 72は、各キャリア群で別々にシンボル遅延検波を行った信 号を、合成もしくは選択しても良い。
[0170] このように、ローカル発信器 70、 AFC71力 ブランチ数の増加にかかわらず共通 ィ匕されることで、回路規模および消費電力が削減できる。
[0171] また、図 10においては、第 3合成.選択部 72の出力信号力 AFC71に入力する。
あるいは、 AFC71に対しては、第 1合成'選択部 60もしくは第 2合成'選択部 8の出 力信号が入力されても良い。
[0172] (実施の形態 4)
次に、実施の形態 4について説明する。
[0173] 実施の形態 4におけるダイバーシティ受信装置は、ダイバーシティ受信装置に設け られた複数のブランチの内で、受信状態が不適正なブランチについては、ダイバー シティの対象から除外する。力!]えて、受信状態が不適正なブランチについては、適切 な処理がなされる。
[0174] 図 11は、本発明の実施の形態 4におけるダイバーシティ受信装置のブロック図であ る。
[0175] 図 11に示されるダイバーシティ受信装置では、第 1復調手段 5は、第 1復調手段 5 での受信状態を判定する第 1判定部 25を備え、第 2復調手段 6は、第 2復調手段 6で の受信状態を判定する第 2判定部 35を備えている。第 1判定部 25と、第 2判定部 35 は、それぞれ判定結果を制御部 10に出力する。制御部 10は、判定結果に従って、 第 1復調手段 5、第 2復調手段 6、第 1合成 ·選択部 60及び第 2合成 ·選択部 8の少な くとも一つを制御する。 [0176] 第 1判定部 25は、第 1復調手段 5の受信状態を、適正もしくは不適正として判定し、 判定結果を制御部 10に出力する。同様に、第 2判定部 35は、第 2復調手段 6の受信 状態を、適正もしくは不適正として判定し、判定結果を制御部 10に出力する。
[0177] ここで、適正とは、ダイバーシティ受信において、使用してよいブランチであると判 定されることであり、不適正とは、ダイバーシティ受信において、使用すべきでないブ ランチであると判定されることである。
[0178] まず、受信状態の判定について説明する。
[0179] (受信状態の判定の第 1例)
第 1判定部 25は、 FFT22から出力される第 1キャリア群に含まれるパイロットキヤリ ァ(以下、「第 1パイロットキャリア」という)の振幅値および変化値の少なくとも一方に 基づいて、受信状態を判定する。同様に、第 2判定部 35は、 FFT32から出力される 第 2キャリア群に含まれるパイロットキャリア(以下、「第 2パイロットキャリア」 t 、う)の振 幅値および変化値の少なくとも一方に基づいて、受信状態を判定する。
[0180] 図 12を用いて、第 1判定部 25と第 2判定部 35での受信状態の判定の一例を説明 する。図 12は、本発明の実施の形態 4における第 1判定部の内部ブロック図である。 なお、第 2判定部 35の内部ブロック図も図 12と同様である。
[0181] FFT22の出力は、遅延回路 25aと、複素乗算回路 25cに入力する。遅延回路 25a は、 FFT22出力を、 4シンボル分遅延させて出力する。複素共役回路 25bは、遅延 回路 25aの出力の複素共役を算出する。複素乗算回路 25cは、 FFT11の出力と、 複素共役回路 25bの出力を複素乗算する。ここで、パイロットキャリアに変調される信 号は、一定位相、一定振幅である特徴があることから、複素乗算回路 25cの出力べク トルは、同一方向を有する。複素加算回路 25dは、複素乗算されたパイロットキャリア を OFDM信号のシンボルの全体に渡って、アナログ的な加算演算を行う。
[0182] 振幅算出回路 25eは、複素加算回路 25dの出力を用いて、パイロットキャリアのベタ トルの大きさを算出する。このベクトルの大きさは、第 1キャリア群に含まれる第 1パイ ロットキャリアの振幅値を示す。
[0183] 判定回路 25fは、所定の閾値とこの振幅値を比較する。判定回路 25fは、振幅値が 所定の閾値よりも大きい場合には、受信状態が適正であると判定し、振幅値が所定 の閾値以下の場合には、受信状態は不適正であると判定する。
[0184] (受信状態の判定の第 2例)
次に、受信状態の判定の他の方式について、図 13を用いて説明する。図 13に示さ れる判定部は、振幅値の変化状態である変化値を算出する。
[0185] 図 13は、本発明の実施の形態 4における第 1判定部の内部ブロック図である。なお 、第 2判定部 35の内部ブロック図も図 13と同様である。
[0186] 図 12と同じ符号を付している要素は、図 12を用いて説明した要素と同等の機能を 有する。すなわち、 FFT22の出力に対して、遅延回路 25aから、振幅算出回路 25e までの処理により、第 1パイロットキャリアの振幅値が算出される。
[0187] 遅延回路 25gは、振幅算出回路 25eの出力を、シンボル単位で遅延させる。減算 回路 25hは、振幅算出回路 25eの出力と、遅延回路 25gの出力の差分を算出する。 すなわち、 1シンボル前における第 1パイロットキャリアの振幅値と、現在の第 1パイ口 ットキャリアの振幅値との差分が得られる。これは、振幅値の変化値に相当する。
[0188] 判定回路 25iは、現在のシンボルに含まれる第 1パイロットキャリアの振幅値を、所 定の閾値 1と比較する。すなわち、判定回路 25iは、現在のシンボルに含まれる第 1 パイロットキャリアの振幅値から、受信状態の適正と不適正を判定する。
[0189] 更に、判定回路 2¾は、減算回路 25hの出力、すなわち現在のシンボルと 1つ前の シンボルに含まれる第 1パイロットキャリアの振幅値の差分値を閾値 2と比較する。差 分値を閾値 2と比較することで、受信状態の変化を判定できる。
[0190] すなわち、判定回路 25iにおいて現在の受信状態が把握され、判定回路 2¾にお V、て受信状態の変化が把握される。
[0191] AND回路 25kは、判定回路 25iと判定回路 2¾の両方の結果が適正である場合に 、受信状態を適正として判定結果を出力する。図 13に示される判定部により、例えば 、フェージングの発生などで急激に受信状態が変化する場合であっても、ブランチに おける受信状態の変化を適切に把握した上で、受信状態が適正であるか不適正で あるかを判定できる。
[0192] 例えば、現在の受信状態は適正であったにもかかわらず、フェージングの発生によ り急激に受信状態が劣化した場合も、受信状態を不適正と判定でき、より正確な受信 状態の判定ができる。
[0193] (受信状態の判定の第 3例)
次に、受信状態の判定の更なる他の方式について、図 14を用いて説明する。図 14 に示される判定部は、ブランチ毎の受信状態の差分に基づいて、各ブランチの受信 状態を判定する。
[0194] 図 14は、本発明の実施の形態 4における第 1判定部と第 2判定部のブロック図であ る。
[0195] 第 1判定部 25と第 2判定部 35に加えて、第 1復調手段 5と第 2復調手段 6との間の 差分を把握する減算回路 80と、差分に基づいて判定する判定回路 81とが設けられ ている。
[0196] 減算回路 80は、振幅算出回路 25eと振幅算出回路 35eとの差分を算出する。この 差分は、第 1復調手段 5と第 2復調手段 6とでの、受信されたパイロットキャリアの受信 レベルの差を表す。判定回路 81は、減算回路 80での減算結果を所定の閾値 3と比 較して判定し、判定結果を AND回路 25m、 35mに出力する。判定回路 81は、減算 回路 80で算出された 2つのブランチ間での受信レベルの差分を、所定の閾値 3と比 較しているので、判定回路 81は、 2つのブランチ間での受信レベル差の大小を判定 できる。更に、いずれのブランチの受信状態が低いの力も判定できる。
[0197] 例えば、第 1復調手段 5を含むブランチの受信レベルが、第 2復調手段 6を含むブ ランチの受信レベルよりも大きいと共にその差分が閾値 3以上の場合には、判定回路 81は、 AND回路 25mには適正との判定結果を、 AND回路 35mには、不適正との 判定結果を出力する。この結果、第 2復調手段 6におけるパイロットキャリアの振幅が 一定以上ある場合でも、第 1復調手段 5での受信レベルの差異が大きすぎる場合に は、第 2復調手段 6を含むブランチでの受信は、不適正と判定される。
[0198] (受信状態の判定の第 4例)
次に、受信状態の判定の更なる他の方式について、図 15を用いて説明する。図 15 に示される判定部は、復調されたキャリア群に含まれるデータキャリアの振幅とパイ口 ットキャリアの振幅を比較することで、当該ブランチの受信状態を判定する。
[0199] 図 15は、本発明の実施の形態 4における第 1判定部のブロック図である。図 12と同 じ符号が付された要素は、図 12で説明したものと同等の機能を有する。
[0200] 複素乗算回路 25cの出力は、複素加算回路 25dと、複素加算回路 25ηとにそれぞ れに入力する。複素加算回路 25dは、キャリア群の内パイロットキャリアの複素加算を 行い、振幅算出回路 25eは、パイロットキャリアの振幅を算出する。
[0201] これに対して、複素加算回路 25ηは、キャリア群の内データキャリアの複素加算を 行い、振幅算出回路 25οは、データキャリアの振幅を算出する。
[0202] ノ ィロットキャリアは、理想的には同一の振幅と位相を有しているので、複素加算回 路 25dの出力は、時間の経過と共に一定の大きさを有するようになる。し力しながら、 受信状態が悪い場合には、ノ ィロットキャリアの振幅と位相がランダムになりがちであ るので、複素加算回路 25dの出力は時間の経過と共に小さくなる。
[0203] これに対して、データキャリアは、振幅や位相がランダムであるため、複素加算回路
25ηにおいてベクトル的な加算が行われることで、複素加算回路 25ηの出力は、時 間の経過と共に値「0」に収束する。
[0204] 比較回路 25ρは、キャリア群に含まれるパイロットキャリアの振幅値とデータキャリア の振幅値とを比較する。さらに、比較回路 25ρは、パイロットキャリアの振幅値とデー タキャリアの振幅値との差分値を、閾値 4と比較する。
[0205] 受信状態が良好であれば、パイロットキャリアの振幅値は、データキャリアの振幅値 よりも十分に大きくなるはずである。このため、比較回路 25ρは、パイロットキャリアの 振幅値が、データキャリアの振幅値よりも大きぐ且つその差分が所定の閾値 4よりも 大きい場合には、受信状態を適正として判定する。
[0206] なお、ここでは、 4つの態様に基づく受信状態の判定について説明した力 これら に限られるものではない。
[0207] (制御)
以上のように、ブランチの受信状態の判定結果を受けて、制御部 10は、第 1復調手 段 5、第 2復調手段 6、第 1合成 ·選択部 60、第 2合成 ·選択部 8および受信部 4の少 なくとも一つを制御する。
[0208] まず、制御部 10は、不適正との判定を受けたブランチに含まれる復調手段で復調 されたキャリア群を、第 1合成'選択部 60と第 2合成'選択部 8において、不使用とす る制御を行う。不適正と判定を受けた復調手段力 のキャリア群に含まれるデータキ ャリアや伝送制御キャリアは、受信状態が悪ぐ合成や選択に不使用とする方が良い 力もである。なお、合成における不使用とは、合成時に当該キャリアを用いないことの ほかに、当該キャリアを値「0」として合成演算を行ったり、当該キャリアの値を非常に 小さくして合成演算を行ったり、当該キャリアに対応する信頼性値の寄与度を下げて 合成演算を行ったりする処理を幅広く含む。当然、合成 ·選択部において選択処理 力 される場合には、不適正との判定を受けた復調手段力も出力されるキャリアが非 選択となるように処理される。
[0209] 要は、制御部 10は、不適正との判定を受けた復調手段から出力されるキャリアにつ いては、合成 ·選択時における寄与度を低下させる制御を行う。
[0210] 次に、制御部 10は、第 1復調手段 5および第 2復調手段 6において、不適正と判定 された復調手段に対して、消費電力削減のための制御を行う。
[0211] 例えば、第 1復調手段 5での受信が不適正と判定された場合について考える。
[0212] 制御部 10は、まず第 1復調手段 5に含まれる記憶部が記憶している記憶値の初期 化を行う。不適正と判定された復調手段における記憶値が、そのままであると、不適 正状態から適正状態に戻った場合 (あるいは、強制的に不適正状態から適正状態に 移行された場合)に、復調処理の結果に不適切な値が生じうる力もである。初期化に より、復帰後において、復調結果が早期にかつ適切に得られるようになる。
[0213] なお、第 1復調手段 5と第 2復調手段 6のそれぞれが、受信周波数に対する周波数 オフセット量を補正する AFC部を備えて 、る場合には、この周波数オフセット量につ いては、初期化の際に初期化されずに、記憶されている周波数オフセット量の値が そのまま保持されることが好適である。周波数オフセット量は、時間の経過にかかわら ず、一定の値に持続されることが多い。このため、初期化されて復帰後に再計算が行 われるよりも、復帰後に、記憶されているオフセット量の値がそのまま使用される方の 効率が良いからである。
[0214] 初期化が終了すると、制御部 10は、第 1復調手段 5に対して供給されるクロック信 号を低減もしくは停止する。受信状態が不適正と判定されているので、第 1復調手段 5の復調結果は、ダイバーシティ受信装置 1においては、不必要であるからである。 [0215] クロック信号の停止によって回路動作が停止されることで、消費電力を削減する方 力 ダイバーシティ受信装置 1にお 、ては効率的である。
[0216] 逆に、不適正状態から適正状態へ変化したり、強制的に不適正状態を解除したり する場合には、第 1復調手段 5は、復帰状態になる。復帰状態になると、まず停止さ れていたクロック信号の供給が再開される。クロック信号の再開を受けて、記憶されて いた周波数オフセット量が使用されるようになる。次いで、初期化状態が終了し、第 1 復調手段 5における復調処理に従って、記憶部の値が更新されつつ復調処理が続 行される。
[0217] 復帰により、ダイバーシティ受信装置 1において、第 1復調手段 5の復調結果が、再 び使用されるようになる。
[0218] このように、ブランチ毎の受信状態が判定され、受信状態が不適正と判定されたブ ランチに対しては、クロック信号の低減もしくは停止が行われることで、消費電力が削 減される。また、クロック信号の低減もしくは停止に先立って、記憶値の初期化が行わ れることで、復帰後の誤動作が防止できる。
[0219] なお、実施の形態 1から 4においては、第 1復調手段 5と第 2復調手段 6の 2つの復 調手段を備えるダイバーシティ受信装置 1を例として説明したが、 3以上の復調手段 ( ブランチ)を備えて ヽても良 、。
[0220] また、ダイバーシティ受信装置 1の一部もしくは全部は、ハードウェアで構成されて も、ソフトウェアで構成されても良い。また、ダイバーシティ受信装置 1の一部もしくは 全部は、半導体集積回路で構成されても良い。
[0221] また、クロック信号の低減や停止の動作は、いずれかの復調手段の受信状態に基 づいて制御されるだけではなぐある復調手段の受信動作が止められた場合 (ダイバ 一シティ受信に使用されない)でも、十分な受信精度があると判断された場合に制御 されても良い。この場合に、クロック信号が低減された復調手段については、この復 調手段を含めたブランチを用いたダイバーシティ受信により受信精度を上げたい場 合に、低減されたクロック信号の復帰が行われてもよ 、。
[0222] ソフトウェアで構成される場合には、プロセッサとプログラムを記憶した ROMや RA
Mなどが備えられて、必要な処理が行われる。 [0223] CPUは、 ROMや RAMに記憶されたプログラムを読み込む。次!、で、 CPUは、読 み込んだプログラムを使用して、 OFDM信号の受信、 OFDM信号の復調、伝送制 御信号の復号、フレーム同期の検出およびダイバーシティ受信の処理を行う。
産業上の利用可能性
[0224] 本発明は、例えば、地上デジタル放送を受信する携帯端末や移動端末に含まれる ダイバーシティ受信装置の分野等にお 、て好適に利用できる。

Claims

請求の範囲
[1] データキャリアとパイロットキャリアと伝送制御キャリアを含むキャリア群が多重化され た周波数多重信号を受信して受信信号を出力する受信部と、
前記受信信号を復調して第 1データキャリアを出力する第 1復調手段と、 前記受信信号を復調して第 2データキャリアを出力する第 2復調手段と、 前記第 1復調手段で復調されるキャリア群と前記第 2復調手段で復調されるキャリア 群の処理タイミングを同期させるタイミング調整部と、
前記第 1データキャリアと前記第 2データキャリアを合成もしくは選択する合成'選択 部を備え、
前記第 1復調手段と前記第 2復調手段のそれぞれは、前記受信信号をアナログ信 号力 デジタル信号に変換するアナログデジタル変換部と、前記アナログデジタル変 換部の出力を検波する検波部と、前記検波部の出力を時間軸の信号から周波数軸 の信号に変換する時間周波数変換部を備え、
前記第 1復調手段と前記第 2復調手段のいずれか一方は、前記時間周波数変換 部の出力から、伝送制御信号を復号する復号部と、フレーム同期を検出する検出部 を備えるダイバーシティ受信装置。
[2] データキャリアとパイロットキャリアと伝送制御キャリアを含むキャリア群が多重化され た周波数多重信号を受信して受信信号を出力する受信部と、
前記受信信号を復調して第 1データキャリアと第 1伝送制御キャリアを出力する第 1 復調手段と、
前記受信信号を復調して第 2データキャリアと第 2伝送制御キャリアを出力する第 2 復調手段と、
前記第 1復調手段で復調されるキャリア群と前記第 2復調手段で復調されるキャリア 群の処理タイミングを同期させるタイミング調整部と、
前記第 1伝送制御キャリアと前記第 2伝送制御キャリアを合成もしくは選択する第 1 合成,選択部と、
前記第 1データキャリアと前記第 2データキャリアを合成もしくは選択する第 2合成' 選択部と、 前記第 1合成 ·選択部で合成もしくは選択された伝送制御キャリアを用いて、伝送 制御信号を復号する復号部と、フレーム同期を検出する検出部を備えるダイバーシ ティ受信装置。
[3] 前記復号部は、前記第 1合成 ·選択部で合成された伝送制御キャリアを用いて伝送 制御信号を復号し、前記検出部は、前記第 1合成,選択部で合成された伝送制御キ ャリアを用いてフレーム同期を検出する請求の範囲第 2項記載のダイバーシティ受信 装置。
[4] 前記第 1復調手段は、前記第 1伝送制御キャリアと第 1データキャリアに対する信頼 性を示す第 1信頼性値を算出する第 1波形等化部を備え、
前記第 2復調手段は、前記第 2伝送制御キャリアと第 2データキャリアに対する信頼 性を示す第 2信頼性値を算出する第 2波形等化部を備える請求の範囲第 2項記載の ダイバーシティ受信装置。
[5] 前記第 1合成 ·選択部は、前記第 1信頼性値と第 2信頼性値に基づいて、前記第 1伝 送制御キャリアと前記第 2伝送制御キャリアのいずれか一方を選択する請求の範囲 第 4項記載のダイバーシティ受信装置。
[6] 前記第 1合成 ·選択部は、前記第 1信頼性値と第 2信頼性値に基づいて、前記第 1伝 送キャリアと前記第 2伝送キャリアを最大比合成する請求の範囲第 4項記載のダイバ 一シティ受信装置。
[7] 前記第 2合成 ·選択部は、前記第 1信頼性値と第 2信頼性値に基づいて、前記第 1デ ータキャリアと前記第 2データキャリアのいずれか一方を選択する請求の範囲第 4項 記載のダイバーシティ受信装置。
[8] 前記第 2合成 ·選択部は、前記第 1信頼性値と第 2信頼性値に基づいて、前記第 1デ ータキャリアと、前記第 2データキャリアを最大比合成する請求の範囲第 4項記載の ダイバーシティ受信装置。
[9] 前記周波数多重信号は、所定数のキャリア毎に 1シンボルの単位を有し、前記タイミ ング調整部は、前記第 1復調手段と前記第 2復調手段での前記シンボルの処理タイ ミングを同期させる請求の範囲第 2項記載のダイバーシティ受信装置。
[10] 前記第 1復調手段と前記第 2復調手段のそれぞれは、前記受信信号をアナログ信号 力 デジタル信号に変換するアナログデジタル変換部と、前記アナログデジタル変換 部の出力を検波する検波部と、前記検波部の出力を記憶する記憶部と、前記記憶部 の出力を時間軸の信号力 周波数軸の信号に変換する時間周波数変換部を備え、 前記タイミング調整部は、前記第 1復調手段に含まれる前記記憶部に記憶されて 、 る信号と前記第 2復調手段に含まれる前記記憶部に記憶されて 、る信号を、所定の 同一タイミングで読み出して、前記第 1復調手段で復調されるキャリア群と前記第 2復 調手段で復調されるキャリア群の処理タイミングを同期させる請求の範囲第 2項記載 のダイバーシティ受信装置。
[11] 前記第 1復調手段は、前記第 1復調手段での受信状態を判定する第 1判定部を有し 、前記第 2復調手段は、前記第 2復調手段での受信状態を判定する第 2判定部を有 し、前記第 1判定部と前記第 2判定部の判定結果に従い、前記第 1復調手段、前記 第 2復調手段、前記第 1合成,選択部および前記第 2合成,選択部の少なくとも一つ を制御する制御部を備える請求の範囲第 2項記載のダイバーシティ受信装置。
[12] 前記第 1判定部は、前記第 1パイロットキャリアの振幅値および変化値の少なくとも一 方に基づいて受信状態を判定し、前記第 2判定部は、前記第 2パイロットキャリアの振 幅値および変化値の少なくとも一方に基づいて受信状態を判定する請求の範囲第 1 1項記載のダイバーシティ受信装置。
[13] 前記第 1判定部は、前記第 1パイロットキャリアの振幅値および変化値の少なくも一方 が所定の閾値よりも大きい場合には適正と判定し、前記閾値以下の場合には不適正 と判定し、前記第 2判定部は、前記第 2パイロットキャリアの振幅値および変化値の少 なくも一方が所定の閾値よりも大きい場合には適正と判定し、前記閾値以下の場合 には不適正と判定して、判定結果を前記制御部に出力する請求の範囲第 12項記載 のダイバーシティ受信装置。
[14] 前記制御部は、不適正と判定された復調手段に対して、前記復調手段の記憶する 記憶値の初期化および前記復調手段に供給されるクロック信号の低減の少なくとも 一つを行う請求の範囲第 13項記載のダイバーシティ受信装置。
[15] 前記第 1復調手段と前記第 2復調手段のそれぞれは、前記受信信号に対する周波 数オフセット量を補正する補正部を備え、 前記第 1判定部は、前記第 1復調手段での受信状態を適正もしくは不適正と判定し 、前記第 2判定部は、前記第 2復調手段での受信状態を適正もしくは不適正と判定し 前記制御部は、不適正と判定された復調手段に対して、前記補正部の記憶する前 記周波数オフセット量を保持したまま、前記復調手段の記憶する記憶値の初期化お よび前記復調手段に供給されるクロック信号の低減の少なくとも一つを行う請求の範 囲第 11項記載のダイバーシティ受信装置。
[16] 前記第 1判定部と前記第 2判定部のそれぞれは、前記第 1パイロットキャリアと前記第 2パイロットキャリアのそれぞれの振幅値の差分が所定の閾値以上の場合には、前記 振幅値の低い復調手段については不適正と判定し、前記制御部は、前記不適正と 判定された復調手段に対して、前記復調手段の記憶する記憶値の初期化および前 記復調手段に供給されるクロック信号の低減の少なくとも一つを行う請求の範囲第 1 1項記載のダイバーシティ受信装置。
[17] 前記第 1判定部は、所定数の前記第 1パイロットキャリアの振幅値を積算すると共に 所定数の前記第 1データキャリアの振幅値を積算し、前記第 1パイロットキャリアの積 算値が前記第 1データキャリアの積算値よりも大きい場合には、適正と判定し、前記 第 1パイロットキャリアの積算値が前記第 1データキャリアの積算値以下の場合には、 不適正と判定し、
前記第 2判定部は、所定数の前記第 2パイロットキャリアの振幅値を積算すると共に 所定数の前記第 2データキャリアの振幅値を積算し、前記第 2パイロットキャリアの積 算値が前記第 2データキャリアの積算値よりも大きい場合には、適正と判定し、前記 第 2パイロットキャリアの積算値が前記第 2データキャリアの積算値以下の場合には、 不適正と判定する請求の範囲第 11項記載のダイバーシティ受信装置。
[18] 前記第 1復調手段で復調された第 1キャリア群および前記第 2復調手段で復調され た第 2キャリア群の少なくとも一方に基づいて周波数オフセット量を検出して補正する 補正部を更に備える請求の範囲第 2項記載のダイバーシティ受信装置。
[19] データキャリアとパイロットキャリアと伝送制御キャリアを含むキャリア群が多重化され た周波数多重信号を受信して受信信号を出力し、 前記受信信号を復調して第 1データキャリアと第 1伝送制御キャリアを出力し、 前記受信信号を復調して第 2データキャリアと第 2伝送制御キャリアを出力し、 前記第 1データキャリアと前記第 2データキャリアの復調における処理タイミングを同 期させ、
前記第 1伝送制御キャリアと前記第 2伝送制御キャリアを合成もしくは選択し、 前記第 1データキャリアと前記第 2データキャリアを合成もしくは選択し、 前記第 1合成 ·選択部で選択された伝送制御キャリアを用いて、伝送制御信号を復 号し、フレーム同期を検出するダイバーシティ受信方法。
PCT/JP2007/054270 2006-06-21 2007-03-06 ダイバーシティ受信装置およびダイバーシティ受信方法 WO2007148452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07737827A EP2040403A1 (en) 2006-06-21 2007-03-06 Diversity receiver apparatus and diversity reception method
BRPI0713569-6A BRPI0713569A2 (pt) 2006-06-21 2007-03-06 aparelho de recepção de diversidade e métado de recepção de diversidade
JP2008522318A JP4875078B2 (ja) 2006-06-21 2007-03-06 ダイバーシティ受信装置およびダイバーシティ受信方法
US12/304,019 US8335281B2 (en) 2006-06-21 2007-03-06 Diversity receiving apparatus and diversity receiving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006171711 2006-06-21
JP2006-171711 2006-06-21

Publications (1)

Publication Number Publication Date
WO2007148452A1 true WO2007148452A1 (ja) 2007-12-27

Family

ID=38833196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054270 WO2007148452A1 (ja) 2006-06-21 2007-03-06 ダイバーシティ受信装置およびダイバーシティ受信方法

Country Status (7)

Country Link
US (1) US8335281B2 (ja)
EP (1) EP2040403A1 (ja)
JP (1) JP4875078B2 (ja)
CN (1) CN101473573A (ja)
BR (1) BRPI0713569A2 (ja)
TW (1) TW200803237A (ja)
WO (1) WO2007148452A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071636A (ja) * 2009-09-24 2011-04-07 Japan Radio Co Ltd 同期制御装置、無線受信装置およびダイバーシチ受信装置
WO2014188508A1 (ja) * 2013-05-21 2014-11-27 パイオニア株式会社 ダイバーシティ受信装置、ダイバーシティ受信方法、受信プログラム及び記録媒体
WO2014188578A1 (ja) * 2013-05-24 2014-11-27 パイオニア株式会社 ダイバーシティ受信装置、ダイバーシティ受信方法、受信プログラム及び記録媒体
WO2015174294A1 (ja) * 2014-05-14 2015-11-19 ソニー株式会社 信号処理装置および信号処理方法、並びにプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015060145A1 (ja) * 2013-10-23 2017-03-09 ソニー株式会社 受信装置、受信方法、並びにプログラム
JP2017073680A (ja) * 2015-10-08 2017-04-13 ソニー株式会社 受信装置および方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026867A (ja) * 2000-07-12 2002-01-25 Toshiba Corp データ選択復調装置
JP2004242191A (ja) 2003-02-07 2004-08-26 Sanyo Electric Co Ltd 受信方法および装置
JP2005278111A (ja) * 2004-03-26 2005-10-06 Sanyo Electric Co Ltd デジタル放送受信装置
JP2005286362A (ja) * 2004-03-26 2005-10-13 Sanyo Electric Co Ltd デジタル受信機
WO2006011424A1 (ja) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. ダイバーシティ型受信装置および受信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3691449B2 (ja) * 2002-03-25 2005-09-07 三洋電機株式会社 ダイバーシティ回路およびこの回路を備えるダイバーシティ受信装置
JP3642784B2 (ja) * 2002-10-28 2005-04-27 三菱電機株式会社 ダイバーシチ受信装置およびダイバーシチ受信方法
JP2005159539A (ja) * 2003-11-21 2005-06-16 Pioneer Electronic Corp 受信機、受信方法、受信制御用プログラム及び記録媒体
US7697913B2 (en) * 2005-12-19 2010-04-13 Delphi Technologies, Inc. Dual tuner diversity for background processing and to reduce multipath distortion
EP2028771A1 (en) * 2006-06-09 2009-02-25 Panasonic Corporation Diversity receiving device and diversity receiving method
WO2007144978A1 (ja) * 2006-06-12 2007-12-21 Panasonic Corporation 受信装置
JP2009094839A (ja) * 2007-10-10 2009-04-30 Fujitsu Microelectronics Ltd Ofdm受信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026867A (ja) * 2000-07-12 2002-01-25 Toshiba Corp データ選択復調装置
JP2004242191A (ja) 2003-02-07 2004-08-26 Sanyo Electric Co Ltd 受信方法および装置
JP2005278111A (ja) * 2004-03-26 2005-10-06 Sanyo Electric Co Ltd デジタル放送受信装置
JP2005286362A (ja) * 2004-03-26 2005-10-13 Sanyo Electric Co Ltd デジタル受信機
WO2006011424A1 (ja) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. ダイバーシティ型受信装置および受信方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071636A (ja) * 2009-09-24 2011-04-07 Japan Radio Co Ltd 同期制御装置、無線受信装置およびダイバーシチ受信装置
WO2014188508A1 (ja) * 2013-05-21 2014-11-27 パイオニア株式会社 ダイバーシティ受信装置、ダイバーシティ受信方法、受信プログラム及び記録媒体
US9503290B2 (en) 2013-05-21 2016-11-22 Pioneer Corporation Diversity reception device, diversity reception method, reception program, and recording medium
WO2014188578A1 (ja) * 2013-05-24 2014-11-27 パイオニア株式会社 ダイバーシティ受信装置、ダイバーシティ受信方法、受信プログラム及び記録媒体
US9521017B2 (en) 2013-05-24 2016-12-13 Pioneer Corporation Diversity reception device, diversity reception method, reception program, and recording medium
WO2015174294A1 (ja) * 2014-05-14 2015-11-19 ソニー株式会社 信号処理装置および信号処理方法、並びにプログラム

Also Published As

Publication number Publication date
US8335281B2 (en) 2012-12-18
BRPI0713569A2 (pt) 2012-10-23
JP4875078B2 (ja) 2012-02-15
EP2040403A1 (en) 2009-03-25
US20100183097A1 (en) 2010-07-22
TW200803237A (en) 2008-01-01
CN101473573A (zh) 2009-07-01
JPWO2007148452A1 (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
US7873112B2 (en) Orthogonal frequency division multiplexing (OFDM) receiver, OFDM reception method and terrestrial digital receiver
US20030185147A1 (en) OFDM receiving apparatus and method of demodulation in OFDM receving apparatus
US20040229581A1 (en) Diversity receiver and diversity receiving method
JPWO2006011424A1 (ja) ダイバーシティ型受信装置および受信方法
US7577216B2 (en) Guard interval and FFT mode detector in DVB-T receiver
US20090207927A1 (en) Receiving apparatus
JP3110423B1 (ja) 周波数選択性妨害に対応する誤り訂正装置
JP4875078B2 (ja) ダイバーシティ受信装置およびダイバーシティ受信方法
US6970686B2 (en) Diversity system and diversity method
JP4317335B2 (ja) ダイバーシティ受信機
JP2007150468A (ja) ダイバーシチ受信装置
JP4071468B2 (ja) Ofdm受信装置
US7924954B2 (en) Frequency correction
US20070025473A1 (en) Receiving apparatus
JP3022523B1 (ja) Ofdm方式受信装置
JP2004135120A (ja) ダイバーシティ受信装置及びダイバーシティ受信方法
WO2008007490A1 (fr) Appareil récepteur en diversité et procédé de réception en diversité
JP4916846B2 (ja) Ofdm復調装置及びofdm復調方法
WO2007142091A1 (ja) Ofdm受信装置とこれを用いたofdm受信機器
JP2001285156A (ja) ダイバーシティ受信機
WO2007004363A1 (ja) Ofdm受信装置
US20070217535A1 (en) Orthogonal frequency division multiplexing (OFDM) receiver, OFDM reception method and terrestrial digital receiver
KR20090122905A (ko) 수신 장치 및 수신 방법
JP2006319608A (ja) ダイバーシティ型受信装置、ダイバーシティ型受信装置を用いた受信方法および受信プログラム、ダイバーシティ型受信装置を用いた受信プログラムを格納した記録媒体
JP2010063031A (ja) 信頼性情報生成装置、信頼性情報生成方法および受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022797.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007737827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008522318

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12304019

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0713569

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081222