WO2007147309A1 - Moteur de grande précision et son procédé d'usinage et de montage - Google Patents

Moteur de grande précision et son procédé d'usinage et de montage Download PDF

Info

Publication number
WO2007147309A1
WO2007147309A1 PCT/CN2007/000777 CN2007000777W WO2007147309A1 WO 2007147309 A1 WO2007147309 A1 WO 2007147309A1 CN 2007000777 W CN2007000777 W CN 2007000777W WO 2007147309 A1 WO2007147309 A1 WO 2007147309A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
stator
stator core
rotor core
rotor
Prior art date
Application number
PCT/CN2007/000777
Other languages
English (en)
French (fr)
Inventor
Yeung Fai TSE
Original Assignee
Tse Yeungfei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tse Yeungfei filed Critical Tse Yeungfei
Priority to US12/094,777 priority Critical patent/US7863796B2/en
Priority to JP2009514616A priority patent/JP2009540787A/ja
Publication of WO2007147309A1 publication Critical patent/WO2007147309A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • This invention relates to electric motors and, more particularly, to a high precision motor and method of processing and assembling same. Background technique
  • stator core steel piece or the rotor core steel piece which is stamped and formed is folded together according to a predetermined number to form a stator core or a rotor core, and the stator core is Or the outer circumference of the rotor core and the inner hole are no longer mechanically processed, so the precision is poor and the tolerance is large.
  • the motor is assembled, it is impossible to finely adjust the matching clearance, thereby causing the coaxiality and cylindricity of the motor.
  • the large error causes the motor power loss and noise to be eliminated.
  • Even a motor with a higher precision grade is only turning the outer circumference of the rotor core, and the improvement of the fitting accuracy is very limited.
  • ribs are usually punched at a relative position where a rotor core is mounted on a shaft having a certain hardness, or a relative position embossing of a rotor core is mounted on a shaft to increase the diameter of the shaft, for example, If the diameter of the shaft is 8 iran, the diameter of the rib or embossing on the shaft is 8.2 mm.
  • Such a treatment allows a tight fit between the shaft and the rotor core shaft hole when the shaft is inserted into the rotor core shaft hole.
  • the disadvantage of this type of process is that when the torque of the motor is large, it is easy to form a phenomenon in which the rotor core rotates around the rotating shaft and the rotating shaft does not move, thereby reducing the durability of the motor.
  • the end caps of the motor are mostly fixed on the end faces of the stator cores and fixed to the stator core, and the coaxiality of the bearing holes between the front and rear end covers is not high, thereby causing the rotor core after assembly.
  • the running track is elliptical and consumes power.
  • the technical problem to be solved by the present invention is to provide an improved high-precision motor and a processing and assembling method thereof according to the above-mentioned deficiencies of the prior art, thereby improving the machining accuracy of the stator core and the rotor core, and improving the power factor of the motor. And durability.
  • a method for processing a motor core is proposed, which comprises: respectively, according to different precision requirements, respectively, the outer circumference, the inner hole and/or the two cores assembled into a whole core
  • the end face is ground.
  • the method for processing the motor core further includes: grinding the outer circumference of the rotor core integrally formed by the rivet.
  • the method for processing the motor core further includes: grinding the outer circumference, the inner hole, and the end faces of the stator core integrally formed by the riveting.
  • a thick steel sheet having a shape conforming to the stator punch is superposed on both ends of the stator core, and is riveted together with the stator punch. 5 ⁇ The thickness of the thick steel sheet is greater than or equal to 0.3 wake up.
  • the air gap between the stator core and the rotor core after grinding is less than or equal to 0. 175 legs.
  • the present invention also provides a high-precision electric motor comprising a stator, a rotor, a rotating shaft and two front and rear end caps fixed together with the stator, the rotor core having a ground outer circumference
  • the stator core has a polished outer circumference, an inner hole and two end faces respectively, the rotor core is sleeved in the inner hole of the stator core, and the inner hole of the stator core is ground before grinding
  • the punching diameter is equal to the outer diameter of the punch before the outer circumference of the rotor core is ground.
  • the rotating shaft is directly pressed into the rotating shaft hole of the rotor core, and is in close contact with the rotating shaft hole of the rotor core.
  • the diameter of the rotating shaft is smaller than the inner diameter of the rotating shaft of the rotor core of up to 0. 015 abdomen.
  • the end cover includes a bearing housing and a stator support portion, and a hollow cylindrical lower end of the stator support portion is fastened to an outer circumferential surface of the stator core, the hollow cylinder A stepped opening is provided on the inner side of the lower end to abut against the end face of the stator core.
  • stator core and the front and rear end caps fastened to both ends of the stator core are fixed by screws.
  • a bearing is disposed in the bearing housing of the end cover, a bearing is assembled in the bearing housing of the end cover, and a bearing cover is respectively disposed on the inner and outer sides of the bearing housing, and is fixed to the bearing housing by screws The bearing is clamped.
  • the rotor core is integrally formed by a plurality of circular rotor punches.
  • the stator core is integrally formed by a plurality of circular stator punches and two thick steel sheets which are respectively superposed on both ends and which are in conformity with the stator punches, and the thickness of the thick steel sheets 008 ⁇
  • the parallelism of the two end faces of the stator core is less than or equal to 0. 008mm.
  • the high-precision motor, the air gap between the outer surface of the rotor core and the surface of the inner surface of the stator core is less than or equal to 0. 175mm.
  • the invention also provides a method for assembling an electric motor, comprising:
  • the rotor core sleeve having the outer circumference that has been ground is punched into the inner hole of the stator core having a diameter equal to the punched outer diameter of the rotor core, and the outer circumference and the inner hole of the stator core Both end faces have been ground separately before assembly;
  • the hollow cylindrical lower ends of the front and rear end caps are respectively fastened on the outer circumferential surfaces of the two ends of the stator core, and the stepped opening provided on the inner side of the hollow cylindrical lower end abuts against the end surface of the stator core And fixing the stator core and the front and rear end caps together by screws.
  • the rotor core is riveted into a body by a plurality of circular rotor punches.
  • the stator core is formed by a plurality of circular stator punches and two thick steel sheets respectively superimposed at both ends and having the same shape as the stator punches, and the thick steel sheets are integrated. 008 ⁇
  • the thickness of the parallel of the two ends of the stator core is less than or equal to 0. 008.
  • the air gap between the outer surface of the rotor core and the inner surface of the stator core is less than or equal to 0. 175 let. 015 ⁇
  • the diameter of the shaft of the rotor shaft is less than 0. 015 awake.
  • the high-precision motor and the processing and assembling method thereof embodying the invention have the following beneficial effects:
  • the motor of the invention improves the existing process, and the processing of the stator core and the rotor core adopts the grinding technology to the outer circumference and the inner space. And/or the end faces are separately ground, and the structure of the stator core, the rotor core and the end cap are improved at the same time, thereby significantly improving the machining precision of the stator core and the rotor core, thereby ensuring the assembly time.
  • High concentricity and cylindricity reduce power loss, reduce operating noise and temperature rise, extend service life and therefore reduce operating costs.
  • the technical indexes of the motor processed and assembled according to the present invention are significantly superior to those of the current process, and can work normally in an environment where the motor manufactured by the ordinary process cannot work or cannot work for a long time, such as an electric motor used in an electric vehicle. And the invention is particularly suitable for the manufacture of precision electric motors.
  • Figure 1 is a schematic view showing the assembly structure of an embodiment of the motor of the present invention
  • FIG. 2 is a schematic side view of a stator core in an embodiment of the present invention.
  • FIG. 3 is an end view showing an arrangement of a stator core and a rotor core in an embodiment of the present invention
  • FIG. 4 is a schematic end view of a stator core of the prior art
  • Figure 5 is a perspective view showing the structure of a stator core in an embodiment of the present invention.
  • Figure 6 is a side view of the stator core before processing
  • FIG. 7 is a schematic side view of a stator core after grinding in an embodiment of the present invention
  • FIG. 8 is a schematic perspective view of a prior art end cap
  • Figure 9 is a schematic view showing the assembly of the motor in the prior art.
  • Figure 10 is a perspective view showing the three-dimensional structure of an end cover according to an embodiment of the present invention.
  • FIG 11 is a perspective view showing another perspective of the end cap shown in Figure 10.
  • the electric motor according to the present invention includes an electromagnetic motor and a permanent magnet motor.
  • the stator core and the rotor core of the electromagnetic motor are combined by a steel sheet; one of the stator core or the rotor core of the permanent magnet motor is a permanent magnet, and the other one is composed of a steel sheet.
  • an electromagnetic motor as an example.
  • the motor is mainly composed of a stator, a rotor, a rotating shaft and an end cover (in some motors, such as a series motor, the end cover is also referred to as a bracket, so the end cover in the following description includes a bracket), wherein
  • the stator includes a stator core and a stator winding
  • the rotor includes a rotor core and a rotor winding. Since the improvement of the motor of the present invention involves only the hardware portion, detailed descriptions of other components such as windings are not given in the present application.
  • Figure 1 is a schematic view showing the assembly structure of an embodiment of the motor of the present invention. As shown in Fig. 1, the motor mainly includes a rotating shaft 50 assembled together, a rotor core 20, a stator core 30, and a front end cover 10 and a rear end cover 40 (windings are not shown in the drawings).
  • stator core 30 and the rotor core 20 The specific structure of the stator core 30 and the rotor core 20 is as shown in FIG. 2 and FIG. 3, and is respectively stacked and riveted into a single body by a plurality of punching sheets.
  • the stator core or the rotor core 20 is integrally formed, and the end surface, the outer circumference and/or the inner hole are respectively ground by a precision grinding machine according to different needs.
  • the stator core 30 or the rotor core 20 itself has a high degree of concentricity and cylindricity. As shown in FIG.
  • the stator core 30 composed of a plurality of circular stator punches is uniformly distributed with a plurality of rivet holes 32 circumferentially, and is riveted together by a plurality of rivets.
  • the number and distribution of the rivets are based on the stator core.
  • the outer diameter of 30 is adjusted in accordance with the change in thickness so that the punches constituting the stator core 30 are closely fitted together to form a unitary body.
  • the center of the stator core 30 is provided with an inner hole 33 for enclosing the rotor core 20.
  • a plurality of screw holes 31 uniformly distributed are provided at the same position of each of the stator cores for fixing to the front and rear end covers 10 and 40.
  • the present invention grinds the stator core of the riveted composite body, mainly comprising: planarly grinding the front and rear end faces of the stator core, so that the stator cores are front and rear
  • the parallelism of the end faces is not more than 0.008 mm
  • the inner hole of the stator core is internally rounded, the cylindricity of the inner hole circumference is increased, and the cylindrial deviation of the inner hole of the stator core is reduced
  • the outer circumference of the stator core is externally Circular grinding, reducing the cylindricity deviation of the outer circumference of the stator core, so as to increase the coaxiality of the outer circumference of the stator core and the inner hole and the vertical direction of the front and rear end faces of the cylinder and the stator core formed by the outer circumference of the entire stator core degree.
  • the outer core of the stator core The circumference and the inner hole are closely ground, and the periphery of the stator blank of the present invention is a complete circular shape, so that the stator core of the present invention has higher machining accuracy with respect to the conventional stator core outer shape design shown in FIG. Due to the natural law of machining, the discontinuity of the outer circle of the conventional stator core punching piece has a bad influence on the machining accuracy of the outer circular circumference, and the machining precision without the circular shape design is high.
  • the punching sheets constituting the stator core are usually formed by stamping a 0.3-3 mm thick coiled steel strip. Although flattened by a flatter, each punching piece still has a certain curvature, which is not completely On a flat surface. As shown in FIG. 5 and FIG. 6, when a plurality of punching sheets are riveted together according to a certain thickness, if the end surface of the stator core is ground to correct the flatness, the thickness of the punching sheet itself is large because the plane deviation is large. It may not be enough for the grinding process (especially when the thickness of the punch is thin). Therefore, as shown in FIG.
  • the present invention superimposes a thick steel sheet of 0.3 mm or more on both front and rear end faces of the stator core (the specific thickness is based on the design of the stamping die of the stator punch, the thickness and outer diameter of the punch itself, and The flatness of the punch is adjusted) and the stator core is riveted together with a plurality of punches, and then the above-mentioned various grinding processes are performed on the stator core.
  • This increases the thickness of the stator core for end face grinding, and increases the tightness of the stator core after riveting and the stability after machining.
  • the rotor core of the present invention is superposed and rivet integrated by a plurality of rotor punches.
  • the rotor core 20 is provided with a central rotating shaft hole 22 and a plurality of rivet holes 21 distributed along the circumference.
  • the number and distribution of the rivet holes 21 are varied according to the outer diameter and thickness of the rotor core 20. The adjustment is such that the punching pieces constituting the rotor core 20 are closely fitted together by the rivets, and are formed integrally with each other.
  • the present invention uses an external cylindrical grinding machine to grind the outer circumference of the rotor core to improve the dimensional accuracy of the rotor core.
  • the inner diameter of the stator core and the outer diameter of the rotor core generally differ by 0.7-lmm. If the tolerance between the two is Q, the rotor core cannot be placed into the stator core during assembly. Inside the inner hole; if the tolerance value is less than 0.7mm, iron scrap will be generated during the stamping, which will easily damage the mold and cause inconvenience to mass production.
  • the assembled stator core and rotor core of the present invention are shown in Fig. 3.
  • the stator punch and the rotor punch of the present invention are designed to have a 0 to 0 design when stamping (for example, if the stator is punched during stamping)
  • the hole diameter is 52 mm
  • the outer diameter of the rotor punching piece is also 52 mm
  • the inner core of the stator core and the outer circumference of the rotor core are ground by the above-mentioned grinding process, and the stator core is
  • the air gap between the rotor core and the rotor core is reduced to the minimum size, that is, the air gap spacing can be less than or equal to
  • punching diameter is 52mm, after grinding, the bore diameter of the stator core is 52.2mm, an outer diameter of the rotor core is 51.85mm 0
  • the rotating shaft of the motor of the invention can be made of stainless steel of the type SUS420J2, and after heat treatment, the hardness of HRC45-50 is achieved. After finishing, the head-to-tail size error of the entire rotating shaft does not exceed 0.003 mm, and the runout of the outer circumference does not exceed 0.008. Mm.
  • the rotating shaft is directly pressed into the rotating shaft hole of the rotor core, so that the outer circumferential surface of the rotating shaft is completely in contact with the surface of the rotating shaft hole of the rotor core, so as to achieve a full-contact tight fit, so that a large torque can be withstood, When the torque is too large, the rotor rotates and the shaft does not move, which improves the durability of the motor.
  • the tightness between the rotating shaft and the rotating shaft hole of the rotor core is 0.015 mm or less, that is, the diameter of the rotating shaft is smaller than the inner diameter of the rotating shaft hole of the rotor core by at most 0.015 mm, the above-described full contact tight fitting can be achieved.
  • FIG. 8 and 9 are schematic perspective views and assembly diagrams of an end cap of the prior art.
  • the conventional end cover only the left and right ends of the end cover are in contact with the end faces of the stator core, and are fixed to the stator core by screws at a portion A in the position shown in FIG. 9, so that the stability is not high, and the The deformation, and the coaxiality of the bearing holes of the front and rear end caps are difficult to guarantee.
  • the invention improves the structure of the front and rear end caps, and the three-dimensional structure diagram of the front end cover 10 is shown in FIG. 10 and FIG.
  • the front end cover 10 includes a bearing housing 13 and a stator support portion 12.
  • the lower end of the stator support portion 12 has a hollow cylindrical shape, and a stepped opening 15 is provided on the inner side of the hollow cylinder.
  • the thickness of the hollow cylinder and the depth of the opening can be based on the outer diameter of the stator core and the size of the end cover. And other factors to adjust.
  • the front end cover 10 is further provided with a plurality of screw holes 16 corresponding to the stator core at the position of the opening 15. When assembled, the front end cover 10 is fastened to the outer circumferential surface of the stator core 30 through the hollow cylindrical lower end, and the inner stepped opening 15 abuts against the end surface of the stator core 30 and passes through the screw hole on the stopper 15 16 is fastened with the stator core and the rear end cap with screws.
  • the improved end cover is positioned with the outer circumference of the stator core after grinding as a reference point, and the front and rear end covers are fastened on the outer circumference of the stator core, so that the front and rear end covers are coaxial with the stator core Degree is guaranteed and can have high coaxial accuracy.
  • the present invention also improves the positioning of the bearings on the end caps.
  • the bearing housing 13 on the front end cover 10 is equipped with a bearing and a rotating shaft, and the inner and outer sides of the bearing housing 13 are respectively provided with bearing caps. 14.
  • the bearing block 13 is fixed by screws so that the bearing is clamped between the two bearing caps 14 from the end face. When the coaxiality between the shaft and the bearing is insufficient, fine adjustment can be made by adjusting the position of the two bearing caps.
  • the rear end cover 40 adopts the same structural design as the front end cover 10, and details are not described herein again.
  • FIG. 1 The assembly of the improved motor of the present invention will be described below with reference to FIG. 1.
  • a plurality of rotating punches are riveted to form a rotor core, and a plurality of stator punches and thick steel sheets superposed on both ends are riveted to form a stator. Iron core.
  • the outer circumference of the rotor core and the end faces, the outer circumference and the inner hole of the stator core are ground using a precision grinding machine, and then the motor is assembled.
  • the rotating shaft 50 is directly pressed into the rotating shaft hole of the ground rotor core 20, so that the rotating shaft 50 is in full contact with the rotating shaft hole of the rotor core 20; then the rotor core 20 is sleeved on the stator core 30.
  • the air gap between the two is less than or equal to 0.175 mm after grinding ; then, the front end cover 10 and The hollow cylindrical lower end of the rear end cover 40 is fastened to the outer circumferential surface of both ends of the stator core 30, and the stepped opening 15 on the end cover abuts against the end surface of the stator core, and the stator core is screwed forward and backward by screws The two end caps are fixed together.
  • stator core is a steel sheet and the rotor core is a permanent magnet
  • stator core and the corresponding portion of the rotor core may be ground in accordance with the method of the electromagnetic motor to improve the accuracy.
  • the structural improvement and assembly methods described above are equally applicable to permanent magnet motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

高精度电动机及其加工和装配方法 技术领域
本发明涉及电动机, 更具体地说, 涉及一种高精度电动机及其加工和装 配方法。 背景技术
电动机制造业长期以来的生产工艺都是: 按设计要求将冲压成型的定子 铁芯钢片或转子铁芯钢片按照规定数量叠扣在一起组成定子铁芯或转子铁 芯, 而对定子铁芯或转子铁芯的外圆周和内孔都不再做任何的机械加工, 因 而精度差、 公差大, 在电动机组装时, 不可能对配合间隙进行精密调整, 从 而导致电动机同轴度、 圆柱度配合误差大, 致使电动机功率损耗大、 噪音大 等积弊难以消除。 即使精密级别高一些的电动机也只是对转子铁芯的外圆周 进行车削加工, 配合精度的改善也十分有限。
现有工艺中, 通常在有一定硬度的转轴上安装转子铁芯的相对位置处冲 压四根筋, 或者在转轴上安装转子铁芯的相对位置压花, 以增大转轴的直径,, 例如, 若转轴的直径为 8iran, 转轴上冲筋或压花部位的直径为 8.2mm。 这样 的处理使得转轴镶嵌到转子铁芯转轴孔内时, 可以与转子铁芯转轴孔之间有 一个紧配合。 但是, 这种工艺处理的弊病在于, 当电动机扭力较大时, 容易 形成转子铁芯围绕转轴转动而转轴不动的现象, 降低电动机的耐用性。
此外, 现有工艺中, 电动机的端盖大都靠在定子铁芯的端面上与定子铁 芯固定, 前后端盖之间的轴承孔的同轴度精度不高, 因而造成装配后, 转子 铁芯的运转轨迹为椭圆形, 损耗功率。
因此, 现行的制造工艺虽然加工容易且加工成本低, 但是产品只能胜任 一般的要求, 只能够在一般环境或者部位使用。 发明内容 本发明要解决的技术问题在于, 针对现有技术的上述不足, 提供一种改 良后的高精度电动机及其加工和装配方法, 提高定子铁芯、 转子铁芯的加工 精度, 提高电动机的功率因数和耐用性。
本发明解决其技术问题所采用的技术方案是: 提出一种电动机铁芯的加 工方法, 包括: 根据不同的精度需求, 分别对装配成整体后的铁芯的外圆周、 内孔和 /或两端端面进行研磨。
上述电动机铁芯的加工方法中, 进一步包括: 研磨铆合成一体的转子铁 芯的外圆周。
上述电动机铁芯的加工方法中, 进一步包括: 研磨铆合成一体的定子铁 芯的外圆周、 内孔和两端端面。
上述电动机铁芯的加工方法中, 研磨所述定子铁芯前, 在所述定子铁芯 的两端分别叠加一片形状与定子冲片一致的厚钢片, 并与所述定子冲片一起 铆合成整体, 所述厚钢片的厚度大于等于 0. 3醒。
上述电动机铁芯的加工方法中, 研磨后所述定子铁芯两个端面的平行度 小于等于 0. 008腿。
上述电动机铁芯的加工方法中, 研磨后定子铁芯与转子铁芯之间的气隙 小于等于 0. 175腿。
本发明为解决其技术问题, 还提出一种高精度电动机, 包括装配在一起 的定子、 转子、 转轴和与定子固定在一起的前后两个端盖, 所述转子铁芯具 有经过研磨的外圆周, 所述定子铁芯具有分别经过研磨的外圆周、 内孔和两 个端面, 所述转子铁芯套在所述定子铁芯的内孔内, 且所述定子铁芯的内孔 研磨前的冲压直径等于所述转子铁芯的外圆周研磨前的冲压外径。
上述高精度电动机中, 所述转轴直接压入转子铁芯的转轴孔内, 与所述 转子铁芯的转轴孔呈全接触的紧配合。
上述高精度电动机中, 所述转轴直径比所述转子铁芯的转轴孔内径小至 多 0. 015腹。
上述高精度电动机中, 所述端盖包括轴承座和定子支撑部, 所述定子支 撑部的空心圆柱状下端紧扣在所述定子铁芯的外圆周表面上, 所述空心圆柱 状下端内侧设置有台阶状止口, 抵在所述定子铁芯的端面上。
上述高精度电动机中, 所述定子铁芯以及紧扣在所述定子铁芯两端的前 后两个端盖通过螺钉固定在一起。
上述高精度电动机中, 所述端盖的轴承座内装配轴承, 所述端盖的轴承 座内装配轴承, 所述轴承座的内外两侧分别设有轴承盖, 通过螺钉固定在所 述轴承座上将所述轴承夹紧。
上述高精度电动机中, 所述转子铁芯由多个圆形转子冲片铆合成一体。 上述高精度电动机中, 所述定子铁芯由多个圆形定子冲片和分别叠加在 两端的两片形状与所述定子冲片一致的厚钢片铆合成一体, 所述厚钢片的厚 度大于等于 0. 3iMi, 所述定子铁芯两个端面的平行度小于等于 0. 008mm。
上述高精度电动机中, 经过研磨后, 所述转子铁芯外圆周表面与所述定 子铁芯内孔表面之间的气隙小于等于 0. 175mm。
本发明还提出一种电动机的装配方法, 包括:
将转轴直接压入转子铁芯的转轴孔内, 使得所述转轴与所述转子铁芯的 转轴孔呈全接触的紧配合;
将外圆周已经过研磨的所述转子铁芯套在内孔冲压直径等于所述转子铁 芯的冲压外径的定子铁芯的内孔内, 且所述定子铁芯的外圆周、 内孔和两端 端面在装配前已分别经过研磨;
将前后两个端盖上的空心圆柱状下端分别紧扣在所述定子铁芯两端的外 圆周表面上, 所述空心圆柱状下端内侧设置的台阶状止口抵在所述定子铁芯 的端面上, 并通过螺钉将所述定子铁芯与所述前后两个端盖固定在一起。
上述电动机的装配方法中, 所述转子铁芯由多个圆形转子冲片铆合成一 体。
上述电动机的装配方法中, 所述定子铁芯由多个圆形定子冲片和分别叠 加在两端的两片形状与所述定子冲片一致的厚钢片铆合成一体, 所述厚钢片 的厚度大于等于 0. 3mm,所述定子铁芯的两个端面的平行度小于等于 0. 008皿。
上述电动机的装配方法中, 所述转子铁芯外圆周表面与所述定子铁芯内 孔表面之间的气隙小于等于 0. 175讓。 上述电动机的装配方法中, 所述转轴直径比所述转子铁芯的转轴孔内径 小至多 0. 015醒。
实施本发明的高精度电动机及其加工和装配方法, 具有以下有益效果: 本发明的电动机对现有工艺进行了改良, 对定子铁芯和转子铁芯的加工均采 用研磨技术对外圆周、 内空和 /或端面分别进行研磨, 并同时对定子铁芯、 转 子铁芯、 端盖的结构进行了改进, 因此显著提高了定子铁芯、 转子铁芯的加 工精度, 进而保证了组装时的具有较高的同轴度和圆柱度, 降低了功率损耗, 减低了运转噪音与温升, 延长了使用寿命, 并因此降低了运行成本。 依据本 发明加工和装配的电动机各项技术指标都显著优于现行工艺加工制造的电动 机, 能够在普通工艺制造的电动机无法工作或无法长时间工作的环境中正常 工作, 例如电动汽车使用的电动机, 并且本发明尤其适合精密电动机的制造。 附图说明
下面将结合附图及实施例对本发明作进一歩说明, 附图中:
图 1是本发明电动机的一个实施例的装配结构示意图;
图 2是本发明一个实施例中的定子铁芯的端面示意图;
图 3 是本发明一个实施例中定子铁芯与转子铁芯装配在一起时的端面示 忌图;
图 4是现有技术的定子铁芯的端面示意图;
图 5是本发明一个实施例中的定子铁芯的立体结构示意图;
图 6是未加工前的定子铁芯的侧面示意图;
图 7是本发明一个实施例中经过研磨后的定子铁芯的侧面示意图; 图 8是现有技术的端盖的立体结构示意图;
图 9是现有技术中电动机的装配示意图;
图 10是本发明一个实施例中端盖的立体结构示意图;
图 11是图 10所示的端盖的另一个角度的立体结构示意图。 具体实施方式 本发明所涉及的电动机包括电磁电动机和永磁电动机。 电磁电动机的定 子铁芯与转子铁芯均由钢片组合而成; 永磁电动机的定子铁芯或者转子铁芯 其中一个为永久磁铁, 另外一个由钢片组合而成。 以下对本发明的介绍将以 电磁电动机为例进行说明。
一般来说, 电动机主要由定子、 转子、 转轴和端盖 (在某些电动机中, 例如串励电动机中, 所述端盖又称为支架, 因此以下描述中的端盖包括支架) 构成, 其中定子包括定子铁芯和定子绕组, 转子包括转子铁芯和转子绕组。 因本发明对电动机的改进只涉及五金部分, 故而本申请中未对绕组等其他部 件给出详细说明。 图 1 是本发明电动机的一个实施例的装配结构示意图。 如 图 1所示, 该电动机主要包括装配在一起的转轴 50、 转子铁芯 20、 定子铁芯 30以及前端盖 10和后端盖 40 (绕组未在图中示出)。
定子铁芯 30和转子铁芯 20的具体结构如图 2和图 3所示, 分别由多个 冲片叠加并铆合成一体。 本发明在定子铁芯 30或转子铁芯 20的冲片完成铆 合、 形成定子铁芯或者转子铁芯整体之后, 依据不同的需要用精密磨床分别 对端面、 外圆周和 /或内孔进行研磨, 以保证定子铁芯 30或转子铁芯 20自身 有很高的同轴度和圆柱度。 如图 2所示, 由多个圆形定子冲片构成的定子铁 芯 30沿圆周上均匀分布有多个铆钉孔 32,用多个铆钉铆合在一起, 铆钉的数 量与分布根据定子铁芯 30的外径大小与厚度的变化而调整, 使得组成定子铁 芯 30的冲片紧密配合在一起, 相对形成一个整体。 定子铁芯 30的中心设有 内孔 33, 用于套住转子铁芯 20。 此外, 在定子铁芯的每个冲片的相同位置处 还设有均匀分布的多个螺钉孔 31, 用于与前后端盖 10和 40固定。 将多个定 子冲片铆合成定子铁芯后, 本发明对铆合成整体的定子铁芯进行研磨加工, 主要包括: 对定子铁芯的前后两个端面进行平面研磨, 使定子铁芯的前后二 个端面的平行度不超过 0.008mm; 对定子铁芯的内孔进行内圆研磨, 增加内 孔圆周的圆柱度, 减少定子铁芯内孔的圆柱度偏差; 对定子铁芯的外圆周进 行外圆研磨, 减少定子铁芯外圆周的圆柱度偏差, 这样便可提高定子铁芯外 圆周与内孔的同轴度以及整个定子铁芯外圆周所形成的圆柱体与定子铁芯前 后端面的垂直度。 为了便于利用现有的外圆磨床和内圆磨床对定子铁芯的外 圆周和内孔进行紧密研磨, 本发明的定子冲片***为完整的圆形, 这样相对 于图 4所示的传统定子铁芯外形设计, 本发明的定子铁芯具有更高的加工精 度。 由于机械加工的自然规律, 传统的定子铁芯冲片外圆的不连续性必然对 外圆圆周的加工精度有很坏的影响, 没有圆形外形设计的加工精密度高。
由现有技术可知, 组成定子铁芯的冲片通常是用 0.3-3mm厚的卷装钢带 冲压而成, 虽然经过平直器进行平整, 但是每一片冲片仍然有一定的弧度, 没有完全在一个平面上。 如图 5和图 6所示, 当多个冲片按一定厚度铆合在 一起后, 若对定子铁芯的端面进行研磨加工以修正平面度时, 因为平面偏差 较大, 冲片自身的厚度可能不够余量进行研磨加工 (冲片厚度较薄时尤其明 显)。因此,如图 7所示,本发明在定子铁芯前后两个端面上各叠加一片 0.3mm 以上的厚钢片 (具体厚度根据定子冲片冲压模具的设计、 冲片自身的厚度、 外径以及冲片平直度进行调整) 并与多个冲片一起铆合成定子铁芯整体, 然 后在对定子铁芯进行前述的各种研磨加工。 这样即可增加定子铁芯厚度以便 进行端面研磨加工, 又可以增加定子铁芯铆合后的紧密度以及加工后的稳定 性。
同样, 本发明的转子铁芯由多个转子冲片叠加并铆合成一体。 如图 3所 示, 转子铁芯 20上设有中心的转轴孔 22和沿圆周分布的多个铆钉孔 21, 铆 钉孔 21 的数量和分布根据转子铁芯 20的外径大小与厚度的变化而调整, 使 得组成转子铁芯 20的冲片通过铆钉紧密配合在一起, 相对形成一个整体。 将 多个转子冲片铆合成转子铁芯后, 本发明利用外圆磨床对转子铁芯的外圆周 进行研磨加工, 以提高转子铁芯的尺寸精度。
现有生产工艺中, 定子铁芯的内孔直径和转子铁芯的外圆直径一般相差 0.7-lmm, 若二者之间的公差值为 Q, 装配时转子铁芯无法放进定子铁芯内孔 内; 若公差值低于 0.7mm, 冲压时又会有铁屑产生, 容易损坏模具, 也给批 量生产带来不便。 本发明改进后的定子铁芯与转子铁芯的装配如图 3所示, 本发明的定子冲片和转子冲片在冲压时尺寸采用 0对 0设计 (例如, 若冲压 时定子冲片的内孔直径为 52mm, 则转子冲片的外径同样为 52mm), 然后通 过上述的研磨加工对定子铁芯内孔和转子铁芯外圆周进行研磨后, 定子铁芯 与转子铁芯二者之间的气隙减少到最低尺寸, 即气隙间距可小于等于
0.175mm, 这样便可以增加电动机的扭力, 提高功率因数。例如, 冲压直径为 52mm时, 经过研磨后, 定子铁芯的内孔直径为 52.2mm, 转子铁芯的外径为 51.85mm0
本发明电动机的转轴可采用型号为 SUS420J2的不锈钢材料,经过热处理 后达到 HRC45-50的硬度,在经过精加工之后,整个转轴的头尾尺寸误差不超 过 0.003mm, 外圆周的跳动度不超过 0.008mm。 装配时, 将转轴直接压入转 子铁芯的转轴孔内, 使转轴的外圆周表面与转子铁芯的转轴孔表面完全接触, 达到全接触的紧配合, 这样便可承受很大的扭力, 不会因扭力过大而出现转 子转动而转轴不动的情况, 提高电动机的耐用性。 一般, 当转轴与转子铁芯 的转轴孔之间的松紧度小于等于 0.015mm时, 即转轴的直径比转子铁芯的转 轴孔内径小至多 0.015mm时, 便可以达到上述全接触的紧配合。
图 8和图 9是现有技术中一种端盖的立体结构示意图和装配示意图。 现 有的端盖一般下端只有左右两个部分圆周与定子铁芯的端面接触, 并在图 9 中所示的位置 A处沿部分圆周用螺钉与定子铁芯固定, 因而稳定性不高, 易 变形, 并且前后两个端盖的轴承孔的同轴度很难得到保证。 本发明对前后两 个端盖的结构进行了改进, 如图 10和图 11所示为前端盖 10的立体结构示意 图。所述前端盖 10包括轴承座 13和定子支撑部 12。定子支撑部 12的下端为 空心圆柱状, 并在该空心圆柱的内侧设有台阶状的止口 15, 该空心圆柱的厚 度以及止口的深度可以根据定子铁芯的外径、 端盖的尺寸等因素进行调整。 前端盖 10在止口 15的位置处还设有多个与定子铁芯相对应的螺钉孔 16。 装 配时, 前端盖 10通过空心圆柱状下端紧扣在定子铁芯 30的外圆周表面上, 内侧的台阶状止口 15抵在定子铁芯 30的端面上, 并通过止口 15上的螺钉孔 16与定子铁芯以及后端盖用螺钉紧固在一起。 本发明改进后的端盖, 以定子 铁芯经过研磨后的外圆周为基准点定位, 前后端盖紧扣在定子铁芯的外圆周 上, 使得前后端盖与定子铁芯三者的同轴度得到保证, 可以具有很高的同轴 精度。 此外, 本发明还对端盖上轴承的定位进行了改进。 如图所示, 前端盖 10上的轴承座 13中装配轴承和转轴, 轴承座 13的内外两侧分别设有轴承盖 14, 通过螺钉固定在轴承座 13上, 从而将轴承从端面上夹紧在两个轴承盖 14 之间。 当转轴与轴承的同轴度不够时, 可以通过调整两轴承盖的位置来进行 微调。 后端盖 40采用了与前端盖 10相同的结构设计, 在此不再赘述。
以下结合图 1 对本发明改进后的电动机的装配进行说明: 首先, 将多个 转定冲片铆合形成转子铁芯, 将多个定子冲片以及两端分别叠加的厚钢片铆 合形成定子铁芯。 接下来, 根据一定的精度需求, 使用精密磨床对转子铁芯 的外圆周以及定子铁芯的两端端面、 外圆周和内孔进行研磨, 然后再进行电 动机的装配。 装配时, 将转轴 50直接压入经过研磨后的转子铁芯 20的转轴 孔内, 使得转轴 50与转子铁芯 20的转轴孔呈全接触的紧配合; 然后将转子 铁芯 20套在定子铁芯 30的内孔内, 因为转子铁芯的直径与定子铁芯内孔的 内径之间采用 0对 0设计, 经过研磨后二者之间的气隙小于等于 0.175mm; 然后, 分别将前端盖 10和后端盖 40的空心圆柱状下端紧扣在定子铁芯 30两 端的外圆周表面上, 端盖上的台阶状止口 15抵在定子铁芯的端面上, 并通过 螺钉将定子铁芯与前后两个端盖固定在一起。
以上以电磁电动机为例对本发明的各种改进进行了详细说明。 本发明的 上述改进同样适用于永磁电动机。 例如, 当定子铁芯为永久磁铁而转子铁芯, 为钢片时, 在构成定子铁芯的磁铁和外壳粘结后, 依照前述方法对外壳的外 圆周及二个端面进行外圆研磨和平面研磨, 并用内圆磨床对该定子铁芯的内 孔进行研磨; 转子铁芯的处理与上述电磁电动机相同。 又例如, 当定子铁芯 为钢片而转子铁芯为永久磁铁时, 也可以依照前述电磁电动机的方法对定子 铁芯、 转子铁芯的相应部分进行研磨加工, 提高其精度。 以上介绍的结构改 进和装配方法, 也同样适用于永磁电动机。
本发明可在不偏离主要精神及特征的情况下以其它不同的实施例实施, 因此, 上述的实施例只是以举例的方式对本发明的解释, 而不应将其视为对 本发明的限制。 任何本领域普通专业技术人员, 在未脱离本发明的构思和范 围内所作的任何修改与替换, 均应包括在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种电动机铁芯的加工方法, 其特征在于, 所述方法包括: 根据不同 的精度需求, 分别对装配成整体后的铁芯的外圆周、 内孔和 /或两端端面进行 研磨。
2、 根据权利要求 1所述的电动机铁芯的加工方法, 其特征在于, 所述方 法进一步包括: 研磨铆合成一体的转子铁芯的外圆周。
3、 根据权利要求 1所述的电动机铁芯的加工方法, 其特征在于, 所述方 法进一步包括: 研磨铆合成一体的定子铁芯的外圆周、 内孔和两端端面。
4、 根据权利要求 3所述的电动机铁芯的加工方法, 其特征在于, 研磨所 述定子铁芯前, 在所述定子铁芯的两端分别叠加一片形状与定子冲片一致的 厚钢片, 并与所述定子冲片一起铆合成整体, 所述厚钢片的厚度大于等于 0.3mm。
5、 根据权利要求 3或 4所述的电动机铁芯的加工方法, 其特征在于, 研 磨后所述定子铁芯两个端面的平行度小于等于 0.008mm。
6、 根据权利要求 1所述的电动机铁芯的加工方法, 其特征在于, 研磨后 定子铁芯与转子铁芯之间的气隙小于等于 0.175mm。
7、 一种高精度电动机, 包括装配在一起的定子、 转子、 转轴和与定子固 定在一起的前后两个端盖, 其特征在于, 所述转子铁芯具有经过研磨的外圆 周, 所述定子铁芯具有分别经过研磨的外圆周、 内孔和两个端面, 所述转子 铁芯套在所述定子铁芯的内孔内, 且所述定子铁芯的内孔研磨前的冲压直径 等于所述转子铁芯的外圆周研磨前的冲压外径。
8、 根据权利要求 7所述的高精度电动机, 其特征在于, 所述转轴直接压 入转子铁芯的转轴孔内, 与所述转子铁芯的转轴孔呈全接触的紧配合。
9、 根据权利要求 8所述的高精度电动机, 其特征在于, 所述转轴直径比 所述转子铁芯的转轴孔内径小至多 0.015mm。
10、 根据权利要求 7所述的高精度电动机, 其特征在于, 所述端盖包括 轴承座和定子支撑部, 所述定子支撑部的空心圆柱状下端紧扣在所述定子铁 芯的外圆周表面上, 所述空心圆柱状下端内侧设置有台阶状止口, 抵在所述 定子铁芯的端面上。
11、 根据权利要求 10所述的高精度电动机, 其特征在于, 所述定子铁芯 以及紧扣在所述定子铁芯两端的前后两个端盖通过螺钉固定在一起。
12、 根据权利要求 10所述的高精度电动机, 其特征在于, 所述端盖的轴 承座内装配轴承, 所述轴承座的内外两侧分别设有轴承盖, 通过螺钉固定在 所述轴承座上将所述轴承夹紧。
13、 根据权利要求 7所述的高精度电动机, 其特征在于, 所述转子铁芯 由多个圆形转子冲片铆合成一体。
14、 根据权利要求 7所述的高精度电动机, 其特征在于, 所述定子铁芯 由多个圆形定子冲片和分别叠加在两端的两片形状与所述定子冲片一致的厚 钢片铆合成一体, 所述厚钢片的厚度大于等于 0.3mm, 所述定子铁芯两个端 面的平 fi度小于等于 0.008mm。
15、 根据权利要求 7所述的高精度电动机, 其特征在于, 经过研磨后, 所述转子铁芯外圆周表面与所述定子铁芯内孔表面之间的气隙小于等于 0.175匪。
16、 一种如权利要求 7所述的电动机的装配方法, 其特征在于, 所述方 法包括:
将转轴直接压入转子铁芯的转轴孔内, 使得所述转轴与所述转子铁芯的 转轴孔呈全接触的紧配合;
将外圆周已经过研磨的所述转子铁芯套在内孔冲压直径等于所述转子铁 芯的冲压外径的定子铁芯的内孔内, 且所述定子铁芯的外圆周、 内孔和两端 端面在装配前已分别经过研磨;
将前后两个端盖上的空心圆柱状下端分别紧扣在所述定子铁芯两端的外 圆周表面上, 所述空心圆柱状下端内侧设置的台阶状止口抵在所述定子铁芯 的端面上, 并通过螺钉将所述定子铁芯与所述前后两个端盖固定在一起。
17、 根据权利要求 16所述的电动机的装配方法, 其特征在于, 所述转子 铁芯由多个圆形转子冲片铆合成一体。
18、 根据权利要求 16所述的电动机的装配方法, 其特征在于, 所述定子 铁芯由多个圆形定子冲片和分别叠加在两端的两片形状与所述定子冲片一致 的厚钢片铆合成一体, 所述厚钢片的厚度大于等于 0.3mm, 所述定子铁芯的 两个端面的平行度小于等于 0.008mm。
19、 根据权利要求 16所述的电动机的装配方法, 其特征在于, 所述转子 铁芯外圆周表面与所述定子铁芯内孔表面之间的气隙小于等于 0.175mm。
20、 根据权利要求 15所述的电动机的装配方法, 其特征在于, 所述转轴 直径比所述转子铁芯的转轴孔内径小至多 0.015皿。
PCT/CN2007/000777 2006-06-14 2007-03-12 Moteur de grande précision et son procédé d'usinage et de montage WO2007147309A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/094,777 US7863796B2 (en) 2006-06-14 2007-03-12 High precision motor and its machining and assembling method
JP2009514616A JP2009540787A (ja) 2006-06-14 2007-03-12 高精度モータならびにその機械加工および組み立て方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610061199.4A CN100521456C (zh) 2006-06-14 2006-06-14 高精度电动机及其加工和装配方法
CN200610061199.4 2006-06-14

Publications (1)

Publication Number Publication Date
WO2007147309A1 true WO2007147309A1 (fr) 2007-12-27

Family

ID=37597818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000777 WO2007147309A1 (fr) 2006-06-14 2007-03-12 Moteur de grande précision et son procédé d'usinage et de montage

Country Status (4)

Country Link
US (1) US7863796B2 (zh)
JP (1) JP2009540787A (zh)
CN (1) CN100521456C (zh)
WO (1) WO2007147309A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100521456C (zh) * 2006-06-14 2009-07-29 谢杨辉 高精度电动机及其加工和装配方法
US8283841B2 (en) 2010-06-23 2012-10-09 Lin Engineering Motor end cap with interference fit
CN102468719B (zh) * 2010-11-05 2015-02-18 珠海格力电器股份有限公司 永磁同步电机的定、转子固定装置及电机装配方法
CN102545453A (zh) * 2010-12-20 2012-07-04 康平科技(苏州)有限公司 一种可以更换钢片外径机壳的方法
CN102324810B (zh) * 2011-09-14 2013-12-18 中国航空工业第六一八研究所 一种防止定/转子叠片倒齿及开裂的加工方法
CN104283379A (zh) * 2013-11-12 2015-01-14 西安励致科技有限公司 一种精密电机及传动机构砝码加载类轴承的装配方法
CN106415993A (zh) * 2014-04-08 2017-02-15 中车株洲电机有限公司 窄轨机车牵引电机用定子铁芯叠压固定方法及装置
CN105656254A (zh) * 2014-12-03 2016-06-08 杭州中冷机电有限公司 一种制冷压缩机电机定子安装结构件
CN107306070A (zh) * 2016-04-21 2017-10-31 上海金陵电机股份有限公司 一种机壳精车双止口的电机装配工艺
DE102016221274A1 (de) * 2016-10-28 2018-05-03 Siemens Aktiengesellschaft Motoranordnung
CN107425674A (zh) * 2017-07-25 2017-12-01 四川明珠泵业有限公司 一种立式电机加工方法
JP6952241B2 (ja) * 2017-08-29 2021-10-20 パナソニックIpマネジメント株式会社 電動工具
CN107359708B (zh) * 2017-08-31 2023-08-22 威海顺意电机股份有限公司 一种无机壳的交流异步电动机
CN109454193A (zh) * 2018-12-03 2019-03-12 黄石艾博科技发展有限公司 一种整体式洗衣机电机端盖的压铆模具
CN113783369A (zh) * 2021-07-27 2021-12-10 东风电驱动***有限公司 一种驱动电机的装配工装及其装配工艺
CN114932239A (zh) * 2022-06-01 2022-08-23 安徽皖南新维电机有限公司 一种加工电机定子机座两端止口的工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166475A (en) * 1979-06-08 1980-12-25 Oriental Motor Kk Method of grinding rotor of stepping motor
JPH08149740A (ja) * 1994-11-21 1996-06-07 Fanuc Ltd 電動機のステータ組体
CN1893233A (zh) * 2006-06-14 2007-01-10 谢杨辉 高精度电动机及其加工和装配方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166287U (ja) * 1982-04-27 1983-11-05 東芝テック株式会社 ステツピングモ−タ
JPS6165837U (zh) * 1984-10-05 1986-05-06
US5045742A (en) * 1990-02-23 1991-09-03 General Electric Company Electric motor with optimum core dimensions
JP4558478B2 (ja) * 2004-12-28 2010-10-06 日立オートモティブシステムズ株式会社 回転機のロータ,その製造方法及び電動パワーステアリング用モータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166475A (en) * 1979-06-08 1980-12-25 Oriental Motor Kk Method of grinding rotor of stepping motor
JPH08149740A (ja) * 1994-11-21 1996-06-07 Fanuc Ltd 電動機のステータ組体
CN1893233A (zh) * 2006-06-14 2007-01-10 谢杨辉 高精度电动机及其加工和装配方法

Also Published As

Publication number Publication date
US7863796B2 (en) 2011-01-04
JP2009540787A (ja) 2009-11-19
US20080272665A1 (en) 2008-11-06
CN1893233A (zh) 2007-01-10
CN100521456C (zh) 2009-07-29

Similar Documents

Publication Publication Date Title
WO2007147309A1 (fr) Moteur de grande précision et son procédé d'usinage et de montage
CN106704204B (zh) 电子泵
US20070247015A1 (en) Rotor having lobed bore and method of assembling same
JP2002112481A (ja) 磁石モータ用ロータ
WO2014141987A1 (ja) ロータ構造および電動流体ポンプ
CN105529876A (zh) 一种混合励磁永磁风力发电机制造工艺
CN103117610A (zh) 一种无刷电机的磁钢嵌入式转子结构
CN210957959U (zh) 一种雨刮电机绝缘片结构
JP5257821B2 (ja) モータ
CN202221933U (zh) 一种电机
CN201674315U (zh) 一种电机端盖
WO2019024684A1 (zh) 转子和具有该转子的电机和压缩机
TWI334254B (en) High precise motor and a machining and assembling method thereof
JP2014121244A (ja) 電動機の固定子及びその製造方法
CN107819381B (zh) 电磁刹车安装结构
JP5611405B1 (ja) 回転電機
CN218415954U (zh) 一种制冷用永磁同步电机的分体组合式转子铁芯
TWM301457U (en) High precise motor
JPH10174318A (ja) 小型モータ
CN204615525U (zh) 一种电机
CN212258550U (zh) 一种发电机
CN204761189U (zh) 一种外转子永磁直流电机
CN216981620U (zh) 一种eps电机定子铁芯
CN202513699U (zh) 小型永磁无刷直流外转子电机的外转子
CN213185687U (zh) 一种无刷电机转子外壳结构及具有该外壳的转子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009514616

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12094777

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720372

Country of ref document: EP

Kind code of ref document: A1