WO2007142160A1 - Variable resistor - Google Patents

Variable resistor Download PDF

Info

Publication number
WO2007142160A1
WO2007142160A1 PCT/JP2007/061225 JP2007061225W WO2007142160A1 WO 2007142160 A1 WO2007142160 A1 WO 2007142160A1 JP 2007061225 W JP2007061225 W JP 2007061225W WO 2007142160 A1 WO2007142160 A1 WO 2007142160A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
resistor
variable resistor
holder
force
Prior art date
Application number
PCT/JP2007/061225
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Ori
Masahiko Sugimoto
Shinji Araki
Original Assignee
Hokuriku Electric Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co., Ltd. filed Critical Hokuriku Electric Industry Co., Ltd.
Priority to JP2008520549A priority Critical patent/JP5048666B2/en
Publication of WO2007142160A1 publication Critical patent/WO2007142160A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/38Adjustable resistors the contact sliding along resistive element the contact moving along a straight path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/38Adjustable resistors the contact sliding along resistive element the contact moving along a straight path
    • H01C10/44Adjustable resistors the contact sliding along resistive element the contact moving along a straight path the contact bridging and sliding along resistive element and parallel conducting bar or collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/06Riveted connections

Definitions

  • the present invention relates to a variable resistor provided with a contact composed of carbon fiber and synthetic resin as main raw materials.
  • variable resistors have been widely used in the past as so-called position detection sensors for replacing mechanical displacement amounts such as rotation angle and movement distance with electrical information in automobiles and production machines.
  • This type of variable resistor is used for applications such as taking out a position signal corresponding to the stepping angle of an automobile accelerator as an electrical signal.
  • the early variable resistor contacts used for brute force applications were made of metal.
  • the resistor is worn due to the difference between the hardness of the metal and the resistance of the resistor, and the variable resistor becomes unusable. There was a problem that it took a short time (until the end of the service life).
  • a large amount of wear powder is generated by the end of the service life. This abrasion powder enters the gap between the contact portion of the contact and the resistor, making the electrical contact unstable and causing sliding noise.
  • thermosetting resin in one or more prepregs is heat-cured to obtain a carbon fiber sheet.
  • the carbon fiber sheet is cut to form one or more contact pieces to form contact pieces.
  • the apex bent into a mountain shape is used as a contact, or the end face of the tip bent at a right angle is brought into surface contact with the surface of the resistor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-51361 Fig. 1
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-31688 FIG. 10 to FIG. 14
  • the contact of the contact is caused by deformation or stagnation of the bundle of carbon fibers hardened or covered with the resin.
  • the contact portion is pressed against the surface of the resistor.
  • the contact part cannot always be pressed against the surface of the resistor with an appropriate force.
  • the degree of contact sag changes with time, and as a result, the contact pressure of the contact part changes, and this is the cause of noise generation and the true contact point (the point where contact occurs as current flows) ).
  • An object of the present invention is to use a contactor including carbon fiber, and to change the contact portion of the contactor to a resistor with a pressure within an appropriate range over a long period of time. It is to provide a resistor.
  • the variable resistor of the present invention includes a resistor provided on the surface of the insulating substrate, a contact portion that slides on the surface of the resistor at the tip, and is held at a position opposite to the tip. And a holder for holding the contact directly or indirectly and operating the contact when the contact is slid on the surface of the resistor.
  • the contact is configured such that conductivity is obtained using carbon fiber and synthetic resin as main raw materials.
  • the contact has rigidity so that it does not stagnate when the contact portion slides on the surface of the resistor.
  • variable resistor of the present invention includes a force applying mechanism that is configured separately from the contact and is provided on the holder, and that applies a force to the contact to press the contact portion of the contact against the surface of the resistor.
  • the configuration in the case of forming the contact using carbon fiber and synthetic resin as the main raw materials may be any as long as the required electrical conductivity and mechanical strength can be obtained.
  • the contacts may be integrally formed with a carbon fiber mixed resin in which carbon fiber chips are randomly mixed to obtain conductivity! / !.
  • a large number of carbon fibers are used to make a woven or non-woven fabric, and the woven or non-woven fabric is impregnated with a thermosetting insulating resin to make a plate-shaped pre-preda. It is possible to make a contact using a carbon fiber sheet that has been heat-cured.
  • multiple prepregs are used, multiple prepregs using woven or non-woven fabrics may be stacked, or multiple prepregs using woven and non-woven fabrics may be mixed and stacked.
  • a carbon fiber sheet for forming a contact may be created by sandwiching one or more prepregs of woven or non-woven fabric between two prepreaders that have only the power of grease.
  • a cut surface comprises a contact part. This is because the carbon fiber is always exposed at the cut surface, so that the electrical conductivity of the contact portion can be ensured. If the contact is formed by integral molding, the carbon fiber should be exposed by cutting the part corresponding to the contact part.
  • the carbon fiber sheet is formed by laminating a plurality of pre-preders having a structure in which a plurality of carbon fibers are arranged in one direction, and the plurality of laminated pre-preders are alternately composed of a plurality of If the carbon fibers are arranged in different directions, the rigidity will increase and it will be difficult to deform the tape.
  • the contact of the variable resistor of the present invention has a rigidity that does not squeeze during a sliding operation. That is, since the contact does not squeeze during sliding, the contact portion can always be in contact with the resistor in a stable state.
  • the contact point of the contact can be pressed against the resistor with an appropriate biasing force according to the shape and rigidity of the contact. For this reason, even if the contact part of the contact begins to wear, the contact resistance does not change drastically, and no gap is formed between the contact part and the resistor so that wear powder or the like enters. Therefore, according to the present invention, the contact portion of the contact including carbon fiber is applied to the resistor with a pressure in an appropriate range over a long period. Then you can get insects.
  • the structure of the contactor may be any structure as long as it can be held directly or indirectly by the holder.
  • the structure of the force applying mechanism is also arbitrary.
  • the contact has a held portion on the opposite side of the tip.
  • the holder has a holder main body, and the holder main body is formed with a receiving hole that opens toward the insulating substrate and slidably receives the held portion of the contact.
  • the force applying mechanism may be configured to apply a force to the held portion of the contact and press the contact portion against the surface of the resistor in a state where the held portion of the contact is received in the receiving hole. it can.
  • the contact is slidably guided in the receiving hole provided in the holder body, and the contact is swayed greatly during sliding. The position of the contact will not change.
  • the urging force can be applied to the contact in an appropriate direction, which is stable. A contact state can be obtained.
  • the receiving hole formed in the holder body may be formed to extend obliquely with respect to the surface of the resistor, or may be formed to extend in the vertical direction.
  • the contact is arranged in an inclined state with respect to the surface of the resistor. If the contact is arranged in such a state, it becomes possible to easily attract the wear powder existing on the surface of the resistor. Also, if the shape of the tip of the contactor has a cut surface in a direction that intersects the longitudinal direction of the contactor, the corner part of the contactor tip can be brought into contact with the resistor as a contact part. Become. By adopting such a contact structure, a true contact point can be formed reliably.
  • the force application mechanism in this case includes a spring member arranged to generate a pressing force that presses the contact portion against the surface of the resistor against the rear end portion of the held portion of the contact.
  • a spring member arranged to generate a pressing force that presses the contact portion against the surface of the resistor against the rear end portion of the held portion of the contact.
  • a desired force can be applied to the contact with a simple structure.
  • a kind of spring member arbitrary things, such as a leaf
  • the force applying mechanism includes a base fixed to the holder body, a squeezing part that is provided continuously with the base and extends in an inclined state toward the resistor, and a squeezing part.
  • a spring member having a contact mounting function including a contact mounting portion to which a held portion of the contact is mechanically mounted can also be configured.
  • the spring member having such a contact mounting function can be formed separately from the contact including carbon fiber. For this reason, the contactor can be manufactured easily because the contactor is provided with rigidity that does not squeeze when it is slid. Thus, the number of manufacturing steps and manufacturing cost of the variable resistor can be reduced.
  • the material of the spring member having a contact mounting function is arbitrary. However, when a metal spring member is used, the mechanical connection between the spring member and the contact can be achieved easily and reliably.
  • the structure of the contact mounting portion for mounting the contact is arbitrary, and it is preferable that the contact is mechanically held by a fitting structure, a caulking structure, a clamping structure, or the like. With such a structure, it is possible to simultaneously achieve both mechanical connection and electrical connection between the contact member that uses carbon and the contact member that uses an adhesive and the spring member. Therefore, it is possible to prevent an electrical connection failure.
  • the contact surface of the contact with the contact holding part should be cut and Z or polished to ensure that the internal carbon fibers are in contact with the contact holding part. Is preferred.
  • FIG. 1 is a longitudinal sectional view showing an example of the best mode for carrying out a variable resistor according to the present invention.
  • FIG. 2 is a perspective view of a contact used in the variable resistor of FIG.
  • FIG. 3 is an enlarged cross-sectional view taken along line AA in FIG.
  • FIG. 4 is an enlarged view of an edge portion of a contact piece used in the variable resistor of FIG.
  • FIG. 5 is a side view showing a second example of the best mode for carrying out the variable resistor according to the present invention.
  • FIG. 6 is a side view showing a third example of the best mode for carrying out the variable resistor according to the present invention.
  • FIG. 7 is a longitudinal section showing a fourth example of the best mode for carrying out the variable resistor according to the present invention.
  • FIG. 8 (A) is an exploded perspective view of a rotor portion used when the variable resistor according to the present invention is applied to a rotary variable resistor, and (B) is after assembly of the main part of the variable resistor. It is a perspective view which shows the state.
  • FIG. 9 (A) is an exploded perspective view of another rotor portion used for the rotary variable resistor
  • FIG. 9 (B) is a perspective view showing the assembled rotor portion.
  • FIG. 10 (A) is an exploded perspective view of still another rotor unit used in the rotary variable resistor
  • FIG. 10 (B) is a perspective view showing the assembled rotor unit.
  • FIG. 11 (A) is an exploded perspective view of still another rotor unit used in the rotary variable resistor
  • FIG. 11 (B) is a perspective view showing the assembled rotor unit.
  • FIG. 12 (A) to (C) respectively show partial longitudinal sectional views of still another embodiment of a linear motion type variable resistor to which the present invention is applied.
  • FIG. 13 A diagram showing a schematic configuration of a main part of another embodiment of the variable resistor of the present invention.
  • FIGS. 14A and 14B are an exploded perspective view of a spring member for holding a contact that can be used in the variable resistor shown in FIG. 13, and an exploded perspective view including a holder.
  • (A) and (B) are an exploded perspective view of a spring member for holding a contact that can be used in the variable resistor shown in FIG. 13, and an exploded perspective view including a holder.
  • FIGS. 16A and 16B are an exploded perspective view of a spring member for holding a contact that can be used in the variable resistor shown in FIG. 13, and an exploded perspective view including a holder.
  • FIG. 17 (A) is a perspective view showing still another example of a holding spring member using a leaf spring
  • (B) is an exploded perspective view for explaining a case where a contact is attached to the holding spring member
  • (C) is a perspective view of a state where the contact is attached to the holding spring member.
  • FIG. 18 (A) is a perspective view showing still another example of a holding spring member using a leaf spring
  • (B) is an exploded perspective view for explaining a case where a contact is attached to the holding spring member
  • (C) is a perspective view of a state where the contact is attached to the holding spring member.
  • FIG. 19 (A) to (C) show perspective views of other examples in the case where the holding spring member is made of a spring wire! / Speak.
  • FIGS. Fig. 1 is a vertical cross-sectional view of the variable resistor of this example
  • Fig. 2 is a perspective view of a contact used in the variable resistor of this example
  • Fig. 3 is an enlarged cross-sectional view taken along line AA in Fig. 2
  • Fig. 4 Fig. 4 is an enlarged view of a corner portion of a contact piece used in the variable resistor of this example.
  • the variable resistor of this example has a structure in which the resistor 5 is linear, and the contact 9 reciprocates on the surface of the resistor 5 linearly.
  • a resistor 5 is linearly provided with a predetermined length on the surface of a heat-resistant insulating substrate 3 such as a ceramic substrate.
  • the resistor 5 is formed by printing a linear resistor pattern on the insulating substrate 3 using a resistor paste and then firing the resistor pattern.
  • the resistor 5 may be formed by naturally drying the applied resistor paste, or may be a material obtained by cutting a resin electrical resistance film and pasting it on the surface of the insulating substrate 3.
  • the contact 9 has two contact pieces 7 that come into contact with the surface of the resistor 5.
  • the contactor 9 is formed of a carbon fiber sheet having conductivity and formed using carbon fibers 11 and a synthetic resin as main raw materials.
  • the two contact pieces 7 are positioned between the tip 7a, the base 7b, and the tip 7a and the base 7b, each having a contact 7s (FIG. 4) that slides on the surface of the resistor 5. And a stagnation part 7c.
  • the base portions 7b of the two contact piece 7 are formed integrally with the held portion 7d.
  • an epoxy substrate is formed on a base material in the form of a woven fabric or a non-woven fabric formed using a large number of carbon fibers 11.
  • a plurality of pre-predas 15 (three in the example of FIG. 3) prepared by impregnating a thermosetting insulating resin 13 such as a resin are prepared.
  • a pre-predder using a base material in which a plurality of carbon fibers 11 are arranged in a bundle is used.
  • the central prepreg and the two prepreaders on both sides in the thickness direction are overlapped so that the extending directions of the carbon fibers are different.
  • thermosetting resin 13 in the prepreader 15 is heat-cured to form a carbon fiber sheet.
  • this carbon fiber sheet was cut and processed as shown in FIG. A contact 9 having a contact piece 7 is formed.
  • the type and hardness of the synthetic resin and the amount of carbon fiber are determined so that the contactor 9 has a rigidity that does not squeeze when performing the sliding operation.
  • the carbon fiber sheet used in this example is configured by laminating the three pre-preders 15 having a structure in which a plurality of carbon fibers 11 are arranged in the same direction.
  • the pre-preder 15 made of three carbon fiber sheets is laminated and integrated together so that a plurality of carbon fibers 11 are alternately arranged in different directions.
  • this carbon fiber sheet is composed of a pre-predator having a carbon fiber 11 oriented in a direction perpendicular to the longitudinal direction of the contact piece 7 between the two pre-preders 15 having the carbon fiber 11 oriented in the longitudinal direction of the contact piece 7. It has a structure in which 15 sheets are sandwiched together.
  • the structure of the carbon fiber sheet is not limited to this example, and carbon fiber sheets having various structures can be used.
  • the contact may be integrally formed using carbon fiber mixed resin in which short chips of carbon fiber chips are randomly mixed.
  • the two contact pieces 7 have a cutting surface extending from the distal end portion 7a to the base portion 7b as a distal end surface 7f extending in a direction crossing the direction of the force.
  • the contact 9 is a holder 17 which will be described later in an inclined state so as to face one side 7g force resistor 5 of the two side surfaces located in the thickness direction of the contact piece 7. Retained.
  • a part of the corner portion 7k formed between the tip surface 7f of the contact piece 7 and one side surface 7g constitutes the contact portion 7s.
  • the corner portion 7k is located in a region surrounded by the tangent plane S1 with respect to the tip surface 7f and the tangent plane S2 with respect to the side surface 7g of the stagnation portion 7c.
  • the contact 9 is held by a holder 17 made of insulating resin and slides linearly on the surface of the resistor 5 along the longitudinal direction of the resistor 5.
  • FIG. 1 the illustration of a case that fixes the positional relationship between the holder 17 and the insulating substrate 3 and supports the holder 17 so as to be slidable along the longitudinal direction of the resistor 5 is omitted.
  • An inclined through hole 23 is formed in the holder body 18 of the holder 17. In the inclined through hole 23, the contact 9 is accommodated so that the tip of the contact piece 7 is exposed. In the inclined through hole 23, one side surface 7g of the contact piece 7 of the contact 9 accommodated in the inclined through hole 23 is opposed to the surface of the resistor 5 and forms a predetermined angle with the surface.
  • the inclined through hole 23 The cross-sectional shape is determined so that the accommodated contact 9 slides in the inclined through hole 23.
  • the inclined through hole 23 constitutes a receiving hole for slidably receiving the contact 9. Further, on the holder body 18, the end of the held portion 7d of the contact 9 inserted in the inclined through hole 23 is pushed in the longitudinal direction of the contact 9, so that the contact 7s is brought into contact with the surface of the resistor 5.
  • a force applying mechanism 24 for generating a contact force is provided.
  • the force applying mechanism 24 includes a leaf spring 25 and a fixing member 27 that fixes the leaf spring 25 on the holder body 18.
  • FIG. 5 is a longitudinal sectional view of the second embodiment of the variable resistor according to the present invention. This example shows a modification of the first embodiment shown in FIG. Therefore, in FIG.
  • a linear spring 29 is used as a spring member of the force applying mechanism 24.
  • the linear spring 29 is formed by applying a bending force to the linear spring material.
  • the linear spring 29 includes a curved portion 29a formed by bending a linear spring member into a U shape, and two linear portions 29b extending in parallel from the curved portion.
  • the curved portion 29a includes a locking portion 29c that is bent at a right angle with respect to the linear portion 29b and is formed by being folded back at an intermediate portion.
  • the curved portion 29a including the locking portion 29c looks V-shaped in the state shown in FIG.
  • This locking portion 29 c is fitted in a locking hole 17 a formed in the holder 17.
  • the locking hole 17a penetrates the holder body 18 in the thickness direction, and a locking projection 17b is formed at the entrance of the locking hole 17a.
  • the leading end of the locking portion 29c is locked to the locking projection 17b to prevent the locking portion 29c from coming off.
  • the end portion force of the linear portion 29b of the wire spring 29 The surface force of the holder body 18 is bent in the separating direction to form the pressing portion 29d.
  • the contact 9 is pressed against the resistor 5 by the pressing part 29 9d.
  • Other configurations are shown in Fig. 1. Since it is the same, description is abbreviate
  • FIG. 6 is a longitudinal sectional view of still another embodiment of the variable resistor according to the present invention.
  • This embodiment is also a modification of the embodiment of FIG. Therefore, in FIG. 6, the same members as those shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • a torsion spring 31 is used as a spring member used in the force applying mechanism 24.
  • a torsion spring fixing portion 28 is formed in a body on one end portion of the holder body 18 of the holder 17. The torsion spring fixing portion 28 is disposed at a position close to one side in the width direction of the holder body 18 (direction perpendicular to the paper surface of FIG. 6).
  • a spring support protrusion 30 extending in parallel with the surface of the holder body 18 is provided on the surface opposite to the side where the contact 9 is present.
  • the coil portion 31 a of the torsion spring 31 is passed through the spring support protrusion 30.
  • One end (not shown) of the torsion spring 31 is fixed to the torsion spring fixing part 28.
  • the other end (free end) 31b of the torsion spring 31 is in contact with the end of the supported portion 7d of the contact 9.
  • the torsion spring 31 applies a downward force to the end portion of the supported portion 7b of the contact 9 from the other end portion 31b. By this force, the contact portion 7s of the contact piece 7 is pressed against the surface of the resistor 5 and is turned.
  • Other configurations are the same as those of the embodiment shown in FIG.
  • FIG. 7 is a longitudinal sectional view of still another embodiment of the variable resistor according to the present invention.
  • a compression coil spring 33 is used as the force applying means of the force applying mechanism 24.
  • the holder body 18 of the holder 17 is provided with a bulging portion 19.
  • the holder body 18 and the bulging portion 19 are formed with inclined holes 23 for receiving the contacts 9.
  • the inclined hole 23 is closed at the upper end and constitutes a receiving hole.
  • a coil spring 33 is housed for pressing the contact 9 in the direction in which the resistor 5 is positioned.
  • the coil spring 33 is in contact with the rear end portion of the held portion 7d of the contact 9, and the contact 9 is housed and compressed in a closed state.
  • the shape of the coil spring 33 is such that the rear end portion of the supported portion 7d of the contact 9 is in contact with the front end portion (lower end portion) of the coil spring 33, and the resistor 5 is connected to the contact 9 from the coil spring 33. It has a shape that can give a force to the side.
  • the sliding resistor has an arc shape, and the contactor rotates within a predetermined angular range.
  • FIG. 2 is an exploded perspective view and an assembled perspective view of a rotor portion according to an embodiment in which the present invention is applied to a rotating variable resistor of a moving type.
  • FIGS. 8A and 8B to 11A and 11B the same members as those constituting the embodiment shown in FIGS. 1 to 7 are used. The number of codes shown in Fig. 7 plus the number of 200 is added.
  • FIG. 8A is an exploded perspective view of the rotor portion 202 of the rotary variable resistor
  • FIG. 8B is a perspective view showing a state after the rotor portion 202 is assembled.
  • the rotor unit 202 is used when the structure of the linear motion type variable resistor of the first embodiment shown in FIG. 1 is changed to a rotary type variable resistor.
  • a leaf spring 225 is used as a force generating member that constitutes a part of a force applying mechanism 224 that applies a force to the contact 209.
  • the arc-shaped resistor 205 shown by a broken line in FIG.
  • a storage case (not shown) that rotatably supports the rotor portion with respect to 203 is fixed.
  • a holder 217 integrally formed of an insulating resin material includes a holder body 218 and a rotary shaft 235 provided integrally with the holder body.
  • the holder body 218 is formed with an inclined through hole 223, and the contact 209 is accommodated in the inclined through hole 223 so that the tip end portion is exposed.
  • a through hole 225 a is formed at one end of the leaf spring 225.
  • the fixing member 227 inserted into the through hole 225a is heated and deformed, and one end of the leaf spring 225 is fixed to the holder body 218.
  • the rotating shaft 235 is inserted into a mounting hole provided in a storage case (not shown) and is rotatably supported by the storage case.
  • FIG. 9 (A) is an exploded perspective view of the rotor portion 202 of another rotary variable resistor
  • FIG. 9 (B) is FIG.
  • FIG. 5 is a perspective view showing a state after assembly of the rotor section 202 shown in FIG.
  • the rotor unit 202 of this example is used when the structure of the linear motion type variable resistor shown in FIG. 5 is changed to a rotary type variable resistor.
  • the contact 209 is shown by a solid line.
  • a linear spring 229 is used as a force generating member used in the force applying mechanism 224, similarly to the variable resistor shown in FIG. Used.
  • Other structures are the same as those of the embodiment shown in FIG.
  • the linear spring 229 is formed by applying a bending force to the linear spring material.
  • the linear spring 229 includes a curved portion 229a formed by bending a linear spring member into a U shape, and two linear portions 229b extending in parallel from the curved portion 229a.
  • the curved portion 229a includes a locking portion 229c that is bent at a right angle with respect to the linear portion 229b and is folded back at an intermediate portion.
  • the curved portion 29a including the locking portion 229c has a V shape when viewed from the side.
  • the locking portion 229c is locked to a locking structure portion 217c formed on the holder 217.
  • the ends of the two linear portions 229b of the linear spring 229 are also locked to the locking structure portion 217b.
  • the locking structure portion 217b is provided with a locking groove that opens in the lateral direction so that the ends of the two linear portions 229b can enter.
  • the locking structure portion 217c has a structure including a hole portion into which the bending portion 229a is fitted and a locked portion to which the locking portion 229c is locked.
  • FIG. 10 (A) is an exploded perspective view of the rotor portion 202 of another rotary variable resistor
  • FIG. 10 (B) shows the assembled state of the rotor portion 202 of FIG. 10 (A). It is a perspective view shown.
  • the contact 209 is shown by a solid line.
  • the rotor section 202 is used when the linear motion type variable resistor shown in FIG. 6 is changed from a rotary type variable resistor to a rotary type variable resistor.
  • the torsion spring 231 is used as a force generating member used in the force applying mechanism 224, similarly to the variable resistor shown in FIG.
  • a spring support protrusion 230 is provided on the side surface of the holder body 218 of the holder 217.
  • a coil portion 231a of a torsion spring 231 is passed through the spring support protrusion 230.
  • One end portion 231c of the torsion spring 231 is fixed to a bulging portion 228 that is integrally provided on the side of the holder main body 218.
  • the other end portion (free end) 231b of the torsion spring 231 is in contact with the rear end portion of the supported portion 207d of the contact 209 while entering the slit 232 formed in the holder body 218. Yes.
  • the torsion spring 231 applies a downward force to the end of the supported portion 7d of the contact 309 by the other end 23 lb.
  • FIG. 11A is an exploded perspective view of the rotor portion 202 of another rotary variable resistor.
  • B) is a perspective view showing a state after the rotor part 202 is assembled.
  • the contact 209 is shown by a solid line for easy understanding.
  • the rotor unit 202 of this example is a rotor unit used when the structure of the linear motion type variable resistor shown in FIG. 7 is changed to a rotary type variable resistor. Therefore, in this rotor portion 202 as well, the compression coil spring 233 is used as a force generating member material used in the force applying mechanism 224, similarly to the variable resistor shown in FIG.
  • FIGS. 12A to 12C are partial longitudinal sectional views of still another embodiment of a linear motion type variable resistor according to the present invention.
  • 12 (A) to 12 (C) members similar to those constituting the three embodiments shown in FIG. 1, FIG. 6 and FIG. The number is added with the number of 300 and the description is omitted.
  • the contact 309 extends in the direction perpendicular to the resistor 305. Accordingly, the through hole or receiving hole 323 that receives the contact 309 extends in the holder body 318 in the vertical direction.
  • the tip end surface 307f of the contact 309 is entirely in contact with the surface of the resistor 305.
  • the tip end surface 307f of the contact 309 may be inclined while sliding, and the resistor 305 may be slid on the tip end edge of the inclined tip surface as a contact portion. .
  • FIG. 13 is a diagram showing a schematic configuration of a main part of still another embodiment in which the present invention is applied to a linear movement type variable resistor.
  • FIGS. 14A and 14B are an exploded perspective view of the contact and holding spring member used in the embodiment of FIG. 13, and an exploded perspective view including the holder. 13 and FIG. 14, members similar to those shown in FIG. 1 to FIG. 7 are given the same reference numerals as those shown in FIG. 1 to FIG. The explanation is omitted.
  • a force applying mechanism 424 for applying a force to the contact 409, a force holder 417, a holding spring member 420, and the like are configured.
  • the holding spring member 420 includes a base 420a fixed to the holder main body 418, a stagnation part 420b that is provided continuously with the base 420a and extends in an inclined state toward the resistor 405, and a stagnation part 420b.
  • a plate spring member formed by a metal plate cover provided with a contact mounting part 420c to which a contact is mechanically mounted. At the center of each side of the rectangular contact mounting part 420c, there are four force squeezing claw parts 420d.
  • the contact 409 has these four claws 42. Four slits 409a into which Od is fitted are formed.
  • the contact 409 is attached to the contact attachment part 420c by force-squeezing the claw part 420d with the slit 409 fitted in the claw part 420d.
  • the contact 409 is in contact with the resistor 405 from the vertical direction.
  • the contact 409 may be attached to the contact attachment part 420c so as to be inclined with respect to the resistor 405.
  • a through hole 420e is formed in the base 420a of the spring member 420.
  • the holder body 418 is provided with a bulging portion 419 that bulges toward the resistor 405 side by force.
  • the facing surface 419a of the bulging portion 419 facing the resistor 405 is inclined, and a fixing portion 427 that can be heated and deformed is formed on the facing surface 419a.
  • the holding spring member 420 is fixed to the bulging portion 419 after the fixing portion 427 is fitted into a through-hole 420e provided in the base portion 420a, and the distal end portion thereof is heated and deformed.
  • the stagnation portion 420b of the holding spring member 420 is squeezed while the holder 417 and the insulating substrate 403 are housed in a case (not shown). As a result, the amount of stagnation of the stagnation part 420b generates a force that pushes the contactor 409 against the resistor 405.
  • FIGS. 15A and 15B are exploded perspective views showing different examples of the contact 409 and the holding spring member 420 that can be used for the variable resistor of FIG. 13, and the holder 417 and the contact.
  • FIG. 6 is an exploded perspective view including a holding spring member 420 to which 409 is attached.
  • two protrusions 420f and one through hole 420g are formed on the contactor mounting portion 420c of the holding spring member 420.
  • a through hole 419 is also formed in the contact 409.
  • the rivet 440 is inserted into the through hole 419 of the contact 409 and the through hole 420g of the contact mounting part 420c, and the tip of the rivet 440 is crushed to contact the contact 409. Attach to the child mounting part 420c.
  • the protrusion 420f engages with the edge of the contact 409 to exert a detent function.
  • FIGS. 16 (A) and 16 (B) are exploded perspective views showing different mounting states of another contact 409 and holding spring member 420 that can be used in the variable resistor of FIG.
  • FIG. 5 is an exploded perspective view including a holding spring member 420 to which a child 409 is attached.
  • the holding mechanism for holding the contact 409 between the two plate-like portions 420h and 420i is formed by bending the contact mounting portion of the holding spring member 420 in an inverted U shape.
  • One plate-like part 420h has the other plate A projecting protrusion 420j is formed so as to protrude from the ridge 420 to a force.
  • the contact 409 is formed with a through hole 419 into which the projecting protrusion 420j is fitted.
  • the contact 409 is sandwiched between the two plate-like portions 420h and 420i, and the projecting projection 420j is fitted into the through hole 419 so as to prevent slipping and rotation.
  • FIG. 17A is a perspective view showing still another example of a holding spring member 520 using a leaf spring.
  • FIG. 17B shows a contact 519 attached to the holding spring member 520.
  • FIG. 17C is an exploded perspective view for explaining the case of attachment, and FIG. 17C is a perspective view of a state in which the contact 519 is attached to the holding spring member 520.
  • one end of the holding spring member 520 is provided with a notch 520m used when being fixed to a holder (not shown).
  • the holding spring member 520 has a slit 520 ⁇ at the center, and two through holes 520k at the other end so as to sandwich the slit 520 ⁇ .
  • the contact 509 is formed with two through holes 519 aligned with the two through holes 520k provided in the spring member 520 in the held portion 507d.
  • the spring member 520 and the contact 509 are coupled by passing the rivet 540 through the aligned through hole 519 and through hole 520k and deforming the tip of the rivet 540.
  • FIG. 17 (A) is a perspective view showing still another example of a holding spring member 520 using a leaf spring.
  • FIG. 17 (B) shows a contact 519 attached to the holding spring member 520.
  • FIG. 17C is an exploded perspective view for explaining a case of attachment, and FIG. 17C is a perspective view of a state in which a contact 509 is attached to a holding spring member 520.
  • one end of the holding spring member 520 is provided with a notch 520m used when being fixed to a holder (not shown).
  • the holding spring member 520 has a slit 520 ⁇ at the center, and two through holes 520k at the other end so as to sandwich the slit 520 ⁇ .
  • the contact 509 is formed with two through holes 519 aligned with the two through holes 520k provided in the spring member 520 in the held portion 507d.
  • the spring member 520 and the contact 509 are coupled by passing the rivet 540 through the aligned through hole 519 and through hole 520k and deforming the tip of the rivet 540.
  • FIG. 18 (A) is a perspective view showing still another example of a holding spring member 620 using a leaf spring.
  • FIG. 18 (B) shows a contact 509 attached to the holding spring member 620.
  • FIG. 18C is a perspective view of a state in which a contact 519 is attached to a holding spring member 620.
  • FIG. in these figures for the holding spring member 620, a number of 100 is added to the numeral in FIG. 17 (A) in the same manner as the spring member 520 shown in FIG. 17 (A). A number sign is attached and explanation is omitted.
  • two cylindrical portions 620p are provided at the other end of the holding spring member 620 so as to sandwich the slit 520 ⁇ .
  • the spring member 620 and the contact 509 are coupled by curling the tip of the cylindrical part 620p after inserting the cylindrical part 620p into the through hole 519.
  • FIGS. 19A to 19C show perspective views of examples in which the holding spring member is constituted by a spring wire, respectively.
  • the structure of the holding spring members 720, 820, 920 may be any structure not limited to the above example.
  • the contact including the carbon fiber has a rigidity that does not squeeze when performing a sliding operation, so that the contact portion is always in a stable state. Can be brought into contact with the resistor.
  • the holder is provided with a force applying mechanism for applying to the contact a force for pressing the contact portion of the contact against the surface of the resistor. Therefore, the contact can be pressed against the resistor with an appropriate biasing force according to the shape and rigidity of the contact. As a result, even if the contact portion of the contact begins to wear, the contact resistance between the contact portion and the surface of the resistor does not change extremely.
  • the contact portion of the contact including carbon fibers can be pressed against the surface of the resistor with a pressing force within a proper range over a long period.

Abstract

A variable resistor in which the contact portion of a contactor can be brought into contact with a resistor with a pressure within a proper range over a long period by using a contactor containing carbon fibers. The held portion (7b) of the contactor (9) is held by means of a holder (17) such that the tip portion of the contactor (9) containing carbon fibers is brought into contact with the surface of the resistor (5). The contactor (9) has rigidity high enough not to bend during slide operation. The holder (17) is provided with a leaf spring (25) for urging the contactor (9) toward the surface of the resistor (5) separately from the contactor (9).

Description

明 細 書  Specification
可変抵抗器  Variable resistor
技術分野  Technical field
[0001] 本発明は、カーボン繊維と合成樹脂とを主原料として構成される接触子を備えた可 変抵抗器に関するものである。  [0001] The present invention relates to a variable resistor provided with a contact composed of carbon fiber and synthetic resin as main raw materials.
背景技術  Background art
[0002] 自動車や生産機械において、回転角度や移動距離等の機械的変位量を電気的情 報に置換する、いわゆる位置検出センサとして可変抵抗器が従来力も広く使用され ている。この種の可変抵抗器は、自動車のアクセルの踏み角度に相当する位置信号 を電気信号として取り出す用途等に使用されている。力かる用途に使用される初期 の可変抵抗器の接触子は金属製であった。し力しながら、金属製の接触子は、抵抗 体上を繰り返し往復摺動されると、金属の硬度と抵抗体の硬度との差から、抵抗体が 摩耗し、可変抵抗器が使用不能になるまで (寿命に至るまで)の時間が短い問題点 があった。また、従来の金属製の接触子を用いる場合には、寿命に至るまでに、多量 の摩耗粉が発生する。そしてこの摩耗粉が、接触子の接点部と抵抗体との間の間隙 に入り込んで電気的接触を不安定にし、摺動雑音を発生する原因となっていた。  [0002] Variable resistors have been widely used in the past as so-called position detection sensors for replacing mechanical displacement amounts such as rotation angle and movement distance with electrical information in automobiles and production machines. This type of variable resistor is used for applications such as taking out a position signal corresponding to the stepping angle of an automobile accelerator as an electrical signal. The early variable resistor contacts used for brute force applications were made of metal. However, when the metal contact is repeatedly slid on the resistor, the resistor is worn due to the difference between the hardness of the metal and the resistance of the resistor, and the variable resistor becomes unusable. There was a problem that it took a short time (until the end of the service life). In addition, when conventional metal contacts are used, a large amount of wear powder is generated by the end of the service life. This abrasion powder enters the gap between the contact portion of the contact and the resistor, making the electrical contact unstable and causing sliding noise.
[0003] そこで、多数本のカーボン繊維の束に熱硬化性の導電性の絶縁榭脂を含浸させて 板状に形成した 1枚以上のプリプレダを加工して接触子を形成することが提案された (例えば、特許文献 1参照。 ) oこの接触子は、次のようにして製造する。まず 1枚以上 のプリプレダ中の熱硬化性榭脂を加熱硬化させて、カーボン繊維シートとする。そし てこのカーボン繊維シートに、 1以上の接触子片を形成するように切断加工を施して 接触子片を形成する。次に、 1以上の接触子片の先端を山形に折り曲げたり、直角 に折り曲げる。この接触子では、山形に折り曲げた頂点を接点としたり、直角に折り曲 げた先端の端面を抵抗体の表面に面接触させて 、る。 [0003] Therefore, it has been proposed to form a contact by processing one or more pre-predators formed into a plate shape by impregnating a bundle of many carbon fibers with a thermosetting conductive insulating resin. (For example, refer to Patent Document 1.) o This contactor is manufactured as follows. First, the thermosetting resin in one or more prepregs is heat-cured to obtain a carbon fiber sheet. The carbon fiber sheet is cut to form one or more contact pieces to form contact pieces. Next, fold the tip of one or more contact pieces into a chevron or a right angle. In this contact, the apex bent into a mountain shape is used as a contact, or the end face of the tip bent at a right angle is brought into surface contact with the surface of the resistor.
[0004] また、特許文献 2に示された接触子では、多数本のカーボン繊維の束を導電粉を 混入した合成樹脂で覆って被覆層を形成し、この被覆層の側面を抵抗体の表面と線 接触または面接触させて 、る。 [0005] このようなカーボン繊維を用いた従来の可変抵抗器では、接触子が多数本のカー ボン繊維を熱硬化性榭脂で固めた構造であるため、摩耗が少なぐ寿命がのびる利 点がある。また、このような可変抵抗器では、摩耗粉の発生が著しく少なくなる利点が ある。 [0004] In the contact shown in Patent Document 2, a bundle of a large number of carbon fibers is covered with a synthetic resin mixed with conductive powder to form a coating layer, and the side surface of the coating layer is formed on the surface of the resistor. And line contact or surface contact. [0005] In the conventional variable resistor using such carbon fibers, the contact has a structure in which a large number of carbon fibers are hardened with thermosetting resin. There is. In addition, such a variable resistor has an advantage that the generation of wear powder is remarkably reduced.
特許文献 1 :特開 2003— 51361号公報 図 1  Patent Document 1: Japanese Patent Laid-Open No. 2003-51361 Fig. 1
特許文献 2 :特開 2004— 31688号公報 図 10〜図 14  Patent Document 2: Japanese Patent Laid-Open No. 2004-31688 FIG. 10 to FIG. 14
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しカゝしながら、従来のカーボン繊維の束を含む接触子を用いる可変抵抗器では、 榭脂で固められたまたは覆われたカーボン繊維の束の変形または橈みにより、接触 子の接点部を抵抗体の表面に対して押し付けることになる。そのため、接点部を常に 適正な力で抵抗体の表面に押し付けることができな 、。また時間の経過と共に接触 子の橈みの程度が変わりやすぐその結果、接点部の接触圧が変わって、このことが ノイズの発生や真実接触点 (電流が流れるように接触して ヽる点)の変動を生じさせる 問題点があった。 [0006] However, in the conventional variable resistor using the contact including the bundle of carbon fibers, the contact of the contact is caused by deformation or stagnation of the bundle of carbon fibers hardened or covered with the resin. The contact portion is pressed against the surface of the resistor. For this reason, the contact part cannot always be pressed against the surface of the resistor with an appropriate force. Also, the degree of contact sag changes with time, and as a result, the contact pressure of the contact part changes, and this is the cause of noise generation and the true contact point (the point where contact occurs as current flows) ).
[0007] 本発明の目的は、カーボン繊維を含む接触子を用いて、しカゝも接触子の接点部を 長い期間にわたって適正な範囲の圧力で抵抗体に対して接触させることができる可 変抵抗器を提供することにある。  [0007] An object of the present invention is to use a contactor including carbon fiber, and to change the contact portion of the contactor to a resistor with a pressure within an appropriate range over a long period of time. It is to provide a resistor.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の可変抵抗器は、絶縁基板の表面に設けられた抵抗体と、先端部に抵抗 体の表面を摺動する接点部を備え且つ先端部とは反対側の位置に被保持部を備え た接触子と、接触子を直接または間接的に保持し、接点部を抵抗体の表面上で摺 動させる際に操作されるホルダとを備えている。接触子は、カーボン繊維と合成樹脂 とを主原料として導電性が得られるように構成されている。特に本発明では、接触子 は接点部が抵抗体の表面上を摺動して 、るときに、橈むことがな 、剛性を有して 、る 。また本発明の可変抵抗器では、接触子とは別に構成されてホルダに設けられ、接 触子の接点部を抵抗体の表面に押し付ける力を、接触子に付与する力付与機構を 備えている。 [0009] カーボン繊維と合成樹脂とを主原料として接触子を構成する場合の構成態様は、 必要な電気導電性と機械的な強度とを得られるものであれば、どのようなものでもよ い。例えば、導電性が得られるようにカーボン繊維チップをランダムに混入したカー ボン繊維混入樹脂で接触子を一体成形してもよ!/ヽ。また多数本のカーボン繊維を用 いて、織布または不織布を作り、この織布または不織布に熱硬化性の絶縁性榭脂を 含浸させて板状のプリプレダを作り、 1枚以上のプリプレダの熱硬化性榭脂を加熱硬 化させたカーボン繊維シートを用いて接触子を作るようにしてもょ 、。複数枚のプリプ レグを使用する場合には、織布または不織布を用いたプリプレダを複数枚重ねてもよ く、織布を用いたプリプレダと不織布を用いたプリプレダを混在させて複数枚重ねて もよぐさらに榭脂のみ力もなる 2枚のプリプレダの間に織布または不織布の 1枚以上 のプリプレダを挟むようにして接触子を構成するためのカーボン繊維シートを作成し てもよ ヽ。そしてこのようなカーボン繊維シートから接触子を切断加工により形成する 場合には、切断面が接点部を構成するようにするのが好ましい。これは切断面であれ ば、必ずカーボン繊維が露出しているため、接点部の電気的な導電性を確保するこ とができるからである。また一体成形で接触子を形成する場合には、接点部に相当 する部分に切削加工等を施して、カーボン繊維を露出させればょ 、。 [0008] The variable resistor of the present invention includes a resistor provided on the surface of the insulating substrate, a contact portion that slides on the surface of the resistor at the tip, and is held at a position opposite to the tip. And a holder for holding the contact directly or indirectly and operating the contact when the contact is slid on the surface of the resistor. The contact is configured such that conductivity is obtained using carbon fiber and synthetic resin as main raw materials. In particular, in the present invention, the contact has rigidity so that it does not stagnate when the contact portion slides on the surface of the resistor. Further, the variable resistor of the present invention includes a force applying mechanism that is configured separately from the contact and is provided on the holder, and that applies a force to the contact to press the contact portion of the contact against the surface of the resistor. . [0009] The configuration in the case of forming the contact using carbon fiber and synthetic resin as the main raw materials may be any as long as the required electrical conductivity and mechanical strength can be obtained. . For example, the contacts may be integrally formed with a carbon fiber mixed resin in which carbon fiber chips are randomly mixed to obtain conductivity! / !. A large number of carbon fibers are used to make a woven or non-woven fabric, and the woven or non-woven fabric is impregnated with a thermosetting insulating resin to make a plate-shaped pre-preda. It is possible to make a contact using a carbon fiber sheet that has been heat-cured. When multiple prepregs are used, multiple prepregs using woven or non-woven fabrics may be stacked, or multiple prepregs using woven and non-woven fabrics may be mixed and stacked. In addition, a carbon fiber sheet for forming a contact may be created by sandwiching one or more prepregs of woven or non-woven fabric between two prepreaders that have only the power of grease. And when forming a contactor from such a carbon fiber sheet by a cutting process, it is preferable that a cut surface comprises a contact part. This is because the carbon fiber is always exposed at the cut surface, so that the electrical conductivity of the contact portion can be ensured. If the contact is formed by integral molding, the carbon fiber should be exposed by cutting the part corresponding to the contact part.
[0010] なおカーボン繊維シートを、複数本のカーボン繊維が一方向に並んだ構造を有す る複数枚のプリプレダを積層して構成し、積層された複数枚のプリプレダを、交互に 複数本のカーボン繊維の並ぶ方向が異なるように積層すると、剛性が増し、またタリ ープ変形がし難くなる。  [0010] The carbon fiber sheet is formed by laminating a plurality of pre-preders having a structure in which a plurality of carbon fibers are arranged in one direction, and the plurality of laminated pre-preders are alternately composed of a plurality of If the carbon fibers are arranged in different directions, the rigidity will increase and it will be difficult to deform the tape.
[0011] 本発明の可変抵抗器の接触子は、摺動動作を行っているときに、橈むことがない剛 性を有している。すなわち摺動中に、接触子が橈まないので、接点部を常に安定し た状態で抵抗体に接触させることができる。特に本発明のように、力付与機構を接触 子とは別に設けると、接触子の形状及び剛性に応じた適正な付勢力で接触子の接 点部を抵抗体に対して押し付けることができる。そのため接触子の接点部が摩耗を 始めても、接触抵抗が極端に変わることがなぐまた接点部と抵抗体との間に、摩耗 粉等が入り込むような隙間が形成されることはない。よって本発明によれば、カーボン 繊維を含む接触子の接点部を長い期間にわたって適正な範囲の圧力で抵抗体に対 して接虫させることがでさる。 [0011] The contact of the variable resistor of the present invention has a rigidity that does not squeeze during a sliding operation. That is, since the contact does not squeeze during sliding, the contact portion can always be in contact with the resistor in a stable state. In particular, when the force applying mechanism is provided separately from the contact as in the present invention, the contact point of the contact can be pressed against the resistor with an appropriate biasing force according to the shape and rigidity of the contact. For this reason, even if the contact part of the contact begins to wear, the contact resistance does not change drastically, and no gap is formed between the contact part and the resistor so that wear powder or the like enters. Therefore, according to the present invention, the contact portion of the contact including carbon fiber is applied to the resistor with a pressure in an appropriate range over a long period. Then you can get insects.
[0012] 接触子の構造は、ホルダに直接または間接的に保持できる構造であればどのよう な構造でもよい。また力付与機構の構造も任意である。通常、接触子は、先端部の 反対側に被保持部を備えている。この場合、ホルダはホルダ本体を有しており、ホル ダ本体には絶縁基板に向かって開口し且つ接触子の被保持部をスライド自在に受 け入れる受入孔を形成する。そして力付与機構は、受入孔に接触子の被保持部が 受け入れられた状態で接触子の被保持部に力を加えて接点部を抵抗体の表面に向 力つて押し付けるように構成することができる。力付与機構をこのように構成すると、 接触子はホルダ本体に設けられた受入孔にスライド自在にしつカゝりとガイドされた状 態になり、摺動中に接触子が大きく揺れ動 、て接点部の位置が変化することはな 、 。また受入孔に接触子を受け入れた状態で接触子の接点部を抵抗体に向かって押 し付けることになるため、付勢力を接触子に対して適切な方向に加えることができ、安 定した接触状態を得ることができる。  [0012] The structure of the contactor may be any structure as long as it can be held directly or indirectly by the holder. The structure of the force applying mechanism is also arbitrary. Usually, the contact has a held portion on the opposite side of the tip. In this case, the holder has a holder main body, and the holder main body is formed with a receiving hole that opens toward the insulating substrate and slidably receives the held portion of the contact. The force applying mechanism may be configured to apply a force to the held portion of the contact and press the contact portion against the surface of the resistor in a state where the held portion of the contact is received in the receiving hole. it can. When the force applying mechanism is configured in this manner, the contact is slidably guided in the receiving hole provided in the holder body, and the contact is swayed greatly during sliding. The position of the contact will not change. In addition, since the contact portion of the contact is pressed toward the resistor while the contact is received in the receiving hole, the urging force can be applied to the contact in an appropriate direction, which is stable. A contact state can be obtained.
[0013] ホルダ本体に形成する受入孔は、抵抗体の表面に対して斜めに延びるように形成 してもよいし、垂直方向に延びるように形成してもよい。受入孔を斜めに形成する場 合には、抵抗体の表面に対して接触子は傾斜した状態で配置されることになる。この ような状態で接触子が配置されると、抵抗体の表面に存在する摩耗粉を簡単に搔き 寄せることが可能になる。また接触子の先端部の形状を接触子の長手方向に交差す る方向に切断面を有する形状にすれば、接触子の先端部のコーナ部を接点部として 抵抗体に接触させることが可能になる。このような接触構造を採用すると、真実接触 点を確実に形成することができる。  [0013] The receiving hole formed in the holder body may be formed to extend obliquely with respect to the surface of the resistor, or may be formed to extend in the vertical direction. When the receiving hole is formed obliquely, the contact is arranged in an inclined state with respect to the surface of the resistor. If the contact is arranged in such a state, it becomes possible to easily attract the wear powder existing on the surface of the resistor. Also, if the shape of the tip of the contactor has a cut surface in a direction that intersects the longitudinal direction of the contactor, the corner part of the contactor tip can be brought into contact with the resistor as a contact part. Become. By adopting such a contact structure, a true contact point can be formed reliably.
[0014] またこの場合の力付与機構では、接触子の被保持部の後端部に対して接点部を 抵抗体の表面に押し付ける押圧力を発生するように配置されたばね部材を備えた構 造にするのが好ましい。このような構造にすると、簡単な構造で所望の力を接触子に 対して与えることができる。なおばね部材の種類としては、板ばね、コイルスプリング 等、任意のものを用いることができる。  [0014] In addition, the force application mechanism in this case includes a spring member arranged to generate a pressing force that presses the contact portion against the surface of the resistor against the rear end portion of the held portion of the contact. Is preferable. With such a structure, a desired force can be applied to the contact with a simple structure. In addition, as a kind of spring member, arbitrary things, such as a leaf | plate spring and a coil spring, can be used.
[0015] また力付与機構は、ホルダ本体に固定された基部と、この基部と連続して設けられ て抵抗体に向カゝつて傾斜した状態で延びる橈み部と、橈み部と連続して設けられて 接触子の被保持部が機械的に取り付けられる接触子取付部とを備えた接触子取付 機能を備えたばね部材カも構成することができる。このような接触子取付機能を備え たばね部材は、カーボン繊維を含む接触子とは別に形成することができる。そのため 、接触子に摺動時に橈むことがない剛性を付与したことにより、複雑な加工をすること が難しいカーボン繊維を含む材料に対する加工の程度が僅かで済むため、接触子 の製造が簡単になって、可変抵抗器の製造工程数及び製造コストを下げることがで きる。 [0015] The force applying mechanism includes a base fixed to the holder body, a squeezing part that is provided continuously with the base and extends in an inclined state toward the resistor, and a squeezing part. Provided A spring member having a contact mounting function including a contact mounting portion to which a held portion of the contact is mechanically mounted can also be configured. The spring member having such a contact mounting function can be formed separately from the contact including carbon fiber. For this reason, the contactor can be manufactured easily because the contactor is provided with rigidity that does not squeeze when it is slid. Thus, the number of manufacturing steps and manufacturing cost of the variable resistor can be reduced.
[0016] 接触子取付機能を備えたばね部材の材質は任意である。しかし、金属製のばね部 材を用いると、ばね部材と接触子との機械的接続を簡単且つ確実に達成することが できる。また接触子を取り付けるための接触子取付部の構造は、任意であり、嵌合構 造、カシメ構造または挟持構造等によって、接触子を機械的に保持するように構成す るのが好ましい。このような構造にすると、カーボンを含む接触子を接着剤を用いるこ となぐ接触子とばね部材との機械的な接続と電気的な接続の両方を同時に達成す ることができる。そのため電気的な接続不良が発生するのを防止することができる。な お接触子の接触子保持部との接触面には、取り付け前に、切削加工及び Zまたは 研磨加工を施して、内部のカーボン繊維が接触子保持部と確実に接触するようにし ておくのが好ましい。  [0016] The material of the spring member having a contact mounting function is arbitrary. However, when a metal spring member is used, the mechanical connection between the spring member and the contact can be achieved easily and reliably. The structure of the contact mounting portion for mounting the contact is arbitrary, and it is preferable that the contact is mechanically held by a fitting structure, a caulking structure, a clamping structure, or the like. With such a structure, it is possible to simultaneously achieve both mechanical connection and electrical connection between the contact member that uses carbon and the contact member that uses an adhesive and the spring member. Therefore, it is possible to prevent an electrical connection failure. Prior to installation, the contact surface of the contact with the contact holding part should be cut and Z or polished to ensure that the internal carbon fibers are in contact with the contact holding part. Is preferred.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明に係る可変抵抗器を実施するための最良の形態の一例を示す縦断面 図である。  FIG. 1 is a longitudinal sectional view showing an example of the best mode for carrying out a variable resistor according to the present invention.
[図 2]図 1の可変抵抗器で用いて 、る接触子の斜視図である。  FIG. 2 is a perspective view of a contact used in the variable resistor of FIG.
[図 3]図 2の A— A線拡大横断面図である。  FIG. 3 is an enlarged cross-sectional view taken along line AA in FIG.
[図 4]図 1の可変抵抗器で用いている接触子片のエッジ部の拡大図である。  FIG. 4 is an enlarged view of an edge portion of a contact piece used in the variable resistor of FIG.
[図 5]本発明に係る可変抵抗器を実施するための最良の形態の第 2例を示した側面 図である。  FIG. 5 is a side view showing a second example of the best mode for carrying out the variable resistor according to the present invention.
[図 6]本発明に係る可変抵抗器を実施するための最良の形態の第 3例を示した側面 図である。  FIG. 6 is a side view showing a third example of the best mode for carrying out the variable resistor according to the present invention.
[図 7]本発明に係る可変抵抗器を実施するための最良の形態の第 4例を示した縦断 面図である。 FIG. 7 is a longitudinal section showing a fourth example of the best mode for carrying out the variable resistor according to the present invention. FIG.
圆 8] (A)は本発明に係る可変抵抗器を回転型の可変抵抗器に適用した場合に用 いるロータ部の分解斜視図であり、 (B)は可変抵抗器の要部の組立後の状態を示す 斜視図である。 圆 8] (A) is an exploded perspective view of a rotor portion used when the variable resistor according to the present invention is applied to a rotary variable resistor, and (B) is after assembly of the main part of the variable resistor. It is a perspective view which shows the state.
[図 9] (A)は回転型の可変抵抗器に用いる他のロータ部の分解斜視図であり、 (B)は 組立後のロータ部を示す斜視図である。  FIG. 9 (A) is an exploded perspective view of another rotor portion used for the rotary variable resistor, and FIG. 9 (B) is a perspective view showing the assembled rotor portion.
[図 10] (A)は回転型の可変抵抗器に用いるさらに他のロータ部の分解斜視図であり 、 (B)は組立後のロータ部を示す斜視図である。  FIG. 10 (A) is an exploded perspective view of still another rotor unit used in the rotary variable resistor, and FIG. 10 (B) is a perspective view showing the assembled rotor unit.
[図 11] (A)は回転型の可変抵抗器に用いるさらに他のロータ部の分解斜視図であり 、 (B)は組立後のロータ部を示す斜視図である。  FIG. 11 (A) is an exploded perspective view of still another rotor unit used in the rotary variable resistor, and FIG. 11 (B) is a perspective view showing the assembled rotor unit.
[図 12] (A)乃至 (C)は、本発明を適用した直線運動タイプの可変抵抗器の更に他の 実施の形態の一部縦断面図をそれぞれ示して 、る。  [FIG. 12] (A) to (C) respectively show partial longitudinal sectional views of still another embodiment of a linear motion type variable resistor to which the present invention is applied.
圆 13]本発明の可変抵抗器に他の実施の形態の主要部の概略構成を示す図である 13] A diagram showing a schematic configuration of a main part of another embodiment of the variable resistor of the present invention.
[図 14] (A)及び (B)は、図 13に示した可変抵抗器で使用可能な接触子の保持用ば ね部材の分解斜視図と、ホルダを含めた分解斜視図である。 FIGS. 14A and 14B are an exploded perspective view of a spring member for holding a contact that can be used in the variable resistor shown in FIG. 13, and an exploded perspective view including a holder.
圆 15] (A)及び (B)は、図 13に示した可変抵抗器で使用可能な接触子の保持用ば ね部材の分解斜視図と、ホルダを含めた分解斜視図である。 15] (A) and (B) are an exploded perspective view of a spring member for holding a contact that can be used in the variable resistor shown in FIG. 13, and an exploded perspective view including a holder.
[図 16] (A)及び (B)は、図 13に示した可変抵抗器で使用可能な接触子の保持用ば ね部材の分解斜視図と、ホルダを含めた分解斜視図である。  FIGS. 16A and 16B are an exploded perspective view of a spring member for holding a contact that can be used in the variable resistor shown in FIG. 13, and an exploded perspective view including a holder.
[図 17] (A)は板ばねを用いた保持用ばね部材のさらに他の例を示す斜視図であり、 FIG. 17 (A) is a perspective view showing still another example of a holding spring member using a leaf spring;
(B)は保持用ばね部材に接触子を取り付ける場合を説明するための分解斜視図で あり、 (C)は保持用ばね部材に接触子を取り付けた状態の斜視図である。 (B) is an exploded perspective view for explaining a case where a contact is attached to the holding spring member, and (C) is a perspective view of a state where the contact is attached to the holding spring member.
[図 18] (A)は板ばねを用いた保持用ばね部材のさらに他の例を示す斜視図であり、 FIG. 18 (A) is a perspective view showing still another example of a holding spring member using a leaf spring;
(B)は保持用ばね部材に接触子を取り付ける場合を説明するための分解斜視図で あり、 (C)は保持用ばね部材に接触子を取り付けた状態の斜視図である。 (B) is an exploded perspective view for explaining a case where a contact is attached to the holding spring member, and (C) is a perspective view of a state where the contact is attached to the holding spring member.
[図 19] (A)乃至 (C)は、保持用ばね部材をスプリングワイヤによって構成する場合の 他の例の斜視図をそれぞれ示して!/ヽる。 発明を実施するための最良の形態 [FIG. 19] (A) to (C) show perspective views of other examples in the case where the holding spring member is made of a spring wire! / Speak. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明に係る可変抵抗器の実施の形態の第 1例を、図 1乃至図 4を参照して 詳細に説明する。図 1は本例の可変抵抗器の縦断面図、図 2は本例の可変抵抗器 で用いている接触子の斜視図、図 3は図 2の A— A線拡大横断面図、図 4は本例の 可変抵抗器で用いている接触子片のコーナ部の拡大図である。  Hereinafter, a first example of an embodiment of a variable resistor according to the present invention will be described in detail with reference to FIGS. Fig. 1 is a vertical cross-sectional view of the variable resistor of this example, Fig. 2 is a perspective view of a contact used in the variable resistor of this example, Fig. 3 is an enlarged cross-sectional view taken along line AA in Fig. 2, and Fig. 4 Fig. 4 is an enlarged view of a corner portion of a contact piece used in the variable resistor of this example.
[0019] 本例の可変抵抗器は、抵抗体 5が直線状をなしていて、接触子 9が直線的に抵抗 体 5の表面上を往復運動する構造を有して 、る。図 1に示すようにこの可変抵抗器 1 では、セラミック基板等の耐熱性がある絶縁基板 3の表面に、抵抗体 5が所定の長さ で直線状に設けられている。抵抗体 5は、絶縁基板 3上に抵抗体ペーストを用いて直 線状の抵抗体パターンを印刷した後に、この抵抗体パターンを焼成して形成されて いる。なお抵抗体 5は、塗布した抵抗体ペーストを自然乾燥させて形成したものでも よぐまた榭脂製の電気抵抗フィルムを切断したものを絶縁基板 3の表面に貼り付け たものでもよい。  The variable resistor of this example has a structure in which the resistor 5 is linear, and the contact 9 reciprocates on the surface of the resistor 5 linearly. As shown in FIG. 1, in this variable resistor 1, a resistor 5 is linearly provided with a predetermined length on the surface of a heat-resistant insulating substrate 3 such as a ceramic substrate. The resistor 5 is formed by printing a linear resistor pattern on the insulating substrate 3 using a resistor paste and then firing the resistor pattern. The resistor 5 may be formed by naturally drying the applied resistor paste, or may be a material obtained by cutting a resin electrical resistance film and pasting it on the surface of the insulating substrate 3.
[0020] 接触子 9は、抵抗体 5の表面と接触する 2つの接触子片 7を有している。接触子 9は 、カーボン繊維 11と合成樹脂とを主原料として形成された導電性を有するカーボン 繊維シートから形成されている。 2つの接触子片 7は、それぞれ抵抗体 5の表面上を 摺動する接点部 7s (図 4)を備えた先端部 7aと、基部 7bと、先端部 7aと基部 7bとの間 に位置する橈み部 7cとを備えている。 2つの接触子片 7の基部 7bは、被保持部 7dと 一体に形成されている。  The contact 9 has two contact pieces 7 that come into contact with the surface of the resistor 5. The contactor 9 is formed of a carbon fiber sheet having conductivity and formed using carbon fibers 11 and a synthetic resin as main raw materials. The two contact pieces 7 are positioned between the tip 7a, the base 7b, and the tip 7a and the base 7b, each having a contact 7s (FIG. 4) that slides on the surface of the resistor 5. And a stagnation part 7c. The base portions 7b of the two contact piece 7 are formed integrally with the held portion 7d.
[0021] 本実施の形態で用いる接触子 9を製造する場合には、図 3に示すように、多数本の カーボン繊維 11を用いて形成した織布または不織布の形態をなす基材に、ェポキ シ榭脂のような熱硬化性の絶縁性榭脂 13を含浸させてシート状にした複数枚 (図 3 の例では 3枚)のプリプレダ 15を用意する。図 3の例では、複数本のカーボン繊維 11 を束のようにして並べた基材を用いたプリプレダを使用して 、る。そして中央のプリプ レグと、厚み方向両側の 2枚のプリプレダとはカーボン繊維の延びる方向が異なるよう に重ねられている。次に、複数枚のプリプレダ 15を重ねた状態で、加圧下で加熱を 行い、プリプレダ 15中の熱硬化性榭脂 13を加熱硬化させてカーボン繊維シートを形 成する。次にこのカーボン繊維シートに切断加工を施して、図 2に示すように、 2本の 接触子片 7を備えた接触子 9を形成する。本例では、接触子 9が摺動動作を行ってい るときに、橈むことがない剛性を有するように、合成樹脂の種類と硬度及びカーボン 繊維の量が定められている。 When manufacturing the contact 9 used in the present embodiment, as shown in FIG. 3, an epoxy substrate is formed on a base material in the form of a woven fabric or a non-woven fabric formed using a large number of carbon fibers 11. A plurality of pre-predas 15 (three in the example of FIG. 3) prepared by impregnating a thermosetting insulating resin 13 such as a resin are prepared. In the example of FIG. 3, a pre-predder using a base material in which a plurality of carbon fibers 11 are arranged in a bundle is used. The central prepreg and the two prepreaders on both sides in the thickness direction are overlapped so that the extending directions of the carbon fibers are different. Next, heating is performed under pressure in a state where a plurality of prepreaders 15 are stacked, and the thermosetting resin 13 in the prepreader 15 is heat-cured to form a carbon fiber sheet. Next, this carbon fiber sheet was cut and processed as shown in FIG. A contact 9 having a contact piece 7 is formed. In this example, the type and hardness of the synthetic resin and the amount of carbon fiber are determined so that the contactor 9 has a rigidity that does not squeeze when performing the sliding operation.
[0022] 前述のように、本例で用いるカーボン繊維シートは、複数本のカーボン繊維 11がー 方向に並んだ構造を有する 3枚のプリプレダ 15が積層されて構成されている。 3枚の カーボン繊維シートよりなるプリプレダ 15は、交互に複数本のカーボン繊維 11の並 ぶ方向が異なるように積層されて一体ィ匕されている。即ち、このカーボン繊維シート は、カーボン繊維 11を接触子片 7の長手方向に向けた 2枚のプリプレダ 15の間に、 カーボン繊維 11を接触子片 7の長手方向に直交する方向に向けたプリプレダ 15を 1 枚挟んで一体ィ匕した構造になっている。なおカーボン繊維シートの構造は、この例に 限定されるものではなぐ種々の構造のカーボン繊維シートを用いることができる。例 えば、カーボン繊維チップの短チップをランダムに混入したカーボン繊維混入榭脂を 用いて接触子を一体成形してもよ ヽ。  [0022] As described above, the carbon fiber sheet used in this example is configured by laminating the three pre-preders 15 having a structure in which a plurality of carbon fibers 11 are arranged in the same direction. The pre-preder 15 made of three carbon fiber sheets is laminated and integrated together so that a plurality of carbon fibers 11 are alternately arranged in different directions. In other words, this carbon fiber sheet is composed of a pre-predator having a carbon fiber 11 oriented in a direction perpendicular to the longitudinal direction of the contact piece 7 between the two pre-preders 15 having the carbon fiber 11 oriented in the longitudinal direction of the contact piece 7. It has a structure in which 15 sheets are sandwiched together. The structure of the carbon fiber sheet is not limited to this example, and carbon fiber sheets having various structures can be used. For example, the contact may be integrally formed using carbon fiber mixed resin in which short chips of carbon fiber chips are randomly mixed.
[0023] 図 2及び図 4に示すように、 2本の接触子片 7は、先端部 7aから基部 7bに向力 方 向と交差する方向に延びる切断面を先端面 7fとして有している。また図 4に示すよう に、接触子 9は、接触子片 7の厚み方向に位置する 2つの側面のうち一方の側面 7g 力 抵抗体 5と対向するように、傾斜した状態で後述するホルダ 17に保持される。そ して接触子片 7の先端面 7fと一方の側面 7gとの間に形成されたコーナ部 7kの一部 が接点部 7sを構成している。コーナ部 7kは先端面 7fに対する接平面 S 1と橈み部 7c の側面 7gに対する接平面 S2とによって囲まれる領域内に位置している。  [0023] As shown in Figs. 2 and 4, the two contact pieces 7 have a cutting surface extending from the distal end portion 7a to the base portion 7b as a distal end surface 7f extending in a direction crossing the direction of the force. . Also, as shown in FIG. 4, the contact 9 is a holder 17 which will be described later in an inclined state so as to face one side 7g force resistor 5 of the two side surfaces located in the thickness direction of the contact piece 7. Retained. A part of the corner portion 7k formed between the tip surface 7f of the contact piece 7 and one side surface 7g constitutes the contact portion 7s. The corner portion 7k is located in a region surrounded by the tangent plane S1 with respect to the tip surface 7f and the tangent plane S2 with respect to the side surface 7g of the stagnation portion 7c.
[0024] 図 1に示すように、接触子 9は、絶縁榭脂製のホルダ 17に保持されて、抵抗体 5の 表面を抵抗体 5の長手方向に沿って直線的に摺動する。なお図 1には、ホルダ 17と 絶縁基板 3との位置関係を固定し、ホルダ 17を抵抗体 5の長手方向に沿ってスライド 可能に支持するケースの図示は省略してある。ホルダ 17のホルダ本体 18には、傾斜 貫通孔 23が形成されている。この傾斜貫通孔 23には、接触子片 7の先端部を露出さ せるようにして、接触子 9が収容されている。傾斜貫通孔 23は、傾斜貫通孔 23に収 容された接触子 9の接触子片 7の一方の側面 7gが、抵抗体 5の表面と対向し且つ該 表面との間に所定の角度 を形成するように形成されている。また傾斜貫通孔 23の 断面形状は、収容している接触子 9が傾斜貫通孔 23内をスライドするように定められ ている。なお本実施の形態では、この傾斜貫通孔 23が、接触子 9をスライド自在に受 け入れる受入孔を構成している。またホルダ本体 18の上には、傾斜貫通孔 23に揷 入された接触子 9の被保持部 7dの端部を、接触子 9の長手方向に押して、接点部 7s を抵抗体 5の表面に接触させる力を発生する力付与機構 24が設けられている。この 力付与機構 24は、板ばね 25と板ばね 25をホルダ本体 18の上に固定する固定部材 27とカゝら構成されている。板ばね 25は、ホルダ本体 18の上に載せられ、その基端が 加熱変形された固定部 27によりホルダ本体 18に固定されている。そして板ばね 25 は、先端の自由端で接触子 9の被保持部 7dの端部を抵抗体 5に向力つて押す力を 発生するように構成されている。この例では、接触子 9が摺動中に橈むことがない剛 性を有しているため、接触子 9が移動しているときに、接点部 7sが跳ねる (スキップす る)ことがない。また接点部 7sのホルダ 18に対する相対的な位置も変わることがない 図 5は、本発明に係る可変抵抗器の第 2の実施の形態の縦断面図である。なお、本 例は図 1に示した第 1の実施の形態の変形例を示している。そこで図 5には、図 1に 示した部材と同じ部材には、図 1に付した符号と同じ符号を付してある。この可変抵 抗器では、力付与機構 24のばね部材として、線状ばね 29が用いられている。この線 状ばね 29は、線状ばね材料に曲げ力卩ェを施して形成されている。線状ばね 29は、 線状ばね部材を U字状に曲げて形成した湾曲部 29aと、この湾曲部から平行に延び る 2本の線状部 29bとを備えている。湾曲部 29aは、線状部 29bに対して直角に曲げ られ、さらに中間部分で折り返されて形成された係止部 29cを備えている。この係止 部 29cを含めて、湾曲部 29aは、図 5に示された状態で V字状に見える。この係止部 29cは、ホルダ 17に形成された係止孔 17a内に嵌められている。この係止孔 17aは、 ホルダ本体 18を厚み方向に貫通しており、係止孔 17aの入口には係止突起 17bが 形成されている。そしてこの係止突起 17bに係止部 29cの先端が係止されて、係止 部 29cの抜け止めが図られている。線ばね 29の線状部 29bの端部力 ホルダ本体 1 8の表面力 離間する方向に曲げられて押圧部 29dが構成されて 、る。この押圧部 2 9dで接触子 9を抵抗体 5に向カゝつて押圧している。その他の構成は図 1に示す構造 と同じであるので、説明は省略する。 As shown in FIG. 1, the contact 9 is held by a holder 17 made of insulating resin and slides linearly on the surface of the resistor 5 along the longitudinal direction of the resistor 5. In FIG. 1, the illustration of a case that fixes the positional relationship between the holder 17 and the insulating substrate 3 and supports the holder 17 so as to be slidable along the longitudinal direction of the resistor 5 is omitted. An inclined through hole 23 is formed in the holder body 18 of the holder 17. In the inclined through hole 23, the contact 9 is accommodated so that the tip of the contact piece 7 is exposed. In the inclined through hole 23, one side surface 7g of the contact piece 7 of the contact 9 accommodated in the inclined through hole 23 is opposed to the surface of the resistor 5 and forms a predetermined angle with the surface. It is formed to do. The inclined through hole 23 The cross-sectional shape is determined so that the accommodated contact 9 slides in the inclined through hole 23. In the present embodiment, the inclined through hole 23 constitutes a receiving hole for slidably receiving the contact 9. Further, on the holder body 18, the end of the held portion 7d of the contact 9 inserted in the inclined through hole 23 is pushed in the longitudinal direction of the contact 9, so that the contact 7s is brought into contact with the surface of the resistor 5. A force applying mechanism 24 for generating a contact force is provided. The force applying mechanism 24 includes a leaf spring 25 and a fixing member 27 that fixes the leaf spring 25 on the holder body 18. The leaf spring 25 is placed on the holder main body 18 and the base end thereof is fixed to the holder main body 18 by a fixing portion 27 that is heat-deformed. The leaf spring 25 is configured to generate a force that pushes the end of the held portion 7d of the contact 9 toward the resistor 5 at the free end of the tip. In this example, since the contact 9 has such rigidity that it does not crawl during sliding, the contact portion 7s does not jump (skip) when the contact 9 is moving. . Further, the relative position of the contact portion 7s with respect to the holder 18 does not change. FIG. 5 is a longitudinal sectional view of the second embodiment of the variable resistor according to the present invention. This example shows a modification of the first embodiment shown in FIG. Therefore, in FIG. 5, the same members as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. In this variable resistor, a linear spring 29 is used as a spring member of the force applying mechanism 24. The linear spring 29 is formed by applying a bending force to the linear spring material. The linear spring 29 includes a curved portion 29a formed by bending a linear spring member into a U shape, and two linear portions 29b extending in parallel from the curved portion. The curved portion 29a includes a locking portion 29c that is bent at a right angle with respect to the linear portion 29b and is formed by being folded back at an intermediate portion. The curved portion 29a including the locking portion 29c looks V-shaped in the state shown in FIG. This locking portion 29 c is fitted in a locking hole 17 a formed in the holder 17. The locking hole 17a penetrates the holder body 18 in the thickness direction, and a locking projection 17b is formed at the entrance of the locking hole 17a. The leading end of the locking portion 29c is locked to the locking projection 17b to prevent the locking portion 29c from coming off. The end portion force of the linear portion 29b of the wire spring 29 The surface force of the holder body 18 is bent in the separating direction to form the pressing portion 29d. The contact 9 is pressed against the resistor 5 by the pressing part 29 9d. Other configurations are shown in Fig. 1. Since it is the same, description is abbreviate | omitted.
[0026] 図 6は本発明の可変抵抗器の実施の形態の更に他の実施の形態の縦断面図であ る。なおこの実施の形態も図 1の実施の形態の変形例である。そこで図 6には、図 1に 示した部材と同じ部材には、図 1に付した符号と同じ符号を付してある。本例の可変 抵抗器では、力付与機構 24で使用するばね部材として、トーシヨンばね 31が用いら れている。本例ではホルダ 17のホルダ本体 18の一方の端部上にトーシヨンばね固 定部 28がー体に形成されている。トーシヨンばね固定部 28は、ホルダ本体 18の幅 方向(図 6の紙面と直交する方向)の一方側に寄った位置に配置されている。このト ーシヨンばね固定部 28には、接触子 9が存在する側とは反対側の面に、ホルダ本体 18の表面に対して平行に延びるばね支持突起 30が突設されている。このばね支持 突起 30にトーシヨンばね 31のコイル部 31aが通されている。トーシヨンばね 31の図示 しない一方の端部は、トーシヨンばね固定部 28に対して固定されている。そしてトー シヨンばね 31の他方の端部(自由端) 31bは、接触子 9の被支持部 7dの端部と接触 している。トーシヨンばね 31は、他方の端部 31bから、接触子 9の被支持部 7bの端部 に下向きの力を付与している。この力によって、接触子片 7の接点部 7sは抵抗体 5の 表面に押し付けられて ヽる。その他の構成は図 1に示す実施の形態と同様な構成に なっている。  FIG. 6 is a longitudinal sectional view of still another embodiment of the variable resistor according to the present invention. This embodiment is also a modification of the embodiment of FIG. Therefore, in FIG. 6, the same members as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. In the variable resistor of this example, a torsion spring 31 is used as a spring member used in the force applying mechanism 24. In this example, a torsion spring fixing portion 28 is formed in a body on one end portion of the holder body 18 of the holder 17. The torsion spring fixing portion 28 is disposed at a position close to one side in the width direction of the holder body 18 (direction perpendicular to the paper surface of FIG. 6). In the torsion spring fixing portion 28, a spring support protrusion 30 extending in parallel with the surface of the holder body 18 is provided on the surface opposite to the side where the contact 9 is present. The coil portion 31 a of the torsion spring 31 is passed through the spring support protrusion 30. One end (not shown) of the torsion spring 31 is fixed to the torsion spring fixing part 28. The other end (free end) 31b of the torsion spring 31 is in contact with the end of the supported portion 7d of the contact 9. The torsion spring 31 applies a downward force to the end portion of the supported portion 7b of the contact 9 from the other end portion 31b. By this force, the contact portion 7s of the contact piece 7 is pressed against the surface of the resistor 5 and is turned. Other configurations are the same as those of the embodiment shown in FIG.
[0027] 図 7は、本発明に係る可変抵抗器における更に他の実施の形態の縦断面図である 。本例の可変抵抗器では、力付与機構 24の力付与手段として圧縮コイルばね 33を 用いている。ホルダ 17のホルダ本体 18には、膨出部 19が設けられている。そしてホ ルダ本体 18と膨出部 19とには、接触子 9を受け入れる傾斜孔 23が形成されている。 この傾斜孔 23は、上側端部が閉じており、受入孔を構成している。そして傾斜孔 23 内には、この接触子 9を抵抗体 5が位置する方向に押圧するコイルばね 33が収納さ れている。コイルばね 33は、接触子 9の被保持部 7dの後端部と接触しており、接触 子 9が収納されて 、る状態で圧縮された状態になって 、る。なおコイルばね 33の形 状は、接触子 9の被支持部 7dの後端部が、コイルばね 33の先端部(下端部)と当接 して、コイルばね 33から接触子 9に抵抗体 5側に向力う力を与えることができる形状 になっている。 [0028] 図 8 (A)及び (B)乃至図 11 (A)及び (B)は、それぞれ摺動用抵抗体が円弧状を呈 しており、し力も接触子が所定の角度範囲内を回転運動するタイプの回転型の可変 抵抗器に本発明を適用した実施の形態のロータ部の分解斜視図及び組立斜視図で ある。なお、これら図 8 (A)及び (B)乃至図 11 (A)及び (B)においては、図 1乃至図 7に示した実施の形態を構成する部材と同様の部材に、図 1乃至図 7に示した符号の 数に 200の数を加えた数の符号を付してある。 FIG. 7 is a longitudinal sectional view of still another embodiment of the variable resistor according to the present invention. In the variable resistor of this example, a compression coil spring 33 is used as the force applying means of the force applying mechanism 24. The holder body 18 of the holder 17 is provided with a bulging portion 19. The holder body 18 and the bulging portion 19 are formed with inclined holes 23 for receiving the contacts 9. The inclined hole 23 is closed at the upper end and constitutes a receiving hole. In the inclined hole 23, a coil spring 33 is housed for pressing the contact 9 in the direction in which the resistor 5 is positioned. The coil spring 33 is in contact with the rear end portion of the held portion 7d of the contact 9, and the contact 9 is housed and compressed in a closed state. The shape of the coil spring 33 is such that the rear end portion of the supported portion 7d of the contact 9 is in contact with the front end portion (lower end portion) of the coil spring 33, and the resistor 5 is connected to the contact 9 from the coil spring 33. It has a shape that can give a force to the side. [0028] In FIGS. 8 (A) and 8 (B) to FIG. 11 (A) and (B), the sliding resistor has an arc shape, and the contactor rotates within a predetermined angular range. FIG. 2 is an exploded perspective view and an assembled perspective view of a rotor portion according to an embodiment in which the present invention is applied to a rotating variable resistor of a moving type. In FIGS. 8A and 8B to 11A and 11B, the same members as those constituting the embodiment shown in FIGS. 1 to 7 are used. The number of codes shown in Fig. 7 plus the number of 200 is added.
[0029] 図 8 (A)は回転型の可変抵抗器のロータ部 202の分解斜視図、図 8 (B)はロータ部 202の組立後の状態を示す斜視図である。このロータ部 202は、図 1に示した第 1の 実施の形態の直線運動タイプの可変抵抗器の構造を、回転型の可変抵抗器に変更 する場合に用いるものである。この可変抵抗器でも、図 1に示す可変抵抗器と同様に 、接触子 209に力を付与する力付与機構 224の一部を構成する力発生部材として、 板ばね 225を用いている。本例の可変抵抗器は、図 8 (B)に破線で示した円弧状の 抵抗体 205が絶縁基板 203の表面に配置され、さらに絶縁基板 203の上にロータ部 202が配置され、絶縁基板 203に対してロータ部を回転自在に支持する収納ケース (図示せず)が固定された構造を有している。絶縁榭脂材料によって一体成形された ホルダ 217は、ホルダ本体 218とホルダ本体に一体に設けられた回転軸 235とを備 えている。ホルダ本体 218には傾斜貫通孔 223が形成され、この傾斜貫通孔 223に 接触子 209が、先端部を露出せるようにして収納されている。板ばね 225の一端には 貫通孔 225aが形成されている。この貫通孔 225aに挿入された固定部材 227が加熱 変形されて、板ばね 225の一端がホルダ本体 218に対して固定されている。回転軸 235は、図示しない収納ケースに設けられた取付孔に揷入されて、収納ケースに回 転自在に支持されている。  FIG. 8A is an exploded perspective view of the rotor portion 202 of the rotary variable resistor, and FIG. 8B is a perspective view showing a state after the rotor portion 202 is assembled. The rotor unit 202 is used when the structure of the linear motion type variable resistor of the first embodiment shown in FIG. 1 is changed to a rotary type variable resistor. In this variable resistor as well, like the variable resistor shown in FIG. 1, a leaf spring 225 is used as a force generating member that constitutes a part of a force applying mechanism 224 that applies a force to the contact 209. In the variable resistor of this example, the arc-shaped resistor 205 shown by a broken line in FIG. 8B is disposed on the surface of the insulating substrate 203, and the rotor portion 202 is disposed on the insulating substrate 203. A storage case (not shown) that rotatably supports the rotor portion with respect to 203 is fixed. A holder 217 integrally formed of an insulating resin material includes a holder body 218 and a rotary shaft 235 provided integrally with the holder body. The holder body 218 is formed with an inclined through hole 223, and the contact 209 is accommodated in the inclined through hole 223 so that the tip end portion is exposed. A through hole 225 a is formed at one end of the leaf spring 225. The fixing member 227 inserted into the through hole 225a is heated and deformed, and one end of the leaf spring 225 is fixed to the holder body 218. The rotating shaft 235 is inserted into a mounting hole provided in a storage case (not shown) and is rotatably supported by the storage case.
[0030] 図 9 (A)は他の回転型の可変抵抗器のロータ部 202の分解斜視図、図 9 (B)は図 9  FIG. 9 (A) is an exploded perspective view of the rotor portion 202 of another rotary variable resistor, and FIG. 9 (B) is FIG.
(A)に示したロータ部 202の組立後の状態を示す斜視図である。本例のロータ部 20 2は、図 5に示す直線運動タイプの可変抵抗器の構造を回転型の可変抵抗器に変 更した場合に用いるものである。なお理解を容易にするために、図 9 (B)において、 接触子 209については、実線で図示してある。このロータ部 202でも、図 5に示した 可変抵抗器と同様に、力付与機構 224で用いる力発生部材として線状ばね 229を 用いている。その他の構造は、図 8に示した実施の形態と同様である。線状ばね 229 は、線状ばね材料に曲げ力卩ェを施して形成されている。線状ばね 229は、線状ばね 部材を U字状に曲げて形成した湾曲部 229aと、この湾曲部 229aから平行に延びる 2本の線状部 229bとを備えている。湾曲部 229aは、線状部 229bに対して直角に曲 げられ、さらに中間部分で折り返されて形成された係止部 229cを備えている。この係 止部 229cを含めて、湾曲部 29aは、横方向から見て V字形状を呈している。この係 止部 229cは、ホルダ 217に形成された係止構造部 217cに係止されている。また線 状ばね 229の 2本の線状部 229bの端部も、係止構造部 217bに係止されている。係 止構造部 217bは、 2本の線状部 229bの端部が入るように横方向に向力つて開口す る係止溝を備えている。また係止構造部 217cは、湾曲部 229aが嵌合される孔部と、 係止部 229cが係止される被係止部とを備えた構造を有している。係止構造部 217b 及び 217cに係止した線状ばね 229の 2本の線状部 229bによって、接触子 9の被保 持部 207dの端部を抵抗体に向力つて押圧している。 FIG. 5 is a perspective view showing a state after assembly of the rotor section 202 shown in FIG. The rotor unit 202 of this example is used when the structure of the linear motion type variable resistor shown in FIG. 5 is changed to a rotary type variable resistor. In order to facilitate understanding, in FIG. 9B, the contact 209 is shown by a solid line. Also in this rotor section 202, a linear spring 229 is used as a force generating member used in the force applying mechanism 224, similarly to the variable resistor shown in FIG. Used. Other structures are the same as those of the embodiment shown in FIG. The linear spring 229 is formed by applying a bending force to the linear spring material. The linear spring 229 includes a curved portion 229a formed by bending a linear spring member into a U shape, and two linear portions 229b extending in parallel from the curved portion 229a. The curved portion 229a includes a locking portion 229c that is bent at a right angle with respect to the linear portion 229b and is folded back at an intermediate portion. The curved portion 29a including the locking portion 229c has a V shape when viewed from the side. The locking portion 229c is locked to a locking structure portion 217c formed on the holder 217. The ends of the two linear portions 229b of the linear spring 229 are also locked to the locking structure portion 217b. The locking structure portion 217b is provided with a locking groove that opens in the lateral direction so that the ends of the two linear portions 229b can enter. The locking structure portion 217c has a structure including a hole portion into which the bending portion 229a is fitted and a locked portion to which the locking portion 229c is locked. By the two linear portions 229b of the linear spring 229 locked to the locking structures 217b and 217c, the end of the held portion 207d of the contact 9 is pressed against the resistor.
[0031] また図 10 (A)は他の回転型の可変抵抗器のロータ部 202の分解斜視図であり、図 10 (B)は図 10 (A)のロータ部 202の組立後の状態を示す斜視図である。なお理解 を容易にするために、図 10 (B)において、接触子 209については、実線で図示して ある。このロータ部 202は、図 6に示す直線運動タイプの可変抵抗器を回転タイプの 可変抵抗器を回転型の可変抵抗器に変更する場合に用いるものである。このロータ 部 202でも、図 6に示す可変抵抗器と同様に、力付与機構 224で用いる力発生部材 としてトーシヨンばね 231を用 ヽて 、る。本例ではホルダ 217のホルダ本体 218の側 面上に、ばね支持突起 230が突設されている。このばね支持突起 230にトーシヨンば ね 231のコイル部 231aが通されている。トーシヨンばね 231の一方の端部 231cは、 ホルダ本体 218の側方に一体に設けられた膨出部 228に対して固定されている。そ してトーシヨンばね 231の他方の端部(自由端) 231bは、ホルダ本体 218に形成され たスリット 232内に入った状態で、接触子 209の被支持部 207dの後端部と接触して いる。その結果、トーシヨンばね 231は、他方の端部 23 lbにより、接触子 309の被支 持部 7dの端部に下向きの力を付与している。  FIG. 10 (A) is an exploded perspective view of the rotor portion 202 of another rotary variable resistor, and FIG. 10 (B) shows the assembled state of the rotor portion 202 of FIG. 10 (A). It is a perspective view shown. In order to facilitate understanding, in FIG. 10B, the contact 209 is shown by a solid line. The rotor section 202 is used when the linear motion type variable resistor shown in FIG. 6 is changed from a rotary type variable resistor to a rotary type variable resistor. In the rotor section 202 as well, the torsion spring 231 is used as a force generating member used in the force applying mechanism 224, similarly to the variable resistor shown in FIG. In this example, a spring support protrusion 230 is provided on the side surface of the holder body 218 of the holder 217. A coil portion 231a of a torsion spring 231 is passed through the spring support protrusion 230. One end portion 231c of the torsion spring 231 is fixed to a bulging portion 228 that is integrally provided on the side of the holder main body 218. The other end portion (free end) 231b of the torsion spring 231 is in contact with the rear end portion of the supported portion 207d of the contact 209 while entering the slit 232 formed in the holder body 218. Yes. As a result, the torsion spring 231 applies a downward force to the end of the supported portion 7d of the contact 309 by the other end 23 lb.
[0032] 図 11 (A)は他の回転型の可変抵抗器のロータ部 202の分解斜視図であり、図 11 ( B)はこのロータ部 202の組立後の状態を示す斜視図である。図 11 (B)においては、 理解を容易にするために、接触子 209を実線で示してある。本例のロータ部 202は、 図 7に示す直線運動タイプの可変抵抗器の構造を回転型の可変抵抗器に変更する 場合に用いるロータ部である。したがつてこのロータ部 202でも、図 7に示す可変抵 抗器と同様に、力付与機構 224で用いる力発生部材材として、圧縮コイルばね 233 を用いている。 FIG. 11A is an exploded perspective view of the rotor portion 202 of another rotary variable resistor. B) is a perspective view showing a state after the rotor part 202 is assembled. In FIG. 11 (B), the contact 209 is shown by a solid line for easy understanding. The rotor unit 202 of this example is a rotor unit used when the structure of the linear motion type variable resistor shown in FIG. 7 is changed to a rotary type variable resistor. Therefore, in this rotor portion 202 as well, the compression coil spring 233 is used as a force generating member material used in the force applying mechanism 224, similarly to the variable resistor shown in FIG.
[0033] 図 12 (A)乃至 (C)は、直線運動タイプの本発明に係る可変抵抗器の更に他の実 施の形態の一部縦断面図をそれぞれ示している。図 12 (A)乃至 (C)においては、図 1、図 6及び図 7に示した 3つの実施の形態を構成する部材と同様の部材に、図 1乃 至図 7に示した符号の数に 300の数を加えた数の符号を付して、説明を省略する。こ れらの実施の形態では、接触子 309が抵抗体 305に対して直交方向に向力つて延 びている。したがって接触子 309を受け入れる貫通孔または受入孔 323は、ホルダ 本体 318内を垂直方向に延びている。この例では、接触子 309の先端面 307fが全 面的に抵抗体 305の表面と接触している。し力しながら接触子 309の先端面 307fに 傾斜を付けて、傾斜した先端面の先端縁部を接点部として、抵抗体 305上を摺動さ せるようにしてもょ 、のは勿論である。  FIGS. 12A to 12C are partial longitudinal sectional views of still another embodiment of a linear motion type variable resistor according to the present invention. 12 (A) to 12 (C), members similar to those constituting the three embodiments shown in FIG. 1, FIG. 6 and FIG. The number is added with the number of 300 and the description is omitted. In these embodiments, the contact 309 extends in the direction perpendicular to the resistor 305. Accordingly, the through hole or receiving hole 323 that receives the contact 309 extends in the holder body 318 in the vertical direction. In this example, the tip end surface 307f of the contact 309 is entirely in contact with the surface of the resistor 305. Of course, the tip end surface 307f of the contact 309 may be inclined while sliding, and the resistor 305 may be slid on the tip end edge of the inclined tip surface as a contact portion. .
[0034] 図 13は、本発明を直線移動タイプの可変抵抗器に適用した更に他の実施の形態 の主要部の概略構成を示す図である。また図 14 (A)及び (B)は、図 13の実施の形 態で使用する接触子と保持用ばね部材の分解斜視図と、ホルダを含めた分解斜視 図である。図 13及び図 14においては、図 1乃至図 7に示した部材と同様の部材には 、図 1乃至図 7に示した符号の数に 400の数をカ卩えた数の符号を付して、説明を省略 する。この例では、接触子 409に力を付与する力付与機構 424力 ホルダ 417と保 持用ばね部材 420とカゝら構成されている。保持用ばね部材 420は、ホルダ本体 418 に固定される基部 420aと、基部 420aと連続して設けられて抵抗体 405に向かって 傾斜した状態で延びる橈み部 420bと、橈み部 420bと連続して設けられて接触子が 機械的に取り付けられる接触子取付部 420cとを備えた金属板カゝら形成された板ば ね部材である。矩形状の接触子取付部 420cの各辺の中央部には、 4つの力シメ用 の爪部 420dがー体に設けられている。そして接触子 409には、これら 4つの爪部 42 Odが嵌合される 4つのスリット 409aが形成されている。接触子 409は、爪部 420dに スリット 409を嵌合させた状態で、爪部 420dを力シメることにより、接触子取付部 420 cに取り付けられている。なおこの実施の形態では、接触子 409が抵抗体 405に対し て垂直方向から当接している。なお図 1の実施の形態と同様に、接触子 409を抵抗 体 405に対して傾斜させるように、接触子取付部 420cに取り付けるようにしてもよい のは勿論である。またばね部材 420の基部 420aには、貫通孔 420eが形成されてい る。そしてホルダ本体 418には、抵抗体 405側に向力つて膨出する膨出部 419がー 体に設けられている。また膨出部 419の抵抗体 405と対向する対向面 419aは、傾斜 しており、対向面 419aには、加熱変形可能な固定部 427がー体に形成されている。 保持用ばね部材 420は、基部 420aに設けた貫通孔 420eに固定部 427が嵌合され た後、その先端部が加熱変形されて、膨出部 419に対して固定されている。このよう に構成した可変抵抗器では、図示しないケース内にホルダ 417と絶縁基板 403とが 収納された状態にぉ 、て、保持用ばね部材 420の橈み部 420bが橈んだ状態になる 。その結果、橈み部 420bの橈み量が、接触子 409を抵抗体 405に向カゝつて押し付 ける力を発生する。 FIG. 13 is a diagram showing a schematic configuration of a main part of still another embodiment in which the present invention is applied to a linear movement type variable resistor. FIGS. 14A and 14B are an exploded perspective view of the contact and holding spring member used in the embodiment of FIG. 13, and an exploded perspective view including the holder. 13 and FIG. 14, members similar to those shown in FIG. 1 to FIG. 7 are given the same reference numerals as those shown in FIG. 1 to FIG. The explanation is omitted. In this example, a force applying mechanism 424 for applying a force to the contact 409, a force holder 417, a holding spring member 420, and the like are configured. The holding spring member 420 includes a base 420a fixed to the holder main body 418, a stagnation part 420b that is provided continuously with the base 420a and extends in an inclined state toward the resistor 405, and a stagnation part 420b. A plate spring member formed by a metal plate cover provided with a contact mounting part 420c to which a contact is mechanically mounted. At the center of each side of the rectangular contact mounting part 420c, there are four force squeezing claw parts 420d. The contact 409 has these four claws 42. Four slits 409a into which Od is fitted are formed. The contact 409 is attached to the contact attachment part 420c by force-squeezing the claw part 420d with the slit 409 fitted in the claw part 420d. In this embodiment, the contact 409 is in contact with the resistor 405 from the vertical direction. As in the embodiment of FIG. 1, it is needless to say that the contact 409 may be attached to the contact attachment part 420c so as to be inclined with respect to the resistor 405. A through hole 420e is formed in the base 420a of the spring member 420. The holder body 418 is provided with a bulging portion 419 that bulges toward the resistor 405 side by force. Further, the facing surface 419a of the bulging portion 419 facing the resistor 405 is inclined, and a fixing portion 427 that can be heated and deformed is formed on the facing surface 419a. The holding spring member 420 is fixed to the bulging portion 419 after the fixing portion 427 is fitted into a through-hole 420e provided in the base portion 420a, and the distal end portion thereof is heated and deformed. In the variable resistor configured as described above, the stagnation portion 420b of the holding spring member 420 is squeezed while the holder 417 and the insulating substrate 403 are housed in a case (not shown). As a result, the amount of stagnation of the stagnation part 420b generates a force that pushes the contactor 409 against the resistor 405.
[0035] 図 15 (A)及び (B)は、図 13の可変抵抗器に対して使用可能な接触子 409と保持 用ばね部材 420の異なる例を示す分解斜視図と、ホルダ 417と接触子 409を取付け た保持用ばね部材 420とを含む分解斜視図である。この例では、保持用ばね部材 4 20の接触子取付部 420cに 2つの突起 420fと 1つの貫通孔 420gとを形成してある。 そして接触子 409にも貫通孔 419が形成され、接触子 409の貫通孔 419と接触子取 付部 420cの貫通孔 420gにリベット 440を挿入に、リベット 440の先端を潰して接触 子 409を接触子取付部 420cに取り付けて 、る。なお突起 420fは接触子 409の縁部 と係合して回り止め機能を発揮する。  FIGS. 15A and 15B are exploded perspective views showing different examples of the contact 409 and the holding spring member 420 that can be used for the variable resistor of FIG. 13, and the holder 417 and the contact. FIG. 6 is an exploded perspective view including a holding spring member 420 to which 409 is attached. In this example, two protrusions 420f and one through hole 420g are formed on the contactor mounting portion 420c of the holding spring member 420. A through hole 419 is also formed in the contact 409. The rivet 440 is inserted into the through hole 419 of the contact 409 and the through hole 420g of the contact mounting part 420c, and the tip of the rivet 440 is crushed to contact the contact 409. Attach to the child mounting part 420c. The protrusion 420f engages with the edge of the contact 409 to exert a detent function.
[0036] 図 16 (A)及び (B)は、図 13の可変抵抗器に使用可能な、別の接触子 409と保持 用ばね部材 420の異なる取付状態を示すための分解斜視図と、接触子 409を取付 けた保持用ばね部材 420とを含む分解斜視図である。この例では、保持用ばね部材 420の接触子取付部を逆 U字状態に折り曲げて、 2枚の板状部 420h及び 420iで接 触子 409を挟み持つ挟持機構を構成している。一方の板状部 420hには、他方の板 状部 420綱に向力つて突出する打ち出し突起 420jが形成されている。そして接触 子 409には打ち出し突起 420jが嵌合される貫通孔 419が形成されている。この例で は、 2枚の板状部 420h及び 420iで接触子 409を挟み持ち、打ち出し突起 420jが貫 通孔 419に嵌合されて抜け止めと回り止めとが図られている。 FIGS. 16 (A) and 16 (B) are exploded perspective views showing different mounting states of another contact 409 and holding spring member 420 that can be used in the variable resistor of FIG. FIG. 5 is an exploded perspective view including a holding spring member 420 to which a child 409 is attached. In this example, the holding mechanism for holding the contact 409 between the two plate-like portions 420h and 420i is formed by bending the contact mounting portion of the holding spring member 420 in an inverted U shape. One plate-like part 420h has the other plate A projecting protrusion 420j is formed so as to protrude from the ridge 420 to a force. The contact 409 is formed with a through hole 419 into which the projecting protrusion 420j is fitted. In this example, the contact 409 is sandwiched between the two plate-like portions 420h and 420i, and the projecting projection 420j is fitted into the through hole 419 so as to prevent slipping and rotation.
[0037] 図 17 (A)は、板ばねを用いた保持用ばね部材 520のさらに他の例を示す斜視図 であり、図 17 (B)は、この保持用ばね部材 520に接触子 519を取り付ける場合を説 明するための分解斜視図であり、図 17 (C)は保持用ばね部材 520に接触子 519を 取り付けた状態の斜視図である。この例では、保持用ばね部材 520の一方の端部に 、図示しないホルダに固定される際に使用される切り欠き部 520mを備えている。ま た保持用ばね部材 520は中央部にスリット 520ηが形成され、他方の端部にはスリット 520ηを間に挟むように 2つの貫通孔 520kが形成されている。また接触子 509には、 被保持部 507dに、ばね部材 520に設けた 2つの貫通孔 520kと整合する 2つの貫通 孔 519が形成されている。ばね部材 520と接触子 509とは、整合させた貫通孔 519と 貫通孔 520kとに、リベット 540を貫通させ、リベット 540の先端を変形することにより 結合される。 FIG. 17A is a perspective view showing still another example of a holding spring member 520 using a leaf spring. FIG. 17B shows a contact 519 attached to the holding spring member 520. FIG. 17C is an exploded perspective view for explaining the case of attachment, and FIG. 17C is a perspective view of a state in which the contact 519 is attached to the holding spring member 520. In this example, one end of the holding spring member 520 is provided with a notch 520m used when being fixed to a holder (not shown). The holding spring member 520 has a slit 520η at the center, and two through holes 520k at the other end so as to sandwich the slit 520η. Further, the contact 509 is formed with two through holes 519 aligned with the two through holes 520k provided in the spring member 520 in the held portion 507d. The spring member 520 and the contact 509 are coupled by passing the rivet 540 through the aligned through hole 519 and through hole 520k and deforming the tip of the rivet 540.
[0038] 図 17 (A)は、板ばねを用いた保持用ばね部材 520のさらに他の例を示す斜視図 であり、図 17 (B)は、この保持用ばね部材 520に接触子 519を取り付ける場合を説 明するための分解斜視図であり、図 17 (C)は保持用ばね部材 520に接触子 509を 取り付けた状態の斜視図である。この例では、保持用ばね部材 520の一方の端部に 、図示しないホルダに固定される際に使用される切り欠き部 520mを備えている。ま た保持用ばね部材 520は中央部にスリット 520ηが形成され、他方の端部にはスリット 520ηを間に挟むように 2つの貫通孔 520kが形成されている。また接触子 509には、 被保持部 507dに、ばね部材 520に設けた 2つの貫通孔 520kと整合する 2つの貫通 孔 519が形成されている。ばね部材 520と接触子 509とは、整合させた貫通孔 519と 貫通孔 520kとに、リベット 540を貫通させ、リベット 540の先端を変形することにより 結合される。  FIG. 17 (A) is a perspective view showing still another example of a holding spring member 520 using a leaf spring. FIG. 17 (B) shows a contact 519 attached to the holding spring member 520. FIG. 17C is an exploded perspective view for explaining a case of attachment, and FIG. 17C is a perspective view of a state in which a contact 509 is attached to a holding spring member 520. In this example, one end of the holding spring member 520 is provided with a notch 520m used when being fixed to a holder (not shown). The holding spring member 520 has a slit 520η at the center, and two through holes 520k at the other end so as to sandwich the slit 520η. Further, the contact 509 is formed with two through holes 519 aligned with the two through holes 520k provided in the spring member 520 in the held portion 507d. The spring member 520 and the contact 509 are coupled by passing the rivet 540 through the aligned through hole 519 and through hole 520k and deforming the tip of the rivet 540.
[0039] 図 18 (A)は、板ばねを用いた保持用ばね部材 620のさらに他の例を示す斜視図 であり、図 18 (B)は、この保持用ばね部材 620に接触子 509を取り付ける場合を説 明するための分解斜視図であり、図 18 (C)は保持用ばね部材 620に接触子 519を 取り付けた状態の斜視図である。なおこれらの図においては、保持用ばね部材 620 については、図 17 (A)に示したばね部材 520と同様に部分に、図 17 (A)に付した符 号の数字に 100の数を加えた数の符号を付して説明を省略する。この例では、保持 用ばね部材 620の他方の端部にスリット 520ηを間に挟むように 2つの筒状部 620pを 備えている。ばね部材 620と接触子 509とは、筒状部 620pを貫通孔 519に挿入した 後、筒状部 620pの先端をカーリング加工することにより結合される。 FIG. 18 (A) is a perspective view showing still another example of a holding spring member 620 using a leaf spring. FIG. 18 (B) shows a contact 509 attached to the holding spring member 620. When installing FIG. 18C is a perspective view of a state in which a contact 519 is attached to a holding spring member 620. FIG. In these figures, for the holding spring member 620, a number of 100 is added to the numeral in FIG. 17 (A) in the same manner as the spring member 520 shown in FIG. 17 (A). A number sign is attached and explanation is omitted. In this example, two cylindrical portions 620p are provided at the other end of the holding spring member 620 so as to sandwich the slit 520η. The spring member 620 and the contact 509 are coupled by curling the tip of the cylindrical part 620p after inserting the cylindrical part 620p into the through hole 519.
[0040] 図 19 (A)乃至 (C)は、保持用ばね部材をスプリングワイヤによって構成する場合の 例の斜視図をそれぞれ示している。保持用ばね部材 720, 820, 920の構造は、上 記の例に限定されるものではなぐどのような構造であってもよい。 FIGS. 19A to 19C show perspective views of examples in which the holding spring member is constituted by a spring wire, respectively. The structure of the holding spring members 720, 820, 920 may be any structure not limited to the above example.
産業上の利用可能性  Industrial applicability
[0041] 本発明の可変抵抗器では、カーボン繊維を含む接触子が、摺動動作を行っている ときに、橈むことがない剛性を有しているので、接点部を常に安定した状態で抵抗体 に接触させることができる。特に本発明では、ホルダに、接触子の接点部を抵抗体の 表面に押し付ける力を、接触子に付与する力付与機構を接触子とは別に設けている 。したがって接触子の形状及び剛性に応じた適正な付勢力で接触子を抵抗体に対 して押し付けることができる。その結果、接触子の接点部が摩耗をし始めても、接点 部と抵抗体の表面との間の接触抵抗が極端に変わることがない。また接点部と抵抗 体との間に、摩耗粉等が入り込むような隙間が形成されることがない。さらに、カーボ ン繊維を含む接触子の接点部を長い期間にわたって、適正な範囲の押し付け力で 抵抗体の表面に対して押し付けることができる利点が得られる。 [0041] In the variable resistor of the present invention, the contact including the carbon fiber has a rigidity that does not squeeze when performing a sliding operation, so that the contact portion is always in a stable state. Can be brought into contact with the resistor. In particular, in the present invention, the holder is provided with a force applying mechanism for applying to the contact a force for pressing the contact portion of the contact against the surface of the resistor. Therefore, the contact can be pressed against the resistor with an appropriate biasing force according to the shape and rigidity of the contact. As a result, even if the contact portion of the contact begins to wear, the contact resistance between the contact portion and the surface of the resistor does not change extremely. Further, there is no gap between the contact portion and the resistor so that abrasion powder or the like enters. Furthermore, there is an advantage that the contact portion of the contact including carbon fibers can be pressed against the surface of the resistor with a pressing force within a proper range over a long period.

Claims

請求の範囲 The scope of the claims
[1] 絶縁基板の表面に設けられた抵抗体と、  [1] a resistor provided on the surface of the insulating substrate;
先端部に前記抵抗体の表面を摺動する接点部を備え且つ前記先端部とは反対側 の位置に被保持部を備えた接触子と、  A contact having a contact portion that slides on the surface of the resistor at the tip, and a held portion at a position opposite to the tip;
前記接触子を直接または間接的に保持し、前記接点部を前記抵抗体の前記表面 上で摺動させる際に操作されるホルダと、  A holder that is operated when holding the contact directly or indirectly and sliding the contact portion on the surface of the resistor;
前記接触子とは別に構成されて前記ホルダに設けられ、前記接触子の前記接点部 を前記抵抗体の前記表面に押し付ける力を、前記接触子に付与する力付与機構と を備え、  A force applying mechanism configured to be provided separately from the contact and provided in the holder, and to apply a force to the contact to press the contact portion of the contact against the surface of the resistor;
前記接触子は、カーボン繊維と合成樹脂とを主原料として導電性が得られるように 構成され、しかも前記接触子は前記接点部が前記抵抗体の前記表面上を摺動して いるときに、橈むことがない剛性を有していることを特徴とする可変抵抗器。  The contact is configured to obtain electrical conductivity using carbon fiber and synthetic resin as main raw materials, and the contact has the contact portion sliding on the surface of the resistor, A variable resistor characterized by having rigidity that does not linger.
[2] 前記接触子は、前記先端部の反対側に被保持部を備えており、  [2] The contact includes a held portion on the opposite side of the tip,
前記ホルダはホルダ本体を有し、前記ホルダ本体には前記絶縁基板に向かって開 口し且つ前記接触子の前記被保持部をスライド自在に受け入れる受入孔が形成さ れており、  The holder has a holder main body, and the holder main body is formed with a receiving hole that opens toward the insulating substrate and slidably receives the held portion of the contact.
前記力付与機構は、前記受入孔に前記接触子の前記被保持部が受け入れられた 状態で前記接触子の前記被保持部に力を加えて前記接点部を前記抵抗体の表面 に向力つて押し付けるように構成されていることを特徴とする請求項 1に記載の可変 抵抗器。  The force applying mechanism applies a force to the held portion of the contact in a state in which the held portion of the contact is received in the receiving hole, and directs the contact portion toward the surface of the resistor. The variable resistor according to claim 1, wherein the variable resistor is configured to be pressed.
[3] 前記受入孔は、前記抵抗体の表面に対して斜めに延びて 、る請求項 2に記載の可 変抵抗器。  [3] The variable resistor according to [2], wherein the receiving hole extends obliquely with respect to a surface of the resistor.
[4] 前記力付与機構は、前記接触子の前記被保持部の後端部に対して前記接点部を 前記抵抗体の前記表面に押し付ける押圧力を発生するように配置された、ばね部材 を備えている請求項 2に記載の可変抵抗器。  [4] The force applying mechanism includes a spring member arranged to generate a pressing force that presses the contact portion against the surface of the resistor against a rear end portion of the held portion of the contact. The variable resistor according to claim 2 provided.
[5] 前記接触子は、前記先端部の反対側に被保持部を備えており、  [5] The contact includes a held portion on the opposite side of the tip,
前記ホルダはホルダ本体を有し、  The holder has a holder body;
前記力付与機構は、前記ホルダ本体に固定された基部と、前記基部と連続して設 けられて前記抵抗体に向力つて傾斜した状態で延びる橈み部と、前記橈み部と連続 して設けられて前記接触子の前記被保持部が機械的に取り付けられる接触子取付 部とを備えた接触子取付機能を備えたばね部材力 なる請求項 1に記載の可変抵抗 前記接触子取付部の構造は、嵌合構造、カシメ構造または挟持構造によって、前 記接触子の前記被保持部を機械的に保持するように構成されている請求項 5に記載 の可変抵抗器。 The force applying mechanism includes a base fixed to the holder main body and a base that is continuous with the base. A squeeze portion extending in a tilted state against the resistor, and a contact attachment portion provided continuously with the squeeze portion and mechanically attached to the held portion of the contact. The variable resistance according to claim 1, wherein the structure of the contactor mounting portion is a fitting structure, a caulking structure, or a sandwiching structure, and the held portion of the contactor is held by a spring member force having a contactor mounting function. The variable resistor according to claim 5, wherein the variable resistor is configured to be mechanically held.
PCT/JP2007/061225 2006-06-02 2007-06-01 Variable resistor WO2007142160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008520549A JP5048666B2 (en) 2006-06-02 2007-06-01 Variable resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006154438 2006-06-02
JP2006-154438 2006-06-02

Publications (1)

Publication Number Publication Date
WO2007142160A1 true WO2007142160A1 (en) 2007-12-13

Family

ID=38801415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061225 WO2007142160A1 (en) 2006-06-02 2007-06-01 Variable resistor

Country Status (2)

Country Link
JP (1) JP5048666B2 (en)
WO (1) WO2007142160A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134598A1 (en) * 2009-05-21 2010-11-25 アルプス電気株式会社 Sliding contact
WO2010134599A1 (en) * 2009-05-21 2010-11-25 アルプス電気株式会社 Method for manufacturing sliding contact
JP2011077316A (en) * 2009-09-30 2011-04-14 Nidec Copal Corp Seesaw type switch
WO2016009790A1 (en) * 2014-07-15 2016-01-21 日立オートモティブシステムズ株式会社 Variable valve device for internal combustion engines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09502337A (en) * 1993-09-03 1997-03-04 アイティーティー・オートモーティブ・ヨーロップ・ゲーエムベーハー Carbon brush for electric motor
JPH10199715A (en) * 1997-01-06 1998-07-31 Murata Mfg Co Ltd Variable resistor for high voltage
JP2003051361A (en) * 2001-07-05 2003-02-21 Micro Contacts Inc Electrical apparatus
JP2004031688A (en) * 2002-06-26 2004-01-29 Alps Electric Co Ltd Sliding contact, sliding electric part, and sensor
JP2006004938A (en) * 2004-06-16 2006-01-05 Wc Heraeus Gmbh Sliding contact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09502337A (en) * 1993-09-03 1997-03-04 アイティーティー・オートモーティブ・ヨーロップ・ゲーエムベーハー Carbon brush for electric motor
JPH10199715A (en) * 1997-01-06 1998-07-31 Murata Mfg Co Ltd Variable resistor for high voltage
JP2003051361A (en) * 2001-07-05 2003-02-21 Micro Contacts Inc Electrical apparatus
JP2004031688A (en) * 2002-06-26 2004-01-29 Alps Electric Co Ltd Sliding contact, sliding electric part, and sensor
JP2006004938A (en) * 2004-06-16 2006-01-05 Wc Heraeus Gmbh Sliding contact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134598A1 (en) * 2009-05-21 2010-11-25 アルプス電気株式会社 Sliding contact
WO2010134599A1 (en) * 2009-05-21 2010-11-25 アルプス電気株式会社 Method for manufacturing sliding contact
JP2011077316A (en) * 2009-09-30 2011-04-14 Nidec Copal Corp Seesaw type switch
WO2016009790A1 (en) * 2014-07-15 2016-01-21 日立オートモティブシステムズ株式会社 Variable valve device for internal combustion engines
JPWO2016009790A1 (en) * 2014-07-15 2017-04-27 日立オートモティブシステムズ株式会社 Variable valve operating device for internal combustion engine

Also Published As

Publication number Publication date
JP5048666B2 (en) 2012-10-17
JPWO2007142160A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US7466062B2 (en) Vibration wave motor and lens barrel
WO2007142160A1 (en) Variable resistor
US8657635B2 (en) Terminal and connector using the same
US20060113867A1 (en) Vibration wave motor
JP5656030B2 (en) Driving device and manufacturing method thereof
EP2017904A2 (en) Ultrasonic motor
US7819679B2 (en) Card connector
CN110268496B (en) Switch with a switch body
CN111463068B (en) Electromagnetic relay and method for manufacturing the same
CN110858940B (en) Attenuator device
CN110139771A (en) Accelerator pedal device
EP2743951B1 (en) Push-switch
KR101479439B1 (en) Terminal and connector using same
WO2007142159A1 (en) Variable resistor
JP2013020739A (en) Switch
CN107615878B (en) Electric heater
JP2006158052A (en) Ultrasonic motor
WO2018003178A1 (en) Variable resistor
WO2006027895A1 (en) Antenna feeding structure
JP3455007B2 (en) Slide type electric parts
JP2008311101A (en) Key switch structure
JPWO2019187570A1 (en) Temperature sensing device and assembly
JP3574532B2 (en) Sliding variable resistor and method of assembling the same
KR100340483B1 (en) Variable resistor
JP2006209975A (en) Slide switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520549

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07744612

Country of ref document: EP

Kind code of ref document: A1