WO2007142115A1 - Electron emission material and electron emitter using same - Google Patents

Electron emission material and electron emitter using same Download PDF

Info

Publication number
WO2007142115A1
WO2007142115A1 PCT/JP2007/061084 JP2007061084W WO2007142115A1 WO 2007142115 A1 WO2007142115 A1 WO 2007142115A1 JP 2007061084 W JP2007061084 W JP 2007061084W WO 2007142115 A1 WO2007142115 A1 WO 2007142115A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
electron emission
carbon nanotubes
particles
particle
Prior art date
Application number
PCT/JP2007/061084
Other languages
French (fr)
Japanese (ja)
Inventor
Takuji Komukai
Kumiko Yoshihara
Original Assignee
Sonac Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonac Incorporated filed Critical Sonac Incorporated
Publication of WO2007142115A1 publication Critical patent/WO2007142115A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3048Distributed particle emitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to an electron emitter having an electron emission layer that emits electrons by field emission on a force sword electrode, and relates to an electron emission material constituting the field emission layer and an electron emitter using the same. .
  • the carbon nanotubes used for the electron emission material in this specification are not only single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes, but also bamboo-like carbon nanotubes, graphite nanofino, carbon nanohorns, and carbon nanotubes. It is a carbon nanotube in a broad sense including cones, carbon nanobumps, and the like.
  • a display device using an electron emitter is generally arranged on the force sword side and emits electrons toward the anode side by an electric field applied between the anode side and the phosphor on the anode side.
  • the phosphor is excited to emit light by colliding with (see Patent Document 1).
  • Such an electron emitter is also called a cold cathode, can efficiently emit electrons even at room temperature, and has a high effect of electron emission on the applied voltage. Due to its long life and high responsiveness, it has been applied to large and thin display devices, and its development has been energetically advanced.
  • Carbon nanotubes have a structure in which carbon hexagonal mesh surfaces are closed in a cylindrical shape or a structure in which these cylinders are arranged in a nested manner. Its diameter is very thin, several nm to several tens of nm, and its aspect ratio is large, so it is easy to emit electrons in a low electric field, its electron emission characteristics are stable, It is being developed for implementation in the above-mentioned display device because it can provide a high-density light emitting point.
  • Carbon nanotubes have an extremely high aspect ratio. Due to its large size, when a large number of carbon nanotubes are mixed with paste and screen printed to form a pattern on an electrode, it is difficult to orient the carbon nanotubes evenly in height and perpendicular to the substrate. In addition, vertically aligned carbon nanotubes have a very small tip diameter and poor durability, making it difficult to obtain stable electron emission.
  • Patent Document 1 JP 2001-23552
  • the main problem to be solved by the present invention is an electron-emitting material that can be formed on an electrode without providing high-precision control and can provide stable electron-emitting characteristics over a long period of time, and the use thereof. Was to provide an electronic emitter.
  • the electron-emitting material according to the present invention is composed of particles in which a large number of carbon nanotubes are arranged in substantially the same direction and are densely distributed 1J bonded together by physical entanglement. It is characterized by being.
  • the end of the carbon nanotube in the particle is not limited to the same orientation, and the end of the carbon nanotube constituting the particle is partially or entirely the same. This includes a state in which the carbon nanotubes in the particles extend in almost the same direction even if they are directed in different directions or in different directions, while being slightly bent or straightened as a whole.
  • the "dense arrangement” includes a state in which carbon nanotubes are entangled or partially bonded by van der Waals force and arranged in a state where they are aligned.
  • the electron-emitting material of the present invention is not limited to being composed only of carbon nanotubes, and has the meaning that it can also be allowed to include components other than carbon nanotubes together with carbon nanotubes. It does not exclude the inclusion of other components necessary or preferred as the release material.
  • the electron emission material of the present invention is composed of particles in which a large number of carbon nanotubes are arranged in substantially the same direction and are mainly physically entangled and densely arranged with each other. Electron emission from the edge of the particle can be performed without arranging the carbon nanotube alone vertically on the force sword electrode as in the case of an electron emission material consisting of a large number of particles, mixed with paste, and screen printing. Easy to print on the electrode. [0017] In the present invention, unlike the conventional case where a single carbon nanotube is used as an electron emission material, it is not necessary to control the printing of the particles so as to have a uniform height on the electrode. Yield can be improved.
  • the particles which are the electron emission materials of the present invention, do not need to be arranged in a dense state on the substrate, and even if a large number of electrons are emitted from one particle, the electron emission load is small, so the consumption is also low.
  • the service life can be extended as a small electron emission material.
  • the maximum size on the short side in the direction orthogonal to the maximum diameter on the long side is 100 zm or less.
  • the particles of the present invention can be screen-printed as an electron emission material on an electrode or the like.
  • the carbon nanotube is a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, a graphite nanofino, a carbon nanohorn, a carbon nanocone, or a carbon nanobump. Either.
  • the printing method is a printing method by screen printing.
  • a preferred embodiment of the present invention is obtained by cutting a large number of carbon nanotubes in which the above particles are arranged in a dense state in a substantially vertical direction on the substrate.
  • the electron emitter according to the present invention is an electron emitter having an electron emission layer that emits electrons by field emission on an electrode, and is included in the electron emission layer as the electron emission material of the present invention described above.
  • an electron emission material capable of providing electron emission characteristics over a long period of time and an electron emitter using the same.
  • Fig. 1 is a diagram showing an aggregate of brush-grown carbon nanotubes used for producing particles which are electron emission materials according to an embodiment of the present invention.
  • FIGS. 2 (a), 2 (b), and 2 (c) are diagrams showing the planar configuration and particles of a mesh having different shapes for a screen printing plate.
  • FIG. 3 is a view showing an electron emitter having an electron-emitting layer made of the electron-emitting material of the embodiment.
  • FIGS. 4 (a), 4 (b), and 4 (c) are diagrams showing examples of particles.
  • FIG. 5 is an SEM image of the electron emission layer of the embodiment.
  • FIG. 6 is an SEM image of a conventional electron emission layer.
  • FIG. 7 is a low-magnification SEM photograph of a plurality of particles obtained by pulverizing a carbon nanotube assembly block exfoliated from a substrate.
  • FIG. 8 is an SEM photograph showing the particle in FIG. 7 in an enlarged manner.
  • FIG. 9 is an SEM photograph showing the SEM photograph of FIG. 8 in further enlargement.
  • FIG. 10 is an SEM photograph showing the SEM photograph of FIG. 9 further enlarged.
  • carbon-containing source gas is introduced into the reaction chamber using metal catalyst fine particles formed on substrate 2 at a high density as growth nuclei, and carbon nanotubes are elevated in a vertical direction on substrate 2.
  • Grow density Figure 1 shows this grown carbon nanotube as a carbon nanotube assembly block 4.
  • the carbon nanotubes 6 in the carbon nanotube assembly block 4 are brushes that are densely planted side by side in close contact in the same direction and are physically entangled with each other. Growing into hair.
  • the carbon nanotubes 6 are preferably grown almost vertically on the substrate 2 at a density of 10 9 / cm 2 or more.
  • Carbon Nanotube 6 is also partially bonded by van der Waals forces.
  • the growth mode of carbon nanotube 6 shown in Fig. A1 is, for example, the SEM image shown in Applied Physics No. 73 ⁇ No.
  • the carbon nanotubes 6 are sheared into a large number of particles 8 so that the mutual bonding form shown in Fig. A1 is not broken, preferably by crushing, grinding, or the like. In this case, the shape of the particle 8 varies.
  • the particle 8 does not break the bonding form of the carbon nanotubes 6 in Fig. A1, that is, a large number of carbons.
  • the nanotubes 6 are arranged in almost the same direction, and are mainly physically entangled with each other and densely arranged in a size that can be printed by a printing method.
  • These particles 8 constitute at least one unit of the electron emission material.
  • FIG. Figures 2 (a), (b) and (c) show screen printing plates 10a, 10b and 10c.
  • the meshes 10a, 10b and 10c have hexagonal, circular and rectangular shapes as examples.
  • the maximum diameter Dma xl on the long side of the particle 8 corresponding to the mesh 10a shown in Fig. 2 (a) is between points A and B, and the maximum diameter Dmax 2 on the short side in the direction orthogonal to the maximum diameter Dmax is Between points a and b.
  • the maximum diameter Dmax2 on the short side is preferably 100 zm or less.
  • the maximum diameter Dmaxl on the long side of particle 8 corresponding to mesh 10b shown in Fig. 2 (b) is between points C and D, and the maximum diameter Dmax2 on the short side in the direction perpendicular to this maximum diameter Dmax is point c. , D is there.
  • the maximum diameter Dmax2 on the short side is preferably 100 / im or less.
  • the maximum diameter Dmax on the long side of particle 8 corresponding to mesh 10c shown in Fig. 2 (c) is between points E and F, and the maximum diameter Dmax2 on the short side in the direction orthogonal to this maximum diameter Dmax is point e. , f.
  • the maximum diameter Dmax2 on the short side is preferably 100 zm or less.
  • the minimum diameter Dmin of the particles 8 is preferably 1 OOnm or more.
  • a large number of particles 8 having the above sizes are dispersedly arranged as electron emission layers 16 on the cathode electrode 14 in the electron emitter 12 as shown in FIG.
  • the force sword electrode 14 is provided on the substrate 18, and the force sword electrode 14 is opposed to the anode electrode 22 with a phosphor disposed on the lower surface of the substrate 20.
  • a dotted circle C surrounding part of the electron emission layer 16 is enlarged and shown in FIG. This figure C1 shows how electrons are emitted from a large number of particles 8 as indicated by arrows, for the sake of understanding.
  • the particles 8 are mixed with the paste and printed on the force sword electrode 14. After this printing, the solvent component in the paste is evaporated by baking, and a large number of particles 8 are arranged on the force sword electrode 14 as an electron emission material.
  • the particles 8 have various shapes, and the shapes of the particles 8 are illustrated in FIGS. 4 (a), 4 (b), and 4 (c).
  • the particles 8 shown in FIG. 4 (a) have an elongated shape along the electrode surface of the force sword electrode 14, and the carbon nanotubes 6 are also assembled and arranged along the elongated shape of the particles 8.
  • the particles 8 are adhered to the surface of the force sword electrode 14 with an appropriate adhesive 24 such as water glass, and also directly contact the surface of the force sword electrode 14 to obtain an electrical contact.
  • the carbon nanotubes 6 inside are arranged IJ almost perpendicularly to the force sword electrode 14.
  • the particles 8 shown in FIG. 4 (c) are elongated along the force sword electrode 14 and the carbon nanotubes 6 are arranged almost perpendicular to the force sword electrode 14. Any particle 8 emits electrons by field emission.
  • FIG. 5 shows an SEM image of the electron emission layer disposed on the force sword electrode that is applied to the embodiment.
  • SEM image shown in FIG. 5 it can be confirmed that a large number of particles 8 are formed on the force sword electrode 14 like a tree upside down.
  • 10 ⁇ m scale of the SEM image it can be confirmed that a large number of carbon nanotubes are entangled and bonded and exist as an electron emission material.
  • FIG. 6 shows an SEM image of a cross section of the electron emission layer disposed on the conventional force and force sword electrode.
  • an electron emission layer is composed of a single carbon nanotube, and it can be confirmed that the single carbon nanotube is formed in a thin thread shape and stands on the force sword electrode 14.
  • the particle 8 is formed by bonding carbon nanotubes in substantially the same direction and mainly in physical entanglement with each other, and by a printing method.
  • the particles 8 can be emitted from their edges regardless of the orientation of the particles 8 on the cathode electrode 14, and the particles 8 can be printed to a size that can be printed. Since it is controlled, the particles 8 can be screen printed and easily printed on the force sword electrode 14.
  • the electron emission load is small, so the consumption is small and electron emission is completed. Longer life as a material is possible.
  • the carbon nanotube assembly block 4 is solidified with an inorganic binder resin before the substrate 2 is peeled off by force.
  • the carbon nano tube assembly block 4 solidified on the substrate 2 is peeled off from the substrate 2, and the peeled carbon nanotube assembly block 4 is pulverized and subdivided into a number of block pieces by a mechanical dispersion device (homogenizer) or ultrasonic grinding.
  • the particles 8 can be obtained by removing and washing the inorganic binder adhering to the pulverized product.
  • the solidification may be performed after the carbon nanotube assembly block 4 is peeled from the substrate 2. In addition, the above cleaning is not necessarily required when there is no problem even if a part or all of the inorganic binder remains in the pulverized product.
  • FIG. 7 shows a low-magnification SEM photograph of the plurality of particles 8 after pulverization.
  • each particle 8 can be confirmed to have a maximum diameter of 100 ⁇ m or less on the short side in the direction orthogonal to the maximum diameter on the long side.
  • Fig. 8 shows an enlarged SEM photograph of the particle 8 after grinding in Fig. 7
  • Fig. 9 shows an enlarged SEM photograph of the particle 8 after grinding in Fig. 8,
  • Fig. 10 and Fig. 9 The SEM photograph which expanded further SEM photograph of is shown.
  • the electron emission material according to the present invention is particularly useful as a material constituting the field emission layer in an electron emitter including an electron emission layer that emits electrons by field emission on a force sword electrode. .

Abstract

An emission material is composed of particles (8) which have a great number of carbon nanotubes (6). The carbon nanotubes are arranged in a substantially the same direction by mainly physically being tangled each other and are densely arranged in a size printable by a printing method.

Description

明 細 書  Specification
電子放出材料およびそれを用いた電子ェミッタ  Electron emitting material and electron emitter using the same
技術分野  Technical field
[0001] 本発明は、力ソード電極上に電界放射により電子を放出する電子放出層を備えた 電子ェミッタにおいて、その電界放出層を構成する電子放出材料およびそれを用い た電子ェミッタに関するものである。  TECHNICAL FIELD [0001] The present invention relates to an electron emitter having an electron emission layer that emits electrons by field emission on a force sword electrode, and relates to an electron emission material constituting the field emission layer and an electron emitter using the same. .
本明細書で電子放出材料に用いるカーボンナノチューブは、単層カーボンナノチュ ーブ、 2層カーボンナノチューブ、多層カーボンナノチューブ以外にも、バンブーライ クカーボンナノチューブ、グラフアイトナノファイノ 、カーボンナノホーン、カーボンナノ コーン、カーボンナノバンブ等を含む広義のカーボンナノチューブである。  The carbon nanotubes used for the electron emission material in this specification are not only single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes, but also bamboo-like carbon nanotubes, graphite nanofino, carbon nanohorns, and carbon nanotubes. It is a carbon nanotube in a broad sense including cones, carbon nanobumps, and the like.
背景技術  Background art
[0002] 電子ェミッタを用いた表示装置は、一般的には、力ソード側に配置されてアノード側 との間で印加される電界によりアノード側に向けて電子を放出してアノード側の蛍光 体に衝突することによって蛍光体を励起発光させるようになつている(特許文献 1参 照。)。このような電子ェミッタは、冷陰極とも呼ばれるものであり、常温においても電 子を効率的に放出することができ、また、印加電圧に対する電子放出の効果も高ぐ 高輝度、広視野角、長寿命、高応答性などの点により、大型薄型の表示装置に適用 され、その開発が鋭意進められている。  [0002] A display device using an electron emitter is generally arranged on the force sword side and emits electrons toward the anode side by an electric field applied between the anode side and the phosphor on the anode side. The phosphor is excited to emit light by colliding with (see Patent Document 1). Such an electron emitter is also called a cold cathode, can efficiently emit electrons even at room temperature, and has a high effect of electron emission on the applied voltage. Due to its long life and high responsiveness, it has been applied to large and thin display devices, and its development has been energetically advanced.
[0003] このような電子ェミッタの中で、カーボンナノチューブを用いた電子ェミッタへの注 目度が高くなつている。カーボンは化学的に安定でかつ熱伝導性に優れ、また、電 界電子放出が可能なことから電子放出材料として注目されてレ、る。  [0003] Among such electron emitters, attention to the electron emitter using carbon nanotubes is increasing. Carbon is attracting attention as an electron-emitting material because it is chemically stable and has excellent thermal conductivity, and it can emit field electrons.
[0004] カーボンナノチューブは、炭素六角網面が円筒状に閉じた構造あるいはこれらの円 筒が入れ子状に配置された構造をしている。その径は数 nm〜数十 nmと非常に細い ものであり、アスペクト比が大きいために低電界での電子放出が容易であること、電子 放出特性が安定であること、表示装置に対して高密度な発光点を提供することがで きること、などから上記表示装置への実施に向けて開発されている。  [0004] Carbon nanotubes have a structure in which carbon hexagonal mesh surfaces are closed in a cylindrical shape or a structure in which these cylinders are arranged in a nested manner. Its diameter is very thin, several nm to several tens of nm, and its aspect ratio is large, so it is easy to emit electrons in a low electric field, its electron emission characteristics are stable, It is being developed for implementation in the above-mentioned display device because it can provide a high-density light emitting point.
[0005] このようなカーボンナノチューブを用いた電子ェミッタの製造方法の 1つとして、カー ボンナノチューブを溶媒中に混合分散してペースト状として基板上に印刷した後、焼 成することにより溶媒成分を蒸発させてカーボンナノチューブを基板上に配置する印 刷法がある。 [0005] As one of the methods of manufacturing an electron emitter using such carbon nanotubes, There is a printing method in which bonnanotubes are mixed and dispersed in a solvent, printed as a paste on a substrate, and then baked to evaporate the solvent component and place the carbon nanotubes on the substrate.
[0006] し力、しながら、カーボンナノチューブは、そのエッジ先端から電子放出させるには電 極に対して垂直方向に配向制御する必要がある力 s、カーボンナノチューブはそのァ スぺタト比が極めて大きいため、多数のカーボンナノチューブを、ペーストと混ぜ、ス クリーン印刷して電極にパターン形成する場合、カーボンナノチューブを高さ均等に かつ基板に垂直に配向させることは難しい。また、垂直に配向したカーボンナノチュ ーブは先端径が非常に細く耐久性に劣るため安定した電子放出を得にくい。  [0006] However, in order to emit electrons from the edge tip of carbon nanotubes, it is necessary to control the orientation in the direction perpendicular to the electrodes. Carbon nanotubes have an extremely high aspect ratio. Due to its large size, when a large number of carbon nanotubes are mixed with paste and screen printed to form a pattern on an electrode, it is difficult to orient the carbon nanotubes evenly in height and perpendicular to the substrate. In addition, vertically aligned carbon nanotubes have a very small tip diameter and poor durability, making it difficult to obtain stable electron emission.
[0007] さらに、電極に対して垂直方向に配向した多数のカーボンナノチューブは、均等に そのエッジ先端から電子放出させるには、それらの高さを一定の高さに揃うように精 密制御する必要があるが、この高さを高精度に制御することは難しい。  [0007] Furthermore, in order to uniformly emit electrons from the tip of the edge of a large number of carbon nanotubes oriented in the direction perpendicular to the electrodes, it is necessary to precisely control their height so that they are aligned at a certain height. However, it is difficult to control this height with high accuracy.
[0008] カロえて、カーボンナノチューブは基板上に密集状態で配置すると電子放出しにくく なり、電子放出させるためのカーボンナノチューブの配置間隔は 1〜2 μ ΐη程度は必 要とされている。そのため、電極上の単位面積当たりのカーボンナノチューブの配置 本数、すなわち、電子放出サイトの数が少なく限定されてくる結果、所要の発光輝度 を得るためには、 1つのカーボンナノチューブから電子をそれだけ多く放出させる必 要があり、カーボンナノチューブ 1つ当たりの電子放出負荷が大きくなり、そのエッジ 先端の消耗が促進されてカーボンナノチューブの寿命が短くなる。  [0008] If carbon nanotubes are arranged densely on a substrate, it becomes difficult to emit electrons, and the arrangement interval of carbon nanotubes for electron emission is required to be about 1 to 2 μΐη. For this reason, the number of carbon nanotubes arranged per unit area on the electrode, that is, the number of electron emission sites is limited to a small number. As a result, in order to obtain the required light emission luminance, more electrons are emitted from one carbon nanotube. This increases the electron emission load per carbon nanotube, promotes wear on the edge tip, and shortens the lifetime of the carbon nanotube.
特許文献 1:特開 2001— 23552号  Patent Document 1: JP 2001-23552
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明により解決すべき主たる課題は、高精度な制御を要することなく電極上に形 成されて安定した電子放出特性を長期に渡り提供することができる電子放出材料お よびそれを用いた電子ェミッタを提供することである。 [0009] The main problem to be solved by the present invention is an electron-emitting material that can be formed on an electrode without providing high-precision control and can provide stable electron-emitting characteristics over a long period of time, and the use thereof. Was to provide an electronic emitter.
課題を解決するための手段  Means for solving the problem
[0010] 本発明に係る電子放出材料は、多数のカーボンナノチューブがほぼ同じ向きに並 びかつ相互に物理的な絡み合いで結合して密集配歹 1Jしたものである粒子から構成さ れていることを特徴とする。 [0010] The electron-emitting material according to the present invention is composed of particles in which a large number of carbon nanotubes are arranged in substantially the same direction and are densely distributed 1J bonded together by physical entanglement. It is characterized by being.
[0011] 上記「ほぼ同じ向きに並び」とは粒子内のすべてのカーボンナノチューブが同じ方 向に揃うように並ぶ意義に限定する意味ではなぐいくつかあるいは相当数あるいは 大部分のカーボンナノチューブが一部に同じ向きに並んでいない場合があるとしても 粒子全体として見た場合に当該粒子内のカーボンナノチューブが同じ向きに並んで いる状態のことである。  [0011] The above "arrangement in almost the same direction" does not mean that all the carbon nanotubes in the particle are aligned in the same direction. Even if the particles are not aligned in the same direction, the carbon nanotubes in the particles are aligned in the same direction when viewed as a whole particle.
[0012] この場合、粒子内のカーボンナノチューブの同じ側の端部がすべて同じ向きである ことに限定する意義ではなぐ粒子を構成するカーボンナノチューブの同じ側の端部 の一部あるいは全体的に同じ方向に向いていたり、あるいは異なる方向に向いてい たりしても当該粒子内のカーボンナノチューブが全体として多少曲がったり真っ直ぐ になったりしながらもほぼ同じような方向に延びている状態を含む。  [0012] In this case, the end of the carbon nanotube in the particle is not limited to the same orientation, and the end of the carbon nanotube constituting the particle is partially or entirely the same. This includes a state in which the carbon nanotubes in the particles extend in almost the same direction even if they are directed in different directions or in different directions, while being slightly bent or straightened as a whole.
[0013] 上記「相互に物理的な絡み合いで結合し」とは、粒子内のカーボンナノチューブ全 体が完全に絡まって結合していることに限定する意義ではなぐ粒子内のカーボンナ ノチューブが部分的にあるいは相当部分あるいは全体が容易にばらけない程度に物 理的に絡まればよく一部が絡んでいない場合を含む。また、カーボンナノチューブの 一部がファンデルワールス力で結合している場合も含む。  [0013] The above "bonded by physical entanglement with each other" does not mean that the entire carbon nanotubes in the particle are completely entangled and bonded. In other cases, it may be necessary to be physically entangled to such an extent that a substantial part or whole cannot be easily separated. It also includes the case where some carbon nanotubes are bonded by van der Waals force.
[0014] 上記「密集配列」とはカーボンナノチューブが絡まったり一部がファンデルワールス 力で結合してレ、る状態で配列してレ、る状態を含む。  [0014] The "dense arrangement" includes a state in which carbon nanotubes are entangled or partially bonded by van der Waals force and arranged in a state where they are aligned.
[0015] 本発明の電子放出材料は、カーボンナノチューブだけから構成されることに限定さ れる意義ではなぐカーボンナノチューブ以外の構成要素もカーボンナノチューブと 共に含むことも許容することができる意義であり、電子放出材料として必要あるいは 好ましい他の構成要素を含むことを除外するものではない。  [0015] The electron-emitting material of the present invention is not limited to being composed only of carbon nanotubes, and has the meaning that it can also be allowed to include components other than carbon nanotubes together with carbon nanotubes. It does not exclude the inclusion of other components necessary or preferred as the release material.
[0016] 本発明の電子放出材料は、多数のカーボンナノチューブがほぼ同じ向きに並びか つ主に相互に物理的に絡まり合いで密集配列してなる粒子で構成されるから、従来 のカーボンナノチューブ単体からなる電子放出材料のようにカーボンナノチューブ単 体を力ソード電極上に垂直に配置させなくても、粒子の端部から電子放出させること ができ、粒子を多数、ペーストと混ぜ、スクリーン印刷法により電極に容易に印刷する こと力 sできる。 [0017] 本発明では、従来のカーボンナノチューブ単体を電子放出材料とした場合とは異 なって、電極上に均等な高さに揃うように粒子を印刷制御する必要がないから、電子 ェミッタの製造歩留まりを向上することができる。 [0016] The electron emission material of the present invention is composed of particles in which a large number of carbon nanotubes are arranged in substantially the same direction and are mainly physically entangled and densely arranged with each other. Electron emission from the edge of the particle can be performed without arranging the carbon nanotube alone vertically on the force sword electrode as in the case of an electron emission material consisting of a large number of particles, mixed with paste, and screen printing. Easy to print on the electrode. [0017] In the present invention, unlike the conventional case where a single carbon nanotube is used as an electron emission material, it is not necessary to control the printing of the particles so as to have a uniform height on the electrode. Yield can be improved.
[0018] カロえて、本発明の電子放出材料である粒子は、基板上に密集状態で配置しなくて も、 1つの粒子から電子を多く放出させても電子放出負荷が少ないためにその消耗も 小さく済み電子放出材料としての長寿命化が可能となる。 [0018] The particles, which are the electron emission materials of the present invention, do not need to be arranged in a dense state on the substrate, and even if a large number of electrons are emitted from one particle, the electron emission load is small, so the consumption is also low. The service life can be extended as a small electron emission material.
[0019] 本発明の好適な一態様は、粒子のサイズが、長辺側の最大径に直交する方向の 短辺側の最大径が 100 z m以下である。このサイズにより、本発明の粒子を電極上 等に電子放出材料としてスクリーン印刷することができる。 [0019] In a preferred embodiment of the present invention, the maximum size on the short side in the direction orthogonal to the maximum diameter on the long side is 100 zm or less. With this size, the particles of the present invention can be screen-printed as an electron emission material on an electrode or the like.
[0020] 本発明の好適な一態様は、上記カーボンナノチューブが、単層カーボンナノチュー ブ、 2層カーボンナノチューブ、多層カーボンナノチューブ、グラフアイトナノファイノ 、 カーボンナノホーン、カーボンナノコーン、カーボンナノバンプのいずれかである。 [0020] In a preferred embodiment of the present invention, the carbon nanotube is a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, a graphite nanofino, a carbon nanohorn, a carbon nanocone, or a carbon nanobump. Either.
[0021] 本発明の好適な一態様は、上記密集配列が、上記カーボンナノチューブを 109[0021] One preferred embodiment of the present invention, the dense array, 10 nine of the carbon nanotube
/cm2以上の密度で含む配列である。この密度でカーボンナノチューブを含む粒子 は、スクリーン印刷のためにペーストイ匕してもばらけることなく電子放出材料としてそ の構成を維持することができる。 An array containing at a density of / cm 2 or more. Particles containing carbon nanotubes at this density can maintain their structure as an electron emission material without being dislodged by paste for screen printing.
[0022] 本発明の好適な一態様は、上記印刷法がスクリーン印刷による印刷法である。 [0022] In a preferred aspect of the present invention, the printing method is a printing method by screen printing.
[0023] 本発明の好適な一態様は、上記粒子が、基板上にほぼ垂直な向きに密集状態で 並立した多数のカーボンナノチューブを切断して得られたものである。 [0023] A preferred embodiment of the present invention is obtained by cutting a large number of carbon nanotubes in which the above particles are arranged in a dense state in a substantially vertical direction on the substrate.
[0024] 本発明による電子ェミッタは、電極上に電界放射により電子を放出する電子放出層 を備えた電子ェミッタであって、その電子放出層に上記した本発明の電子放出材料 として含むことを特徴とする。 The electron emitter according to the present invention is an electron emitter having an electron emission layer that emits electrons by field emission on an electrode, and is included in the electron emission layer as the electron emission material of the present invention described above. And
[0025] 本発明の電子ェミッタによれば、安定した電子放出を長期にわたり維持することが できる。 [0025] According to the electron emitter of the present invention, stable electron emission can be maintained over a long period of time.
発明の効果  The invention's effect
[0026] 本発明によれば、電子放出特性を長期に渡り提供することができる電子放出材料 およびそれを用いた電子ェミッタを提供することができる。  According to the present invention, it is possible to provide an electron emission material capable of providing electron emission characteristics over a long period of time and an electron emitter using the same.
図面の簡単な説明 [0027] [図 1]図 1は本発明の実施の形態に係る電子放出材料である粒子の製造に用いるブ ラシ毛状に成長したカーボンナノチューブの集合体を示す図である。 Brief Description of Drawings [0027] [Fig. 1] Fig. 1 is a diagram showing an aggregate of brush-grown carbon nanotubes used for producing particles which are electron emission materials according to an embodiment of the present invention.
[図 2]図 2 (a) (b) (c)はそれぞれスクリーン印刷用版の形状が相違するメッシュの平 面構成と粒子とを示す図である。  [FIG. 2] FIGS. 2 (a), 2 (b), and 2 (c) are diagrams showing the planar configuration and particles of a mesh having different shapes for a screen printing plate.
[図 3]図 3は実施の形態の電子放出材料で電子放出層を構成した電子ェミッタを示 す図である。  [FIG. 3] FIG. 3 is a view showing an electron emitter having an electron-emitting layer made of the electron-emitting material of the embodiment.
[図 4]図 4 (a) (b) (c)はそれぞれ粒子の例を示す図である。  [FIG. 4] FIGS. 4 (a), 4 (b), and 4 (c) are diagrams showing examples of particles.
[図 5]図 5は実施の形態の電子放出層の SEM画像である。  FIG. 5 is an SEM image of the electron emission layer of the embodiment.
[図 6]図 6は従来の電子放出層の SEM画像である。  FIG. 6 is an SEM image of a conventional electron emission layer.
[図 7]図 7は基板から剥離したカーボンナノチューブ集合ブロックを粉砕して得られる 複数の粒子の低倍率 SEM写真である。  [FIG. 7] FIG. 7 is a low-magnification SEM photograph of a plurality of particles obtained by pulverizing a carbon nanotube assembly block exfoliated from a substrate.
[図 8]図 8は図 7の粒子を拡大して示す SEM写真である。  [FIG. 8] FIG. 8 is an SEM photograph showing the particle in FIG. 7 in an enlarged manner.
[図 9]図 9は図 8の SEM写真をさらに拡大して示す SEM写真である。  [FIG. 9] FIG. 9 is an SEM photograph showing the SEM photograph of FIG. 8 in further enlargement.
[図 10]図 10は図 9の SEM写真をさらに拡大して示す SEM写真である。  [FIG. 10] FIG. 10 is an SEM photograph showing the SEM photograph of FIG. 9 further enlarged.
符号の説明  Explanation of symbols
[0028] 2 基板 [0028] 2 substrates
4 カーボンナノチューブ集合体  4 Aggregate of carbon nanotubes
6 カーボンナノチューブ  6 Carbon nanotube
8 粒子  8 particles
8 粒子内カーボンナノチューブ  8 Intraparticle carbon nanotubes
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、添付した図面を参照して、本発明の実施の形態に係る電子放出材料と、そ れを用いた電子ェミッタと、を詳細に説明する。 Hereinafter, an electron emission material according to an embodiment of the present invention and an electron emitter using the same will be described in detail with reference to the accompanying drawings.
まず、図 1を参照して、基板 2上に高密度に形成した金属触媒微粒子を成長核として 反応室にカーボン含有の原料ガスを導入し、カーボンナノチューブを基板 2上に垂 直な方向に高密度成長させる。図 1はこの成長したカーボンナノチューブがカーボン ナノチューブ集合ブロック 4として示されてレ、る。  First, referring to FIG. 1, carbon-containing source gas is introduced into the reaction chamber using metal catalyst fine particles formed on substrate 2 at a high density as growth nuclei, and carbon nanotubes are elevated in a vertical direction on substrate 2. Grow density. Figure 1 shows this grown carbon nanotube as a carbon nanotube assembly block 4.
[0030] このカーボンナノチューブ集合ブロック 4において点線円 Aで囲む部分を拡大して 図 Alとして示すように、カーボンナノチューブ集合ブロック 4内のカーボンナノチュー ブ 6は、ほぼ同方向に密集した状態で並立しかつ相互に物理的に絡まり合って、レヽ わゆる密に植立したブラシ毛状に成長している。このカーボンナノチューブ 6は好まし くは 109本/ cm2以上の密度で基板 2上にほぼ垂直に成長している。カーボンナノチ ユーブ 6はファンデルワールス力でも一部結合している。なお、図 A1で示すカーボン ナノチューブ 6の成長形態は、例えば、応用物理第 73卷第 5号(2004) 617頁(熱 C VD法を用いたブラシ状多層カーボンナノチューブの高速成長)に示す SEM画像を 参照することができる。この SEM画像ではカーボンナノチューブが部分的にあるいは 全体的に異なる方向に程度に差異があるとしても曲がったりするなど変形していても 全体として見た場合にほぼ同方向に向かって直線性よく揃って延びた状態で並んで いる。また、カーボンナノチューブ同士に物理的な絡み合いがありこの絡み合いで結 合している。図 A1はその SEM画像の一部を模式的に写したものである。 [0030] In this carbon nanotube assembly block 4, a portion surrounded by a dotted circle A is enlarged. As shown in the figure Al, the carbon nanotubes 6 in the carbon nanotube assembly block 4 are brushes that are densely planted side by side in close contact in the same direction and are physically entangled with each other. Growing into hair. The carbon nanotubes 6 are preferably grown almost vertically on the substrate 2 at a density of 10 9 / cm 2 or more. Carbon Nanotube 6 is also partially bonded by van der Waals forces. The growth mode of carbon nanotube 6 shown in Fig. A1 is, for example, the SEM image shown in Applied Physics No. 73 卷 No. 5 (2004), page 617 (high-speed growth of brush-like multi-walled carbon nanotubes using thermal C VD method). Can be referred to. In this SEM image, even if the carbon nanotubes are partially or totally different in degree, even if they are bent or deformed, they are aligned with good linearity in almost the same direction when viewed as a whole. They are lined up in an extended state. Moreover, there is a physical entanglement between the carbon nanotubes, and the carbon nanotubes are joined by this entanglement. Figure A1 is a schematic copy of part of the SEM image.
[0031] 次に、カーボンナノチューブ 6を好ましくは解砕、摩砕、等により図 A1で示す相互 の結合形態が崩されないように多数の粒子 8にせん断する。この場合の粒子 8の形 状は様々である。 [0031] Next, the carbon nanotubes 6 are sheared into a large number of particles 8 so that the mutual bonding form shown in Fig. A1 is not broken, preferably by crushing, grinding, or the like. In this case, the shape of the particle 8 varies.
[0032] この状態を粒子 8の一部を囲む点線円 Bを拡大して図 B1として示すように、粒子 8 は、図 A1のカーボンナノチューブ 6の結合形態を崩されず、すなわち、多数のカー ボンナノチューブ 6がほぼ同じ向きに並んでかつ主に相互に物理的に絡まり合いか つ印刷法で印刷可能なサイズに密集配列している。この粒子 8は、電子放出材料の 少なくとも 1単位を構成する。  [0032] As shown in Fig. B1 by enlarging the dotted circle B surrounding a part of the particle 8 as this state B1, the particle 8 does not break the bonding form of the carbon nanotubes 6 in Fig. A1, that is, a large number of carbons. The nanotubes 6 are arranged in almost the same direction, and are mainly physically entangled with each other and densely arranged in a size that can be printed by a printing method. These particles 8 constitute at least one unit of the electron emission material.
[0033] この粒子 8のスクリーン印刷を行う上で要求されるサイズを、図 2を参照して説明す る。図 2 (a) (b) (c)はスクリーン印刷用版のメッシュ 10a, 10b, 10cを示す。図 2 (a) ( b) (c)で示すようにメッシュ 10a, 10b, 10cそれぞれの形状は例として六角形、円形 、矩形である。図 2 (a)で示すメッシュ 10aに対応する粒子 8の長辺側の最大径 Dma xlは点 A, B間であり、この最大径 Dmaxに直交する方向の短辺側の最大径 Dmax 2は点 a, b間である。この短辺側の最大径 Dmax2が好ましくは 100 z m以下である。 図 2 (b)で示すメッシュ 10bに対応する粒子 8の長辺側の最大径 Dmaxlは点 C, D間 であり、この最大径 Dmaxに直交する方向の短辺側の最大径 Dmax2は点 c, d間で ある。この短辺側の最大径 Dmax2が好ましくは 100 /i m以下である。図 2 (c)で示す メッシュ 10cに対応する粒子 8の長辺側の最大径 Dmaxは点 E, F間であり、この最大 径 Dmaxに直交する方向の短辺側の最大径 Dmax2は点 e, f間である。この短辺側 の最大径 Dmax2が好ましくは 100 z m以下である。なお、粒子 8の最小径 Dminは 1 OOnm以上が好ましい。 [0033] The size required for screen printing of the particles 8 will be described with reference to FIG. Figures 2 (a), (b) and (c) show screen printing plates 10a, 10b and 10c. As shown in Fig. 2 (a), (b) and (c), the meshes 10a, 10b and 10c have hexagonal, circular and rectangular shapes as examples. The maximum diameter Dma xl on the long side of the particle 8 corresponding to the mesh 10a shown in Fig. 2 (a) is between points A and B, and the maximum diameter Dmax 2 on the short side in the direction orthogonal to the maximum diameter Dmax is Between points a and b. The maximum diameter Dmax2 on the short side is preferably 100 zm or less. The maximum diameter Dmaxl on the long side of particle 8 corresponding to mesh 10b shown in Fig. 2 (b) is between points C and D, and the maximum diameter Dmax2 on the short side in the direction perpendicular to this maximum diameter Dmax is point c. , D is there. The maximum diameter Dmax2 on the short side is preferably 100 / im or less. The maximum diameter Dmax on the long side of particle 8 corresponding to mesh 10c shown in Fig. 2 (c) is between points E and F, and the maximum diameter Dmax2 on the short side in the direction orthogonal to this maximum diameter Dmax is point e. , f. The maximum diameter Dmax2 on the short side is preferably 100 zm or less. The minimum diameter Dmin of the particles 8 is preferably 1 OOnm or more.
[0034] 以上のサイズを備えた多数の粒子 8を図 3で示すように電子ェミッタ 12におけるカソ ード電極 14上に電子放出層 16として分散配置する。この力ソード電極 14は基板 18 上に設けられており、この力ソード電極 14には基板 20下面に配置された蛍光体付き アノード電極 22に相対向している。電子放出層 16の一部を囲む点線円 Cを図 C1と して拡大して示す。この図 C1には多数の粒子 8から矢印で示すように電子放出が行 われてレ、る様子を理解のため示されてレ、る。  A large number of particles 8 having the above sizes are dispersedly arranged as electron emission layers 16 on the cathode electrode 14 in the electron emitter 12 as shown in FIG. The force sword electrode 14 is provided on the substrate 18, and the force sword electrode 14 is opposed to the anode electrode 22 with a phosphor disposed on the lower surface of the substrate 20. A dotted circle C surrounding part of the electron emission layer 16 is enlarged and shown in FIG. This figure C1 shows how electrons are emitted from a large number of particles 8 as indicated by arrows, for the sake of understanding.
[0035] この粒子 8はペーストと混合されて力ソード電極 14上に印刷される。この印刷の後、 焼成によりペースト中の溶媒成分を蒸発させて多数の粒子 8を電子放出材料として力 ソード電極 14上に配置する。  The particles 8 are mixed with the paste and printed on the force sword electrode 14. After this printing, the solvent component in the paste is evaporated by baking, and a large number of particles 8 are arranged on the force sword electrode 14 as an electron emission material.
[0036] 粒子 8は様々な形状を持ち、図 4 (a) (b) (c)それぞれに粒子 8の形状を理解のため 数例示している。図 4 (a)で示す粒子 8は力ソード電極 14の電極面に沿って細長い形 状でカーボンナノチューブ 6もこの粒子 8の細長い形状に沿って集合配列されている 。この粒子 8は力ソード電極 14表面に水ガラス等の適宜の接着剤 24で接着されてい るとともに、力ソード電極 14表面にも直接接触して電気的コンタクトを得ている。図 4 ( b)で示す粒子 8は内部のカーボンナノチューブ 6が力ソード電極 14にほぼ垂直に配 歹 IJしている。図 4 (c)で示す粒子 8は力ソード電極 14に沿い細長くカーボンナノチュ ーブ 6は力ソード電極 14にほぼ垂直に配列している。いずれの粒子 8も電界放射に より電子放出する。  [0036] The particles 8 have various shapes, and the shapes of the particles 8 are illustrated in FIGS. 4 (a), 4 (b), and 4 (c). The particles 8 shown in FIG. 4 (a) have an elongated shape along the electrode surface of the force sword electrode 14, and the carbon nanotubes 6 are also assembled and arranged along the elongated shape of the particles 8. The particles 8 are adhered to the surface of the force sword electrode 14 with an appropriate adhesive 24 such as water glass, and also directly contact the surface of the force sword electrode 14 to obtain an electrical contact. In the particle 8 shown in FIG. 4 (b), the carbon nanotubes 6 inside are arranged IJ almost perpendicularly to the force sword electrode 14. The particles 8 shown in FIG. 4 (c) are elongated along the force sword electrode 14 and the carbon nanotubes 6 are arranged almost perpendicular to the force sword electrode 14. Any particle 8 emits electrons by field emission.
[0037] 以上説明した実施の形態の電子放出材料では、多数のカーボンナノチューブ 6が ほぼ同じ向きにかつ主に相互に物理的に絡まり合レ、、また、一部はファンデルワール ス力で結合し、かつ、印刷法で印刷可能なサイズに密集配列されて構成されており、 力ソード電極 14上に垂直に配置させなくても、当該粒子 8の端部から電子放出させる こと力 Sできる。 [0038] 図 5に実施の形態に力かる力ソード電極上に配置された電子放出層の SEM画像を 示す。図 5で示す SEM画像では木のささくれのように粒子 8が力ソード電極 14上に 多数形成されていることを確認することができる。 SEM画像の 10 μ mスケールから明 らかであるように多数のカーボンナノチューブが絡まって結合して電子放出材料とし て存在していることを確認することができる。 [0037] In the electron emission material of the embodiment described above, a large number of carbon nanotubes 6 are physically entangled in substantially the same direction and mainly with each other, and some of them are bonded by van der Waals force. Further, it is configured to be densely arranged in a size that can be printed by a printing method, and it is possible to emit electrons from the ends of the particles 8 without arranging them vertically on the force sword electrode 14. [0038] FIG. 5 shows an SEM image of the electron emission layer disposed on the force sword electrode that is applied to the embodiment. In the SEM image shown in FIG. 5, it can be confirmed that a large number of particles 8 are formed on the force sword electrode 14 like a tree upside down. As is clear from the 10 μm scale of the SEM image, it can be confirmed that a large number of carbon nanotubes are entangled and bonded and exist as an electron emission material.
[0039] 図 6に従来に力、かる力ソード電極上に配置された電子放出層の断面の SEM画像を 示す。従来では単一のカーボンナノチューブから電子放出層が構成されており、この 単一のカーボンナノチューブが細い糸状になって力ソード電極 14上に林立している ことを確認することができる。  FIG. 6 shows an SEM image of a cross section of the electron emission layer disposed on the conventional force and force sword electrode. Conventionally, an electron emission layer is composed of a single carbon nanotube, and it can be confirmed that the single carbon nanotube is formed in a thin thread shape and stands on the force sword electrode 14.
[0040] 実施の形態の電子放出材料である粒子 8の SEM画像から明らかであるように、この 粒子 8はカーボンナノチューブがほぼ同じ向きにかつ主に相互に物理的な絡み合い で結合しかつ印刷法で印刷可能なサイズに密集配列したことにより、粒子 8のカソー ド電極 14上での配置姿勢にかかわらず、その端部から電子放出させることができ、ま た、粒子 8は印刷可能なサイズに制御されているから、粒子 8をスクリーン印刷して力 ソード電極 14上に容易に印刷することができる。さらに加えて、粒子 8は、力ソード電 極 14上に密集状態で配置しなくても、 1つの粒子 8から電子を多く放出させても電子 放出負荷が少ないためにその消耗も小さく済み電子放出材料としての長寿命化が可 能となる。  [0040] As is apparent from the SEM image of the particle 8, which is the electron emission material of the embodiment, the particle 8 is formed by bonding carbon nanotubes in substantially the same direction and mainly in physical entanglement with each other, and by a printing method. In this way, the particles 8 can be emitted from their edges regardless of the orientation of the particles 8 on the cathode electrode 14, and the particles 8 can be printed to a size that can be printed. Since it is controlled, the particles 8 can be screen printed and easily printed on the force sword electrode 14. In addition, even if particles 8 are not arranged densely on the force sword electrode 14, even if a large number of electrons are emitted from one particle 8, the electron emission load is small, so the consumption is small and electron emission is completed. Longer life as a material is possible.
[0041] 上記粒子 8の具体的な製造としては、カーボンナノチューブ集合ブロック 4を基板 2 力 剥離する前に無機バインダゃ樹脂で固化する。基板 2上で固化したカーボンナノ チューブ集合ブロック 4を基板 2から剥離し、この剥離したカーボンナノチューブ集合 ブロック 4を機械的分散装置 (ホモジナイザー)や超音波粉砕などにより多数のブロッ ク片に粉砕細分化し、その粉砕物に付着している上記無機バインダを除去し洗浄す ることにより上記粒子 8を得ること力 Sできる。なお、上記固化は基板 2からカーボンナノ チューブ集合ブロック 4を剥離した後に行ってもよい。また、無機バインダが粉砕物に 一部あるいは全部が残っても問題とならない場合では上記洗浄は必ずしも必要とし ない。  [0041] As a specific production of the particles 8, the carbon nanotube assembly block 4 is solidified with an inorganic binder resin before the substrate 2 is peeled off by force. The carbon nano tube assembly block 4 solidified on the substrate 2 is peeled off from the substrate 2, and the peeled carbon nanotube assembly block 4 is pulverized and subdivided into a number of block pieces by a mechanical dispersion device (homogenizer) or ultrasonic grinding. The particles 8 can be obtained by removing and washing the inorganic binder adhering to the pulverized product. The solidification may be performed after the carbon nanotube assembly block 4 is peeled from the substrate 2. In addition, the above cleaning is not necessarily required when there is no problem even if a part or all of the inorganic binder remains in the pulverized product.
[0042] 図 7に上記粉砕後の複数の粒子 8の低倍率 SEM写真を示す。図 7の SEM写真で 示すように、各粒子 8のサイズは、長辺側の最大径に直交する方向の短辺側の最大 径が 100 μ m以下であることを確認することができる。 FIG. 7 shows a low-magnification SEM photograph of the plurality of particles 8 after pulverization. In the SEM picture of Figure 7 As shown, each particle 8 can be confirmed to have a maximum diameter of 100 μm or less on the short side in the direction orthogonal to the maximum diameter on the long side.
[0043] 図 8に、図 7の上記粉砕後の粒子 8の拡大 SEM写真を示し、図 9に、図 8の上記粉 砕後の粒子 8の拡大 SEM写真を示し、図 10に、図 9の SEM写真をさらに拡大した S EM写真を示す。 [0043] Fig. 8 shows an enlarged SEM photograph of the particle 8 after grinding in Fig. 7, Fig. 9 shows an enlarged SEM photograph of the particle 8 after grinding in Fig. 8, and Fig. 10 and Fig. 9 The SEM photograph which expanded further SEM photograph of is shown.
[0044] これら図 8ないし図 10の SEM写真で粒子 8を順次に拡大して示すように、粒子 8内 のカーボンナノチューブ 6がその結合形態を崩されず、ほぼ同じ向きに並んでかつ相 互に物理的な絡み合いで結合して密集配列している様子を確認することができる。 産業上の利用可能性  [0044] As shown in the SEM photographs of Figs. 8 to 10 in which the particles 8 are sequentially enlarged, the carbon nanotubes 6 in the particles 8 are aligned in substantially the same direction without mutual deformation and are mutually aligned. It can be seen that they are connected by physical entanglement and densely arranged. Industrial applicability
[0045] 本発明にかかる電子放出用材料は、力ソード電極上に電界放射により電子を放出 する電子放出層を備えた電子ェミッタにおいて、その電界放出層を構成する材料と して特に有用である。 The electron emission material according to the present invention is particularly useful as a material constituting the field emission layer in an electron emitter including an electron emission layer that emits electrons by field emission on a force sword electrode. .

Claims

請求の範囲 The scope of the claims
[1] 多数のカーボンナノチューブがほぼ同じ向きに並びかつ相互に物理的な絡み合い で結合して密集配列した粒子力も構成されてレ、る、ことを特徴とする電子放出材料。  [1] An electron-emitting material characterized in that a large number of carbon nanotubes are arranged in almost the same direction and bonded together by physical entanglement to form a dense particle force.
[2] 上記粒子のサイズは、長辺側の最大径に直交する方向の短辺側の最大径が 100 μ m以下であることを特徴とする請求項 1に記載の電子放出材料。  [2] The electron-emitting material according to [1], wherein the size of the particle is such that the maximum diameter on the short side in the direction orthogonal to the maximum diameter on the long side is 100 μm or less.
[3] 上記密集配列は、上記カーボンナノチューブを 109本/ cm2以上の密度で含む配 列である、ことを特徴とする請求項 1または 2に記載の電子放出材料。 [3] the dense array, the electron emission material according to claim 1 or 2 is a sequence containing the carbon nanotube 10 nine / cm 2 or more in density, it is characterized.
[4] 上記粒子は、基板上にほぼ垂直な向きに密集状態で並立した多数のカーボンナノ チューブを切断して得られたものである、請求項 1なレ、し 3のレ、ずれかに記載の電子 放出材料。 [4] The particles are obtained by cutting a large number of carbon nanotubes arranged in a densely packed state in a substantially vertical direction on the substrate, and the particles in (1) or (3). The electron emission material described.
[5] 電極上に電界放射により電子を放出する電子放出層を備えた電子ェミッタにおい て、上記電子放出層は請求項 1ないし 4のいずれかに記載の電子放出材料を含む、 ことを特徴とする電子ェミッタ。  [5] In an electron emitter including an electron emission layer that emits electrons by field emission on an electrode, the electron emission layer includes the electron emission material according to any one of claims 1 to 4. An electronic emitter.
PCT/JP2007/061084 2006-06-02 2007-05-31 Electron emission material and electron emitter using same WO2007142115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006155364 2006-06-02
JP2006-155364 2006-06-02

Publications (1)

Publication Number Publication Date
WO2007142115A1 true WO2007142115A1 (en) 2007-12-13

Family

ID=38801373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061084 WO2007142115A1 (en) 2006-06-02 2007-05-31 Electron emission material and electron emitter using same

Country Status (2)

Country Link
TW (1) TW200814123A (en)
WO (1) WO2007142115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140105A (en) * 2018-02-13 2019-08-22 ニッタ株式会社 Functional membrane and electron emitter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542136A (en) * 1999-04-16 2002-12-10 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Multi-walled carbon nanotube film
JP2006505483A (en) * 2002-11-26 2006-02-16 カーボン ナノテクノロジーズ インコーポレーテッド Carbon nanotube fine particles, composition and method of use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542136A (en) * 1999-04-16 2002-12-10 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Multi-walled carbon nanotube film
JP2006505483A (en) * 2002-11-26 2006-02-16 カーボン ナノテクノロジーズ インコーポレーテッド Carbon nanotube fine particles, composition and method of use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140105A (en) * 2018-02-13 2019-08-22 ニッタ株式会社 Functional membrane and electron emitter
JP7190930B2 (en) 2018-02-13 2022-12-16 ニッタ株式会社 electron emitter

Also Published As

Publication number Publication date
TW200814123A (en) 2008-03-16

Similar Documents

Publication Publication Date Title
CN100568436C (en) Carbon nanotube emitter and utilize its feds and their manufacture method
Li et al. Nanotube field electron emission: principles, development, and applications
TWI312165B (en)
US9269522B2 (en) Electric field emitting source, element using same, and production method therefor
JP2008509540A5 (en)
KR100922399B1 (en) Electron emission source, device adopting the source and fabrication method the source
JP2007258172A (en) Electron emitting element using carbon nanotube and its manufacturing method
JP2009164124A (en) Thermion emission element
JP5361162B2 (en) Method for producing graphite nanotubes
JP2011509510A (en) Field emission display
JP2006294525A (en) Electron emission element, its manufacturing method and image display device using it
WO2007142115A1 (en) Electron emission material and electron emitter using same
JP2004071433A (en) Image display device and its manufacturing device
JP4605425B2 (en) Method for manufacturing electron-emitting device
TWI386966B (en) Field emission display
US20100316792A1 (en) Method of fabricating electron emission source and method of fabricating electronic device by using the method
JP2008166153A (en) Electron emitter
TWI330858B (en) Thermionic emission device
JP2007323946A (en) Cold cathode electron source and its manufacturing method
Chuang et al. 22.3: A Reflective‐Type Carbon Nanotube Field Emission Display
KR102023004B1 (en) field emission electron source and the manufacturing method thereof
JP2007320804A (en) Composite multiwall carbon nanotube, electron emitting material and electron emitter
JP5300193B2 (en) Method for manufacturing electron-emitting device
JP5476751B2 (en) Nanocarbon emitter, manufacturing method thereof, and surface light emitting device using the same
KR100809526B1 (en) Field emission display device with metal magnetic nano wire made by plasma surface modification and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767007

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07767007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP