WO2007119477A1 - 硬化性樹脂及び硬化性樹脂組成物並びにその成形体 - Google Patents

硬化性樹脂及び硬化性樹脂組成物並びにその成形体 Download PDF

Info

Publication number
WO2007119477A1
WO2007119477A1 PCT/JP2007/055849 JP2007055849W WO2007119477A1 WO 2007119477 A1 WO2007119477 A1 WO 2007119477A1 JP 2007055849 W JP2007055849 W JP 2007055849W WO 2007119477 A1 WO2007119477 A1 WO 2007119477A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable resin
general formula
structural unit
represented
Prior art date
Application number
PCT/JP2007/055849
Other languages
English (en)
French (fr)
Inventor
Takashi Saito
Hideki Andoh
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to CN2007800106023A priority Critical patent/CN101410437B/zh
Priority to JP2008510838A priority patent/JP5108751B2/ja
Publication of WO2007119477A1 publication Critical patent/WO2007119477A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers

Definitions

  • the present invention provides a molded article that can achieve both strength, transparency, heat resistance, and dimensional stability, such as inorganic glass, and high toughness and cacheability, such as plastic. It can be applied to optical applications such as lenses, optical discs, optical fibers, and flat panel display substrates, various transportation machines, window materials for houses, etc., and it is lightweight and has high impact strength.
  • the present invention also relates to a curable resin capable of obtaining a molded body that can have transparency. Background art
  • inorganic glass As a transparent material, inorganic glass has excellent heat resistance and dimensional stability, and is used in a wide range of industrial fields.
  • the inorganic glass having such excellent characteristics is disadvantageous in that it is heavy with a force specific gravity of 3 ⁇ 4.5 or more, has poor toughness and is susceptible to cracking, and is inferior in workability.
  • transparent plastics such as polystyrene and PMMA (polymethyl methacrylate) as an alternative to glass is growing. Although these are lightweight and excellent in flexibility, they are organic, so they have heat resistance, light resistance, and dimensional stability. Etc. are significantly inferior to glass, and there is a problem that applications are limited.
  • a silicone resin that is superior in terms of heat resistance, weather resistance, and water resistance is promising due to the intermediate characteristics of the metal and nonmetal of the silicon atom. It is.
  • High-strength silicone resins are composed only of dense structural units that have a high crosslinking density and a low free volume fraction that suppresses molecular motion. It is difficult to mold to a brittle thickness, and its use is limited to coating agents.
  • low-strength silicone rubbers composed of sparse structural units with a high free volume fraction, which suppresses the binding force of molecules with low crosslink density, are used for molding applications.
  • Patent Document 1 Japanese Patent No. 3598749
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-22207
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-330455
  • the object of the present invention is to provide a curability that can achieve both strength, transparency, heat resistance, and dimensional stability as in inorganic glass, and high toughness and cacheability as in plastic. It is in providing a resin and its composition.
  • the present invention is a curable resin having a molecular structure composed of a dense structural unit (A) and a sparse structural unit (B) represented by the following general formula (1).
  • the structural unit (A) is a sparse structural unit composed of a metal oxide having a packing coefficient Kp of 0.68 to 0.8 calculated by the following formula (2) calculated from the free volume fraction.
  • the structural unit ( ⁇ ) is a structural unit comprising the organic material and the organometallic oxide with the packing coefficient Kp of less than 0.68, and the weight ratio of the structural unit (A) Z (B).
  • n (However, m and n are integers of 1 or more.)
  • the dense structural unit (A) is composed of a metal oxide portion having a three-dimensional polyhedral structure skeleton excluding the organic matter portion of the following general formula (I), and the sparse structural unit (B) is It is a preferred embodiment of the curable resin of the present invention that it is composed of a chain unit composed of an organometallic oxide represented by the following general formula (II) and an organic part of the general formula (I).
  • R 1 represents an alkylene group, an alkylidene group or a phenylene group
  • R 2 represents hydrogen.
  • An unsaturated group represented by CH CH, an alkyl group, a cycloalkyl group, a cycloalkenyl group,
  • M is a metal atom of silicon, germanium, titanium, or zirconium
  • X is a halogen atom, or an alkoxyl group
  • w is an integer of 4 or more
  • X, y, and z are w + x + y + It is an integer that satisfies z ⁇ 8.
  • j, k, and 1 each represent an integer of 0 or more.
  • the curable resin represented by the general formula (1) may be blended with a hydrosilylation catalyst, a radical initiator, or both to obtain a curable resin composition.
  • the curable resin composition may be blended with a hydrosilylatable compound having a hydrogen atom on at least one silicon atom, a compound having an unsaturated group, or both. Les.
  • the curable resin of the present invention has a molecular structure composed of a dense structural unit (A) and a sparse structural unit (B) as represented by the general formula (1), and has at least one unsaturated component. Have a bond.
  • the dense structural unit (A) is composed of a metal oxide having a packing coefficient Kp calculated by the above formula (2) of 0.68 to 0.8, and is a sparse structural unit ( ⁇ ) has a packing coefficient Kp of less than 0.68 and includes organic substances and organometallic oxides.
  • the dense structural unit (A) is preferably composed of a metal oxide portion having a three-dimensional polyhedral structure skeleton, excluding the organic portion of the general formula (I).
  • the organic part is a part of R (organic group) in the general formula (I) that is bonded to a metal atom (that is, Si and M).
  • R is preferably an organic group having an unsaturated group represented by the above formulas (a) to (c). Note that the plurality of R in the general formula (I) may not all be the same.
  • General formula (I) is a cage-type siloxane resin composed of a three-dimensional polyhedral structure skeleton and R.
  • w in general formula (I) is 8, and X, y, and z If w is 0, w is 1 0 and X, y and z are 0, and w is 12 and X, y and z are 0, a specific example of the structure is represented by the following structural formula (3), Shown in (4) and (5).
  • the structural unit represented by the general formula (I) is not limited to those represented by the structural formulas (3), (4) and (5). These structures are known and have been shown by X-ray crystal structure analysis for those having specific functional groups. (3;
  • R, X and M have the same meaning as R, X and M in formula (I).
  • a part of R is preferably an unsaturated group represented by the above (a), (b) or (c).
  • 3-metaatally Examples include a loxypropyl group, a 3-ataryloxypropyl group, an aryl group, a vinyl group, and a styryl group.
  • X is a hydrolyzable group of a halogen atom or an alkoxyl group.
  • Preferable examples of the compound represented by RSiX include trichlorosilane, methyloletrichlorosilane.
  • etyltrichlorosilane isopropyltrichlorosilane, butyltrichlorosilane, t_butyltrichlorosilane, cyclohexyltrichlorosilane, phenyltrichlorosilane, vinylenotrichlorosilane, arinoletrichlorosilane, styryltrichlorosilane, cyclohexenyltrichlorosilane , Trimethoxysilane, methyltrimethoxysilane, etyltrimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, butyltrimethoxysilane, allyltrimethoxysilane, styryltrimethoxysilane, cyclohexenyltri Methoxysilane, triethoxysilane, methyltriethoxys
  • M is silicon, germanium, titanium, or zirconium.
  • MX is the table
  • Preferred examples of the compound are tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetrachromate germane, tetramethoxygermane, tetraethoxygermane, titanium ethoxide, titanium propoxide, titanium isopropoxide, titanium yubutoxide, Titanium isobutoxide, zirconium ethoxide, zirconium propoxide, zirconium isopropoxide, zirconium butoxide, zirconium isobutoxide and the like can be mentioned.
  • the sparse structural unit (B) is a three-dimensional polyhedron in the structural unit represented by the general formula (I).
  • the organic structure (silicone compound) having a chain unit as represented by the above general formula ( ⁇ ) and the organic part (or substituent) which is a residue other than the body structure skeleton .
  • it consists of the structural unit represented by the above general formula (I) except the dense structural unit (A) and the structural unit represented by the general formula ( ⁇ ). More specifically, as described below, R3 ⁇ 4 4R 5 SiX, R 6 R 7 SiX or a mixture thereof (wherein, R 3 to R 7 and X are the same as those in the general formula ([pi)
  • a chain structure of an organometallic oxide of the general formula (ii) consisting of a hydrolysis condensate of (a) and an organic moiety of the general formula (I) [ie, in the structural unit represented by the general formula (I) Or a residue (or substituent)] or at least a part of X is preferably bonded to form the structural site (B) of the general formula (1). That is, a part of the organic part of the general formula (1) may be bonded to the general formula (II), or the whole organic part of the general formula (1) may be bonded to the general formula ( ⁇ ). ,. The organic part of the general formula (I) bonded to the general formula ( ⁇ ) is incorporated into the chain unit of the general formula (II).
  • the structural unit represented by the general formula ( ⁇ ) is a compound represented by R 3 R 4 R iX or R 7 SiX.
  • R 3 to R 7 have the same meaning as R 3 to R 7 in formula (II).
  • preferred specific examples include a 3-methatalyloxypropyl group, a 3-aryloxypropyl group, an aryl group, a bier group and a styryl group.
  • X is a halogen atom or an alkoxy group, and specific examples include chlorine, bromine, methoxy group, ethoxy group, n-propoxyl group, and i-propoxyl group.
  • Preferred examples of the compound represented by R 3 R 4 R iX include trimethylchlorosilane, vinylenodimethylchlorosilane, dimethylchlorosilane, phenyldimethylchlorosilane, phenolinochlorosilane, trietinorechlorosilane, and trivininorechlorosilane. , Methino Resinino Lecro mouth
  • preferable examples of the compound represented by R 6 R 7 SiX include dimethyldichlorosilane,
  • the curable resin of the present invention can be obtained by reacting a force-type siloxane resin represented by the general formula (I) with a silicone compound represented by the general formula (I).
  • the obtained curable resin has a molecular structure in which the unsaturated bonds of the structural units represented by the general formula (I) and the general formula ( ⁇ ) are condensed by crosslinking or hydrolysis condensation.
  • This curable resin is composed of a dense structural unit (A) having a packing coefficient calculated from a free volume fraction of 0.68 to 0.8 and a sparse structural unit (B) having a packing coefficient of less than 0.6 ⁇ 68. ) And at least one unsaturated bond.
  • the packing coefficient Kp used in the present invention is calculated by the following calculation formula (2).
  • M key atom
  • R 3 and R 4 , R 5 The density of otamethyl trisicoxane having a chain structure of 0.820 gm 3 and a packing coefficient of 0.521. That is, the packing coefficient of a metal oxide having a three-dimensional polyhedral structure in which a key atom is bonded to three or more oxygen atoms is 0.69 or more, which is a dense structural unit in the present invention.
  • the packing coefficients of the compounds having a cyclic structure and a chain structure are 0.576 and 0.521, which are sparse structural units in the present invention.
  • the curable resin of the present invention has a weight ratio (A) / (B) of the structural unit of the dense structural unit (A) to the sparse structural unit (B) of 0.01 to 5.00, preferably Is between 0.5 and 3.00.
  • (A) / (B) is less than 0.01, the dense structure is too small, and the mechanical properties and heat resistance of a molded product obtained by molding and curing a curable resin are significantly deteriorated.
  • it is 5.00 or more, there are too few sparse structural parts imparting flexibility to the molded product, and the toughness will be remarkably deteriorated and become brittle.
  • the curable resin of the present invention has an average molecular weight of 800 to 60000. If the average molecular weight is less than 800, it becomes brittle after molding, and on the contrary, if it exceeds 60,000, it may be difficult to cure and process, resulting in inconvenience in handling.
  • the average molecular weight can be measured with a known GPC measurement device.
  • Acid catalysts used for hydrolysis and condensation of the compound include hydrochloric acid and sulfuric acid. The These can also be used as a mixture.
  • hydrolyzable group is a halogen atom
  • halogen hydrogen generated during hydrolysis may be used.
  • Basic catalysts used for hydrolysis and condensation include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, Examples thereof include ammonium hydroxide salts such as tetraptylammonium hydroxide, benzyltrimethylammonium hydroxide, and benzyltriethylammonium hydroxide. Among these, tetramethylammonium hydroxide is preferably used because of its high catalytic activity. Basic catalysts are usually used as aqueous solutions.
  • water is essential for the hydrolysis reaction, it can be supplied from an aqueous solution of the catalyst, or may be added as water separately.
  • the amount of water is not less than the amount sufficient to hydrolyze the hydrolyzable group, preferably 1.0 to 1.5 times the theoretical amount.
  • a curable resin composition may be obtained by blending a hydrosilylation catalyst or a radical initiator with a curable resin, or blending both.
  • a cured product (molded article) can be obtained by thermally curing or photocuring the curable resin composition, followed by hydrosilylation or radical polymerization.
  • a compound having a hydrogen atom on the silicon atom or a compound having an unsaturated group in the molecule is further blended to obtain a curable resin composition. Also good.
  • hydrosilylation catalyst for the purpose of obtaining a molded product by curing a curable resin and improving the physical properties of the resulting molded product.
  • thermal polymerization initiator for the purpose of obtaining a molded product by curing a curable resin and improving the physical properties of the resulting molded product.
  • thermal polymerization accelerator as additives for promoting the reaction.
  • a photopolymerization initiator, a photoinitiator auxiliary agent, a sharpening agent and the like are blended to obtain a curable resin composition.
  • the compound having a hydrogen atom on a silicon atom used together with the curable resin has at least one hydrogen atom on the hydrosilylatable key atom in the molecule. It has oligomers and monomers. Among these, oligomers having a hydrogen atom on a silicon atom include polyhydrosiloxane siloxanes, polydimethylhydroxysiloxanes and copolymers thereof, and siloxanes whose ends are modified with dimethylhydrosiloxy. Is mentioned. In addition, a molecule having a hydrogen atom on the key atom.
  • Examples of the monomers include cyclic siloxanes such as tetramethylcyclotetrasiloxane and pentamethylcyclopenta, dihydrodisiloxanes, trihydromonosilanes, dihydromonosilanes, monohydromonosilanes, dimethylsiloxysiloxanes, and the like. Two or more of these may be mixed.
  • the compound having an unsaturated group used together with the curable resin is a reactive oligomer that is a polymer having a structural unit having a repeating power of about ⁇ 20.
  • the reactive monomer is roughly classified into low molecular weight and low viscosity reactive monomers. They are broadly divided into monofunctional unsaturated compounds having one unsaturated group and polyfunctional unsaturated compounds having two or more.
  • reactive oligomers include polybutylsiloxanes, polydimethylvinylsiloxysiloxanes, and copolymers thereof, siloxanes modified with dimethylvinylsiloxy at the ends, epoxy acrylate, epoxidized oil Examples thereof include acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, butyl acrylate, polyene / thiol, silicone acrylate, polybutadiene, and polystyryl methacrylate. These include monofunctional unsaturated compounds and polyfunctional unsaturated compounds.
  • Examples of the reactive monofunctional monomer include bur-substituted silicon compounds such as triethylbiylsilane and triphenylvinylsilane, cyclic olefins such as cyclohexene, styrene, vinyl acetate, and N-vinyl.
  • Examples of reactive polyfunctional monomers include bur-substituted cation compounds such as tetrabulesilane and dibutyltetramethyldisiloxane, and butyl substitution such as tetramethyltetrabutycyclotetrasiloxane and pentamethylpentabutylcyclopentasiloxane. Circular key compound
  • Cyclic polyenes such as norbornagen, dicyclopentadiene, cyclooctagen, bur-substituted cyclic olefins such as burcyclohexene, dibulubenzenes, Turlbenzenes, trimethylolpropane dialyl ether, pentaerythritol triaryl ether, tripropylene glycol ditalylate, 1,6-hexanediol ditalylate, bisphenol A diglycidyl ether ditalylate, tetraethyleneglycol Dimethyl diatalylate, hydroxypentaglycol dipentayl glycol ditalylate, trimethylolpropane tritalylate, pentaerythritol retoralirate, pentaerythritol tetraatalylate, dipentaerythritol hexaatalylate, etc. can do.
  • the compound having a hydrogen atom on the silicon atom and the compound having an unsaturated group in the molecule used in the present invention may be used alone or in combination of two or more.
  • the curable resin composition of the present invention includes a hydrosilylation catalyst, a radical initiator, a compound containing a hydrogen atom on a silicon atom, or a compound having an unsaturated group. It is obtained by blending.
  • the molded product of the present invention is obtained by molding and curing this curable resin composition. That is, a cured product can be obtained by hydrosilylation curing and radical polymerization of the curable resin composition.
  • the addition amount is preferably in the range of 1 to 1000 ppm, more preferably 20 to 500 ppm as metal atoms with respect to the weight of the curable resin.
  • the amount added is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the curable resin. It is more preferable to use the range of the amount part. If the amount of the additive is less than 0.1 parts by weight, the curing is insufficient and the strength and rigidity of the obtained sealing material are lowered. On the other hand, if it exceeds 5 parts by weight, problems such as coloring of the sealing material may occur.
  • the hydrosilylation catalyst and the radical initiator may be used alone or in combination of two or more.
  • Hydrosilylation catalysts include platinous chloride, chloroplatinic acid, chloroplatinic acid and alcohol, aldehydes, ketone complexes, chloroplatinic acid and olefins complexes, platinum and bursiro.
  • Platinum group metal catalysts such as complexes with xanthine, dicarbonyl diplatinum platinum and palladium catalysts, rhodium catalysts, and the like can be mentioned.
  • chloroplatinic acid, a complex of chloroplatinic acid and olefins, and a complex of platinum and vinylsiloxane are preferable from the viewpoint of catalytic activity. These may be used alone or in combination of two or more.
  • Examples of the photopolymerization initiator used when the curable resin composition is a photocurable resin composition include compounds such as acetophenone-based, benzoin-based, benzophenone-based, thixanthone-based, and acylphosphine oxide-based compounds. It can be preferably used.
  • trichloroacetophenone methoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1 -(4-Methylthiophene) -2-morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thixanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenyl Examples thereof include dalioxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone and the like. Further, a photoinitiator auxiliary agent or a sharpening agent that exhibits an effect in combination with a photopolymerization initiator can be used in combination.
  • thermal polymerization initiator examples include ketone peroxides, peroxide ketals, hide port peroxides, dialkyl peroxides, disyl peroxides, peroxide dicarbonates, peroxides.
  • ketone peroxides peroxide ketals
  • hide port peroxides dialkyl peroxides
  • disyl peroxides peroxide dicarbonates
  • peroxides Various organic peroxides such as xyesters can be preferably used.
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • additives include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, light stabilizers, UV absorbers, lubricants, antistatic agents, mold release agents, foaming agents, nucleating agents, colorants, Crosslinking agents, dispersion aids, resin components and the like can be exemplified.
  • a molded product comprising the curable resin of the present invention comprises a hydrosilylation catalyst and a radical polymerization initiator. It can be produced by curing a curable resin composition containing the above, misalignment, or both by heating or light irradiation.
  • the molding temperature can be selected from a wide range from room temperature to around 200 ° C., depending on the selection of the thermal polymerization initiator and accelerator.
  • a silicone resin molded body having a desired shape can be obtained by polymerization and hardening in a mold or on a steel belt. More specifically, all general molding methods such as injection molding, extrusion molding, compression molding, transfer molding, calendar molding, and casting (casting) molding can be applied.
  • a molded product When a copolymer (molded product) is produced by light irradiation, a molded product can be obtained by irradiating ultraviolet rays having a wavelength of 100 to 400 nm or visible light having a wavelength of 400 to 700 nm.
  • the wavelength of light to be used is not particularly limited, but in particular, near ultraviolet rays having a wavelength of 200 to 400 nm are preferably used.
  • Lamps used as ultraviolet light sources include low-pressure mercury lamps (output: 0.4 to 4 W / m), high-pressure mercury lamps (40 to 160 W / m), ultra-high pressure mercury lamps (173 to 435 W / m), metal halide lamps. (80 to 160 Wm), pulse xenon lamp (80 to 120 Wm), electrodeless discharge lamp (80 to 120 cm), and the like.
  • Each of these ultraviolet lamps is characterized by its spectral distribution and is selected according to the type of photoinitiator used.
  • a method of obtaining a silicone resin copolymer (molded body) by light irradiation for example, it is injected into a mold having an arbitrary cavity shape and made of a transparent material such as quartz glass, and the above-mentioned A method of producing a molded body having a desired shape by irradiating ultraviolet rays with an ultraviolet lamp to carry out polymerization and curing, and removing from the mold, or when not using a mold, for example, on a moving steel belt Examples thereof include a method for producing a sheet-shaped molded article by applying the curable resin composition of the present invention using a doctor blade or a roll-shaped coater and polymerizing and curing with the above ultraviolet lamp. Furthermore, in the present invention, a method of obtaining a molded body by heating and light irradiation may be used in combination.
  • the curable resin of the present invention molding capable of achieving both strength, transparency, heat resistance, and dimensional stability like inorganic glass, high toughness like plastic, and workability.
  • the ability to obtain a body can be achieved, for example, lenses, optical discs, optical fibers and flat panel displays. It can be used for a variety of applications such as optical applications such as circuit boards and window materials for various transport machinery and houses.
  • the obtained molded body is a transparent member having a light weight and high impact strength, and has a wide range of use as a glass substitute material and has high industrial utility value.
  • the dense structural unit (A) which is a three-dimensional polyhedral structure composed of metal oxides, ie, key oxides, is composed of eight key atoms and twelve oxygen atoms (Si ⁇ ) can be assumed to be a cubic structure, and the derived Kp is 0.73. there were.
  • the required weight ratio [(A) / (B)] was 1.302, and the number average molecular weight Mn by GPC was 5200. Also, the sparse structural unit (B) is derived from a bur group, (Me 2 SiO 3), and (Me 2 SiO).
  • Table 1 shows the transmittance results at 600 nm, 400 nm, and 400 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 無機ガラスのような強度、透明性、耐熱性、及び寸法安定性と、プラスチックのような高靭性及び加工性との両立が可能な硬化性樹脂を提供する。  下記式(1)で表される密な構造単位(A)と疎な構造単位(B)とからなる分子構造を有し、自由体積分率から計算され、密な構造単位(A)は下記式(2)により計算されるKpが0.68~0.8の金属酸化物からなり、疎な構造単位(B)はKpが0.68未満であって有機物と有機金属酸化物とを含んでなり、また、構造単位位(A)/(B)の重量比は0.01~5.00であり、且つ少なくとも一つの不飽和結合を有して数平均分子量が800~60000である硬化性樹脂。    -{(A)-(B)m}n-        (1)、   Kp=An・Vw・p/Mw      (2)  但し、An=アボガドロ数、Vw=ファンデアワールス体積、p=密度、Mw=分子量である。

Description

明 細 書
硬化性樹脂及び硬化性樹脂組成物並びにその成形体
技術分野
[0001] 本発明は、無機ガラスのような強度、透明性、耐熱性、及び寸法安定性と、プラスチ ックのような高靭性及びカ卩ェ性との両立が可能な成形体を得ることができる硬化性樹 脂に関し、例えばレンズ、光ディスク、光ファイバ一及びフラットパネルディスプレイ基 板等の光学用途や、各種輸送機械、住宅等の窓材などに適用可能であって、軽量、 高衝撃強度及び透明性を備え得る成形体を得ることができる硬化性樹脂に関する。 背景技術
[0002] 透明材料として無機ガラスは、耐熱性や寸法安定性等に優れ、幅広い産業分野で 利用されている。このような優れた特徴をもった無機ガラスである力 比重力 ¾.5以上 と重いこと、靭性に乏しく衝撃に弱く割れ易いこと、加工性に劣ることなどといった欠 点がある。ガラスに代わる材料としてポリスチレンや PMMA (ポリメタクリル酸メチル)等 の透明プラスチックの需要も伸びている力 これらは軽量で加ェ性に優れるものの、 有機物であるため、耐熱性、耐光性、寸法安定性等がガラスと比較して著しく劣り、 用途が限定されるという問題がある。
[0003] ガラスやプラスチックに限らず、一般に均質な材料系では、耐熱性、耐衝撃性、機 械的強度等の諸物性を高いレベルで実現することは困難である。これを解決する手 法として弾性率、強度、耐熱性などをできるだけ低下させずに、耐衝撃性を改良した HIPS (ノ、ィインパクトポリスチレン)などを代表とするポリアーァロイの手法が知られて いる。しかしながら、混合する樹脂の屈折率が異なる場合、透明性が著しく悪化する といった問題点がある。また、樹脂中に無機粉末や繊維を添加することで弾性率や 寸法安定性を補強することが可能であるが、透明性を維持したまま添加することが困 難なことや、無機粉末の配合により樹脂粘度が増加してしまい加工性が乏しい材料と なってしまう。
[0004] 力かる問題点を解決する方法として、ケィ素原子の持つ金属と非金属の中間的な 特性から、耐熱性、耐候性、及び耐水性の点で優れているシリコーン樹脂が有望とさ れている。し力 ながら、シリコーン樹脂においても高強度と靭性を併せ持つ材料は 無ぐ高強度のシリコーン樹脂は架橋密度が高く分子運動を抑制した自由体積分率 が少ない密な構造単位のみで構成されているため脆ぐ肉厚に成型加工することが 困難であり、その用途がコーティング剤などに限定されてしまう。成形用途に用いられ るのは架橋密度を低ぐ分子の拘束力を抑えた自由体積分率の多い疎な構造単位 のみで構成される低強度のシリコーンゴムに止まっているのが現状である。
特許文献 1:特許第 3598749号公報
特許文献 2:特開 2006-22207号公報
特許文献 3:特開 2005-330455号公報
発明の開示
発明が解決しょうとする課題
[0005] したがって、本発明の目的は、無機ガラスのような強度、透明性、耐熱性、及び寸 法安定性と、プラスチックのような高靭性及びカ卩ェ性との両立が可能な硬化性樹脂 及びその組成物を提供することにある。
課題を解決するための手段
[0006] 本発明者らは、上記課題を達成するために検討を重ねた結果、 自由体積分率の異 なる密な構造単位と疎な構造単位とを分子構造中に有する硬化性樹脂が、透明性 に優れた無機ガラスの代替用途に好適に用いられる硬化性樹脂成形体を与えること が可能であることを見出し、本発明を完成した。
[0007] すなわち、本発明は、下記一般式(1)で表される密な構造単位 (A)と疎な構造単位 (B)とからなる分子構造を有する硬化性樹脂であって、密な構造単位 (A)は、自由体 積分率から計算される下記計算式 (2)により求められるパッキング係数 Kpが 0. 68〜0 . 8の金属酸化物から構成される構造単位であり、疎な構造単位 (Β)は、上記パッキン グ係数 Kpが 0. 68未満であって有機物と有機金属酸化物とを含んで構成される構造 単位であり、構造単位 (A)Z(B)の重量比が 0. 01-5. 00であり、かつ、少なくとも 一つの不飽和結合を有して平均分子量が 800〜60000であることを特徴とする有機 金属構造を有する硬化性樹脂である。
- {(A) -(B) } - (1)
m n (但し、 mおよび nは 1以上の整数を示す。 )
Kp=An-Vwp/Mw (2)
〔但し、 An=ァボガドロ数、 Vw=ファンデアワールス体積、 p=密度、 Mw=分子量であり、 Vw=∑ Va、 Va=4 π /R3-∑ 1/3 π hi2(3Ra_hi)、 hi二 Ra_(Ra2+di2-Ri2)/2di、 Ra二原子半径 、 Ri=結合原子半径、及び di=原子間距離を示す。〕
[0008] ここで、密な構造単位 (A)が、下記一般式 (I)の有機物部位を除いた三次元多面 体構造骨格を有する金属酸化物部位からなり、疎な構造単位 (B)が、下記一般式 (II )で表される有機金属酸化物からなる鎖状単位と一般式 (I)の有機物部位とからなる ことは、本発明の硬化性樹脂の好ましい態様である。
(RSiO ) (MO ) (RXSiO) (XMO ) (I)
3/2 w 2 x y 3/2 z
(R3R4R5SiO ) (R6R7SiO) {R6R7XSiO } (II)
1/2 j k 1/2 1
〔但し、 Rは (aH^-OCO-CR^CH、 (b)-R1-CR2=CH若しくは (c)_CH=CHで示される
2 2 2 不飽和基、アルキル基、シクロアルキル基、シクロアルケニル基、フエ二ル基、水素原 子、アルコキシル基、又はアルキルシロキシ基であり、式(I)における複数の Rは互い に異なるものであってもよいが、少なくとも 1つは上記 (a)、(b)又は (c)のいずれかを含 み、 R1はアルキレン基、アルキリデン基又はフエ二レン基を示し、 R2は水素又はアル キル基を示す。また、 R3〜R7は (aH^-OCO-CR^CH、 (b)-R1-CR2=CH若しくは (c)_
2 2
CH=CHで示される不飽和基、アルキル基、シクロアルキル基、シクロアルケニル基、
2
フエニル基、水素原子、アルコキシル基、又はアルキルシロキシ基である。更に、 Mは ケィ素、ゲルマニウム、チタン、又はジルコニウムの金属原子、 Xはハロゲン原子、又 はアルコキシル基であり、 wは 4以上の整数であり、 X、 y及び zは w+x+y+z≥8を満た す整数である。 j、 k、及び 1はそれぞれ 0以上の整数を示す。〕
[0009] また、上記一般式(I)は、 RSiX、 MX又はこれらの混合物(但し R、 M及び Xは一般
3 4
式 (I)の場合と同じである)の加水分解縮合物からなり、上記一般式 (II)が、 R3R4R5S iX、 R6R7SiX又はこれらの混合物(但し、 R3〜R7及び Xは一般式(Π)と同じである。 )
2
の加水分解縮合物からなると共に、一般式 (I)の有機物部位の少なくとも一部がこの 加水分解縮合物に結合して一般式(1)の構造部位 (B)を形成することは、本発明の 好ましい態様である。 [0010] また、本発明においては、一般式(1)で表される硬化性樹脂にヒドロシリルイ匕触媒 又はラジカル開始剤、或いはこれら両者を配合して硬化性樹脂組成物を得るようにし てもよレ、。更に、この硬化性樹脂組成物には、少なくとも 1つのケィ素原子上に水素 原子を有するヒドロシリル化可能な化合物、又は不飽和基を有する化合物、或いはこ れら両者を配合するようにしてもょレ、。
[0011] 以下、本発明を更に具体的に説明する。
本発明の硬化性樹脂は、上記一般式(1)で表されるように、密な構造単位 (A)と疎 な構造単位(B)とからなる分子構造を有し、少なくとも一つの不飽和結合を有する。 ここで、密な構造単位 (A)は上記計算式(2)で計算されるパッキング係数 Kpが 0. 6 8〜0. 8の金属酸化物から構成されるものであり、疎な構造単位 (Β)はパッキング係 数 Kpが 0. 68未満であって有機物と有機金属酸化物とを含んで構成されるものであ る。
[0012] 密な構造単位 (A)は、好ましくは上記一般式 (I)の有機物部位を除レ、た三次元多 面体構造骨格を有する金属酸化物部位からなるのがよい。ここで、有機物部位とは、 一般式 (I)中の R (有機基)のうち、金属原子(すなわち Si及び M)と結合しているもの である。一般式 (I)において、 Rの少なくとも 1つは上記式 (a)〜(c)で表される不飽和 基を有する有機基であるのがよい。なお、一般式 (I)の複数の Rは全て同じでなくても よい。
[0013] 一般式 (I)は、三次元多面体構造骨格と Rとにより構成されたかご型シロキサン樹脂 であり、その一例として、一般式(I)中の wが 8であり X、 y及び zが 0である場合、 wが 1 0であり X、 y及び zが 0である場合、及び wが 12であり X、 y及び zが 0である構造の具 体例を下記構造式 (3)、 (4)及び (5)に示す。但し、一般式 (I)で表される構造単位 は、この構造式(3)、 (4)及び(5)に示すものに限られなレ、。なお、これらの構造は、 公知であり特定の官能基のものについて X線結晶構造解析により示されている。 (3;
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0003
上記一般式 (I)は、 RSiX又は MXで表される化合物の 1種以上を酸又は塩基触
3 4
媒存在下で加水分解と縮合反応とを行うことで得ることができる。ここで、 R、 X及び M は一般式(I)の R、X及び Mと同じ意味を有する。このうち、 Rの一部は、上記(a)、 (b) 又は(c)で表される不飽和基であることが好ましいが、好ましい不飽和基の具体例を 示せば、 3-メタアタリロキシプロピル基、 3-アタリロキシプロピル基、ァリール基、ビニ ル基、及びスチリル基が挙げられる。また、 Xは、ハロゲン原子、アルコキシル基の加 水分解性基であり、具体例を示せば、塩素、臭素、メトキシ基、エトキシ基、 n-プロボ キシル基、及び i -プロポキシル基が例示される。 [0015] RSiXで表される化合物の好ましい例を示せば、トリクロロシラン、メチノレトリクロロシ
3
ラン、ェチルトリクロロシラン、イソプロピルトリクロロシラン、ブチルトリクロロシラン、 t_ ブチルトリクロロシラン、シクロへキシルトリクロロシラン、フエニルトリクロロシラン、ビニ ノレトリクロロシラン、ァリノレトリクロロシラン、スチリルトリクロロシラン、シクロへキセニルト リクロロシラン、トリメトキシシラン、メチルトリメトキシシラン、ェチルトリメトキシシラン、ィ クロへキシルトリメトキシシラン、フエニルトリメトキシシラン、ビュルトリメトキシシラン、ァ リルトリメトキシシラン、スチリルトリメトキシシラン、シクロへキセニルトリメトキシシラン、 トリエトキシシラン、メチルトリエトキシシラン、ェチルトリエトキシシラン、イソプロピルトリ エトキシシラン、ブチノレトリエトキシシラン、 t_ブチノレトリエトキシシラン、シクロへキシノレ トリエトキシシラン、フエニルトリエトキシシラン、ビュルトリエトキシシラン、ァリルトリエト キシシラン、スチリルトリエトキシシラン、シクロへキセニルトリエトキシシラン、トリプロボ キシシラン、メチルトリプロポキシシラン、ェチルトリプロポキシシラン、イソプロピルトリ プロポキシシラン、ブチルトリプロポキシシラン、 t_ブチルトリプロポキシシラン、シクロ へキシルトリプロポキシシラン、フエニルトリプロポキシシラン、ビュルトリプロポキシシ ラン、ァリルトリプロポキシシラン、スチリルトリプロポキシシラン、シクロへキセニルトリ プロポキシシラン、メタクリロキシメチルトリエトキシシラン、メタクリロキシメチルトリメトキ
ラン、 3-メタクリロキシプロピルトリエトキシシラン、 3-アタリロキシプロピルトリメトキシシ ラン、 3-アタリロキシプロピルトリクロロシラン等が挙げられる。
[0016] また、 Mはケィ素、ゲルマニウム、チタン又はジルコニウムである。ここで、 MXで表
4 される化合物の好ましい例を示せば、テトラクロロシラン、テトラメトキシシラン、テトラ エトキシシラン、テトラクロ口ゲルマン、テトラメトキシゲルマン、テトラエトキシゲルマン 、チタニウムエトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタユウ ムブトキシド、チタニウムイソブトキシド、ジルコニウムエトキシド、ジルコニウムプロポキ シド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムイソブトキシ ド等が挙げられる。
[0017] 次に、疎な構造単位(B)は、上記一般式 (I)で表される構造単位中の三次元多面 体構造骨格を除レ、た残基である有機物部位 (又は置換基)と、上記一般式 (Π)で表さ れるような鎖状単位を持つ有機金属酸化物(シリコーン化合物)と力らなる。言い換え れば、上記一般式 (I)で表される構造単位力 密な構造部位 (A)を除レ、た部位と一 般式 (Π)で表される構造単位からなる。より具体的には、下記で説明するとおり、 R¾ 4R5SiX、 R6R7SiX又はこれらの混合物(但し、 R3〜R7及び Xは一般式(Π)と同じで
2
ある)の加水分解縮合物からなる一般式 (Π)の有機金属酸化物の鎖状構造物と、一 般式 (I)の有機物部位〔すなわち、一般式 (I)で表される構造単位中の三次元多面体 構造骨格を除レ、た残基 (又は置換基)〕又は Xの少なくとも一部とが結合して、一般式 (1)の構造部位 (B)を形成するのがよい。すなわち、一般式(1)の有機物部位の一 部が一般式 (II)と結合してもよぐ一般式(1)の有機物部位の全部が一般式 (Π)と結 合してもよレ、。一般式 (Π)に結合した一般式 (I)の有機物部位は、一般式 (II)の鎖状 単位に取り込まれる。
[0018] 上記一般式(Π)で表される構造単位は、 R3R4R iX又は R 7SiXで表される化
2
合物の 1種以上を酸又は塩基触媒存在下で加水分解と縮合反応を行うことで得るこ とができる。ここで、 R3〜R7は一般式(II)の R3〜R7と同じ意味である。 R3〜R7の一部 が不飽和基である場合、好ましい具体例を示せば、 3-メタアタリロキシプロピル基、 3- アタリロキシプロピル基、ァリール基、ビエル基及びスチリル基が挙げられる。 Xは、ハ ロゲン原子又はアルコキシノレ基であり、具体例を示せば、塩素、臭素、メトキシ基、ェ トキシ基、 n-プロボキシル基、及び i-プロポキシル基を挙げることができる。
[0019] R3R4R iXで表される化合物の好ましい例を示せば、トリメチルクロロシラン、ビニ ノレジメチルクロロシラン、ジメチルクロロシラン、フエニルジメチルクロロシラン、フエ二 ノレクロロシラン、トリェチノレクロロシラン、トリビニノレクロロシラン、メチノレジビニノレクロ口
メトキシシラン、ビュルジメチルメトキシシラン、ジメチルメトキシシラン、フエニルジメチ ノレメトキシシラン、フエニルメトキシシラン、トリェチルメトキシシラン、トリビュルメトキシ シラン、メチルジビニルメトキシシラン、ァリルジメチルメトキシシラン、 3-メタアタリロキ チリルジメチルメトキシシラン、トリメチルエトキシシラン、ビュルジメチルエトキシシラン 、ジメチノレエトキシシラン、フエニノレジメチノレエトキシシラン、フエニノレエトキシシラン、ト リエチノレエトキシシラン、トリビニノレエトキシシラン、メチノレジビニノレエトキシシラン、ァリ ルジメチルエトキシシラン、 3_メタアタリロキシプロピルジメチルエトキシシラン、 3 -ァク リロキシプロピルジメチルエトキシシラン、スチリルジメチルエトキシシラン、トリメチルプ ロポキシシラン、ビュルジメチルプロポキシシラン、ジメチルプロポキシシラン、フエ二 ルジメチルプロポキシシラン、フエニルプロポキシシラン、トリェチルプロポキシシラン 、トリビュルプロポキシシラン、メチルジビュルプロポキシシラン、ァリルジメチルプロボ キシシラン、 3-メタアタリロキシプロピルジメチルプロポキシシラン、 3-アタリロキシプロ ピルジメチルプロポキシシラン、スチリルジメチルプロポキシシラン、トリメチルイソプロ ポキシシラン、ビュルジメチルイソプロポキシシラン、ジメチルイソプロポキシシラン、フ ェニルジメチルイソプロポキシシラン、フエ二ルイソプロボキシシラン、トリェチルイソプ ロポキシシラン、トリビュルイソプロポキシシラン、メチルジビュルイソプロポキシシラン 、ァリルジメチルイソプロポキシシラン、 3-メタアタリロキシプロピルジメチルイソプロボ キシシラン、 3-アタリロキシプロピルジメチルイソプロポキシシラン、スチリルジメチルイ ソプロボキシシラン等が挙げられる。
また、 R6R7SiXで表される化合物の好ましい例を示せば、ジメチルジクロロシラン、
2 チルジクロロシラン、メチルフエニルジクロロシラン、メチルェチルジクロロシラン、ェチ
スチリルェチルジクロロシラン、 3-メタアタリロキシプロピルメチルジクロロシラン、ジメ チルジメトキシシラン、ビュルメチルジメトキシシラン、ジビュルジメトキシシラン、ァリル メチルジメトキシシラン、メチルジメトキシシラン、メチルフエ二ルジメトキシシラン、メチ
シプロピルメチルジメトキシシラン、ジメチルジェトキシシラン、ビュルメチルジェトキシ シラン、ジビニノレジェトキシシラン、ァリノレメチノレジェトキシシラン、メチノレジェトキシシ ラン、メチルフエ二ルジェトキシシラン、メチルェチルジェトキシシラン、ェチルビ二ノレ ジエトキシシラン、ェチルァリルジェトキシシラン、スチリルメチルジェトキシシラン、ス チリルェチルジェトキシシラン、 3-メタアタリロキシプロピルメチルジェトキシシラン、ジ メチルジプロポキシシラン、ビュルメチルジプロポキシシラン、ジビュルジプロボキシシ ラン、ァリルメチルジプロポキシシラン、メチルジプロポキシシラン、メチルフエニルジ プロポキシシラン、メチノレエチノレジプロポキシシラン、ェチノレビニノレジプロポキシシラ ン、ェチルァリルジプロボキシシラン、スチリルメチルジプロポキシシラン、スチリルェ チルジプロポキシシラン、 3-メタアタリロキシプロピルメチルジプロポキシシラン、ジメ チルジイソプロポキシシラン、ビュルメチルジイソプロポキシシラン、ジビュルジイソプ ロポキシシラン、ァリルメチルジイソプロポキシシラン、メチルジイソプロポキシシラン、 メチルフエニルジイソプロポキシシラン、メチルェチルジイソプロポキシシラン、ェチル ビュルジイソプロボキシシラン、ェチルァリルジイソプロボキシシラン、スチリルメチル ジイソプロボキシシラン、スチリルェチルジイソプロポキシシラン、 3-メタアタリ口キシプ 口ピルメチルジイソプロポキシシランなどが挙げられる。
[0021] 本発明の硬化性樹脂は、上記一般式 (I)で表される力ご型シロキサン樹脂と、一般 式 (Π)で表されるシリコーンィ匕合物とを反応させて得ることができるが、得られた硬化 性樹脂は、上記一般式 (I)及び上記一般式 (Π)で表される構造単位の不飽和結合が 架橋又は加水分解縮合により縮合した分子構造を有する。そして、この硬化性樹脂 は、 自由体積分率から計算されるパッキング係数が 0. 68〜0. 8の密な構造単位 (A )と、パッキング係数が 0· 68未満の疎の構造単位(B)とを有し、かつ、少なくとも一つ の不飽和結合を有する。
[0022] 本発明で用いたパッキング係数 Kpの計算は、以下の計算式(2)より算出される。
Kp = An · Vw p/Mw (2)
(但し、 An =ァボガドロ数、 Vw=ファンデアワールス体積、 p=密度、 Mw =分子量であ る。)このうち、
Vw=∑Va
Va = 4 π /R3 -∑ΐ/3 π hi2 (3R_hi)
hi=R- (R2 + di2-Ri2) /2di
である (但し、 R=原子半径、 Ri=結合原子半径、及び d=原子間距離である)。 [0023] 上記パッキング係数の計算では、原子半径および原子間距離は日本化学会著化 学便覧基礎編改訂 3版に記載されている数値を用いた。すなわち、原子半径では H = 1. 2A、 0 = 1. 52A、 C = l. 7A、 Si = 2. 14Aを用い、原子間距離は H_C = 1. 08 A、 C_C = 1. 54lA、 Si- C = l. 863A、 Si_〇 = l. 609Aを用いた。例えば、一般式(I )の M =ケィ素原子、 w = 0、 x = 2、 y = 0、及び z = 0で表せるガラスの密度は 2. 23gん m3でありそのパッキング係数は 0. 747となる。一般式(I)の Rカ^チル基で w = 8、 x = 0 、 y=0、及び z = 0の立方体構造をとるォクタキスメチルシルセスキォキサンの密度は 1.49gん m3でありパッキング係数は 0. 697となる。また一般式(Π)の R6および R7がメチ ル基で j = 0、 k=4、及び 1=0の環状構造をとるオタタメチルシクロテトラシロキサンの 密度は 0. 956gん m3であり、そのパッキング係数は 0.576となる。同様に R3および R4、 R5
Figure imgf000011_0001
の鎖状構造をとるオタタメチルトリシ口 キサンの密度は 0. 820gん m3であり、そのパッキング係数は 0. 521となる。すなわち、 ケィ素原子が 3つ以上の酸素原子と結合した三次元多面体構造を有する金属酸化 物のパッキング係数は 0. 69以上となり、本発明における密な構造単位となる。また環 状および鎖状構造をとる化合物のパッキング係数は 0. 576および 0. 521であり、本発 明における疎な構造単位となる。
[0024] また、本発明の硬化性樹脂は、密な構造単位 (A)と疎な構造単位 (B)の構造単位 重量比(A) / (B)が 0. 01〜5. 00、好ましくは 0. 5〜3. 00である。 (A) / (B)が 0. 01より小さい場合は密な構造が少なすぎ、硬化性樹脂を成形し硬化させて得た成形 体の機械物性及び耐熱性が著しく悪化してしまう。また、 5. 00以上の場合、成形体 に柔軟性を付与する疎な構造部位が少なすぎ、靭性が著しく悪化し脆いものとなつ てしまう。
[0025] また、本発明の硬化性樹脂は、平均分子量が 800〜60000である。平均分子量が 800未満であると成形後に脆くなりやすぐ反対に 60000を超えると硬化成型加工が 困難となり取り扱いに不自由をきたすことがある。なお、平均分子量は公知の GPC測 定装置によって測定することができる。
[0026] RSiX又は MXで表される化合物、及び R3R4R5SiX又は R6R7SiXで表される化
3 4 2 合物の加水分解及び縮合に用いられる酸触媒としては、塩酸、及び硫酸が挙げられ る。また、これらを混合して用いることもできるし、加水分解性基がハロゲン原子の場 合は、加水分解のときに生成するハロゲンィヒ水素を利用してもよい。
[0027] 加水分解及び縮合に用いられる塩基性触媒としては、水酸化カリウム、水酸化ナト リウム、水酸化セシウム等のアルカリ金属水酸化物、あるいはテトラメチルアンモニゥ ムヒドロキシド、テトラエチルアンモニゥムヒドロキシド、テトラプチルアンモニゥムヒドロ キシド、ベンジルトリメチルアンモニゥムヒドロキシド、ベンジルトリェチルアンモニゥム ヒドロキシド等の水酸化アンモニゥム塩が例示される。これらの中でも、触媒活性が高 い点からテトラメチルアンモニゥムヒドロキシドが好ましく用いられる。塩基性触媒は、 通常水溶液として使用される。
[0028] 加水分解反応は水の存在が必須であるが、これは触媒の水溶液から供給すること もできるし、別途水として加えてもよい。水の量は加水分解性基を加水分解するに足 る量以上、好ましくは理論量の 1. 0〜: 1. 5倍量である。
[0029] 本発明においては、硬化性樹脂にヒドロシリル化触媒又はラジカル開始剤を配合し 、或いは両者を配合して硬化性樹脂組成物を得るようにしてもよい。そして、この硬化 性樹脂組成物を熱硬化又は光硬化させて、ヒドロシリル化やラジカル重合することで 、硬化物(成形体)を得ることができる。また、ヒドロシリルイ匕触媒やラジカル開始剤に 加えて、ケィ素原子上に水素原子を有する化合物や、分子中に不飽和基を有する 化合物を更に配合して硬化性樹脂組成物を得るようにしてもよい。すなわち、硬化性 樹脂を硬化させて成形体を得る目的や、得られる成形体の物性等を改良する目的か ら、反応を促進する添加剤としてヒドロシリル化触媒、熱重合開始剤、熱重合促進剤 、光重合開始剤、光開始助剤、鋭感剤等を配合して硬化性樹脂組成物を得るように する。
[0030] 硬化性樹脂組成物において、硬化性樹脂と共に使用されるケィ素原子上に水素原 子を有する化合物は、分子中に少なくとも 1つ以上のヒドロシリル化可能なケィ素原子 上に水素原子を有しているオリゴマー及びモノマーである。このうち、ケィ素原子上に 水素原子を有しているオリゴマーとしては、ポリハイドロジヱンシロキサン類、ポリジメ チルヒロドシロキシシロキサン類及びその共重合体、末端がジメチルヒドロシロキシで 修飾されたシロキサンが挙げられる。また、ケィ素原子上に水素原子を有しているモ ノマーとしては、テトラメチルシクロテトラシロキサン、ペンタメチルシクロペンタなどの 環状シロキサン類、ジヒドロジシロキサン類、トリヒドロモノシラン類、ジヒドロモノシラン 類、モノヒドロモノシラン類、ジメチルシロキシシロキサン類等を例示することができ、こ れらを 2種類以上混合してもよい。
[0031] また、硬化性樹脂組成物において、硬化性樹脂と共に使用される不飽和基を有す る化合物については、構造単位の繰り返し数力 ¾〜20程度の重合体である反応性ォ リゴマーと、低分子量かつ低粘度の反応性モノマーとに大別される。また、不飽和基 を 1個有する単官能不飽和化合物と 2個以上有する多官能不飽和化合物とに大別さ れる。
[0032] このうち、反応性オリゴマーとしては、ポリビュルシロキサン類、ポリジメチルビニルシ ロキシシロキサン類、及びその共重合体、末端がジメチルビ二ルシロキシで修飾され たシロキサン類、エポキシアタリレート、エポキシ化油アタリレート、ウレタンアタリレート 、不飽和ポリエステル、ポリエステルアタリレート、ポリエーテルアタリレート、ビュルァ タリレート、ポリェン /チオール、シリコーンアタリレート、ポリブタジエン、ポリスチリル ェチルメタタリレート等を例示することができる。これらには、単官能不飽和化合物と 多官能不飽和化合物がある。
[0033] 反応性の単官能モノマーとしては、トリェチルビエルシラン、トリフエ二ルビ二ルシラ ンなどのビュル置換ケィ素化合物類、シクロへキセンなどの環状ォレフィン類、スチレ ン、酢酸ビニル、 N—ビニルピロリドン、ブチルアタリレート、 2—ェチルへキシルアタリ レート、 n キシルアタリレート、シクロへキシルアタリレート、 n—デシルアタリレート 、イソボニルアタリレート、ジシクロペンテ二ロキシェチルアタリレート、フエノキシェチ ノレアタリレート、トリフルォロェチルメタタリレート等を例示することができる。
[0034] 反応性の多官能モノマーとしては、テトラビュルシラン、ジビュルテトラメチルジシロ キサンなどのビュル置換ケィ素化合、テトラメチルテトラビュルシクロテトラシロキサン 、ペンタメチルペンタビュルシクロペンタシロキサンなどのビュル置換環状ケィ素化合
、ノルボルナジェン、ジシクロペンタジェン、シクロォクタジェンなどの環状ポリェン類 、ビュルシクロへキセンなどのビュル置換環状ォレフィン、ジビュルベンゼン類、ジェ チュルベンゼン類、トリメチロールプロパンジァリルエーテル、ペンタエリスリトーノレトリ ァリルエーテル、トリプロピレングリコールジアタリレート、 1 , 6—へキサンジオールジァ タリレート、ビスフエノール Aジグリシジルエーテルジアタリレート、テトラエチレングリコ ールジアタリレート、ヒドロキシビバリン酸ネオペンチルグリコールジアタリレート、トリメ チロールプロパントリアタリレート、ペンタエリスリトーノレトリアタリレート、ペンタエリスリト ールテトラアタリレート、ジペンタエリスリトールへキサアタリレート等を例示することが できる。
[0035] 分子中に不飽和基を有する化合物としては、以上に例示したもの以外に、各種反 応性オリゴマー、モノマーを用いることができる。また、これらの反応性オリゴマーゃモ ノマ一は、それぞれ単独で使用しても、 2種類以上を混合して使用してもよい。
[0036] 本発明で使用するケィ素原子上に水素原子を有する化合物と分子中に不飽和基 を有する化合物は、それぞれ単独で使用しても、 2種類以上混合して使用してもよい
[0037] 上述したように、本発明の硬化性樹脂組成物は、硬化性樹脂にヒドロシリル化触媒 、ラジカル開始剤又はこれらとケィ素原子上に水素原子を含有する化合物や不飽和 基を有する化合物を配合させて得られる。本発明の成形体は、この硬化性樹脂組成 物を成形硬化して得られる。すなわち、硬化性樹脂組成物をヒドロシリル化硬化及び ラジカル重合することにより硬化物を得ることができる。
[0038] ヒドロシリル化触媒を配合する場合、その添加量は硬化性樹脂の重量に対し金属 原子として l〜1000ppm、より好ましくは 20〜500ppmの範囲で添加するのがよい。また 、ラジカル開始剤として光重合開始剤又は熱重合開始剤を配合する場合、その添加 量は硬化性樹脂 100重量部に対して 0.1〜5重量部の範囲とするのがよぐ 0.1〜3重 量部の範囲とするのがより好ましい。この添カ卩量が 0.1重量部に満たないと硬化が不 十分となり、得られる封止材の強度や剛性が低くなる。一方、 5重量部を超えると封止 材の着色等の問題が生じるおそれがある。またヒドロシリルイ匕触媒とラジカル開始剤 を単独で使用してもよぐ 2種類以上併用して用いることもできる。
[0039] ヒドロシリル化触媒としては、塩化第 2白金、塩化白金酸、塩化白金酸とアルコール 、ァノレデヒド、ケトンとの錯体、塩ィ匕白金酸とォレフィン類との錯体、白金とビュルシロ キサンとの錯体、ジカルボニルジクロ口白金及びパラジウム系触媒、ロジウム系触媒 等の白金族金属系触媒が挙げられる。これらの中で、触媒活性の点から、塩化白金 酸、塩化白金酸とォレフィン類との錯体、白金とビニルシロキサンとの錯体が好ましい 。また、これらを単独で使用してもよぐ 2種類以上併用してもよい。
[0040] 硬化性樹脂組成物を光硬化性樹脂組成物とする場合に用いられる光重合開始剤 としては、ァセトフエノン系、ベンゾイン系、ベンゾフエノン系、チォキサンソン系、ァシ ルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、ト リクロロァセトフエノン、ジェトキシァセトフエノン、 1-フエニル -2-ヒドロキシ -2-メチルプ 口パン- 1-オン、 1 -ヒドロキシシクロへキシルフェニルケトン、 2-メチル -1- (4-メチルチ オフ工ニル)-2-モルホリノプロパン -1-オン、ベンゾインメチルエーテル、ベンジルジメ チルケタール、ベンゾフヱノン、チォキサンソン、 2,4,6-トリメチルベンゾィルジフヱ二 ノレホスフィンオキサイド、メチルフエニルダリオキシレート、カンファーキノン、べンジル 、アンスラキノン、ミヒラーケトン等を例示することができる。また、光重合開始剤と組み 合わせて効果を発揮する光開始助剤や鋭感剤を併用することもできる。
[0041] 上記目的で使用される熱重合開始剤としては、ケトンパーオキサイド系、パーォキ シケタール系、ハイド口パーオキサイド系、ジアルキルパーオキサイド系、ジァシルパ 一オキサイド系、パーォキシジカーボネート系、パーォキシエステル系など各種の有 機過酸化物を好適に使用することができる。具体的にはシクロへキサノンパーォキサ イド、 1, 1一ビス(t-へキサパーォキシ)シクロへキシサノン、クメンハイド口パーォキサ イド、ジクミルパーオキサイド、ベンゾィルパーオキサイド、ジイソプロピルパーォキサ イド、 t-プチルバオキシー 2-ェチルへキサノエ一ト等を例示する事ができる力 S、これ に何ら制限されるものではなレ、。また、これら熱重合開始剤は単独で使用しても、 2種 類以上を混合して使用してもよい。
[0042] 硬化性樹脂組成物には、本発明の目的から外れなレ、範囲で各種添加剤を添加す ること力 Sできる。各種添加剤として有機/無機フィラー、可塑剤、難燃剤、熱安定剤、 酸化防止剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、離型剤、発泡剤、核剤 、着色剤、架橋剤、分散助剤、樹脂成分等を例示することができる。
[0043] 本発明の硬化性樹脂からなる成形体は、ヒドロシリル化触媒、ラジカル重合開始剤 のレ、ずれか、及び両方を含む硬化性樹脂組成物を加熱又は光照射によって硬化さ せることで製造することができる。加熱によって共重合体 (成形体)を製造する場合、 その成形温度は、熱重合開始剤と促進剤の選択により、室温から 200°C前後までの 広い範囲から選択することができる。この場合、金型内やスチールベルト上で重合硬 化させることで所望の形状のシリコーン樹脂成形体を得ることができる。より具体的に は、射出成形、押出成形、圧縮成形、トランスファー成形、カレンダー成形、キャスト( 注型)成形といった一般的な成形加工方法の全てが適用可能である。
[0044] また、光照射によって共重合体 (成形体)を製造する場合、波長 100〜400nmの紫 外線や波長 400〜700nmの可視光線を照射することで、成形体を得ることができる。 用いる光の波長は特に制限されるものではなレ、が、特に波長 200〜400nmの近紫外 線が好適に用いられる。紫外線発生源として用いられるランプとしては、低圧水銀ラ ンプ(出力: 0.4〜4Wん m)、高圧水銀ランプ(40〜160Wん m)、超高圧水銀ランプ(17 3〜435Wん m)、メタルハライドランプ(80〜160Wん m)、パルスキセノンランプ(80〜12 0Wん m)、無電極放電ランプ(80〜120\^cm)等を例示することができる。これらの紫 外線ランプは、各々その分光分布に特徴があるため、使用する光開始剤の種類に応 じて選定される。
[0045] 光照射によってシリコーン樹脂共重合体 (成形体)を得る方法としては、例えば任意 のキヤビティ形状を有し、石英ガラス等の透明素材で構成された金型内に注入し、上 記の紫外線ランプで紫外線を照射して重合硬化を行い、金型から脱型させることで 所望の形状の成形体を製造する方法や、金型を用いない場合には、例えば移動す るスチールベルト上にドクターブレードやロール状のコーターを用いて本発明の硬化 性樹脂組成物を塗布し、上記の紫外線ランプで重合硬化させることで、シート状の成 形体を製造する方法等を例示することができる。更に本発明では加熱と光照射によ る成型体を得る方法を組み合わせて用いてもよい。
発明の効果
[0046] 本発明の硬化性樹脂によれば、無機ガラスのような強度、透明性、耐熱性、及び寸 法安定性と、プラスチックのような高靭性、及び加工性との両立が可能な成形体を得 ること力 Sでき、例えば、レンズ、光ディスク、光ファイバ一及びフラットパネルディスプレ ィ基板等の光学用途や各種輸送機械や住宅等の窓材など様々な用途に用いること ができる。また、得られた成形体は、軽量、かつ高衝撃強度の透明部材であり、ガラ ス代替材料としてもその利用範囲は広範となり、産業上の利用価値も高い。
発明を実施するための最良の形態
[0047] 以下、本発明の実施例を示す。
実施例 1
[0048] 撹拌機及び滴下ロートを備えた 2Lの 4口フラスコに、イソプロピルアルコール 300mL およびトルエン 600mL、 20w%水酸化テトラメチルアンモニゥム水溶液 22.37g (水酸 化テトラメチルアンモニゥム 4. 55g/0. 05mol、水 17· 82g/0. 99mol)を装入した。滴下 ロートにビニノレトリメトキシシラン 44. 4g/0. 30molとイソプロピルアルコール 50mLの混 合溶液を装入し、反応容器を撹拌しながら、室温で 3時間かけて滴下した。滴下終了 後加熱することなく 3時間撹拌した。 3時間撹拌後、撹拌を止め反応溶液を 18時間室 温で熟成させた。その反応溶液を 0. 1Mクェン酸水溶液 1Lに加え中和し、さらに水 で中性になるまで水洗した後、無水硫酸マグネシウムをカ卩ぇ脱水した。無水硫酸マグ ネシゥムをろ別し、減圧下で濃縮した。濃縮物を脱水されたテトラヒドロフラン 200mL で溶解し、撹拌機、滴下ロートを備えた 1Lの 4口フラスコに装入した。反応容器に脱 水されたピリジン lOOmLおよび滴下ロートにジメチルジクロロシラン 3. 2g/0. 025molと トリメチルクロロシラン 2. 7g/0. 025molとテトラヒドロフラン 30mLを加え、窒素気流下 で反応容器を撹拌しながら、室温で 3時間かけて滴下した。滴下終了後加熱すること なく 3時間撹拌した。 3時間撹拌後、トルエン 300mLをカ卩えた後、反応溶液を水で中 性になるまで水洗し、無水硫酸マグネシウムを加え脱水した。無水硫酸マグネシウム をろ別し、減圧下で濃縮することで無色透明の液体として硬化性樹脂〔一般式(1)〕 2 7. lg得た。
[0049] この硬化性樹脂の m-NMRでは、ビニル基のシャープなシグナルが観測されたこと 力 ビニルトリメトキシシランからの加水分解縮合物は籠型構造であることが確認され た。このことから金属酸化物、すなわちケィ素酸化物で構成される三次元多面体構 造である密な構造単位 (A)については、ケィ素原子 8個と酸素原子 12個とで構成さ れる(Si〇 )で表せる立方体構造と仮定することができ、導き出された Kpは 0. 73で あった。また、上記硬化性樹脂の (A)以外の部分は、(H C=CH-SiO ) の残基であ
2 3/2 8
るビニル基と(Me SiO )と(Me SiO)とであって疎な構造部位(B)であり、これらから
3 1/2 2
求められる重量比〔(A) / (B)〕は 1. 302であり、 GPCによる数平均分子量 Mnは 52 00であった。また、疎な構造単位(B)はビュル基、(Me SiO )、及び (Me SiO)から
3 1/2 2 なり、三次元多面体構造をとらず、 Kpは 0. 69未満であった。尚、密な構造単位 (Α) の Κρを算出する際、 (SiO ) は (A)の部分であり一般式 (I)樹脂中の一部として存
3/2 8
在するため取り出すことが不可能であって直接的に Kpを求めることができなレ、。その ため最も Kpへの影響が少なく近似できる化合物として (HSiO ) を用いて計算した。
3/2 8
実施例 2
[0050] 実施例 1で得られた硬化性樹脂 100重量部とジクミルパーオキサイド(日本油脂株 式会社製パークミル D) 2重量部とを均一になるまで混合し、硬化性樹脂組成物とし た。これをガラス板で組んだ型に厚み lmmになるように流し込み、 100°Cで 1時間、 12 0°Cで 1時間、 140°Cで 1時間、 160°Cで 1時間、及び 180°Cで 2時間加熱して硬化物を 得た。
実施例 3
[0051] 実施例 1で得られた硬化性樹脂 58重量部、末端トリメチルシリル修飾ポリメチルヒド 口シロキサン(ァヅマックス株式会社製 HMS _992) 42重量部、及び白金-ビュルシ ロキサン錯体(ァヅマックス株式会社製 SIP6830. 3) 0. 5重量部を均一になるまで混 合し、硬化性樹脂組成物とした。これをガラス板で組んだ型に厚み lmmになるように 流し込み、 100°Cで 1時間、 120°Cで 1時間、 140°Cで 1時間、 160°Cで 1時間、及び 180 °Cで 2時間加熱して硬化物を得た。
実施例 4
[0052] 実施例 1で得られた硬化性樹脂 58重量部、末端トリメチルシリル修飾ポリメチルヒド 口シロキサン(ァヅマックス株式会社製 HMS _992) 21重量部、ジクミルパーォキサ イド(日本油脂株式会社製パークミル D) 2重量部、及び白金 -ビュルシロキサン錯体 ( ァヅマックス株式会社製 SIP6830. 3) 0. 5重量部を均一になるまで混合し、硬化性樹 脂組成物とした。これをガラス板で組んだ型に厚み lmmになるように流し込み、 100 °Cで 1時間、 120°Cで 1時間、 140°Cで 1時間、 160°Cで 1時間、及び 180°Cで 2時間加熱 して硬化物を得た。
[0053] [比較例 1]
ジペンタエリスリトールへキサアタリレート 100重量部、及びジクミルパーオキサイド( 日本油脂株式会社製パークミル D) 2重量部を均一になるまで混合し、硬化性樹脂組 成物とした。これをガラス板で組んだ型に厚み lmmになるように流し込み、 100°Cで 1 時間、 120°Cで 1時間、 140°Cで 1時間、 160°Cで 1時間、及び 180°Cで 2時間加熱して 硬化物を得た。
[0054] 上記で得られた各硬化物の透過率を分光光度計を用いて測定した。測定波長 800
、 600、及び 400nmの透過率の結果を表 1に示す。
[0055] [表 1] 実施例 比較例
2 3 4 1
800nm透過率 90% 90% 90% 76%
600nm透過率 89% 89% 89% 74%
400nm透過率 86% 85% 86% 65%

Claims

請求の範囲
[1] 下記一般式(1)で表される密な構造単位 (A)と疎な構造単位 (B)とからなる分子構 造を有する硬化性樹脂であって、密な構造単位 (A)は、 自由体積分率から計算され る下記計算式 (2)により求められるパッキング係数 Kpが 0. 68〜0. 8の金属酸化物か ら構成される構造単位であり、疎な構造単位 (Β)は、上記パッキング係数 Kpが 0. 68 未満であって有機物と有機金属酸化物とを含んで構成される構造単位であり、構造 単位(A) / (B)の重量比が 0· 01〜5. 00であり、かつ、少なくとも一つの不飽和結 合を有して平均分子量が 800〜60000であることを特徴とする有機金属構造を有す る硬化性樹脂。
- {(A) -(B) } - (1)
m n
(但し、 mおよび nは 1以上の整数を示す。 )
Kp=An-Vwp/Mw (2)
〔但し、 An=ァボガドロ数、 Vw=ファンデアワールス体積、 p=密度、 Mw=分子量であり、 Vw=∑ Va、 Va=4 π /R3-∑ 1/3 π hi2(3Ra- hi)、 hi=Ra- (Ra2+di2- Ri2)/2di、 Ra=原子半径 、 Ri=結合原子半径、及び di=原子間距離を示す。〕
[2] 密な構造単位 (A)は、下記一般式 (I)の有機物部位を除レ、た三次元多面体構造 骨格を有する金属酸化物部位からなり、疎な構造単位 (B)は、下記一般式 (II)で表さ れる有機金属酸化物からなる鎖状単位と一般式 (I)の有機物部位とからなる請求項 1 に記載の硬化性樹脂。
(RSiO ) (MO ) (RXSiO) (XMO ) (I)
3/2 w 2 x y 3/2 z
(R3R4R5SiO ) (R6R7SiO) {R6R7XSiO } (II)
1/2 j k 1/2 1
〔但し、 Rは (aH^-OCO-CR^CH、 (b)-R1-CR2=CH若しくは (c)_CH=CHで示される
2 2 2 不飽和基、アルキル基、シクロアルキル基、シクロアルケニル基、フヱニル基、水素原 子、アルコキシル基、又はアルキルシロキシ基であり、式(I)における複数の Rは互い に異なるものであってもよいが、少なくとも 1つは上記 (a)、(b)又は (c)のいずれかを含 み、 R1はアルキレン基、アルキリデン基又はフエ二レン基を示し、 R2は水素又はアル キル基を示す。また、 R3〜R7は (aH^-OCO-CR^CH、 (b)-R1-CR2=CH若しくは (c)_
2 2
CH=CHで示される不飽和基、アルキル基、シクロアルキル基、シクロアルケニル基、 フエニル基、水素原子、アルコキシル基、又はアルキルシロキシ基である。更に、 Mは ケィ素、ゲルマニウム、チタン、又はジルコニウムの金属原子、 Xはハロゲン原子、又 はアルコキシル基であり、 wは 4以上の整数であり、 X、 y及び zは w+x+y+z≥8を満た す整数である。 j、 k、及び 1はそれぞれ 0以上の整数を示す。〕
[3] 一般式 (I)は、 RSiX、 MX又はこれらの混合物(但し R、 M及び Xは一般式 (I)の場
3 4
合と同じである)の加水分解縮合物からなる請求項 2に記載の硬化性樹脂。
[4] 一般式(Π) 、 R3R4R5SiX、 R6R7SiX又はこれらの混合物(但し、 R3〜R7及び Xは一
2
般式 (Π)と同じである。)の加水分解縮合物からなり、一般式 (I)の有機物部位又は X の少なくとも一部がこの加水分解縮合物に結合して一般式(1)の構造部位 (B)を形 成する請求項 2に記載の硬化性樹脂。
[5] 請求項 1〜4のいずれかに記載の硬化性樹脂に、ヒドロシリル化触媒、ラジカル開 始剤又は両者を配合してなる硬化性樹脂組成物。
[6] 少なくとも 1つのケィ素原子上に水素原子を有するヒドロシリル化可能な化合物、分 子中に不飽和基を有する化合物又は両者を更に配合してなる請求項 5に記載の硬 化性樹脂組成物。
[7] 請求項 5又は 6に記載の硬化性樹脂組成物を成形硬化して得られる成形体。
PCT/JP2007/055849 2006-03-27 2007-03-22 硬化性樹脂及び硬化性樹脂組成物並びにその成形体 WO2007119477A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800106023A CN101410437B (zh) 2006-03-27 2007-03-22 固化性树脂和固化性树脂组合物及其成型体
JP2008510838A JP5108751B2 (ja) 2006-03-27 2007-03-22 硬化性樹脂及び硬化性樹脂組成物並びにその成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006085491 2006-03-27
JP2006-085491 2006-03-27

Publications (1)

Publication Number Publication Date
WO2007119477A1 true WO2007119477A1 (ja) 2007-10-25

Family

ID=38609261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055849 WO2007119477A1 (ja) 2006-03-27 2007-03-22 硬化性樹脂及び硬化性樹脂組成物並びにその成形体

Country Status (5)

Country Link
JP (1) JP5108751B2 (ja)
KR (1) KR101075358B1 (ja)
CN (1) CN101410437B (ja)
TW (1) TWI411648B (ja)
WO (1) WO2007119477A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302892A (ja) * 2006-05-11 2007-11-22 Wacker Chemie Ag 電子素子のためのシリコーン樹脂被覆
WO2009084562A1 (ja) * 2007-12-27 2009-07-09 Nippon Steel Chemical Co., Ltd. 籠構造含有硬化性シリコーン共重合体及びその製造方法並びに籠構造含有硬化性シリコーン共重合体を用いた硬化性樹脂組成物及びその硬化物
JP2009155287A (ja) * 2007-12-27 2009-07-16 Nippon Steel Chem Co Ltd アルコキシル基含有籠型シロキサン化合物及びシラノール基含有籠型シロキサン化合物並びにこれらの製造方法
JP2009173910A (ja) * 2007-12-27 2009-08-06 Nagase Chemtex Corp 硬化性組成物
JP2009227863A (ja) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd 籠構造含有硬化性シリコーン共重合体及びその製造方法並びに籠構造含有硬化性シリコーン共重合体を用いた硬化性樹脂組成物及びその硬化物
JP2010254927A (ja) * 2009-04-28 2010-11-11 Kaneka Corp 光硬化可能な組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097225A (ja) * 2010-11-04 2012-05-24 Daicel Corp 硬化性樹脂組成物及び硬化物
JP2012149131A (ja) * 2011-01-17 2012-08-09 Shin-Etsu Chemical Co Ltd シリコーン樹脂組成物及び当該組成物を使用した光半導体装置
CN104387968A (zh) * 2014-12-08 2015-03-04 江苏诺飞新材料科技有限公司 阻燃太阳能板用涂料
CN110387043A (zh) * 2019-07-12 2019-10-29 湖北大学 具有多端官能基团的树枝状有机硅化合物及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267290A (ja) * 1988-06-29 1990-03-07 Akad Wissenschaften Ddr 鳥かご状構造を有する親油性二重環ケイ酸誘導体、その製造方法及びその使用方法
JPH06329687A (ja) * 1993-05-13 1994-11-29 Wacker Chemie Gmbh 有機ケイ素化合物及びその製法
JPH1171462A (ja) * 1997-08-29 1999-03-16 Toshiba Silicone Co Ltd 新規な含ケイ素重合体
JP2000154252A (ja) * 1998-11-18 2000-06-06 Agency Of Ind Science & Technol 新型含シルセスキオキサンポリマー及びその製造方法
JP2000265066A (ja) * 1999-03-17 2000-09-26 Dow Corning Asia Ltd 有機溶剤可溶性の水素化オクタシルセスキオキサン−ビニル基含有化合物共重合体及び同共重合体からなる絶縁材料
JP2002363414A (ja) * 2001-06-12 2002-12-18 Asahi Kasei Corp 籠状シルセスキオキサン含有組成物
JP2003137944A (ja) * 2001-11-05 2003-05-14 Nippon Steel Chem Co Ltd シリコーン樹脂組成物及びシリコーン樹脂成形体
JP2004123936A (ja) * 2002-10-03 2004-04-22 Nippon Steel Chem Co Ltd シリコーン樹脂組成物及びシリコーン樹脂成形体
JP2005290352A (ja) * 2004-03-12 2005-10-20 Asahi Kasei Corp カゴ状シルセスキオキサン構造を有する化合物
JP2006022207A (ja) * 2004-07-08 2006-01-26 Chisso Corp ケイ素化合物
JP2006265514A (ja) * 2005-02-25 2006-10-05 Asahi Kasei Corp 共重合体およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265065A (ja) * 1999-03-17 2000-09-26 Dow Corning Asia Ltd 有機溶剤可溶性の水素化オクタシルセスキオキサン−ビニル基含有化合物共重合体の製造方法
US6252030B1 (en) * 1999-03-17 2001-06-26 Dow Corning Asia, Ltd. Hydrogenated octasilsesquioxane-vinyl group-containing copolymer and method for manufacture

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267290A (ja) * 1988-06-29 1990-03-07 Akad Wissenschaften Ddr 鳥かご状構造を有する親油性二重環ケイ酸誘導体、その製造方法及びその使用方法
JPH06329687A (ja) * 1993-05-13 1994-11-29 Wacker Chemie Gmbh 有機ケイ素化合物及びその製法
JPH1171462A (ja) * 1997-08-29 1999-03-16 Toshiba Silicone Co Ltd 新規な含ケイ素重合体
JP2000154252A (ja) * 1998-11-18 2000-06-06 Agency Of Ind Science & Technol 新型含シルセスキオキサンポリマー及びその製造方法
JP2000265066A (ja) * 1999-03-17 2000-09-26 Dow Corning Asia Ltd 有機溶剤可溶性の水素化オクタシルセスキオキサン−ビニル基含有化合物共重合体及び同共重合体からなる絶縁材料
JP2002363414A (ja) * 2001-06-12 2002-12-18 Asahi Kasei Corp 籠状シルセスキオキサン含有組成物
JP2003137944A (ja) * 2001-11-05 2003-05-14 Nippon Steel Chem Co Ltd シリコーン樹脂組成物及びシリコーン樹脂成形体
JP2004123936A (ja) * 2002-10-03 2004-04-22 Nippon Steel Chem Co Ltd シリコーン樹脂組成物及びシリコーン樹脂成形体
JP2005290352A (ja) * 2004-03-12 2005-10-20 Asahi Kasei Corp カゴ状シルセスキオキサン構造を有する化合物
JP2006022207A (ja) * 2004-07-08 2006-01-26 Chisso Corp ケイ素化合物
JP2006265514A (ja) * 2005-02-25 2006-10-05 Asahi Kasei Corp 共重合体およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302892A (ja) * 2006-05-11 2007-11-22 Wacker Chemie Ag 電子素子のためのシリコーン樹脂被覆
WO2009084562A1 (ja) * 2007-12-27 2009-07-09 Nippon Steel Chemical Co., Ltd. 籠構造含有硬化性シリコーン共重合体及びその製造方法並びに籠構造含有硬化性シリコーン共重合体を用いた硬化性樹脂組成物及びその硬化物
JP2009155287A (ja) * 2007-12-27 2009-07-16 Nippon Steel Chem Co Ltd アルコキシル基含有籠型シロキサン化合物及びシラノール基含有籠型シロキサン化合物並びにこれらの製造方法
JP2009173910A (ja) * 2007-12-27 2009-08-06 Nagase Chemtex Corp 硬化性組成物
US8299185B2 (en) 2007-12-27 2012-10-30 Nippon Steel Chemical Co., Ltd. Curable cage-type silicone copolymer and process for production thereof and curable resin composition comprising curable cage-type silicone copolymer and cured product thereof
TWI499619B (zh) * 2007-12-27 2015-09-11 Nippon Steel & Sumikin Chem Co Containing a curable poly cage-shaped structure of silicon oxide copolymer and its manufacturing method and use of the cage structure-containing curable silicon oxide copolymer of poly curable resin composition and cured
JP2009227863A (ja) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd 籠構造含有硬化性シリコーン共重合体及びその製造方法並びに籠構造含有硬化性シリコーン共重合体を用いた硬化性樹脂組成物及びその硬化物
JP2010254927A (ja) * 2009-04-28 2010-11-11 Kaneka Corp 光硬化可能な組成物

Also Published As

Publication number Publication date
JPWO2007119477A1 (ja) 2009-08-27
CN101410437A (zh) 2009-04-15
TW200801121A (en) 2008-01-01
CN101410437B (zh) 2012-01-04
KR101075358B1 (ko) 2011-10-19
JP5108751B2 (ja) 2012-12-26
TWI411648B (zh) 2013-10-11
KR20080108307A (ko) 2008-12-12

Similar Documents

Publication Publication Date Title
WO2007119477A1 (ja) 硬化性樹脂及び硬化性樹脂組成物並びにその成形体
EP2083049B1 (en) Curable polyorganosiloxane composition
JP5000303B2 (ja) シリカ含有シリコーン樹脂組成物及びその成形体
CN103068884B (zh) 感光性有机硅树脂组合物
KR101795109B1 (ko) 경화성 폴리오르가노실록산 조성물
KR101580246B1 (ko) 실리콘 수지 및 그 제조방법 그리고 이 실리콘 수지를 포함한 경화형 수지 조성물
US6828355B1 (en) Resin-reinforced UV, moisture and UV/moisture dual curable silicone compositions
US8501893B2 (en) Synthetic method for preparing dual curable silicone compositions
JPH0627162B2 (ja) 光硬化性オルガノポリシロキサン組成物
TW200427782A (en) Silicone resin composition and moldings thereof
JP6765781B2 (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
JP5073738B2 (ja) レンズ
JPH03425B2 (ja)
US4910232A (en) Ultraviolet-curable organopolysiloxane composition
JPWO2019009026A1 (ja) 紫外線硬化型シリコーン粘着剤組成物及びシリコーン粘着フィルム
US20110118413A1 (en) Silicon-containing polymer, method of manufacturing thereof, and curable polymer composition
JP6227975B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ
JP4920364B2 (ja) 表示装置
JP2006137895A (ja) 光学材料用ポリオルガノシロキサン組成物
JPH03766A (ja) ポリオルガノシロキサン組成物
WO2001005846A1 (en) Resin-reinforced uv, moisture and uv/moisture dual curable silicone compositions
JP6927166B2 (ja) 酸素硬化性シリコーン組成物およびその硬化物
JPH0470343B2 (ja)
JP2008233361A (ja) 光導波路
CN113227237B (zh) 粘接性聚有机硅氧烷组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739292

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008510838

Country of ref document: JP

Ref document number: 200780010602.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07739292

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)