WO2007116481A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2007116481A1
WO2007116481A1 PCT/JP2006/306885 JP2006306885W WO2007116481A1 WO 2007116481 A1 WO2007116481 A1 WO 2007116481A1 JP 2006306885 W JP2006306885 W JP 2006306885W WO 2007116481 A1 WO2007116481 A1 WO 2007116481A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
circuit
voltage
transformer
Prior art date
Application number
PCT/JP2006/306885
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Iino
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008509632A priority Critical patent/JP4796133B2/ja
Priority to PCT/JP2006/306885 priority patent/WO2007116481A1/ja
Publication of WO2007116481A1 publication Critical patent/WO2007116481A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs

Definitions

  • the present invention relates to a power supply device, and more particularly, to a large-capacity power supply device that prevents partial excitation in a transformer.
  • a power supply device such as a full-bridge converter, for example, as shown in FIG. 4, by connecting a capacitor 109 in series with the primary winding N1 of the transformer 105, the DC component is cut off, and the transformer 105 bias excitation is prevented.
  • the current flows in the order of the power source 104 (+), the input terminal 101, the semiconductor switch 131, the capacitor 109, the transformer 105, the semiconductor switch 134, the input terminal 101, and the power source 104 (-). Therefore, since the DC component is blocked by the capacitor 109, the partial excitation in the transformer 105 can be prevented.
  • an auxiliary winding that generates a magnetic field that cancels the magnetic field generated by the transformer is provided as a transformer.
  • a magnetic field is generated in the auxiliary winding only during the period when the primary winding current of the transformer is overcurrent, thereby canceling out the magnetic field generated by the transformer, thereby preventing the transformer's biased excitation. It is known (see Patent Document 3 below).
  • Patent Document 1 Japanese Patent Laid-Open No. 8-223944
  • Patent Document 2 JP-A-10-136653
  • Patent Document 3 JP-A-53-147223
  • a capacitor 109 must be added as an element for preventing partial excitation.
  • the primary circuit 111 is the main circuit of the power supply device, it is desirable to avoid the design and maintenance viewpoints when adding elements other than the switching elements such as the capacitor 109 to the primary circuit 111.
  • An object of the present invention is to provide a large-capacity power supply device that enables stable operation by preventing partial excitation in the transformer without changing the primary circuit of the transformer.
  • the power supply device of the present invention is connected between an input terminal, an output terminal, a transformer including a primary winding and a secondary winding, and the input terminal and a primary winding of the transformer.
  • a first voltage detection circuit for detecting an absolute value of the first voltage having the first polarity, and the first voltage in the primary circuit Is a voltage generated in the auxiliary winding due to a second current flowing in a reverse direction, and is an absolute value of a second voltage having a second polarity opposite to the first polarity.
  • the power supply device further eliminates the difference between the absolute values of the first and second voltages based on the comparison result.
  • a control unit for controlling the primary circuit is provided.
  • the first voltage detection circuit includes a first voltage connected between a positive side and a middle point of the auxiliary winding.
  • the second voltage detection circuit includes a second capacitor connected between the midpoint of the auxiliary winding and the negative side.
  • the first voltage detection circuit is further connected between a positive side of the auxiliary winding and the first capacitor.
  • the second voltage detection circuit further includes a second diode connected between the negative side of the auxiliary winding and the second capacitor.
  • the comparison circuit includes a terminal voltage appearing at a terminal connected to a positive side of the auxiliary winding of the first capacitor. And a comparator power for comparing a terminal voltage appearing at a terminal connected to the negative side of the auxiliary winding of the second capacitor.
  • the transformer is provided with the auxiliary winding, and the first circuit in the primary circuit
  • the first voltage generated in the auxiliary winding due to the current is compared with the second voltage generated in the auxiliary winding due to the second current in the primary circuit.
  • the primary circuit is controlled based on the result of the comparison so that the difference between the absolute values of the first and second voltages is eliminated.
  • the first voltage detection circuit includes a first capacitor
  • the second voltage detection circuit includes a second capacitor force.
  • the first voltage detection circuit includes a first capacitor and a first diode
  • the second voltage detection circuit includes a second capacitor and a second diode. Consists of. As a result, it is possible to prevent the current from flowing backward in the first and second voltage detection circuits and accurately detect the first and second voltages. As a result, it is possible to prevent the partial excitation of the transformer. Can do.
  • the first and second voltages are compared using a comparator.
  • the first and second voltages can be detected by a circuit having a relatively simple configuration, and as a result, the partial excitation of the transformer can be prevented.
  • FIG. 1 is a diagram showing an example of the configuration of a power supply device according to the present invention.
  • FIG. 2 is an explanatory diagram of the operation of the power supply device of FIG.
  • FIG. 3 shows the waveform of the power supply device of FIG.
  • FIG. 4 is an explanatory diagram of a conventional power supply device. Explanation of symbols
  • FIG. 1 is a configuration diagram of a power supply device, and shows a configuration of a power supply device according to an embodiment of the present invention.
  • the power supply device includes an input terminal 1, an output terminal 2, a transformer 5, a primary circuit 11, a secondary circuit 12, a partial excitation detection circuit 13, and a control unit 14.
  • the transformer 5 includes an auxiliary feeder N3 in addition to the primary feeder N1 and the secondary feeder N2.
  • N1 also represents the power of the primary winding N1.
  • the secondary winding N2 is divided into two equal parts at the midpoint between the first portion N2-1 and the second portion N2-2 of the secondary winding N2.
  • the auxiliary shoreline N3 is also divided into two equal parts at the midpoint between the first part N3-1 and the second part N3-2 of the auxiliary shoreline N3 so as to correspond to the secondary shoreline N2.
  • a plurality of (that is, two) input terminals 1 are provided.
  • a power supply 4 is connected between the input terminals 1.
  • the power supply 4 supplies power to the power supply device, for example, a power supply having a waveform as shown in the uppermost part of FIG.
  • the power source 4 is not limited to this, and may be other various power sources.
  • the primary circuit (input circuit) 11 is connected between the input terminal 1 and the primary winding N 1 of the transformer 5.
  • the primary circuit 11 has a bridge circuit force composed of first to fourth switching elements, for example, semiconductor switches 31 to 34.
  • the first and second semiconductor switches 31 and 32 are connected in series in this order to constitute a first series circuit.
  • the third and fourth semiconductor switches 33 and 34 are connected in series in this order to form a second series circuit.
  • First and second series circuits are connected in parallel and inserted between input terminals 1.
  • Transformer 5 primary feeder N1 The other terminal is connected to the connection point (midpoint) of the first and second semiconductor switches 31 and 32 connected in series.
  • the other terminal of the primary winding N1 of the transformer 5 is connected to a connection point (midpoint) of the third and fourth semiconductor switches 33 and 34 connected in series.
  • the semiconductor switches 31 to 34 are made of, for example, semiconductor elements such as power MOSFETs, IGBTs, BJTs, SITs, thyristors, and GTOs.
  • a predetermined control signal is supplied from the control unit 14 to each of the control electrodes (gate electrode, base electrode, etc.) of the semiconductor switches 31 to 34.
  • the ON / OFF of the semiconductor switches 31 to 34 is basically controlled so as to correspond to the change in the amplitude of the output of the power supply 4.
  • the secondary circuit (output circuit) 12 is connected between the secondary winding N 2 of the transformer 5 and the output terminal 2.
  • a plurality of (that is, two) output terminals 2 are provided.
  • a DC voltage, which is the output of this power supply device, is output between the output terminals 2.
  • the secondary circuit 12 includes diodes 61 and 62, an inductance 7, and a capacitor 8.
  • the diodes 61 and 62 may be composed of MOSFET, IGBT, SIT or the like instead of the diode.
  • the output voltage of the transformer 5 is output to one of the output terminals 2 via the diodes 61 and 62 connected to both terminals of the secondary winding N 2 of the transformer 5.
  • the other of output terminals 2 is connected to the midpoint of secondary winding N2 of transformer 5. That is, the secondary winding N2 of the transformer 5 is divided into two by the midpoint so that the power ratio of the first part N2-1 and the second part N2-2 is equal.
  • the inductance 7 and the capacitor 8 constitute a smoothing circuit, and this smoothing circuit is inserted between the output terminals 2. Thereby, the output voltage of the transformer 5 is rectified and smoothed.
  • the partial excitation detection circuit 13 includes a first voltage detection circuit, a second voltage detection circuit, and a comparison circuit 10.
  • the auxiliary winding N3 of the transformer 5 can be considered to constitute a part of the partial excitation detection circuit 13. Further, it can be considered that the partial excitation detection circuit 13 is provided in the secondary circuit 12.
  • the first voltage detection circuit is a voltage generated in the auxiliary winding N3 due to the first current in the primary circuit 11, and is the absolute value of the first voltage having the first polarity. To detect.
  • the first current is the current of route a (indicated by the dotted line in Fig. 2 described later), and is the current during the positive half-wave period.
  • the first voltage detection circuit includes a first capacitor 91 and a first diode 63.
  • the first diode 63 is a diode for preventing reverse current flow. It is. Therefore, the first voltage detection circuit only needs to include at least the first capacitor 91.
  • the first capacitor 91 is connected between the positive terminal of the auxiliary feeder N3 and the midpoint.
  • the first diode 63 is connected between the positive terminal of the auxiliary conductor N3 and the first capacitor 91.
  • the midpoint of the auxiliary feeder N3 is connected to the ground potential.
  • the second voltage detection circuit is a voltage generated in the auxiliary winding N3 due to the second current in the primary circuit 11, and has a second polarity opposite to the first polarity. Detect the absolute value of the second voltage.
  • the second current is the current of route b (indicated by the alternate long and short dash line in FIG. 2), and is the current during the negative half-wave period.
  • the second voltage detection circuit is also powered by the second capacitor 92 and the second diode 64.
  • the second diode 64 is a diode for preventing reverse current flow (return). Therefore, the second voltage detection circuit may include at least the second capacitor 92.
  • the second capacitor 92 is connected between the midpoint of the auxiliary feeder N3 and the negative terminal.
  • the second diode 64 is connected between the negative terminal of the auxiliary feeder N3 and the second capacitor 92.
  • the comparison circuit 10 includes a comparator 10, for example, and compares the absolute values of the first and second voltages to obtain the difference. That is, the output of the first capacitor 91 that is the first voltage detection circuit is input to one input terminal of the comparator 10. The output of the second capacitor 92, which is the second voltage detection circuit, is input to the other input terminal of the comparator 10. As a result, the comparison circuit 10 is connected to the terminal voltage appearing at the terminal connected to the positive side of the auxiliary feeder N3 of the first capacitor 91 and to the negative side of the auxiliary feeder N3 of the second capacitor 92. The terminal voltage appearing at the terminal is compared to find the difference. The output of the comparison circuit 10 is input (feedback) to the control unit 14.
  • a comparator 10 for example, and compares the absolute values of the first and second voltages to obtain the difference. That is, the output of the first capacitor 91 that is the first voltage detection circuit is input to one input terminal of the comparator 10. The output of the second capacitor 92, which is the second voltage detection circuit, is input
  • the control unit 14 supplies predetermined control signals to the control electrodes of the semiconductor switches 31 to 34 constituting the primary circuit 11, and controls the ONZOFF thereof. In other words, during one positive half-wave period, the semiconductor switches 32 and 33 are turned on (ON), and at the same time, the semiconductor switches 31 and 34 are turned off (OFF). Next, in the negative half-wave period, the semiconductor switches 31 and 34 are turned on (ON), and at the same time, the semiconductor switches 32 and 33 are turned off (OFF). Further, as will be described later, the control unit 14 controls the primary circuit 11 based on the result of comparison in the comparison circuit 10 (the obtained difference, the same applies hereinafter). 1 Next circuit 11 is feedback controlled.
  • FIG. 2 is an explanatory diagram of the operation of the power supply device of FIG. In FIG. 2, the control unit 14 and the reference numerals 11 to 13 are not shown.
  • the current (first current) is supplied from the power supply 4 (+) to the input terminal 1, the semiconductor switch 33, the primary wire Nl of the transformer 5, the semiconductor switch 32, the input terminal 1, and the power supply 4 ( 1) (first positive line N1 positive loop).
  • the power supply voltage Vin is applied to the primary winding N1 of the transformer 5.
  • a voltage corresponding to the winding direction is induced in the auxiliary winding N3 (N3-1), current flows (positive loop of the auxiliary winding N3), and the capacitor 91 is connected via the diode 63. Charge.
  • the semiconductor switches 31 and 34 are turned on (ON) by the control signal from the control unit 14.
  • a route indicated by a one-dot chain line b in FIG. 2 is formed, and a current flows through this route.
  • the current (second current) is supplied from the power source 4 (+) to the input terminal 1, the semiconductor switch 31, the primary wire Nl of the transformer 5, the semiconductor switch 34, the input terminal 1, the power source 4 ( Flow in the order of (1) (negative loop of primary winding N1).
  • the power supply voltage Vin is applied to the primary winding N1 of the transformer 5 in the opposite direction to the case of the positive loop.
  • a corresponding voltage is induced in the auxiliary winding N3 (N3-2) in the direction opposite to the winding direction, and a current flows (negative loop of the auxiliary winding N3) through the diode 64.
  • the partial excitation detection circuit 13 detects the first and second voltages generated in the auxiliary winding N3 provided in the transformer 5. Thereby, the bias excitation detection circuit 13 detects the voltage of the primary winding N1 (and consequently the secondary winding N2) of the transformer 5. That is, the partial excitation generated in the transformer 5 is detected.
  • the first voltage is present at the terminal connected to the positive side of the auxiliary feeder N3 of the first capacitor 91.
  • a first capacitor 91 which is a first voltage detection circuit.
  • the first voltage is a voltage generated by the voltage Vin applied to the transformer 5 when a current flows in the first circuit 11 in the first direction (route a in FIG. 2). Equivalent to the voltage generated on the positive side of line N1.
  • the value of the first voltage is a value proportional to the pulse width of the current in the primary circuit 11. That is, the voltage Vin applied to the transformer 5 causes a current to flow along the route (master side route) represented by the dotted line similar to the route a in the auxiliary feeder N3, and the first capacitor 91 is charged. The first capacitor 91 is charged to the value of the first voltage.
  • the second voltage is a voltage that appears at the terminal connected to the negative side of the auxiliary feeder N3 of the second capacitor 92, and is detected by the second capacitor 92 that is the second voltage detection circuit.
  • the second voltage is a voltage generated by the voltage Vin applied to the transformer 5 when a current flows in the second direction (route b in FIG. 2) in the primary circuit 11. Equivalent to the voltage generated on the negative side of line N1.
  • the value of the second voltage is a value proportional to the pulse width of the current in the primary circuit 11.
  • the voltage Vin applied to the transformer 5 causes a current to flow in the route (slave side route) represented by the alternate long and short dash line similar to the route b in the auxiliary feeder N3, and the second capacitor 92 is charged. .
  • the second capacitor 92 is charged to the value of the second voltage.
  • the control unit 14 controls the primary circuit 11 based on the comparison result in the comparison circuit 10 so that the difference between the absolute values of the first and second voltages is eliminated.
  • the control unit 14 switches the semiconductor circuit 32 and 33 in the primary circuit 11 to the ON / OFF time (ON time in the positive half-wave, in FIG. 3A).
  • Pulse width tl and the ON time in the switching of semiconductor switches 31 and 34 (ON time in the negative half-wave, pulse width t2 in Fig. 3 (A)) is longer than the value at that time. Control to make it shorter or shorter.
  • the conduction time (ON time) tl of the semiconductor switches 32 and 33 is, for example, shorter than the conduction time at that time by a predetermined time. It is. The range of shortening is determined empirically (the same applies hereinafter). Or, the conduction time t2 force of the semiconductor switches 31 and 34, for example, longer than the current conduction time by a predetermined time. The On the other hand, when the second voltage is larger than the first voltage, the conduction time t2 of the semiconductor switches 31 and 34 is shortened by a predetermined time, for example, from the conduction time at that time.
  • the conduction time tl force of the semiconductor switches 32 and 33 is made longer by a predetermined time than the conduction time at that time, for example.
  • FIG. 3 shows a waveform of the power supply device of FIG.
  • Fig. 3 (A) shows the waveform when the power supply unit of Fig. 1 is normal
  • Fig. 3 (B) shows the waveform when the power supply unit of Fig. 1 is abnormal.
  • the bias excitation of the transformer 5 is prevented by the bias excitation detection circuit 13 (and the control unit 4).
  • the pulse width tl on the positive side (positive half-wave application period) and the pulse width t2 on the negative side (negative half-wave application period) are equal.
  • the current I in the primary circuit 11 is a normal wave corresponding to the input waveform.
  • T1N3-1 T1 also has a normal waveform.
  • the unit 14 maintains the pulse width tl and the pulse width t2 as they are. Therefore, this waveform indicates that the partial excitation detection of the transformer 5 can be prevented by the partial excitation detection circuit 13.
  • the input waveform from the power source 4 is equal to the pulse width tl on the positive side and the pulse width t2 on the negative side. Disappear. That is, tl> t2. As a result, the first voltage generated in the capacitor 91
  • the waveform in FIG. 3B is almost the same as that in the case where the capacitor 109 is omitted in the power supply device in FIG.
  • the capacitor 109 cannot be applied (connected) due to restrictions on the withstand voltage of the capacitor 109 and the allowable ripple current.
  • the transformer 105 is saturated by the bias excitation, and is eventually destroyed by the overcurrent, and the bias excitation of the transformer 105 cannot be prevented.
  • the primary circuit 11 is controlled.
  • the pulse width tl on the positive side and the pulse width t2 on the negative side are equal. Therefore, this waveform indicates that the bias excitation of the transformer 5 is prevented by the bias excitation detection circuit 13 of the present invention.
  • the partial excitation detection circuit 13 can prevent the partial excitation of the transformer 5. As a result, it is possible to realize a large-capacity power supply device (that performs large-capacity power conversion) in which the partial excitation of the transformer 5 is prevented.
  • the present invention has been described according to the embodiment.
  • the present invention can be variously modified within the scope of the gist thereof.
  • the present invention is not limited to the full-bridge converter shown in FIG. 1, but can be applied to various switching converters such as a push-pull converter, and a DC component is cut off using a capacitor.
  • Industrial applicability that can be applied to various types of power supplies
  • the present invention in the power supply device, it is possible to prevent partial excitation of the transformer without using a capacitor that is limited in allowable ripple current or withstand voltage. Therefore, since no capacitor is used, even if a large current flows through the primary winding of the transformer, it is possible to prevent partial excitation of the transformer. As a result, it is possible to realize a power supply device that performs large-capacity power conversion while preventing partial excitation of the transformer. In addition, it is possible to prevent the partial excitation of the transformer without adding elements other than the switching element in the primary circuit which is the main circuit of the power supply device. Therefore, the design and maintenance of the power supply device can be facilitated, and the mounting space and the external shape of the power supply device can be dealt with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 電源装置は、入力端子1とトランス5の1次巻線N1との間に接続された1次回路11と、トランス5の2次巻線N2と出力端子2との間に接続された2次回路12と、トランス5に設けられた補助巻線N3と、1次回路11における第1の電流に起因して補助巻線N3に発生する第1の極性を有する第1の電圧を検出する第1の電圧検出回路(91、63)と、1次回路11における第2の電流に起因して補助巻線N3に発生する第2の極性を有する第2の電圧を検出する第2の電圧検出回路(92、64)と、第1及び第2の電圧の絶対値を比較する比較回路10とを備える。

Description

明 細 書
電源装置
技術分野
[0001] 本発明は、電源装置に関し、特に、トランスにおける偏励磁を防止した大容量の電 源装置に関する。
背景技術
[0002] 例えばフルブリッジ型コンバータのような電源装置においては、図 4に示すように、ト ランス 105の 1次卷線 N1に直列にコンデンサ 109を接続することにより、直流成分を 遮断し、トランス 105の偏励磁を防止している。
[0003] 図 4のフルブリッジ型コンバータの 1次側の回路において、正の半波の印加期間( 図 3 (A)のパルス幅 tlのパルスの印加されている期間及びその前後の期間)におい ては、実線の矢印で示すルート aに沿って、電流が流れる。即ち、電源 104 ( + )、入 力端子 101、半導体スィッチ 133、トランス(主トランス) 105、コンデンサ 109、半導体 スィッチ 132、入力端子 101、電源 104 (—)の順で、電流が流れる。一方、負の半波 の印加期間(図 3 (B)のパルス幅 t2のパルスの印加されている期間及びその前後の 期間)においては、点線の矢印で示すルート bに沿って、電流が流れる。即ち、電源 1 04 ( + )、入力端子 101、半導体スィッチ 131、コンデンサ 109、トランス 105、半導体 スィッチ 134、入力端子 101、電源 104 (—)の順で、電流が流れる。従って、コンデ ンサ 109により直流成分が遮断されるので、トランス 105における偏励磁を防止する ことができる。
[0004] なお、インバータの出力電流に基づいて偏励磁による直流成分を抑制する補正量 を用いて、偏励磁現象が発生してもインバータの交流出力側に流れる直流成分を抑 制できるように、インバータを制御することが知られて 、る(下記特許文献 1参照)。
[0005] また、スイッチング素子力もなる 2組の直列回路の中点間にトランスの 1次卷線と共 振コンデンサの直列回路を設けることにより、簡単な構成で効率の良い変換を行うこ とが知られて 、る(下記特許文献 2参照)。
[0006] また、トランスが発生する磁界を打ち消すような磁界を発生する補助卷線をトランス に設けることにより、トランスの 1次卷線電流が過電流となっている期間のみ補助卷線 に磁界を発生させて、トランスが発生する磁界を打ち消し、これにより、トランスの偏励 磁を防止することが知られて 、る(下記特許文献 3参照)。
特許文献 1:特開平 8— 223944号公報
特許文献 2 :特開平 10— 136653号公報
特許文献 3:特開昭 53 - 147223号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明者が、図 4に示すような電源装置 (フルブリッジ型コンバータ)について検討 したところ、以下のような問題があることが判った。
[0008] 第 1に、トランス 105の 1次卷線 N1に流れる電流(1次電流)が、全てコンデンサ 10 9に流れる。このため、電源装置が大容量になるに伴って、コンデンサ 109に流れる 電流が大きくなる。しかし、コンデンサ 109には、その電流 (許容リップル電流)ゃ耐電 圧において制約がある。この許容リップル電流や耐圧の制約を超えて使用することは 、安全上の観点力も不可能である。そして、コンデンサ 109の許容リップル電流ゃ耐 圧を大きくすることは困難であり、これらの大きな改善はあまり望むことができない。特 に、コンデンサ 109の許容リップル電流を大きくすることは殆どできない。従って、コン デンサ 109によりトランス 105の偏励磁を防止する方法は大容量の電源装置には適 さない。また、図 4に示すような電源装置は大容量の電源装置に適しているとは言え ない。
[0009] 第 2に、トランス 105の 1次回路 111において、偏励磁防止用の素子として、例えば コンデンサ 109を付加しなければならない。しかし、 1次回路 111は当該電源装置の 主回路であるので、これにコンデンサ 109のようなスイッチング素子以外の素子を付 カロすることは、設計や保守の観点力も避けることが望ましい。また、電源装置によって はその実装空間や外形に制約があるが、コンデンサ 109を付加した場合、当該制約 に対応できな 、可能性がある。
[0010] 本発明は、トランスの 1次回路を変更することなぐトランスにおける偏励磁を防止す ることにより、安定した動作を可能とした大容量の電源装置を提供することを目的とす る。
課題を解決するための手段
[0011] 本発明の電源装置は、入力端子と、出力端子と、 1次卷線と 2次卷線を備えるトラン スと、前記入力端子と前記トランスの 1次卷線との間に接続された 1次回路と、前記ト ランスの 2次卷線と前記出力端子との間に接続された 2次回路と、前記トランスに設け られた補助卷線と、前記 1次回路における第 1の電流に起因して前記補助卷線に発 生する電圧であって、第 1の極性を有する第 1の電圧の絶対値を検出する第 1の電 圧検出回路と、前記 1次回路における前記第 1の電流とは逆方向に流れる第 2の電 流に起因して前記補助卷線に発生する電圧であって、前記第 1の極性とは逆の第 2 の極性を有する第 2の電圧の絶対値を検出する第 2の電圧検出回路と、前記第 1及 び第 2の電圧の絶対値を比較する比較回路とを備える。
[0012] また、好ましくは、本発明の電源装置の一実施態様によれば、電源装置は、更に、 前記比較の結果に基づいて、前記第 1及び第 2の電圧の絶対値の差が無くなるよう に、前記 1次回路を制御する制御部を備える。
[0013] また、好ましくは、本発明の電源装置の一実施態様によれば、前記第 1の電圧検出 回路は、前記補助卷線の正側と中点との間に接続された第 1のコンデンサ力 なり、 前記第 2の電圧検出回路は、前記補助卷線の中点と負側との間に接続された第 2の コンデンサからなる。
[0014] また、好ましくは、本発明の電源装置の一実施態様によれば、前記第 1の電圧検出 回路は、更に、前記補助卷線の正側と前記第 1のコンデンサとの間に接続された第 1 のダイオードからなり、前記第 2の電圧検出回路は、更に、前記補助卷線の負側と前 記第 2のコンデンサとの間に接続された第 2のダイオードからなる。
[0015] また、好ましくは、本発明の電源装置の一実施態様によれば、前記比較回路は、前 記第 1のコンデンサの前記補助卷線の正側に接続された端子に現れる端子電圧と、 前記第 2のコンデンサの前記補助卷線の負側に接続された端子に現れる端子電圧と を比較するコンパレータ力 なる。
発明の効果
[0016] 本発明の電源装置によれば、トランスに補助卷線を設け、 1次回路における第 1の 電流に起因して補助卷線に発生する第 1の電圧と、 1次回路における第 2の電流に 起因して補助卷線に発生する第 2の電圧とを比較する。これにより、トランスに発生す る偏励磁を直接検出し制御することができるので、許容リップル電流ゃ耐電圧にぉ ヽ て制約があるコンデンサを用いることなぐトランスの偏励磁を防止することができる。 また、電源装置の主回路である 1次回路においてコンデンサのようなスイッチング素 子以外の素子を付加することなぐトランスの偏励磁を防止することができる。
[0017] また、本発明の一実施態様によれば、前記比較の結果に基づいて、第 1及び第 2 の電圧の絶対値の差が無くなるように、 1次回路を制御する。これにより、補助卷線に 生じる電圧に基づいて、トランスに発生する偏励磁を打ち消すように 1次回路の動作 を直接制御することができるので、コンデンサを用いることなく、トランスの偏励磁を防 止することができる。
[0018] また、本発明の一実施態様によれば、第 1の電圧検出回路は第 1のコンデンサから なり、第 2の電圧検出回路は第 2のコンデンサ力 なる。これにより、比較的に簡単な 構成により第 1及び第 2の電圧を検出することができ、この結果、トランスの偏励磁を 防止することができる。
[0019] また、本発明の一実施態様によれば、第 1の電圧検出回路は第 1のコンデンサと第 1のダイオードからなり、第 2の電圧検出回路は第 2のコンデンサと第 2のダイオードか らなる。これにより、第 1及び第 2の電圧検出回路において電流が逆流することを防止 して、第 1及び第 2の電圧を正確に検出することができ、この結果、トランスの偏励磁 を防止することができる。
[0020] また、本発明の一実施態様によれば、第 1及び第 2の電圧をコンパレータを用いて 比較する。これにより、比較的に簡単な構成の回路により第 1及び第 2の電圧を検出 することができ、この結果、トランスの偏励磁を防止することができる。
図面の簡単な説明
[0021] [図 1]本発明の電源装置の構成の一例を示す図である。
[図 2]図 1の電源装置の動作の説明図である。
[図 3]図 1の電源装置の波形を示す。
[図 4]従来の電源装置の説明図である。 符号の説明
[0022] 1 入力端子
2 出力端子
5 卜ランス
11 1次回路
12 2次回路
13 偏励磁検出回路
14 制御部
31〜34 半導体スィッチ
発明を実施するための最良の形態
[0023] 図 1は、電源装置構成図であり、本発明の一実施態様による電源装置の構成を示 す。電源装置は、入力端子 1と、出力端子 2と、トランス 5と、 1次回路 11と、 2次回路 1 2と、偏励磁検出回路 13と、制御部 14とからなる。トランス 5は、 1次卷線 N1及び 2次 卷線 N2に加えて、補助卷線 N3を備える。なお、 N1は 1次卷線 N1の卷数をも表す。 N2及び N3も同様である。 2次卷線 N2は、後述するように、その中点において、 2次 卷線 N2の第 1部分 N2— 1と第 2部分 N2— 2とに 2等分される。 2次卷線 N2に対応 するように、補助卷線 N3も、その中点において、補助卷線 N3の第 1部分 N3— 1と第 2部分 N3 - 2とに 2等分される。
[0024] 入力端子 1は、複数個(即ち、 2個)設けられる。入力端子 1の間に、電源 4が接続さ れる。電源 4は、この電源装置に電源、例えば後述する図 3 (A)の最上段に示すよう な波形を有する電源を供給する。なお、電源 4はこれに限られず、他の種々の電源で あっても良い。
[0025] 1次回路 (入力回路) 11は、入力端子 1とトランス 5の 1次卷線 N1との間に接続され る。 1次回路 11は、第 1〜第 4のスイッチング素子、例えば半導体スィッチ 31〜34か らなるブリッジ回路力 なる。第 1及び第 2の半導体スィッチ 31及び 32が、この順に直 列に接続され、第 1の直列回路を構成する。第 3及び第 4の半導体スィッチ 33及び 3 4が、この順に直列に接続され、第 2の直列回路を構成する。第 1及び第 2の直列回 路カ 並列に接続され、入力端子 1の間に挿入される。トランス 5の 1次卷線 N1の一 方の端子は、直列に接続された第 1及び第 2の半導体スィッチ 31及び 32の接続点( 中点)に接続される。トランス 5の 1次卷線 N1の他方の端子は、直列に接続された第 3及び第 4の半導体スィッチ 33及び 34の接続点(中点)に接続される。
[0026] 半導体スィッチ 31〜34は、周知のように、例えば電力用の MOSFET、 IGBT、 BJ T、 SIT,サイリスタ、 GTO等の半導体素子からなる。半導体スィッチ 31〜34の制御 電極 (ゲート電極又はベース電極等)には、各々、制御部 14から所定の制御信号が 供給される。これにより、半導体スィッチ 31〜34は、基本的には、電源 4の出力の振 幅の変化に対応するように、その ONZOFFが制御される。
[0027] 2次回路(出力回路) 12は、トランス 5の 2次卷線 N2と出力端子 2との間に接続され る。出力端子 2は、複数個(即ち、 2個)設けられる。出力端子 2の間に、この電源装置 の出力である直流電圧が出力される。 2次回路 12は、ダイオード 61及び 62、インダ クタンス 7、コンデンサ 8からなる。なお、ダイオード 61及び 62は、周知のように、ダイ オードに代えて MOSFET、 IGBT、 SIT等で構成しても良い。トランス 5の 2次卷線 N 2の双方の端子に接続されたダイオード 61及び 62を介して、トランス 5の出力電圧が 、出力端子 2の一方に出力される。出力端子 2の他方は、トランス 5の 2次卷線 N2の 中点に接続される。即ち、中点によって、トランス 5の 2次卷線 N2が、その第 1部分 N 2—1と第 2部分 N2— 2との卷数比が等しくなるように、 2分割される。インダクタンス 7 及びコンデンサ 8は平滑回路を構成し、この平滑回路が出力端子 2の間に挿入され る。これにより、トランス 5の出力電圧が整流、平滑される。
[0028] 偏励磁検出回路 13は、第 1の電圧検出回路と、第 2の電圧検出回路と、比較回路 10とを備える。なお、トランス 5の補助卷線 N3は偏励磁検出回路 13の一部を構成す ると考えることができる。また、偏励磁検出回路 13が 2次回路 12に設けられると考え ることがでさる。
[0029] 第 1の電圧検出回路は、 1次回路 11における第 1の電流に起因して補助卷線 N3 に発生する電圧であって、第 1の極性を有する第 1の電圧の絶対値を検出する。第 1 の電流は、ルート a (後述する図 2に点線で示す)の電流であり、正の半波の期間にお ける電流である。第 1の電圧検出回路は、第 1のコンデンサ 91と第 1のダイオード 63 とからなる。第 1のダイオード 63は、電流の逆流 (還流)を防止するためのダイオード である。従って、第 1の電圧検出回路は、少なくとも第 1のコンデンサ 91を備えれば良 い。第 1のコンデンサ 91は、補助卷線 N3の正側の端子と中点との間に接続される。 第 1のダイオード 63は、補助卷線 N3の正側の端子と前記第 1のコンデンサ 91との間 に接続される。補助卷線 N3の中点は、接地電位に接続される。
[0030] 第 2の電圧検出回路は、 1次回路 11における第 2の電流に起因して補助卷線 N3 に発生する電圧であって、第 1の極性とは逆の第 2の極性を有する第 2の電圧の絶対 値を検出する。第 2の電流は、ルート b (図 2に一点鎖線で示す)の電流であり、負の 半波の期間における電流である。第 2の電圧検出回路は、第 2のコンデンサ 92と第 2 のダイオード 64と力もなる。第 2のダイオード 64は、電流の逆流(還流)を防止するた めのダイオードである。従って、第 2の電圧検出回路は、少なくとも第 2のコンデンサ 9 2を備えれば良い。第 2のコンデンサ 92は、補助卷線 N3の中点と負側の端子との間 に接続される。第 2のダイオード 64は、補助卷線 N3の負側の端子と第 2のコンデン サ 92との間に接続される。
[0031] 比較回路 10は、例えばコンパレータ 10からなり、第 1及び第 2の電圧の絶対値を比 較してその差分を求める。即ち、第 1の電圧検出回路である第 1のコンデンサ 91の出 力は、コンパレータ 10の一方の入力端子に入力される。第 2の電圧検出回路である 第 2のコンデンサ 92の出力は、コンパレータ 10の他方の入力端子に入力される。こ れにより、比較回路 10は、第 1のコンデンサ 91の補助卷線 N3の正側に接続された 端子に現れる端子電圧と、第 2のコンデンサ 92の補助卷線 N3の負側に接続された 端子に現れる端子電圧とを比較してその差分を求める。比較回路 10の出力は、制御 部 14に入力される(フィードバックされる)。
[0032] 制御部 14は、周知のように、 1次回路 11を構成する半導体スィッチ 31〜34の制御 電極に、各々、所定の制御信号を供給し、その ONZOFFを制御する。即ち、 1周期 の正の半波の期間において、半導体スィッチ 32及び 33が導通(ON)とされ、同時に 半導体スィッチ 31及び 34が非導通(OFF)とされる。次に、負の半波の期間におい て、半導体スィッチ 31、 34が導通(ON)とされ、同時に半導体スィッチ 32及び 33は 非導通(OFF)とされる。また、制御部 14は、後述するように、比較回路 10における 比較の結果 (求めた差分、以下同じ)に基づいて、 1次回路 11を制御する。即ち、 1 次回路 11をフィードバック制御する。
[0033] 図 2は、図 1の電源装置の動作の説明図である。なお、図 2において、制御部 14及 び符号 11〜13の図示は省略される。
[0034] 最初に、電源 4を入力とする図 1の電源装置における、正の半波の動作を説明する 。この場合、前述のように、制御部 14からの制御信号により、半導体スィッチ 32及び 33が導通(ON)する。これにより、図 2において点線 aで示すルートが形成され、この ルートに電流が流れる。
[0035] 即ち、電流 (第 1の電流)は、電源 4 ( + )から、入力端子 1、半導体スィッチ 33、トラ ンス 5の 1次卷線 Nl、半導体スィッチ 32、入力端子 1、電源 4 (一)の順に流れる(1次 卷線 N1の正のループ)。これにより、トランス 5の 1次卷線 N1に電源電圧 Vinが印加 される。この際、同時に、補助卷線 N3 (N3— 1)において、卷線方向に対応する電圧 が誘起され、電流が流れ (補助卷線 N3の正のループ)、ダイオード 63を介してコン デンサ 91を充電する。
[0036] 次に、電源 4を入力とする図 1の電源装置における、負の半波の動作を説明する。
この場合、前述のように、制御部 14からの制御信号により、半導体スィッチ 31、 34が 導通(ON)する。これにより、図 2において一点鎖線 bで示すルートが形成され、この ルートに電流が流れる。
[0037] 即ち、電流 (第 2の電流)は、電源 4 ( + )から、入力端子 1、半導体スィッチ 31、トラ ンス 5の 1次卷線 Nl、半導体スィッチ 34、入力端子 1、電源 4 (一)の順に流れる(1次 卷線 N1の負のループ)。これにより、トランス 5の 1次卷線 N1に、正のループの場合 とは逆向きに、電源電圧 Vinが印加される。この際、同時に、補助卷線 N3 (N3— 2) において、対応する電圧が、卷線方向とは逆向きに誘起され、電流が流れ (補助卷 線 N3の負のループ)、ダイオード 64を介してコンデンサ 92を充電する。
[0038] 以上のように、偏励磁検出回路 13が、トランス 5に設けられた補助卷線 N3に発生 する第 1及び第 2の電圧を検出する。これにより、偏励磁検出回路 13が、トランス 5の 1次卷線 N1 (及び結果として 2次卷線 N2)の電圧を検出する。即ち、トランス 5に発 生する偏励磁を検出する。
[0039] 第 1の電圧は、第 1のコンデンサ 91の補助卷線 N3の正側に接続された端子に現 れる電圧であり、第 1の電圧検出回路である第 1のコンデンサ 91により検出される。第 1の電圧は、 1次回路 11において第 1の方向(図 2におけるルート a)に電流が流れた 場合に、トランス 5に印加される電圧 Vinにより生じる電圧であり、トランス 5の 1次卷線 N1の正側に発生する電圧と等価である。第 1の電圧の値は、 1次回路 11における当 該電流のパルス幅に比例した値となる。即ち、トランス 5に印加される電圧 Vinにより、 補助卷線 N3において、ルート aと同様の点線で表されるルート(マスタ側ルート)に電 流が流れ、第 1のコンデンサ 91が充電される。第 1のコンデンサ 91は第 1の電圧の値 まで充電される。
[0040] 第 2の電圧は、第 2のコンデンサ 92の補助卷線 N3の負側に接続された端子に現 れる電圧であり、第 2の電圧検出回路である第 2のコンデンサ 92により検出される。第 2の電圧は、 1次回路 11において第 2の方向(図 2におけるルート b)に電流が流れた 場合に、トランス 5に印加される電圧 Vinにより生じる電圧であり、トランス 5の 1次卷線 N1の負側に発生する電圧と等価である。第 2の電圧の値は、 1次回路 11における当 該電流のパルス幅に比例した値となる。即ち、トランス 5に印加される電圧 Vinにより、 補助卷線 N3において、ルート bと同様の一点鎖線で表されるルート (スレーブ側ルー ト)に電流が流れ、第 2のコンデンサ 92が充電される。第 2のコンデンサ 92は第 2の電 圧の値まで充電される。
[0041] 制御部 14は、以上の比較回路 10における比較の結果に基づいて、第 1及び第 2 の電圧の絶対値の差が無くなるように、 1次回路 11を制御する。即ち、制御部 14は、 1次回路 11にお 、て、半導体スィッチ 32及び 33のスイッチングにお!/、てその ONとさ れる時間(正の半波における ON時間、図 3 (A)におけるパルス幅 tl)と、半導体スィ ツチ 31及び 34のスイッチングにおいてその ONとされる時間(負の半波における ON 時間、図 3 (A)におけるパルス幅 t2)とを、その時点の値よりも長くするように又は短く するように制御する。
[0042] 例えば、第 1の電圧が第 2の電圧よりも大きい場合、半導体スィッチ 32及び 33の導 通時間(ON時間) tlが、例えばその時点での導通時間よりも所定の時間だけ短くさ れる。短縮の幅は経験的に予め定められる(以下同じ)。又は、半導体スィッチ 31及 び 34の導通時間 t2力 例えばその時点での導通時間よりも所定の時間だけ長くされ る。逆に、第 2の電圧が第 1の電圧よりも大きい場合、半導体スィッチ 31及び 34の導 通時間 t2が、例えばその時点での導通時間よりも所定の時間だけ短くされる。又は、 半導体スィッチ 32及び 33の導通時間 tl力 例えばその時点での導通時間よりも所 定の時間だけ長くされる。この制御が逐次的に行われることにより、最終的には、 tl =t2となる。これにより、トランス 5における偏励磁を防止することができる。
[0043] 図 3は、図 1の電源装置の波形を示す。特に、図 3 (A)は図 1の電源装置の正常時 の波形を示し、図 3 (B)は図 1の電源装置の異常時の波形を示す。
[0044] 図 3 (A)においては、偏励磁検出回路 13 (及び制御部 4)により、トランス 5の偏励 磁が防止されている。この結果、電源 4からの入力波形において正側(正の半波の印 加期間)におけるパルス幅 tlと負側 (負の半波の印加期間)におけるパルス幅 t2とが 等しくなる。これにより、 1次回路 11における電流 I は入力波形に応じた正常な波
T1-N1
形となり、補助卷線 N3— 1に流れる電流 I 及び補助卷線 N3— 2に流れる電流 I
T1N3-1 T1 も正常な波形となる。この結果、コンデンサ 91に生じる第 1の電圧 V 及びコンデ
N3-2 C1
ンサ 92に生じる第 2の電圧 V が等しくなり、その差分は「0」となる。この場合、制御
C2
部 14は、パルス幅 tl及びパルス幅 t2をそのまま維持する。従って、この波形は、偏 励磁検出回路 13によりトランス 5の偏励磁を防止することができることを示す。
[0045] 一方、図 3 (B)にお!/、ては、何らかの原因で、電源 4からの入力波形にお!、て、正 側におけるパルス幅 tlと負側におけるパルス幅 t2とが等しくなくなる。即ち、 tl >t2 である。この結果、コンデンサ 91に生じる第 1の電圧 V 力 コンデンサ 92に生じる第
C1
2の電圧 V よりも大きくなる。即ち、 V >V である。このままでは、トランス 5が、偏
C2 CI C2
励磁により飽和して、最終的には過電流により破壊されてしまう。 tl <t2の場合もこ れと同様である。
[0046] なお、図 3 (B)の波形は、図 4の電源装置においてコンデンサ 109を省略した場合 の例とほぼ等しい。即ち、大容量の電力変換を行う電源装置においては、コンデンサ 109の耐電圧や許容リップル電流の制約から、コンデンサ 109を適用(接続)すること ができない。このため、トランス 105が、偏励磁により飽和して、最終的には過電流に より破壊されてしまい、トランス 105の偏励磁を防止することができない。
[0047] そこで、本発明においては、比較回路 10がコンデンサ 91に生じる第 1の電圧 V と コンデンサ 92に生じる第 2の電圧 V とを比較し、この比較結果である差分 V =V
C2 CS C1
-V 〉0 (又は、 V =V -V 〉0)に基づいて、差分 V 力「0」となるように(「0」と
C2 CS C2 ci cs
なる方向に向けて) 1次回路 11が制御される。この結果、再度、図 3 (A)に示すように 、電源 4からの入力波形において、正側におけるパルス幅 tlと負側におけるパルス 幅 t2とが等しくなる。従って、この波形は、本発明の偏励磁検出回路 13により、トラン ス 5の偏励磁が防止されて 、ることを示す。
[0048] 以上から判るように、偏励磁検出回路 13により、トランス 5の偏励磁を防止すること ができる。これにより、トランス 5の偏励磁を防止した大容量の(即ち、大容量の電力 変換を行う)電源装置を実現することができる。
[0049] 以上、本発明をその実施の形態に従って説明した力 本発明は、その主旨の範囲 内で種々の変形が可能である。
[0050] 例えば、本発明は、図 1に示すフルブリッジ型コンバータに限らず、プッシュプル型 コンバータ等の種々のスイッチングコンバータに適用することができ、また、コンデン サを用いて直流成分を遮断して 、る形式の種々の電源装置に適用することができる 産業上の利用可能性
[0051] 以上、説明したように、本発明によれば、電源装置において、許容リップル電流や 耐電圧において制約があるコンデンサを用いることなぐトランスの偏励磁を防止する ことができる。従って、コンデンサを用いないので、トランスの 1次卷線に大きな電流が 流れても、トランスの偏励磁を防止することができる。これにより、トランスの偏励磁を 防止した大容量の電力変換を行う電源装置を実現することができる。また、電源装置 の主回路である 1次回路においてスイッチング素子以外の素子を付加することなぐト ランスの偏励磁を防止することができる。従って、電源装置の設計及び保守を容易に することができ、また、電源装置に対する実装空間や外形の制約にも対応することが できる。

Claims

請求の範囲
[1] 入力端子と、
出力端子と、
1次卷線と 2次卷線を備えるトランスと、
前記入力端子と前記トランスの 1次卷線との間に接続された 1次回路と、 前記トランスの 2次卷線と前記出力端子との間に接続された 2次回路と、 前記トランスに設けられた補助卷線と、
前記 1次回路における第 1の電流に起因して前記補助卷線に発生する電圧であつ て、第 1の極性を有する第 1の電圧の絶対値を検出する第 1の電圧検出回路と、 前記 1次回路における前記第 1の電流とは逆方向に流れる第 2の電流に起因して 前記補助卷線に発生する電圧であって、前記第 1の極性とは逆の第 2の極性を有す る第 2の電圧の絶対値を検出する第 2の電圧検出回路と、
前記第 1及び第 2の電圧の絶対値を比較する比較回路とを備える
ことを特徴とする電源装置。
[2] 請求項 1に記載の電源装置が、更に、
前記比較の結果に基づいて、前記第 1及び第 2の電圧の絶対値の差が無くなるよう に、前記 1次回路を制御する制御部を備える
ことを特徴とする電源装置。
[3] 請求項 2に記載の電源装置において、
前記 1次回路が、半導体スィッチからなるブリッジ回路からなり、
前記制御部が、前記比較の結果に基づいて、前記第 1及び第 2の電圧の絶対値の 差が無くなるように、前記半導体スィッチのスイッチングを制御する
ことを特徴とする電源装置。
[4] 請求項 3に記載の電源装置において、
前記 1次回路が、第 1及び第 2の半導体スィッチをこの順に直列に接続した第 1の 直列回路と、第 3及び第 4の半導体スィッチをこの順に直列に接続した第 2の直列回 路とを並列に接続したブリッジ回路力 なり、
前記制御部が、前記比較の結果に基づいて、前記第 1及び第 2の電圧の絶対値の 差が無くなるように、前記第 1及び第 4の半導体スィッチのスイッチングと、前記第 2及 び第 3の半導体スィッチのスイッチングとを制御する
ことを特徴とする電源装置。
[5] 請求項 1に記載の電源装置において、
前記第 1の電圧検出回路が、前記補助卷線の正側と中点との間に接続された第 1 のコンデンサからなり、
前記第 2の電圧検出回路が、前記補助卷線の中点と負側との間に接続された第 2 のコンデンサからなる
ことを特徴とする電源装置。
[6] 請求項 5に記載の電源装置において、
前記第 1の電圧検出回路が、更に、前記補助卷線の正側と前記第 1のコンデンサと の間に接続された第 1のダイオードからなり、
前記第 2の電圧検出回路が、更に、前記補助卷線の負側と前記第 2のコンデンサと の間に接続された第 2のダイオードからなる
ことを特徴とする電源装置。
[7] 請求項 5に記載の電源装置において、
前記比較回路が、前記第 1のコンデンサの前記補助卷線の正側に接続された端子 に現れる端子電圧と、前記第 2のコンデンサの前記補助卷線の負側に接続された端 子に現れる端子電圧とを比較するコンパレータからなる
ことを特徴とする電源装置。
PCT/JP2006/306885 2006-03-31 2006-03-31 電源装置 WO2007116481A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008509632A JP4796133B2 (ja) 2006-03-31 2006-03-31 電源装置
PCT/JP2006/306885 WO2007116481A1 (ja) 2006-03-31 2006-03-31 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306885 WO2007116481A1 (ja) 2006-03-31 2006-03-31 電源装置

Publications (1)

Publication Number Publication Date
WO2007116481A1 true WO2007116481A1 (ja) 2007-10-18

Family

ID=38580790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306885 WO2007116481A1 (ja) 2006-03-31 2006-03-31 電源装置

Country Status (2)

Country Link
JP (1) JP4796133B2 (ja)
WO (1) WO2007116481A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093938A (ja) * 2008-10-07 2010-04-22 Shindengen Electric Mfg Co Ltd 絶縁型コンバータ
JP2013055859A (ja) * 2011-09-06 2013-03-21 Denso Corp 電力変換装置および電源システム
JP2013055858A (ja) * 2011-09-06 2013-03-21 Denso Corp 電力変換装置および電源システム
WO2014077281A1 (ja) * 2012-11-15 2014-05-22 日立オートモティブシステムズ株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313153A (en) * 1976-07-22 1978-02-06 Siemens Ag Ac power regulator
JPH09322536A (ja) * 1996-05-24 1997-12-12 Asia Electron Inc スイッチング電源
JP2006067692A (ja) * 2004-08-26 2006-03-09 Denso Corp パワースイッチング装置の制御電源装置用dc−dcコンバータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313153A (en) * 1976-07-22 1978-02-06 Siemens Ag Ac power regulator
JPH09322536A (ja) * 1996-05-24 1997-12-12 Asia Electron Inc スイッチング電源
JP2006067692A (ja) * 2004-08-26 2006-03-09 Denso Corp パワースイッチング装置の制御電源装置用dc−dcコンバータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093938A (ja) * 2008-10-07 2010-04-22 Shindengen Electric Mfg Co Ltd 絶縁型コンバータ
JP2013055859A (ja) * 2011-09-06 2013-03-21 Denso Corp 電力変換装置および電源システム
JP2013055858A (ja) * 2011-09-06 2013-03-21 Denso Corp 電力変換装置および電源システム
WO2014077281A1 (ja) * 2012-11-15 2014-05-22 日立オートモティブシステムズ株式会社 電力変換装置
JP2014100022A (ja) * 2012-11-15 2014-05-29 Hitachi Automotive Systems Ltd 電力変換装置

Also Published As

Publication number Publication date
JP4796133B2 (ja) 2011-10-19
JPWO2007116481A1 (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
US9166499B2 (en) Electronic circuit operating based on isolated switching power source
US8036008B2 (en) DC/DC power converting apparatus
US7257010B2 (en) Power supply circuit
US7561449B2 (en) DC-AC converter and method for protecting DC-AC converter from overcurrent
US20060132062A1 (en) Current detection circuit, and power supply apparatus, power supply system and electronic apparatus using the current detection circuit
US10491136B2 (en) Bridge-less type electric power conversion device having current detection circuit of current transformer type
KR102116705B1 (ko) 컨버터 및 그 구동 방법
JP2007110869A (ja) 電力変換装置
JP2004535150A (ja) 電力コンバータの同期整流器を制御するための方法及び装置
CN112134474A (zh) 半导体装置
US7075801B2 (en) Dc converter
JP6057087B2 (ja) 直流電源装置
JP4796133B2 (ja) 電源装置
JP2019115130A (ja) 直流変換器
US11362654B2 (en) Auxiliary circuit
JP5394975B2 (ja) スイッチングトランジスタの制御回路およびそれを用いた電力変換装置
JP5272638B2 (ja) スイッチング電源装置及びスイッチング制御システム
JP4720514B2 (ja) 共振コンバータにおける電流検出方式
JP5510846B2 (ja) 共振型dcdcコンバータ
US20090027923A1 (en) Power supply device and power supply control method
JP2008048484A (ja) 直流交流変換装置の駆動方法
JP2006115660A (ja) 入出力絶縁型dc−dcコンバータ
JP2019103200A (ja) 電力変換装置
JP2022121050A (ja) 電力変換装置
JP2022075146A (ja) Dcdcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509632

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730833

Country of ref document: EP

Kind code of ref document: A1