WO2007108450A1 - 医療用生分解性マグネシウム材 - Google Patents

医療用生分解性マグネシウム材 Download PDF

Info

Publication number
WO2007108450A1
WO2007108450A1 PCT/JP2007/055571 JP2007055571W WO2007108450A1 WO 2007108450 A1 WO2007108450 A1 WO 2007108450A1 JP 2007055571 W JP2007055571 W JP 2007055571W WO 2007108450 A1 WO2007108450 A1 WO 2007108450A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
magnesium
atomic percent
atomic
film
Prior art date
Application number
PCT/JP2007/055571
Other languages
English (en)
French (fr)
Inventor
Sachiko Hiromoto
Akiko Yamamoto
Norio Maruyama
Toshiji Mukai
Hidetoshi Somekawa
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2008506298A priority Critical patent/JPWO2007108450A1/ja
Priority to US12/225,369 priority patent/US20090131540A1/en
Priority to EP20070739014 priority patent/EP1997522B1/en
Publication of WO2007108450A1 publication Critical patent/WO2007108450A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a medical biodegradable magnesium material and a method for producing the same. More specifically, the present invention provides desired mechanical properties in the initial stage of implantation without changing the mechanical properties such as strength and ductility inherent in magnesium and its alloys, and also improves the mechanical properties.
  • the present invention relates to a biodegradable magnetic material for medical use capable of controlling a holding period as long or short as desired and a method for producing the same.
  • a metal medical device that has been generally used conventionally will remain in the body unless it is removed by surgery after implantation in the body. Depending on the application, it is desired that such a device retains its strength during the period when the surrounding tissue is repaired, and is decomposed and disappears without requiring surgery after the repair.
  • Magnesium is a low biohazardous material, and is corroded at a very high rate in a neutral aqueous solution containing chloride ions, such as body fluids, and decomposes and disappears. It is expected to be used as a medical biodegradable metal material that is gradually decomposed and absorbed after implantation in the body, and its development has been promoted (see, for example, Patent Documents 1 and 2).
  • the strength holding period required for the device is long and short and covers a very wide range.
  • a device for repairing a blood vessel such as a stent maintains the strength for 5 days or 6 months until the stenosis of the blood vessel is repaired, and after the blood vessel is repaired, the entire device is disassembled. It is hoped that it will be almost completed in the period of 1 to 12 weeks. This is because when the stent remains even after the vessel wall is repaired, the mechanical 'chemical stimulation that the stent continues to give to the vessel wall causes vascular restenosis due to excessive proliferation of vascular endothelial cells. Therefore, the disappearance of the stent after vascular repair is also a very important force.
  • the device supports the load for a period of 1 month or 3 months until the fracture is healed, and then the disassembly of the entire device can be almost completed in a period of 8 months to 5 years. desired.
  • the device after fracture healing Since the load is gradually applied to the healed bone as the bone breaks down and disappears, it is possible to suppress load blockage in which the device supports the load instead of the bone. This leads to the suppression of re-fractures caused by bone resorption (bone thinning) due to load blockage, and can reduce the burden on patients who do not need to perform surgery to remove the device after healing the fracture.
  • the holding period of the strength required by the device extends over a wide range and sometimes becomes a long period of several months or more.
  • it is desirable that the progress of decomposition can be controlled by the period requiring strength maintenance and the subsequent decomposition period.
  • the decomposition period is controlled by the size of the device.
  • it in addition to starting decomposition immediately after implantation, it is practically appropriate to use it as a device that requires long-term strength maintenance in a living body where the desired device size is limited. It was impossible.
  • the biodegradable magnesium material proposed by the present inventors in Patent Document 2 is based on the composition of the material itself and the structure control, and the strength-extensibility balance of the material and the degradation rate in vivo.
  • the decomposition rate can be increased as the crystal grain size of magnesium is reduced, and the decomposition rate can be increased by increasing the particle size or controlling the additive element and its concentration. It can be slowed down.
  • the crystal grain size is increased, it is difficult to finely adjust the decomposition rate, and it is relatively difficult to precisely reduce the decomposition rate. In other words, since decomposition starts immediately after implantation, it was difficult to control both the initial strength retention and the degradation rate over a long period of time.
  • Patent Document 3 there has also been proposed a technique for improving the corrosion resistance by thermally oxidizing pure magnesium for living organisms in an oxidizing atmosphere and utilizing the mechanical strength inherent in magnesium.
  • Patent Document 3 the heat treatment at a high temperature of Patent Document 3 changes the microstructure of the magnesium material, which is a base material, leading to a decrease in strength and corrosion resistance. Therefore, there are limited magnesium materials to which thermal oxidation can be applied. There was a problem that. Furthermore, the oxide film formed on the surface of the magnesium material by thermal oxidation cannot sufficiently suppress the decomposition of the magnesium material for a long time after implantation in the body.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-160236
  • Patent Document 2 Japanese Patent Application No. 2005-331841
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-28229
  • the present invention has been made in view of the circumstances as described above, solves the problems of the prior art, and mechanical properties such as strength and ductility inherent in magnesium and its alloys.
  • the present invention provides a biodegradable magnesium material for medical use and a method for producing the same, which can exhibit desired mechanical characteristics in the initial stage of implantation without changing the material, and can control the retention period of the mechanical characteristics as long or short as desired.
  • the medical biodegradable magnesium material of the present invention is a medical biodegradable magnesium material that is first decomposed in vivo and absorbed by the medical biodegradable magnesium material.
  • the first medical biodegradable magnesium material is characterized in that the average crystal grain size is 1Z4 or less of the minimum part of the member.
  • the main component is 93.5 atomic% or more of magnesium, and the second component is included. It is characterized by the uneven concentration of components at the grain boundaries being 1.2 times or more of the average concentration within the grains.
  • the third medical biodegradable magnesium material as the second component, 0.03 atomic percent or less of Ce, 0.03 atomic percent or less of Pr, 0.033 atomic percent or less of Au, Ir below 0.043 atomic%, 1 ⁇ below 0.047 atomic%, Pd below 0.067 atomic%, 0.17 atomic% or below Th, 0.2 atomic percent or less Nd, 0.3 atomic percent or less Ca, 0.3 atomic percent or less Mn, 0.3 atomic percent or less Zr, 0.37 atomic percent or less Bi, 4 atom% or less Yb, 0.47 atom% or less Rb, 0.64 atom% or less Co, 0.8 atom% or less Zn, 0.8 atom% or less Pu, 1.0 atom% or less Ga, 1.
  • the coating is porous.
  • any one of the first to fifth methods for producing a biodegradable magnesium material for medical use wherein magnesium or a magnesium alloy is passed through the electrolytic solution as an anode.
  • a film containing magnesium oxide and hydroxide is formed on the surface.
  • It is characterized by being a solution containing one or more components selected from the group strengths of: salt of carboxylic acid, aluminate, boric acid, oxalic acid, acetic acid or tartaric acid, fluoride, and ethylene glycol.
  • the medical biodegradable magnesium material of the present invention has a mechanical strength of magnesium or an alloy thereof by forming a film containing magnesium oxide and hydroxide on the surface with an anodic acid. It is possible to suppress the deterioration of the steel, and to exhibit the desired mechanical properties in the initial stage of implantation without changing the mechanical properties such as strength and ductility inherent in magnesium or its alloys.
  • the structure of the medical biodegradable magnesium material of the present invention such as the structure "thickness" composition, etc.
  • the state can be variously changed depending on the conditions of the anodized acid, and the protective property of the film in vivo, that is, the period until the film breaks and the decomposition of the magnesium base material starts In other words, it is possible to control the retention period of the mechanical characteristics as long or short as desired.
  • the biodegradable magnesium material for medical use of the present invention also has the following effects.
  • Calcium phosphate is deposited on the surface of the biodegradable magnesium material for medical use of the present invention, and the amount and structure of the precipitation vary depending on the implantation site in the living body. Bone formation is promoted on the surface of the film, and the bondability between the material and bone is increased. On the other hand, the film surface of magnesium material on which calcium phosphate is deposited has high soft tissue compatibility. A biodegradable magnesium material for medical use that exhibits high soft tissue compatibility by precipitating calcium phosphate early on the coating surface of the material and improved biocompatibility and bonding properties. In addition, it can be expected that a regenerative medical device will be obtained by replacing the regenerated bone with the decomposition and absorption of magnesium, such as an artificial bone or a skull plate to be embedded in a bone defect.
  • a biodegradable magnesium material for medical use that can make a coating porous and can be sustainedly released in vivo by supporting a drug or protein in the pores of the coating is provided. Furthermore, by controlling the pore size, it becomes possible to control the sustained release rate of the type of drug or protein to be carried.
  • FIG. 1 A photograph showing a scanning electron microscope (SEM) image of an as-polished surface of a magnesium binary alloy, (a2) is a partially enlarged photograph of (al).
  • SEM scanning electron microscope
  • FIG. 2 A photograph showing a scanning electron microscope (SEM) image of the surface of an anodized oxide film at 2 V of a binary binary alloy.
  • B2 is a partially enlarged photograph of (bl).
  • FIG. 3 is a photograph showing a scanning electron microscope (SEM) image of the surface of an anodized oxide film at 7V of a magnesium binary alloy, and (c2) is a partially enlarged photograph of (cl).
  • SEM scanning electron microscope
  • FIG. 4 A photograph showing a scanning electron microscope (SEM) image of the surface of an anodized oxide film at 10 V of a binary binary alloy.
  • D2 is a partially enlarged photograph of (dl).
  • FIG. 5 A photograph showing a scanning electron microscope (SEM) image of the surface of an anodized oxide film at 20 V of a magnesium binary alloy.
  • E2 is a partially enlarged photograph of (el).
  • FIG. 8 is a graph showing the thickness of an acid coating on a surface of a magnesium binary alloy as polished and anodized.
  • FIG. 9 Graph showing X-ray photoelectron spectroscopy (XPS) spectrum of as-polished and anodized surface of magnesium binary alloy, (a) is Mg 2p electron spectrum, (b) is MgKL Lauger Electron spectrum, (c) Y 3d electron spectrum.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 10 is a graph showing the relationship between the film breakdown potential and the anodized voltage in a simulated body fluid of magnesium material.
  • FIG.11 (&) As-polished (1)) 7 ⁇ , (c) 100V, (d) Immersion of Magnesium alloy (AZ31 extruded material) at 200V in simulated body fluid 6 is a graph showing changes in potential with time.
  • FIG. 12 is a photograph showing a scanning electron microscope (SEM) image of the surface of a thermally oxidized magnesium binary alloy.
  • SEM scanning electron microscope
  • FIG. 13 is a graph showing the membrane breakdown potential in a simulated body fluid of a magnesium binary alloy that has been thermally oxidized or anodized.
  • FIG. 14 is a photograph showing a surface stereoscopic microscope image of a magnesium alloy of (a) hot acid and (b) anodized at 7 V immersed in a simulated body fluid for 2 weeks.
  • FIG. 15 is a schematic diagram showing a polarization test method in simulated body fluid.
  • FIG. 16 is a schematic diagram showing an immersion test method in simulated body fluid.
  • the present invention has the characteristics as described above. Embodiments will be described below.
  • the biodegradable magnesium material for medical use provided by the present invention is formed of anodized acid on the surface of magnesium or a magnesium alloy, and mainly contains magnesium oxide and hydroxide. It is characterized by having a film.
  • the biodegradable magnesium material for medical use can be used as a biodegradable material for medical use that is embedded in a living body, gradually decomposed after implantation, and absorbed into the body.
  • Forms such as shape and size can be arbitrarily selected according to the purpose.
  • the biodegradable magnesium material for medical use of the present invention is understood as a film formed by anodized soot on the surface of a magnesium material that is a base material.
  • the biodegradable magnesium material proposed by the present inventors whose strength-ductility balance is maintained at a high level and whose degradation rate is controlled after implantation in a living body (Japanese Patent Application No. 2005-331841) No.).
  • magnesium with an impurity concentration of 0.05 atomic% or less and an average crystal grain size of 1Z4 or less, which is the smallest part of the member, is 93.5 atomic% or more as the main component.
  • the uneven concentration of the second component in the crystal grain boundary is controlled to be 1.2 times or more of the average concentration in the crystal grains.
  • This magnesium material can control the composition and crystal grain size of the material in various ways, for example, to achieve the desired strength required for individual devices, such as 'work hardening' and 'ductility', while in vivo.
  • the decomposition rate can be controlled. That is, by using this magnesium material as a base material, the decomposition rate of the base material of the medical biodegradable magnesium material of the present invention can be controlled as desired.
  • a characteristic film in this biodegradable magnesium material for medical use functions as a protective film for magnesium or a magnesium alloy, which is a base material, and is a period from immediately after implantation in a living body until the base material starts to decompose. It is possible to maintain the original strength of the base metal during that period, and to ensure that the original strength of the base material is maintained.
  • a film containing magnesium oxide and hydroxide formed by anodized acid is most preferable as a biodegradable material for medical use. Found by the inventors' research.
  • the thickness of the coating can be arbitrarily determined depending on the period until the base material magnesium or magnesium alloy starts to decompose.
  • this film is formed by the anodic acid of a magnesium material, it can be characterized as including a magnesium oxide or a hydroxide.
  • the amount and structure of calcium phosphate changes with the proportion and structure of magnesium oxide and magnesium hydroxide.
  • This calcium phosphate promotes bone formation and improves the adhesion between bone and material, and is also compatible with vascular endothelial cells. Because of these characteristics, the medical biodegradable magnesium material of the present invention has a surface on which calcium phosphate is precipitated from body fluids.
  • a medical biodegradable device made from this medical biodegradable magnesium material, when implanted in a living body, the device surface is appropriately joined to the surrounding tissue, and is compatible with the cells of the surrounding tissue. Since the surface has high biocompatibility, for example, it can be expected that the healing of the surrounding tissue starts and ends early from the initial stage of implantation when thrombus formation does not occur.
  • the structure 'thickness' composition, etc. of the film can be changed in various ways, and the protective property and biocompatibility of the film can be adjusted.
  • the biodegradable magnesium material for medical use of the present invention can contain component elements and compounds derived from the electrolytic solution in addition to magnesium oxide and hydroxide.
  • the surface of the coating can be smooth, porous, or the pore diameter can be changed.
  • the biodegradable magnesium material for medical use of the present invention is not limited to this, but can be one in which pores of 1 ⁇ m or less are formed in the film.
  • the precipitation ability of calcium phosphate can be controlled.
  • the surface of such a pore or the like is used.
  • the form can be used for drug loading and drug sustained release purposes.
  • the surface of the medical biodegradable magnesium material of the invention of this application can have a function of releasing a drug that promotes healing of surrounding tissues in addition to high biocompatibility.
  • protein or the like which is a bone growth factor, is carried in the pores of the film, and the device is in vivo.
  • the stent surface force is also supplied with a drug to prevent restenosis caused by abnormal growth of vascular endothelial cells due to continuous mechanical stimulation of the stent to the vascular wall. It is possible to perform treatment to prevent abnormal cell growth.
  • the blood vessel wall where the lesion is located is normal. Because the strength and elasticity of the blood vessel wall are lower than that of the blood vessel, and the stent does not return to the normal strength and elasticity of the blood vessel simply by being spread with a stent, the stent surface force can also be used to gradually release a drug that promotes the repair of the blood vessel wall.
  • a device drug sustained-release medical device
  • the drug is gradually released from the device to promote the increase in bone mass.
  • a porous surface in the biodegradable magnesium material for medical use of the present invention can be used as a drug sustained-release surface that carries a drug in its pores and releases it in the body. It is also considered to provide an adjustment function such as carrying various types of drugs and controlling the release of drugs at a speed suitable for the lesion site by controlling the above.
  • the formation of the film by anodized acid and the control of the form thereof can be performed regardless of the composition and structure of the magnesium material as the base material. It does not affect the microstructure of the magnesium material. Therefore, magnesium or a magnesium alloy as a base material can maintain a predetermined strength-ductility balance and decomposition characteristics without destroying its composition and structure.
  • the medical biodegradable magnesium material of the present invention described above can be produced by the method provided by the present invention. That is, in the method for producing a biodegradable magnesium material for medical use of the present invention, anodization is performed by energizing magnesium or a magnesium alloy as an anode in an electrolytic solution, and magnesium oxide is mainly formed on the surface of the magnesium or magnesium alloy. And a film containing hydroxide is formed.
  • magnesium material (see Japanese Patent Application No. 2005-318441) proposed by the present inventors can be used as magnesium or a magnesium alloy as a base material.
  • the form of the matrix can be of a size and shape to achieve the desired purpose.
  • Magnesium or magnesium alloy as the base material has the composition as described above, and the average crystal grain size is controlled to 1Z4 or less, which is the smallest part of the member. It can be realized by using organizational control by process. Specifically, the crystal grain size can be controlled by performing strong strain processing, for example, extrusion and rolling, at a temperature higher than the temperature at which recrystallization of the material occurs. Example For example, more specifically, the force depending on the composition of the master alloy.
  • the strength-ductility balance and the decomposition rate are set to desired values by controlling the solid solution state of the second component in Mg and the uneven distribution state in the crystal grain boundaries. Controlled by!
  • the control of the solid solution state of the second component and the uneven distribution state at the grain boundaries can be realized by utilizing the structure control by the processing process together with the selection of the composition. Specifically, the control of the solid solution state of the second component and the uneven distribution state at the grain boundaries is possible by adjusting the concentration of the second component and the crystal grain size.
  • the electrolytic solution and the atmosphere do not contain a biologically harmful element such as Mn or Cr in order to prevent an element showing a biologically harmful substance from being taken into the formed film.
  • a biologically harmful element such as Mn or Cr
  • a known anodizing solution can be used. Specifically, a solution obtained by adding a phosphate, sodium aluminate, fluoride, or the like based on a strong alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, or ammonium acetate can be exemplified. .
  • These electrolytic solutions are useful as solutions that do not leave an element showing biological harm on the film.
  • the components of the electrolytic solution include, for example, sodium, potassium, aluminum or calcium salts or hydroxides, phosphoric acid, caustic acid, aluminate, boric acid, oxalic acid, acetic acid.
  • it can be considered to include one or more ingredients selected from the group power of tartaric acid salt, fluoride, and ethylene glycol power.
  • examples of such components include aluminum oxide, ammonium tartrate, and ethylene glycol.
  • A1 can be incorporated into the film as an oxide or a complex oxide with Mg.
  • elements in the solution can be taken into the film, and the form of the film such as the porosity and the pore diameter can be changed.
  • the voltage, current, and treatment time can be changed according to the desired protective property, biocompatibility and form of the coating.
  • the longer the treatment time, the thicker the film, and the voltage and thickness can be changed by controlling the voltage. It becomes possible to control over a period of time.
  • the surface morphology of the film can be controlled by controlling the voltage and current.
  • the composition of the electrolyte solution, etc. for example, by setting the voltage to a low voltage near 5 V and a voltage higher than the dielectric breakdown voltage of the film, It can be made porous.
  • the pore size can control the porosity.
  • a component element of the base material or the electrolytic solution can be contained in the film, and the composition of the film can be changed.
  • the present invention as described above is a force that treats the surface of a magnesium material with an anodized acid.
  • a chemical conversion treatment in addition to an anodizing method, a chemical conversion treatment, an electric Awareness, enamelling, ion plating, and sputtering are used, and hydrothermal treatment and thermal oxidation in an oxidizing atmosphere can be considered.
  • the chemical conversion treatment in the JIS standard aims to produce a chromate film by containing sodium dichromate in most of the treatment solution.
  • there has been a non-chromium chemical conversion treatment that does not use hexavalent chromium, but there are many treatment solutions that contain manganese instead of hexavalent chromium.
  • Hexavalent chromium and manganese are highly biohazardous, and the possibility of residual hexavalent chromium and manganes on the surface of chemical conversion treatment cannot be ignored, so the current chemical conversion treatment is the surface of medical biodegradable magnesium materials. It is judged that it is suitable as a processing method.
  • electroplating, enamel method, ion plating, and sputtering are all methods of coating a metal or metal oxide having a composition different from that of the base material on the surface of the material.
  • the composition control is a relatively simple technique. While trying For example, when a metal that is more precious than magnesium is contained in a film such as plating, if the underlying magnesium is exposed with the plating layer remaining in the body, a galvanic cell is formed there, and the magnesium Local corrosion is greatly accelerated. Local corrosion can lead to missing parts of the device and rapid collapse, causing the problem that dangerous elements cannot be wiped away, such as debris being released into the bloodstream.
  • autoclaving which is a kind of hydrothermal treatment, is usually performed under conditions of 120 to 121 ° C and about 15 to 30 minutes as one of biomaterial sterilization methods. Under the above conditions, grain coarsening of pure magnesium and magnesium alloy is unlikely to occur. Therefore, it is considered that it can be an effective method for the preparation and modification of a biodegradable magnesium material for medical use together with the positive oxidation of the present application.
  • the biodegradable magnesium material for medical use of the present invention as described above is inhibited from being decomposed in the initial stage of implantation into the body, and has connectivity with surrounding tissues such as bone, that is, biocompatibility and bondability. It is improved and can be used as various biodegradable devices for medical use. Although it is not limited to this, for example, it is effective to use as a device as shown below as a specific example. Fracture fixation materials such as bone plates and miniplates, scaffolds for regenerative medical devices such as artificial bones and skull plates (scaffolding materials), circulatory organs such as stents, aneurysm occlusion coils, and atrial septal defect treatment devices Therapeutic device.
  • Fracture fixation materials such as bone plates and miniplates, scaffolds for regenerative medical devices such as artificial bones and skull plates (scaffolding materials), circulatory organs such as stents, aneurysm occlusion coils, and atrial septal defect treatment devices Therapeutic device.
  • stents for tubular organs such as blood vessels, digestive tracts such as bile ducts and esophagus, and trachea.
  • a drug sustained-release medical device that is used by being placed in a thread and woven structure such as bones and blood vessels in the body.
  • materials used around bones such as fracture fixing materials should be given a function to promote bone regeneration
  • materials used in blood vessels such as stents should be given a function to suppress thrombus formation. Can do.
  • FIGS. 1 and 2 to 7 show the scanning electron microscope (SEM) images of the as-polished surface of the magnesium binary alloy (a) and the anodized film prepared under the conditions (b) to (f). It was.
  • SEM scanning electron microscope
  • the anodized surface at 20V is a very smooth surface with no irregularities, and there are scattered dents with a force width of 3 / zm and a length of several tens / zm. It was. From (fl) and (f2) in Fig. 6, the surface anodized at 100V has fine irregularities shaped like craters of several tens / zm, both inside and outside of the crater. The child was aggregated and formed. Submicron-order pores were also formed between the particles. From (gl) (g2) in Fig. 7, the surface anodized at 200V had a tighter gap between force particles having the same shape as the surface at 100V than at 100V. For this reason, the hole diameter is considered to be smaller at 200V than at 100V.
  • the film becomes porous at a low voltage of around 5V and a high voltage of 100V or higher, and that the porosity and pore diameter can be controlled by the voltage.
  • the pores of the film thus formed can be loaded with a drug using, for example, techniques such as coating, coating, filling, and dipping, and the porosity and pore diameter of the film can be controlled.
  • a surface suitable for the amount, type and sustained release rate of the drug to be carried can be obtained.
  • FIG. 8 shows the thickness of the oxide film on the as-polished surface of the magnesium binary alloy and on the anodized surface under each condition. The film thickness was determined from the sputtering depth at which the oxygen concentration was 50% of the outermost surface by performing composition analysis of each surface by means of Auge Electron Spectroscopy (AES) while performing Ar gas sputtering.
  • AES Auge Electron Spectroscopy
  • the oxidized film on the as-polished surface, anodized at 2V and 20V, is on the order of nm, whereas the oxidized film on the surface anodized at 7V and 100V, is on the order of / zm. . From this, it became clear that the thickness of the protective coating of magnesium material can be controlled by controlling the voltage of anodization.
  • the thickness of the coating in this manner, for example, the retention period of the mechanical properties of the magnesium binary alloy, the amount of drug carried on the coating, and the like can be controlled.
  • Fig. 9 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of an as-polished and anodized surface of a magnesium binary alloy, (a) is an Mg 2p electron spectrum, (b) Is Mg KLL-Auger electron spectrum, (c) Y 3d electron spectrum.
  • XPS X-ray photoelectron spectroscopy
  • the composition of the film formed on the surface of the magnesium alloy can be controlled by controlling the voltage of the anodic oxidation.
  • the protection of the film changes, and the strength retention period can be changed.
  • the increase in the anode current observed in the polarization test of a metal material having a normal film is that the dissolution (ionization) of the metal is promoted by applying a potential to the sample, or the chloride current is increased. Breakdown of the film by specific solution components such as ions is promoted, or the film breaks without being able to withstand the electric field applied between the base side of the film and the solution side.
  • the potential at which a large anode current suddenly flows in the potential-current curve in the polarization test can be used as the coating breakdown potential as an index of the protective properties of the coating. It can be evaluated that the higher the film breaking potential, the higher the protective property of the film, that is, the longer the period during which the film suppresses the decomposition of the magnesium material.
  • the sample (1) is placed in a 500 ml simulated body fluid (7) kept at 37 ° C so that the surface of the sample (1) is vertical and exposed.
  • a fixing member (2) covered with silicone corn resin and Teflon (registered trademark) tape.
  • Glass container ( 6) The tip of the saturated calomel electrode (SCE) was fixed as the reference electrode (4) near the surface of the sample (1) in the inside.
  • a platinum plate was fixed as a counter electrode (5) at a position facing the surface of the sample (1).
  • These were connected to the potentiostat (9) by means of a waterhole clip and an electric wire (8).
  • the temporal change in the immersion potential of the sample (1) was monitored for 1 hour. Subsequently, the potential of the sample (1) was swept with respect to SCE at a speed of lmVZsec in the direction of 1.8V force anode.
  • this simulated body fluid is a solution containing salt chloride ions equivalent to the concentration in plasma.
  • Magnesium coatings are usually susceptible to destruction in salt solutions due to the attack of salt and salt.
  • Devices that are implanted in blood vessels such as stents are exposed to blood, and devices that are implanted in the vicinity of soft and hard tissues such as plates are exposed to interstitial fluid. Since the concentration of inorganic ions in these blood and cell interstitial fluid is equivalent to the concentration in plasma, it can be considered that this example is suitable for evaluating the protective properties of the magnesium material coating.
  • the simulated body fluid in Table 1 is a solution containing phosphate and calcium ions at the same concentration as in plasma, so it is suitable for evaluating the ability of calcium phosphate to deposit on the coating surface. It is thought.
  • the sample (1) was placed in a 150 ml simulated body fluid (7) kept at 37 ° C so that the surface of the sample (1) was vertical and exposed. ) was fixed by covering with silicone resin as a fixing member (2).
  • a tip of a saturated calomel electrode (SCE) was fixed as a reference electrode (4) near the surface of the sample (1) in a Teflon (registered trademark) container (6).
  • SCE saturated calomel electrode
  • Teflon registered trademark
  • Fig. 11 shows changes over time in immersion potential in a simulated body fluid of (a) as-polished and (b) anodized magnesium alloy (AZ31 extruded material) at 7V, (c) 100V, and (d) 200V. It is a graph showing.
  • the initial potential of the sample as it was polished was -1.53V (SCE), while the potential of the anodized sample was -1.50V (SCE).
  • SCE -1.53V
  • SCE -1.50V
  • the higher the immersion potential the higher the protection of the metal material by the surface film. This indicates that a highly protective film is formed on the surface of the shim material.
  • magnesium material was thermally oxidized in the atmosphere. A film was formed, and the form and the protective properties were compared with the film prepared by the anodic oxidation of the present invention.
  • a magnesium binary alloy containing 0.3 atomic% of Y was used as the magnesium material for forming the film.
  • Fig. 12 shows the surface of a magnesium binary alloy containing 0.3 atomic% of Y thermally oxidized in the atmosphere. SEM image of was shown. The surface of the specimen remained polished, and many cracks in the film were observed. Even in the observation at a high magnification shown in (a3) of FIG. 12, the holes as observed in the anodized film of Example 1 were not observed. It is considered that a porous film is difficult to be formed by thermal oxidation, and the preparation of a film by thermal oxidation is not suitable for forming a drug sustained-release surface.
  • a magnesium binary alloy containing 0.3 atomic% of Y thermally oxidized in the atmosphere was immersed in a simulated body fluid, and the film breakdown potential was examined and shown in FIG. For comparison, the film breakdown potential of the as-polished surface and the anodized alloy at 2V, 7V or 100V are also shown.
  • the film breakdown potential of the thermally oxidized sample was equivalent to that of the polished sample and was lower than that of the anodized sample.
  • a magnesium alloy containing 0.3 atomic% Y which was thermally oxidized in the air or anodized at 7V, was immersed in a simulated body fluid having the composition shown in Table 1 for 2 weeks.
  • Figure 14 shows an image of the sample surface observed with a stereomicroscope. Each sample is a disk with a diameter of 8 mm and a thickness of 2 mm. It is affixed to a 316L stainless steel electrode plate with silver paste, and the outer surface of the sample surface with a diameter of 5 mm and the 316L stainless steel plate are PTFE tapes. Covered with insulation.
  • Example 6 Crystal grain size, second component, voltage at the time of anodization and protective property of film> Experiments were conducted on how the protective properties of the film can be controlled by the crystal grain size, the second component, and the voltage during anodization. Table 3 shows the experimental results.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Dermatology (AREA)
  • Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 生体内で分解してこれに吸収される医療用生分解性マグネシウム材であって、結晶化されたマグネシウムまたはマグネシウム合金の表面に、陽極酸化によって形成された、マグネシウム酸化物および水酸化物を含む皮膜を備えていることを特徴とする医療用生分解性マグネシウム材とする。マグネシウムおよびその合金が本来的に有する強度、延性等の機械的特性を変化させずに所望の機械的特性を埋入初期に発揮させるとともに、機械的特性の保持期間を長短所望に制御することができる。

Description

明 細 書
医療用生分解性マグネシウム材
技術分野
[0001] 本発明は、医療用生分解性マグネシウム材とその製造方法に関するものである。さ らに詳しくは、本発明は、マグネシウムおよびその合金が本来的に有する強度、延性 等の機械的特性を変化させずに所望の機械的特性を埋入初期に発揮させるとともに 、機械的特性の保持期間を長短所望に制御することができる医療用生分解性マグネ シゥム材とその製造方法に関するものである。
背景技術
[0002] 従来より一般的に使用されている金属製医療用デバイスは、体内埋入後、手術等 により抜去しなければ体内に残存することになる。このようなデバイスとしては、用途 によっては、周辺組織が修復している期間は強度を保持し、修復後には手術を要す ることなく分解して消失するものであることが望まれている。マグネシウム材は、生体 為害性の低 、材料であって、体液のような塩化物イオンの存在する中性付近の水溶 液中では非常に速い速度で腐食され、分解して消失することから、生体内に埋入後 に徐々に分解され吸収される医療用生分解金属材料としての利用が期待されており 、その開発が進められてきている(例えば、特許文献 1および 2参照)。
[0003] し力しながら、デバイスの種類や患部の状態により、デバイスに要求される強度の保 持期間は長短、非常に広い範囲にわたる。例えば、ステントなどの血管修復用デバ イスには、血管の狭窄部が修復されるまでにかかる 5日力も 6ヶ月の期間は強度を維 持し、血管が修復された後はデバイス全体の分解が 1週間から 12週間の期間でほぼ 終了することが望まれる。というのは、血管壁が修復された後もステントが残存すると、 ステントが血管壁へ与え続ける力学的'化学的刺激により、血管内皮細胞が過剰に 増殖してしまうことによる血管の再狭窄が生じてしまうため、血管修復後のステントの 消失は非常に重要である力もである。一方、骨折固定材には、骨折が治癒するまで の 3ヶ月カゝら 1年の期間はデバイスが荷重を支持し、その後デバイス全体の分解が 8 ヶ月から 5年の期間でほぼ終了することが望まれる。このように骨折治癒後のデバイス の分解および消失に伴い、治癒した骨に徐々に荷重が力かっていくため、骨に代わ つてデバイスが荷重を支持してしまう荷重遮断を抑制することが可能となる。これは、 荷重遮断による骨吸収 (骨が痩せてしまうこと)が原因で起こる再骨折の抑制に繋が り、また骨折治癒後にデバイスを取り出す手術を行う必要がなぐ患者の負担を軽減 できる。このように、デバイスによって要求される強度の保持期間が広い範囲にわたり 、ときには数ケ月以上の長期間になる場合もある。また、強度保持を要する期間とそ の後の分解期間とで、分解の進行が制御できることが望ましいと考えられる。
[0004] 例えば、特許文献 1に提案された生分解性マグネシウム材は、デバイスの大きさに よって分解期間を制御するようにしている。しカゝしながら、埋入直後から分解が開始 することに加え、所望のデバイスサイズゃ埋入する空間が限られる生体内では、長期 の強度保持が要されるデバイスとして適切に用いることは実質的に不可能であった。
[0005] また、本発明者らが特許文献 2にお 、て提案して 、る生分解性マグネシウム材は、 材料自身の組成や組織制御によって材料の強度一延性バランスおよび生体内での 分解速度を所望の値に制御するものであり、例えば、マグネシウムの結晶粒径を小さ くする程分解速度を速めることができ、粒径を大きくしたり添加元素およびその濃度 を制御することで分解速度を遅くすることができるものである。しかしながら、結晶粒 径を大きくした場合は分解速度の微調整が難しくなり、分解速度を精密に遅くさせる ことは比較的困難であった。つまり、埋入直後から分解が開始するため、埋入初期の 強度保持と長期間にわたる分解速度の両方を多様に制御するのは困難であった。
[0006] これに対し、生体用純マグネシウムを酸化雰囲気中で熱酸化することにより耐食性 を改善し、マグネシウム本来の機械的強度を活用する技術が提案されてもいる (特許 文献 3)。し力しながら、特許文献 3の高温での熱処理は、母材であるマグネシウム材 の微細組織を変化させてしまい、強度低下や耐食性低下を招くため、熱酸化を適用 できるマグネシウム材は限られてしまうという問題があった。さらに、熱酸ィ匕によりマグ ネシゥム材の表面に形成される酸化皮膜は、体内埋入後、長期にわたり十分にマグ ネシゥム材の分解を抑制できるものではなかった。
[0007] このように、従来の医療用生分解性マグネシウム材にお 、ては、マグネシウムおよ びその合金が本来的に有する強度、延性等の機械的特性を変化させずに所望の機 械的特性を埋入初期に発揮させるとともに、長期にわたり分解を抑制することは困難 であって、さらに機械的特性の保持期間を長短所望に制御することは困難であるの が実情である。
特許文献 1 :特開 2004— 160236号公報
特許文献 2:特願 2005— 331841号
特許文献 3:特開 2002— 28229号公報
発明の開示
発明が解決しょうとする課題
[0008] そこで、本発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の 問題点を解消し、マグネシウムおよびその合金が本来的に有する強度、延性等の機 械的特性を変化させずに所望の機械的特性を埋入初期に発揮させるとともに、機械 的特性の保持期間を長短所望に制御することができる医療用生分解性マグネシウム 材とその製造方法を提供することを課題として!/、る。
課題を解決するための手段
[0009] 本発明の医療用生分解性マグネシウム材は、上記の課題を解決するものとして、第 1には、生体内で分解してこれに吸収される医療用生分解性マグネシウム材であって
、結晶化されたマグネシウムまたはマグネシウム合金の表面に、陽極酸ィ匕によって形 成された、マグネシウム酸ィ匕物および水酸ィ匕物を含む皮膜を備えて ヽることを特徴と する。
[0010] また、第 2には、第 1の医療用生分解性マグネシウム材において、その平均結晶粒 径が部材の最小部位の 1Z4以下であることを特徴とする。
[0011] 第 3には、第 1又は第 2の医療用生分解性マグネシウム材において、 93. 5原子% 以上のマグネシウムを主成分とし、第二成分を含有するものであって、その第二成分 の結晶粒界への偏在濃度が結晶粒内平均濃度の 1. 2倍以上であることを特徴とす る。
[0012] 第 4には、第 3の医療用生分解性マグネシウム材において、第二成分として、 0. 03 原子%以下の Ce、 0. 03原子%以下の Pr、 0. 033原子%以下の Au、 0. 043原子 %以下の Ir、 0. 047原子%以下の1^、 0. 067原子%以下の Pd、 0. 17原子%以下 の Th、 0. 21原子%以下の Nd、 0. 3原子%以下の Ca、 0. 3原子%以下の Mn、 0. 35原子%以下の Zr、 0. 37原子%以下の Bi、 0. 4原子%以下の Yb、 0. 47原子% 以下の Rb、 0. 64原子%以下の Co、 0. 8原子%以下の Zn、 0. 8原子%以下の Pu 、 1. 0原子%以下の Ga、 1. 3原子%以下の Y、 1. 3原子%以下の Ag、 1. 5原子% 以下の Gd、 1. 6原子%以下の Dy、 1. 8原子%以下の Ho、 2. 1原子%以下の Tm、 2. 4原子%以下の Er、 3. 0原子%以下の Lu、 3. 9原子%以下の Al、 5. 0原子% 以下の Sc、 5. 7原子%以下の Li、 6. 5原子%以下の Inの中の何れか 1元素を含み 、残部が不可避的不純物であることを特徴とする。
[0013] 第 5には、第 1から第 4のいずれかの医療用生分解性マグネシウム材において、そ の皮膜が多孔質であることを特徴とする。
[0014] そして、第 6には、第 1から第 5のいずれかの医療用生分解性マグネシウム材の製 造方法であって、電解溶液中でマグネシウムまたはマグネシウム合金を陽極として通 電することで陽極酸ィ匕することにより、その表面にマグネシウム酸ィ匕物および水酸ィ匕 物を含む皮膜を形成させることを特徴とする。
[0015] 第 7には、第 6の医療用生分解性マグネシウム材の製造方法において、電解溶液 力 ナトリウム、カリウム、アルミニウムあるいはカルシウムの塩または水酸化物、リン酸
、ケィ酸、アルミン酸、ホウ酸、シユウ酸、酢酸あるいは酒石酸の塩、フッ化物、ェチレ ングリコール力 なるグループ力 選択される 1以上の成分を含む溶液であることを特 徴とする。
[0016] 第 8には、第 6又は第 7の医療用生分解性マグネシウム材の製造方法において、所 望の皮膜形態を得るために、通電の時間、電圧、電流を制御することを特徴とする。 発明の効果
[0017] 本発明の医療用生分解性マグネシウム材は、陽極酸ィ匕によりマグネシウム酸ィ匕物 および水酸ィ匕物を含む皮膜を表面に形成することで、マグネシウム又はその合金の 機械的強度の劣化を抑制し、マグネシウム又はその合金が本来的に有する強度や 延性などの機械的特性を変化させずに、所望の機械的特性を体内埋入初期に発揮 させることがでさる。
[0018] また、本発明の医療用生分解性マグネシウム材の皮膜の構造 '厚さ'組成などの形 態は、陽極酸ィ匕の条件によって多様に変化させることができ、生体内での皮膜の保 護性、すなわち皮膜が破壊してマグネシウム材の母材の分解が開始するまでの期間 を長短所望に制御でき、換言すれば、機械的特性の保持期間を長短所望に制御す ることがでさる。
[0019] 上記の効果に加えて、さらに、本発明の医療用生分解性マグネシウム材は以下の ような効果をも奏する。
[0020] 本発明の医療用生分解性マグネシウム材の皮膜表面ではリン酸カルシウムが析出 され、その析出量や構造が生体内の埋め込み部位により変化されるため、骨組織周 囲に埋入したマグネシウム材の皮膜表面では骨の形成が促進され、材料と骨の接合 性が増加し、一方、リン酸カルシウムが析出したマグネシウム材の皮膜表面は軟組織 適合性が高いことから、血管内に埋入した場合にはマグネシウム材の皮膜表面に早 期にリン酸カルシウムが析出することで高 ヽ軟組織適合性を示し、生体適合性およ び接合性が改善された医療用生分解性マグネシウム材が提供される。また、骨の欠 損部に埋め込む人工骨や頭蓋骨プレートなどの様に、マグネシウムの分解'吸収に 伴 、再生した骨と置き換わって 、く、再生医療デバイスになることが期待できる。
[0021] また、皮膜を多孔質にすることができ、皮膜の孔内に薬物やタンパク質を担持させ て生体内で徐放させることが可能な医療用生分解性マグネシウム材が提供される。さ らに孔径を制御することで、担持する薬物やタンパク質の種類ゃ徐放速度の制御を することが可能になる。
図面の簡単な説明
[0022] [図 1]マグネシウム二元合金の研磨ままの表面の走査型電子顕微鏡 (SEM)像を示 す写真で、(a2)は (al)の一部拡大写真である。
[図 2]マグネシウム二元合金の 2Vで陽極酸ィ匕皮膜の表面の走査型電子顕微鏡 (SE M)像を示す写真で、 (b2)は (bl)の一部拡大写真である。
[図 3]マグネシウム二元合金の 7Vで陽極酸ィ匕皮膜の表面の走査型電子顕微鏡 (SE M)像を示す写真で、 (c2)は (cl)の一部拡大写真である。
[図 4]マグネシウム二元合金の 10Vで陽極酸ィ匕皮膜の表面の走査型電子顕微鏡 (S EM)像を示す写真で、 (d2)は(dl)の一部拡大写真である。 [図 5]マグネシウム二元合金の 20Vで陽極酸ィ匕皮膜の表面の走査型電子顕微鏡 (S EM)像を示す写真で、 (e2)は (el)の一部拡大写真である。
[図 6]マグネシウム二元合金の 100Vで陽極酸ィ匕皮膜の表面の走査型電子顕微鏡(
SEM)像を示す写真で、(f 2)は (f 1)の一部拡大写真である。
[図 7]マグネシウム二元合金の 200Vで陽極酸ィ匕皮膜の表面の走査型電子顕微鏡(
SEM)像を示す写真で、 (g2)は (gl)の一部拡大写真である。
[図 8]マグネシウム二元合金の研磨ままおよび陽極酸ィ匕した表面の酸ィ匕皮膜の厚さ を示すグラフである。
[図 9]マグネシウム二元合金の研磨ままおよび陽極酸ィ匕した表面の X線光電子分光( XPS)スペクトルを示すグラフであって、(a)は Mg 2p電子スペクトル、(b)は MgKL Lォージェ電子スペクトル、(c)Y 3d電子スペクトルである。
[図 10]マグネシウム材の疑似体液中における皮膜破壊電位と陽極酸ィ匕の電圧の関 係を示すグラフである。
[図11] (&)研磨まま、ぉょび(1)) 7¥、(c) 100V、(d) 200Vで陽極酸ィ匕したマグネシ ゥム合金 (AZ31押出材)の疑似体液中における浸漬電位の経時変化を示すグラフ である。
[図 12]熱酸ィ匕したマグネシウム二元合金の表面の走査型電子顕微鏡 (SEM)像を示 す写真である。 (a2)は(al)の一部拡大写真で、 (a3)は (a2)の一部拡大写真である
[図 13]熱酸化もしくは陽極酸ィ匕したマグネシウム二元合金の疑似体液中における皮 膜破壊電位を示すグラフである。
[図 14]疑似体液に 2週間浸漬した (a)熱酸ィ匕および (b) 7Vで陽極酸ィ匕したマグネシ ゥムニ元合金の表面実体顕微鏡像を示す写真である。
[図 15]疑似体液中で分極試験方法を示す模式図である。
[図 16]疑似体液中で浸漬試験方法を示す模式図である。
符号の説明
(1)試料
(2)固定部材 (3)ステンレス製板
(4)参照電極
(5)対極
(6)容器
(7)疑似体液
(8)電線
(9)ポテンシヨスタツト
(10)デジタル X— Yレコーダー
発明を実施するための最良の形態
[0024] 本発明は上記のとおりの特徴をもつものである力 以下にその実施の形態につい て説明する。
[0025] 本発明が提供する医療用生分解性マグネシウム材は、マグネシウムまたはマグネ シゥム合金の表面に、陽極酸ィ匕によって形成され、主としてマグネシウム酸ィ匕物およ び水酸ィ匕物を含む皮膜を備えて ヽることを特徴として ヽる。
[0026] この医療用生分解性マグネシウム材は、生体内に埋入され、埋入後に徐々に分解 されて体内に吸収される医療用の生分解材料として用いることができるものであって 、その形状およびサイズ等の形態は、 目的に応じて任意のものとすることができる。
[0027] 本発明の医療用生分解性マグネシウム材は、母材であるマグネシウム材の表面に 陽極酸ィ匕による皮膜が形成されたものとして理解されるが、母材であるマグネシウム またはマグネシウム合金は、本発明者らが既に提案している、強度—延性バランスが 高く維持されたまま、生体内に埋入後の分解速度が制御されている生分解性のマグ ネシゥム材 (特願 2005— 331841号参照)とすることができる。具体的には、不純物 濃度が 0. 05原子%以下のマグネシウムであって、平均結晶粒径が部材の最小部位 の 1Z4以下に制御されているマグネシウム材ゃ、主成分として 93. 5原子%以上の マグネシウムを含み、第二成分として、 0. 03原子%以下の Ce、 0. 03原子%以下の Pr、 0. 033原子%以下の Au、 0. 043原子%以下の Ir、 0. 047原子%以下の La、 0. 067原子%以下の Pd、 0. 17原子%以下の Th、 0. 21原子%以下の Nd、 0. 3原 子%以下の Ca、 0. 3原子%以下の Mn、 0. 35原子%以下の Zr、 0. 37原子%以下 の Bi、 0. 4原子%以下の Yb、 0. 47原子%以下の Rb、 0. 64原子%以下の Co、 0. 8原子%以下の Zn、 0. 8原子%の以下 Pu、 1. 0原子%以下の Ga、 1. 3原子%以 下の Y、 1. 3原子%以下の Ag、 1. 5原子%以下の Gd、 1. 6原子%以下の Dy、 1. 8原子%以下の Ho、 2. 1原子%以下の Tm、 2. 4原子%以下の Er、 3. 0原子%以 下の Lu、 3. 9原子%以下の Al、 5. 0原子%以下の Sc、 5. 7原子%以下の Li、 6. 5 原子%以下の Inの中の何れか 1元素を含み、残部が不可避的不純物であるもので ある。
[0028] また、第二成分の結晶粒界への偏在濃度が結晶粒内平均濃度の 1. 2倍以上に制 御されているマグネシウム材等である。このマグネシウム材は、材料の組成および結 晶粒径を様々に制御することで、例えば個々のデバイスに求められる所望の強度' 加工硬化性'延性等の力学的特性を実現しながら、生体内における分解速度を制御 できるものである。すなわち、このマグネシウム材を母材とすることで、本発明の医療 用生分解性マグネシウム材の母材の分解速度は所望に制御できることになる。
[0029] そして、この医療用生分解性マグネシウム材において特徴的な皮膜は、母材である マグネシウムまたはマグネシウム合金の保護皮膜として機能し、生体内埋入直後から 母材が分解し始めるまでの期間をその用途にそくした期間保つことを可能とし、その 期間母材本来の強度を確実に保持することを可能としている。このような皮膜として は、陽極酸ィ匕により形成されるマグネシウム酸ィ匕物および水酸ィ匕物を含む皮膜であ ることが、医療用生分解性材料として最も好適であることが、本発明者らの研究により 見出された。
[0030] 皮膜の厚さは、母材であるマグネシウムまたはマグネシウム合金が分解を始めるま での期間に応じて任意のものとすることができる。
[0031] さらにこの皮膜は、上記のとおり、マグネシウム材の陽極酸ィ匕により形成されること から、マグネシウム酸ィ匕物や水酸ィ匕物を含むものとして特徴づけることができる。マグ ネシゥム酸ィ匕物やマグネシウム水酸ィ匕物の割合や構造に伴いリン酸カルシウムの析 出量や構造が変化される。このリン酸カルシウムは骨の形成を促進して骨と材料との 接合性を改善し、また血管内皮細胞とのなじみもよい。このような特性から、本発明の 医療用生分解性マグネシウム材は、その表面が、体液からのリン酸カルシウムの析出 を促進する機能を持つ、生体適合性が非常に高いものとして実現されることになる。 したがって、この医療用生分解性マグネシウム材により作製される医療用生分解性デ バイスは、生体内に埋入されるとデバイス表面が周辺組織と適度に接合し、周辺組 織の細胞とのなじみがよぐ表面の生体適合性が高いため、例えば血栓形成が起こ ることなぐ埋入初期から周辺組織の治癒が始まり早期に終了することが期待できる。
[0032] また、この皮膜は、陽極酸ィ匕により形成されることから、皮膜の構造 '厚さ'組成など を多様に変化させることができ、皮膜の保護性や生体適合性を調整することが可能 である。例えば、陽極酸ィ匕の条件や用いる電解溶液の種類および濃度等の条件によ つて、皮膜の組成および形態などを多様なものに制御することが可能とされる。具体 的には、例えば、本発明の医療用生分解性マグネシウム材は、皮膜に、マグネシウム 酸化物や水酸化物以外に、電解溶液に由来する成分元素および化合物等を含ませ ることができる。また、皮膜の表面を平滑なものとすることもできるし、多孔質としたり、 かつその孔径を変化させることもできる。例えば、具体的には、本発明の医療用生分 解性マグネシウム材は、これに限定されるものではないが、皮膜に、 1 μ m以下の孔 が形成されたものとすることができる。また、例えば、リン酸カルシウムの析出能ゃ析 出する結晶構造を制御することが可能となる。
[0033] 近年では、生体材料の表面から薬物を供給して病変部分の治癒を促進する治療 が行われており、本発明の医療用生分解性マグネシウム材においては、このような孔 等の表面形態を薬物担持および薬物徐放の目的で利用することができる。これによ り、この出願の発明の医療用生分解性マグネシウム材の表面は、高い生体適合性に 加えて、周辺組織の治癒を促進する薬物を放出する機能を有するものとすることがで きる。例えば、具体的には、本発明の医療用生分解性マグネシウム材により骨折固 定材を作製する場合については、皮膜の孔に骨成長因子であるタンパク質等を担持 させておき、デバイスの生体内埋入後に表面カも徐放させることで骨形成を促進し、 骨折の治癒を促進する治療を提案することができる。また、ステントの場合は、ステン トによる血管壁への継続的な力学的刺激のために血管内皮細胞が異常に増殖して 起こる再狭窄を防ぐため、ステント表面力も薬物を供給して、血管内皮細胞の異常な 増殖を防ぐ治療を行うことが可能とされる。さらに、病変部位のある血管壁は、正常な 血管壁よりも強度や弾性が低下しており、ステントで押し広げただけでは正常な血管 壁の強度や弾性に戻らないため、ステント表面力も血管壁の修復を促進する薬物を 徐放させる治療も可能とされる。他に、例えば、骨粗鬆症の患者の骨に薬物を担持し たデバイス (薬物徐放医療用デバイス)を埋入することで、デバイスから薬物を徐放さ せて骨量の増加を促進する治療を行うことなどが可能とされる。このような本発明の 医療用生分解性マグネシウム材における多孔質の表面は、その孔内に薬物を担持 し、体内で徐放する薬物徐放表面として利用できるものであり、さらに孔径ゃ多孔度 を制御することにより、様々な種類の薬物を担持したり、薬物を病変部位に適した速 度で徐放したりといった調整機能を付与することも考慮される。
[0034] 以上のような本発明の医療用生分解性マグネシウム材において、陽極酸ィ匕による 皮膜の形成およびその形態の制御は、母材であるマグネシウム材の組成や組織に 関係なく行うことができ、なおかつマグネシウム材の微細組織にも影響を与えない。し たがって、母材としてのマグネシウムまたはマグネシウム合金は、その組成や組織を 破壊されることなぐ所定の強度—延性バランスおよび分解特性などを維持すること ができる。
[0035] 以上の本発明の医療用生分解性マグネシウム材は、本発明が提供する方法により 製造することができる。すなわち、本発明の医療用生分解性マグネシウム材の製造 方法は、電解溶液中でマグネシウムまたはマグネシウム合金を陽極として通電するこ とで陽極酸ィ匕し、マグネシウムまたはマグネシウム合金の表面に主としてマグネシウム 酸化物および水酸化物を含む皮膜を形成させるようにして ヽる。
[0036] 母材としてのマグネシウムまたはマグネシウム合金は、上記のとおり、本発明者らが 既に提案しているマグネシウム材 (特願 2005— 331841号参照)を使用することがで きる。母材の形態は、所望の目的を達成するためのサイズおよび形状のものとするこ とができる。この母材としてのマグネシウムまたはマグネシウム合金は、上記のとおり の組成を有し、平均結晶粒径が部材の最小部位の 1Z4以下に制御されているが、 平均結晶粒径の制御は、例えば、加工プロセスによる組織制御を利用することで実 現することができる。具体的には、結晶粒径の制御は、材料の再結晶が起こる温度 以上で強いひずみ加工、例えば、押出'圧延加工などを行うことで可能とされる。例 えば、より具体的には、母合金の組成にもよる力 450〜550°C程度の温度範囲で 1 . 5〜8時間程度の均質化処理を施したのち、焼入れを行って均一分散組織を凍結 し、 80〜350°C程度の温度範囲で温間ひずみをカ卩えることなどが一例として示され る。平均結晶粒径の制御は、このような押出 ·圧延加工に限定されることはないが、押 出'圧延加工による場合は、上記のとおりの再結晶温度以上での強加工が欠力せな いものである。またこの場合の押出比(断面積比)は、例えば 16〜: L00程度と、通常 の押出加工よりも強加工となるよう行うことが好適な例として示される。
[0037] また、母材がマグネシウム合金の場合は、第二成分の Mgへの固溶状態および結 晶粒界への偏在状態を制御することで、強度一延性バランスおよび分解速度が所望 の値に制御されて!、る。第二成分の固溶状態および結晶粒界への偏在状態の制御 は、組成の選択とともに、加工プロセスによる組織制御を利用することで実現される。 具体的には、第二成分の固溶状態および結晶粒界への偏在状態の制御は、第二成 分の濃度と結晶粒径の調整により可能となる。
[0038] 電解溶液や雰囲気については、形成される皮膜に生体為害性を示す元素が取り 込まれるのを防ぐため、例えば Mnや Crなどの生体為害性を示す元素を含まな 、こと が望ましい。このような電解溶液としては、例えば、公知の陽極酸化処理溶液を用い ることができる。具体的には、水酸化ナトリウムや水酸化カリウム、酢酸アンモ-ゥムな どの強アルカリ性の水溶液をベースに、リン酸塩、アルミン酸ナトリウムやフッ化物な どを加えた溶液を例示することができる。これらの電解溶液は、生体為害性を示す元 素を皮膜に残留させない溶液として有用である。このように、本発明においては、電 解溶液の成分として、例えば、ナトリウム、カリウム、アルミニウムあるいはカルシウムの 塩または水酸ィ匕物、リン酸、ケィ酸、アルミン酸、ホウ酸、シユウ酸、酢酸あるいは酒石 酸の塩、フッ化物、エチレングリコール力 なるグループ力 選択される 1以上の成分 を含むことを考慮することができる。より具体的には、例えば、リン酸ナトリウムやリン酸 水素ナトリウム、フッ化カリウム、フッ化ナトリウムやフッ化アンモ-ゥム、ケィ酸ナトリウ ム、ホウ酸ナトリウム、アルミン酸ナトリウム、シユウ酸ナトリウム、水酸ィ匕アルミニウム、 酒石酸アンモ-ゥム、エチレングリコール等の成分がその一例として例示される。とり わけフッ化物などを加えた電解溶液については、皮膜を多孔質とする場合や、その 多孔度や孔径の制御を容易にするために用いることができる。また、例えば、 A1ィォ ンが含まれる溶液の場合には、 A1が酸ィ匕物や Mgとの複合酸ィ匕物として皮膜に取り 込ませることができる。このように、例えば電解溶液の組成や濃度等の条件を変化さ せることで、皮膜に溶液中の元素を取り込ませたり、皮膜の多孔度ゃ孔径等の形態 を変化させたりすることができる。
[0039] 陽極酸化の条件につ!、ては、所望の皮膜の保護性や生体適合性および形態に応 じて、電圧、電流、処理時間を変化させることができる。一般的には、処理時間を長く するほど皮膜の厚みが厚くなり、また電圧を制御することで厚みや形態を変化させる ことができ、生体内への埋入初期の母材の分解を任意の期間にわたって抑制するこ とができるようになる。さらに、電圧および電流を制御することで、皮膜の表面形態を 制御することができる。母材の大きさや形状、電解溶液の組成等によっても異なるた め一概には言えないが、例えば、電圧を 5V付近の低い電圧および皮膜の絶縁破壊 電圧以上の高い電圧にすることで、皮膜を多孔質にすることができる。また、孔径ゃ 多孔度を制御することができる。また、電圧によっては、皮膜中に母材または電解溶 液の成分元素を含有させることができ、皮膜の組成を変化させることが可能となる。
[0040] 以上のような本発明は、陽極酸ィ匕によりマグネシウム材の表面を処理するものであ る力 表面処理技術としては、陽極酸化の手法以外にも、一般的に、化成処理、電 気めつき、ほうろう法、イオンプレーティング、スパッタリングの手法が利用されており、 水熱処理や酸化雰囲気中での熱酸化処理も考慮することができる。しかしながら、 JI S規格にある化成処理では、処理溶液のほとんどに重クロム酸ナトリウムを含み、クロ メート皮膜を作製することを目的としている。近年 6価クロムを使用しないノンクロム化 成処理が実施されて ヽるが、 6価クロムの代わりにマンガンを含む処理溶液が多 、。 6価クロムおよびマンガンは生体為害性が高く、化成処理表面への 6価クロムやマン ガンの残留の可能性を無視できな 、ため、現行の化成処理は医療用生分解性マグ ネシゥム材の表面処理方法として適して 、な 、と判断される。
[0041] また、電気めつき、ほうろう法、イオンプレーティング、スパッタリングは、いずれも下 地とは異なる組成の金属もしくは金属酸ィ匕物を材料表面にコーティングする方法で あり、皮膜の構造、厚さ、組成制御は比較的簡便な手法である。し力しながら、例え ば、めっき等の皮膜にマグネシウムよりも貴な金属が含まれた場合に、体内でめっき 層が残っている状態で下地のマグネシウムが表出すると、そこにガルバ-電池が構 成されてマグネシウムの局部腐食が大きく加速される。局部腐食はデバイスの一部の 欠落や急激な崩壊につながり、破片が血流に放出されるなど危険な要素が拭い去 れないという問題がある。
[0042] さらに、酸化雰囲気中での生体用マグネシウム材の熱酸化処理として、 400〜600 °Cの加熱温度で、 3〜: LOO時間の処理が提案されている(特開 2002— 28229号公 報)。この手法によると、マグネシウム材の種類によっては、結晶粒の粗大化が起こり 、強度 ·延性の低下を招 、てしまうために長期にわたつて強度を要するデバイスを作 製するには望ましくない。
[0043] 一方、水熱処理の一種であるオートクレーブ処理は、生体材料の滅菌方法の一つ として、通常 120〜121°C、 15〜30分程度の条件で行われる。上記の条件では純 マグネシウムおよびマグネシウム合金の結晶粒粗大化は起こり難 、ため、本願の陽 極酸化とともに医療用生分解性マグネシウム材の皮膜作製および改質の有効な方 法となりうると考えられる。
[0044] 以上のような本発明の医療用生分解性マグネシウム材は、体内への埋入初期にお ける分解が抑制され、骨などの周辺組織との接合性、即ち生体適合性および接合性 が改善されたものであり、さまざまな医療用の生分解性デバイスとして利用することが できる。これに限定されることはないが、例えば、具体的な例として、下記に示したよう なデバイスとして用いるのが有効である。ボーンプレートやミニプレートなどの骨折固 定材、人工骨や頭蓋骨プレートなどの再生医療デバイスのスキヤホールド (足場材料 )、ステントや動脈瘤閉塞用コイルや心房中隔欠損症治療デバイスなどの循環器の 治療用デバイス。また、血管、胆管ゃ食道などの消化器管、および気管などの、管状 の器官用のステント。さらに、体内の骨や血管などの糸且織構造中に留置して使用する 薬物徐放医療用デバイス。例えば、骨折固定材などの骨周囲で使用する材料には、 骨の再生を促進する機能や、ステントなどの血管内で使用する材料には、血栓の形 成を抑制する機能等を付与することができる。
[0045] 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろ ん、この発明は以下の例に限定されるものではなぐ細部については様々な態様が 可能であることは言うまでもな 、。
実施例
[0046] <実施例 1:陽極酸ィ匕皮膜の形態の制御 >
Yを 0. 3原子%含有するマグネシウム二元合金(a)の表面を研磨し、室温、 1Nの NaOH中に浸漬して、 (b) 2V, (c) 7V, (d) 10V, (e) 20V, (f) 100Vまたは(g) 20 OVの条件で陽極酸化し、マグネシウム二元合金表面に陽極酸化皮膜を形成させた 。図 1および図 2から図 7に、マグネシウム二元合金(a)の研磨ままの表面と、(b)〜(f )の条件で作製した陽極酸化皮膜の走査型電子顕微鏡 (SEM)像を示した。図 1お よび図 2から図 7において、例えば (al)はマグネシウム二元合金(a)の低倍率での観 察像を、(a2)は高倍率での観察像を示している。
[0047] 図 1の(al) (a2)から解るとおり、研磨ままの表面では研磨痕のみが観察された。図 2の(bl) (b2)より、 2Vで陽極酸ィ匕した表面は、凹凸やひび割れのない非常に滑ら かな表面であつたが、 1 m以下の粒が散在していた。図 3の(cl) (c2)より、 7Vで陽 極酸ィ匕した表面の皮膜は 1 m以下の粒が凝集して形成されていた。図 4の(dl) (d 2)より、 10Vで陽極酸ィ匕した表面では、滑らかな皮膜中に多数の 1 m以下の粒お よび孔が観察された。図 5の (el) (e2)より、 20Vで陽極酸ィ匕した表面は、凹凸のな い非常に滑らかな表面であった力 幅 3 /z m、長さ数十/ z mの窪みが散在していた。 図 6の(fl) (f2)より、 100Vで陽極酸ィ匕した表面は数十/ z mのクレーターが掘られた ような形状の凹凸が激しぐクレーターの内部、外部ともサブミクロンオーダーの微粒 子が凝集して形成されていた。また、その粒子間にもサブミクロンオーダーの孔が形 成されていた。図 7の(gl) (g2)より、 200Vで陽極酸ィ匕した表面は、 100Vでの表面 と同様の形状をしている力 粒子間のすき間が 100Vにおけるよりも密であった。この ため、孔径は 200Vにおける方が 100Vにおけるよりも小さいと考えられる。
[0048] 以上の結果より、陽極酸化の電圧を制御することにより、マグネシウム二元合金の 表面に形成させる陽極酸ィ匕皮膜の形態を制御できることが明らとなった。
[0049] さらに、 5V付近の低い電圧および 100V以上の高い電圧においては皮膜が多孔 質になること、また、電圧により多孔度および孔径を制御できることが明らかになった [0050] このように形成された皮膜の孔に、例えば、塗布、被覆、充填、浸漬などの手法を 利用して薬物を担持させることが可能となり、さらに皮膜の多孔度および孔径を制御 することにより、担持する薬物の量、種類および徐放速度に適した表面を得ることが できる。
[0051] <実施例 2:陽極酸化皮膜の厚さの制御 >
Yを 0. 3原子%含有するマグネシウム二元合金の表面を研磨し、室温、 1Nの NaO H中に浸漬して、 2V, 7V, 20V, 100Vの条件で陽極酸化し、マグネシウム二元合 金表面に陽極酸化皮膜を形成させた。図 8に、マグネシウム二元合金の研磨ままの 表面と、各条件で陽極酸化した表面における酸化皮膜の膜厚を示した。なお、膜厚 は、 Arガススパッタリングを行 、ながらオージュ電子分光 (AES)法により各表面の組 成分析を行い、酸素濃度が最表面の 50%になったスパッタリング深さより求めた。
[0052] 研磨ままの表面、 2Vおよび 20Vで陽極酸化した表面の酸化皮膜は nmオーダーで あるのに対し、 7Vおよび 100Vで陽極酸ィ匕した表面の酸ィ匕皮膜は/ z mオーダーであ つた。これより、陽極酸化の電圧の制御により、マグネシウム材の保護皮膜の厚さを 制御できることが明らかになった。
[0053] このように皮膜の厚さを制御することにより、例えば、マグネシウム二元合金の機械 的特性の保持期間、また、この皮膜に担持する薬物の量等を制御することができる。
[0054] <実施例 3:陽極酸化皮膜の組成の制御 >
Yを 0. 3原子%含有するマグネシウム二元合金の表面を研磨し、室温、 1Nの NaO H中に浸漬して、 2Vまたは 20Vの条件で陽極酸ィ匕し、マグネシウム二元合金表面に 陽極酸化皮膜を形成させた。
[0055] 図 9は、マグネシウム二元合金の研磨ままおよび陽極酸ィ匕した表面の X線光電子分 光(XPS)スペクトルを示すグラフであって、(a)は Mg 2p電子スペクトル、(b)は Mg KLLォージェ電子スペクトル、(c)Y 3d電子スペクトルである。
[0056] 図 9 (a)の Mg 2p電子のスペクトルについては、各試料間で違いはほとんど見られ なかった。図 9 (b)の Mg KLLォージェ電子スペクトルにお!/、ては、研磨まま表面に おいてのみ、金属状態に由来するブロードなピークが現れ、研磨まま表面の酸化皮 膜が最も薄いことがわかった。図 9 (c)の Y 3d電子スペクトルにおいては、 2Vで陽 極酸ィ匕した表面においてのみ、酸化物の Yに由来するピークが現れ、酸化皮膜中に 第 2元素である Yが濃縮して 、た。
[0057] 以上のことから、陽極酸化の電圧の制御により、マグネシウム合金の表面に形成さ せた皮膜の組成を制御できることが明らかになった。皮膜の組成を制御することによ り、皮膜の保護性が変化し、強度保持期間を変化させることが可能となる。
[0058] <実施例 4:陽極酸化電圧と皮膜の保護性 >
陽極酸ィ匕によりマグネシウム材の表面に形成した皮膜が破壊せずにマグネシウム 材の分解を抑制している期間、即ちマグネシウム材製デバイスの埋入初期の強度保 持期間は、皮膜の保護性 (耐久性)に依存することになる。
[0059] 通常の皮膜を有する金属材の分極試験にお!、て見られるアノード電流の増加は、 試料に電位が印加されることで、金属の溶解 (イオン化)が促進されたり、塩化物ィォ ンなどの特定の溶液成分による皮膜の破壊が促進されたり、皮膜の下地側と溶液側 の間にかかる電場に皮膜が耐えられずに破壊したりすることで起こる。つまり、皮膜の 保護性の指標として、分極試験における電位 電流曲線で急激に大きなアノード電 流が流れる電位を、皮膜破壊電位として用いることができる。皮膜破壊電位が高いほ ど、皮膜の保護性は高い、すなわち皮膜がマグネシウム材の分解を抑制する期間が 長いと評価できる。
[0060] そこで、平均結晶粒径が 1 μ mの純マグネシウム(不純物濃度: 0. 05原子%以下) 、 Y, Dy, In, Gd, Ybもしくは Ndを 0. 3原子%含有するマグネシウム二元合金、お よび実用合金である AZ31押出材の、研磨まま試料および室温の IN NaOH中で 2 V〜200Vのある電圧で陽極酸ィ匕した試料(陽極酸ィ匕試料)について、表 1に示す組 成を有する疑似体液中で分極試験を行 ヽ、陽極酸化により形成される皮膜の保護性 について調べた。本実施例 4は、具体的には図 15に示すように以下のようにして行つ た。
[0061] 図 15に示すように、 37°Cに保った 500mlの疑似体液(7)中に、試料(1)の表面が 垂直となり暴露されるように試料(1)をステンレス製板(3)に、固定部材(2)としてシリ コーン榭脂およびテフロン (登録商標)テープで被覆して固定した。ガラス製の容器 ( 6)内の試料(1)表面近くに参照電極 (4)として、飽和カロメル電極 (SCE)の先端を 固定した。試料(1)表面と対畤する位置に対極 (5)として白金板を固定した。これら を、みの口クリップと電線 (8)によりポテンシヨスタツト(9)に接続した。浸漬直後から試 料(1)の浸漬電位の経時変化を 1時間モニターした。引き続き、試料(1)の電位を S CEに対して 1.8V力 アノード方向に lmVZsecの速度で掃引した。
[0062] [表 1] 疑似体液と血漿との成分比較表 (X I 0"3mo 1/1)
成 分 疑似体液 血漿
Na + 1 00 142
K + 6 5
Mg 2 + 0 . 8 1. 5
Ca 2 + 1 . 3 2. 5
C 1 _ 1 03 103
HP04 2 + H2 P04- 0 . 8 1
HCO3— 4 . 2 27
SO4 2- 0 . 8 0. 5
[0063] なお、この疑似体液は、表 1に示したように、血漿中での濃度と同等の塩ィ匕物イオン を含む溶液である。マグネシウム材の皮膜は、通常中性に近い溶液中では塩ィ匕物ィ オンの攻撃を受けて破壊されやすい。ステントなどの血管内に埋入されるデバイスは 血液に曝され、プレートなどの軟 '硬組織近傍に埋入されるデバイスは細胞間質液に 曝される。これら血液中および細胞間質液中の無機イオン濃度は、血漿中の濃度と 同等であることから、本実施例は、マグネシウム材の皮膜の保護性の評価に適してい ると考えることができる。また、表 1の疑似体液は、血漿中と同等の濃度のリン酸ィォ ンおよびカルシウムイオンをも含む溶液であることから、皮膜表面へのリン酸カルシゥ ム析出能の評価にも適して 、ると考えられる。
[0064] 上記分極試験で得られた分極曲線 (電位 電流曲線)のアノード電流曲線上に、 皮膜の破壊によってアノード電流密度が急激に増加する電位 (皮膜破壊電位)が現 れた。この皮膜破壊電位と陽極酸ィ匕の電圧の関係を図 10にまとめた。 [0065] 図 10より、マグネシウム材の組成にかかわらず、陽極酸ィ匕により皮膜破壊電位が増 加することが明らかになった。一方、 AZ31押出材では 2Vでの陽極酸ィ匕により皮膜 破壊電位の増加がみられたのに対し、純マグネシウムおよび Y, Dy, In, Gd, Ybも しくは Ndを 0. 3原子0 /0含有するマグネシウム二元合金では、 2Vよりも高い電圧での 陽極酸ィ匕により皮膜破壊電位の増加がみられた。さら〖こ、皮膜破壊電位は陽極酸化 電圧に依存して変化した。
[0066] これらの結果より、陽極酸化により皮膜の保護性を変化させ、マグネシウム材の分 解を長短所望の保持期間に制御することができること、および陽極酸化電圧の制御 により、マグネシウム材の分解が始まるまでの時間を所望の期間に制御できることが 示された。
[0067] <実施例 5:陽極酸化試料の浸漬電位の経時変化 >
実用合金である AZ31押出材の研磨まま試料および、 7Vもしくは 100Vで陽極酸 化した試料を、上記表 1の組成の疑似体液中に浸漬し、浸漬電位のモニタリングを 2 週間行った。浸漬の条件としては、約 lcm2の試料面積に対して 150mlの溶液を用 い、溶液の温度を 37°Cに保った。具体的には図 16に示すように、以下のようにして 行った。
[0068] 図 16に示すように、 37°Cに保った 150mlの疑似体液(7)中に、試料(1)の表面が 垂直となり暴露されるように試料(1)をステンレス製板(3)に、固定部材(2)としてシリ コーン榭脂で被覆して固定した。テフロン (登録商標)製の容器 (6)内の試料(1)表 面近くに参照電極 (4)として、飽和カロメル電極 (SCE)の先端を固定した。これらを、 みの口クリップと電線 (8)によりデジタル X—Yレコーダー(10)に接続した。浸漬直後 力も試料(1)の浸漬電位の経時変化を 2週間モニターした。
[0069] 図 11は、 (a)研磨まま、および(b) 7V、 (c) 100V、 (d) 200Vで陽極酸化したマグ ネシゥム合金 (AZ31押出材)の疑似体液中における浸漬電位の経時変化を示すグ ラフである。
[0070] 研磨まま試料の浸漬初期の電位は— 1. 53V(SCE)であるのに対し、陽極酸化し た試料の電位は— 1. 50V(SCE)であった。一般に浸漬電位が高いほど金属材料 の表面皮膜による保護性は高いとされており、今回の結果も、陽極酸ィ匕によりマグネ シゥム材の表面に保護性の高い皮膜が形成されることを示すものであった。
[0071] 陽極酸化した試料の浸漬電位の挙動を比較すると、 7Vもしくは 100Vで陽極酸ィ匕 した試料にお!ヽては 2週間の浸漬期間を通して、大きなスパイク状の電位の変動が 頻繁にみられるのに対し、 200Vで陽極酸ィ匕した試料においては、電位の変動はほ とんど起こってレ、な力つた。浸漬電位の変動は、皮膜の局所的な破壊と修復により発 生する。これより、陽極酸化の電圧により皮膜の局所的な破壊に対する耐性が変化 すること、すなわち皮膜の at保護性が変化することが明らかになった。
[0072] なお、研磨まま試料および 100Vで陽極酸ィ匕した試料の浸漬電位は、それぞれ 7
o
日目と 10日目付近で増カロし始め、浸漬を終了した 2週間目でも増加を続けていた。 表 2に示したように、浸漬 2週間後の各試料表面には Ca、 Pの析出がみられ、研磨ま まおよび 100Vで陽極酸化した試料の Caと Pの相対比は、 7Vもしくは 200Vで陽極 酸ィ匕した試料よりも小さかった。このことから、疑似体液中力 のリン酸カルシウムの 析出形態によって、浸漬電位の挙動が変化するものと考えられる。
[0073] [表 2]
o 浸清開始前の表面組成 (原子%)
AZ31
o Mg AI Zn
研磨まま 4. 5 92. 0 3. 2 0. 3
疑似体液漫 »2¾間目の表面析出物 (《子%)
AZ31
O Mg AI Zn Ca P Ca/P なし 36. 4 0. 9 0. 3 21 . 9 1 8. 6 1 . 2 隔極 7V 24. 1 5. 3 0 0 44. 6 26. 0 1 . 7 酸化 1 0OV 29. 8 41 . 5 1 . 4 0. 3 1 . 3 1 2. 7 1 . 1
200V 23. 8 1 . 1 0. 2 1 5. 3 1 . 5
[0074] <比較例:気相での熱酸ィヒ試料との比較 >
従来技術文献(特許文献 3および Y. A. Abdullat, S. Tsutsumiら, Mate rials Science Forum (2003) )に開示された酸化雰囲気中での熱酸化と同じ条 件で、マグネシウム材を大気中で熱酸化して皮膜を形成し、本発明の陽極酸化によ り作製した皮膜と、形態および保護性を比較した。皮膜を形成するマグネシウム材と して、 Yを 0. 3原子%含有するマグネシウム二元合金を用いた。
[0075] 図 12に、大気中で熱酸化した Yを 0. 3原子%含有するマグネシウム二元合金表面 の SEM像を示した。試料表面には研磨痕の形状が残っており、皮膜のひび割れが 多く観察された。図 12の(a3)に示した高倍率での観察においても、実施例 1の陽極 酸ィ匕皮膜に観察されたような孔は観察されな力つた。熱酸化では、多孔質の皮膜は 形成されにくいと考えられ、熱酸化による皮膜の作製は、薬物徐放表面の形成には 向かないと考えられる。
[0076] この大気中で熱酸化した Yを 0. 3原子%含有するマグネシウム二元合金を疑似体 液中に浸漬し、その皮膜破壊電位を調べて図 13に示した。比較のため、研磨ままの 表面および 2V, 7Vもしくは 100Vで陽極酸ィ匕した合金の皮膜破壊電位を併せて示 した。熱酸ィ匕した試料の皮膜破壊電位は研磨まま試料と同等であり、陽極酸化した 試料よりも低力つた。
[0077] このことから、熱酸ィ匕により作製した皮膜の保護性は、陽極酸ィ匕により作製した皮膜 の保護性よりも劣ることが予測された。
[0078] 大気中で熱酸化もしくは 7Vで陽極酸ィ匕した、 Yを 0. 3原子%含有するマグネシゥ ムニ元合金を、上記表 1に示した組成の疑似体液中に 2週間浸漬して、試料表面を 実体顕微鏡で観察した際の像を図 14に示した。なお、各試料としては、直径 8mm、 厚さ 2mmのディスク状のものを用い、 316Lステンレス鋼製の電極板に銀ペーストで 貼り付け、試料表面の直径 5mmの外側および 316Lステンレス鋼板は PTFE系テー プで被覆して絶縁した。
[0079] 試料を 2週間の浸漬後に溶液カゝら引き上げたところ、熱酸ィ匕した試料は全て分解し 、ゲル状の堆積物に変化していた。熱酸化で形成した酸化皮膜は疑似体液中への 浸漬により失われ、このために試料は崩壊してしまった可能性がある。 7Vで陽極酸 化した試料は、元の形状を保っていた力 表面には厚いゲル状の析出物があった。 このゲル状の堆積物は、陽極酸ィ匕した試料表面に均一に生成して 、た。
[0080] 以上の表面観察、分極試験および浸漬試験の結果は、気相で熱酸化した表面皮 膜の保護性が、陽極酸ィ匕した表面皮膜の保護性よりも低いことを示すものである。熱 酸ィ匕よりもこの出願の発明の陽極酸ィ匕の方が、マグネシウムの強度保持期間の制御 に適して!/、ることが明らかになつた。
[0081] <実施例 6 :結晶粒径、第二成分、陽極酸化時の電圧と皮膜の保護性 > 結晶粒径、第二成分、陽極酸化時の電圧により、皮膜の保護性をどのように制御で きるかについて実験した。その実験結果を表 3に示す。
[0082] 試料の作製方法、陽極酸ィヒ方法および皮膜の保護性の測定方法にっ ヽては、本 実施例 4と同様である。
[0083] [表 3] 分極試験よリ得た皮膜破壊電位※(疑似体液) (/V vs. SCE)
マグネシウム材 結晶粒の平均 研磨まま 陽極酸化
粒子径(Ai m) 2V 7V 1 00V a 純 Mg 1 -1.56 -1.45 -1.37 -1.49 b 純 Mg 5 -1.55 -0.37 -0.65 -0.97 c 純 Mg 50 -1.48 -0.07 - 0.37 1.38 d 純 Mg 100 -1.47 -1.47 -1.09 0.50 e 純 Mg 200 - 1.51 0.09 -0.55 -1.43 f 0. 3%Li添加合金 1 -1.37 -0.52 -1.58 -1.43 g 0. 3%Ca添加合金 1 - 1.01 -1.45 -0.28 -0.48 h 0. 3%AI添加合金 1 - 1.50 -0.61 - 0.25 -1.33 i 0. 3%In添加合金 1 -1.60 -1.06 -1.44 -1.47
※2データ以上ある場合、それらの平均値を用いた。
[0084] 表 3より、純マグネシウムにおいても粒子径の違いにより、同一の電圧で陽極酸化し た場合でも異なる皮膜破壊電位を示した。これより、マグネシウム材の粒子径と陽極 酸ィ匕の条件の組み合わせにより、マグネシウム材の分解を所望の保持期間に制御で きることが示された。
[0085] また、第二成分となる添加元素の種類により、陽極酸ィ匕により皮膜破壊電位が高く なる元素と同等以下になる元素があることが明らかになった。これより、添加元素の種 類と陽極酸ィ匕の条件の組み合わせにより、マグネシウム材の分解を長短所望の保持 期間に制御できることが示された。

Claims

請求の範囲
[1] 生体内で分解してこれに吸収される医療用生分解性マグネシウム材であって、結 晶ィ匕されたマグネシウムまたはマグネシウム合金の表面に、陽極酸ィ匕によって形成さ れた、マグネシウム酸ィ匕物および水酸ィ匕物を含む皮膜を備えて ヽることを特徴とする 医療用生分解性マグネシウム材。
[2] 請求項 1に記載の医療用生分解性マグネシウム材にお 、て、その平均結晶粒径が 部材の最小部位の 1Z4以下であることを特徴とする医療用生分解性マグネシウム材
[3] 請求項 1又は 2に記載の医療用生分解性マグネシウム材において、 93. 5原子% 以上のマグネシウムを主成分とし、第二成分を含有するものであって、その第二成分 の結晶粒界への偏在濃度が結晶粒内平均濃度の 1. 2倍以上であることを特徴とす る医療用生分解性マグネシウム材。
[4] 請求項 3に記載の医療用生分解性マグネシウム材であって、第二成分として、 0. 0 3原子%以下の Ce、 0. 03原子%以下の Pr、 0. 033原子%以下の Au、 0. 043原 子%以下の Ir、 0. 047原子%以下の1^、 0. 067原子%以下の Pd、 0. 17原子%以 下の Th、 0. 21原子%以下の Nd、 0. 3原子%以下の Ca、 0. 3原子%以下の Mn、 0. 35原子%以下の Zr、 0. 37原子%以下の Bi、 0. 4原子%以下の Yb、 0. 47原子 %以下の Rb、 0. 64原子%以下の Co、 0. 8原子%以下の Zn、 0. 8原子%以下の P u、 1. 0原子%以下の Ga、 1. 3原子%以下の Y、 1. 3原子%以下の Ag、 1. 5原子 %以下の Gd、 1. 6原子%以下の Dy、 1. 8原子%以下の Ho、 2. 1原子%以下の T m、 2. 4原子%以下の Er、 3. 0原子%以下の Lu、 3. 9原子%以下の Al、 5. 0原子 %以下の Sc、 5. 7原子%以下の Li、 6. 5原子%以下の Inの中の何れか 1元素を含 み、残部が不可避的不純物であることを特徴とする医療用生分解性マグネシウム材
[5] 請求項 1から 4のいずれかに記載の医療用生分解性マグネシウム材において、そ の皮膜が多孔質であることを特徴とする医療用生分解性マグネシウム材。
[6] 請求項 1から 5の 、ずれかに記載の医療用生分解性マグネシウム材の製造方法で あって、電解溶液中でマグネシウムまたはマグネシウム合金を陽極として通電するこ とで陽極酸ィ匕することによりその表面にマグネシウム酸ィ匕物および水酸ィ匕物を含む 皮膜を形成させることを特徴とする医療用生分解性マグネシウム材の製造方法。
[7] 請求項 6に記載の医療用生分解性マグネシウム材の製造方法において、電解溶液 力 ナトリウム、カリウム、アルミニウムあるいはカルシウムの塩または水酸化物、リン酸
、ケィ酸、アルミン酸、ホウ酸、シユウ酸、酢酸あるいは酒石酸の塩、フッ化物、ェチレ ングリコール力 なるグループ力 選択される 1以上の成分を含む溶液であることを特 徴とする医療用生分解性マグネシウム材の製造方法。
[8] 請求項 6又は 7に記載の医療用生分解性マグネシウム材の製造方法において、所 望の皮膜形態を得るために、通電の時間、電圧、電流を制御することを特徴とする医 療用生分解性マグネシウム材の製造方法。
PCT/JP2007/055571 2006-03-20 2007-03-19 医療用生分解性マグネシウム材 WO2007108450A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008506298A JPWO2007108450A1 (ja) 2006-03-20 2007-03-19 医療用生分解性デバイスの分解時間制御方法
US12/225,369 US20090131540A1 (en) 2006-03-20 2007-03-19 Biodegradable Magnesium Based Metallic Material for Medical Use
EP20070739014 EP1997522B1 (en) 2006-03-20 2007-03-19 Method of controlling degradation time of a biodegradable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006077776 2006-03-20
JP2006-077776 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108450A1 true WO2007108450A1 (ja) 2007-09-27

Family

ID=38522479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055571 WO2007108450A1 (ja) 2006-03-20 2007-03-19 医療用生分解性マグネシウム材

Country Status (4)

Country Link
US (1) US20090131540A1 (ja)
EP (1) EP1997522B1 (ja)
JP (1) JPWO2007108450A1 (ja)
WO (1) WO2007108450A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013687A (ja) * 2008-07-02 2010-01-21 Chiba Inst Of Technology 高硬度酸化マグネシウム皮膜の形成方法
JP2010057590A (ja) * 2008-09-02 2010-03-18 Olympus Corp 移植材とその製造方法
JP2010063534A (ja) * 2008-09-09 2010-03-25 Olympus Corp 移植材とその製造方法
JP2010125156A (ja) * 2008-11-28 2010-06-10 Olympus Corp 移植材とその製造方法
JP2010148682A (ja) * 2008-12-25 2010-07-08 National Institute For Materials Science 医療用生体吸収性部材とその製造方法。
JP2010174363A (ja) * 2009-02-02 2010-08-12 National Institute For Materials Science Mg基構造部材
JP2011072617A (ja) * 2009-09-30 2011-04-14 Olympus Corp 移植材とその製造方法
WO2011093414A1 (ja) * 2010-01-27 2011-08-04 国立大学法人東京医科歯科大学 金属酸化物、金属材料、生体親和材料、および金属酸化物の製造方法
WO2012102205A1 (ja) * 2011-01-24 2012-08-02 オリンパス株式会社 生分解性移植材およびその製造方法
US20120215301A1 (en) * 2009-10-30 2012-08-23 Acrostak Corp Bvi, Tortola Biodegradable implantable medical devices formed from super - pure magnesium-based material
KR101250700B1 (ko) * 2010-12-06 2013-04-03 성균관대학교산학협력단 생체분해성 마그네슘의 분해속도 제어방법 및 이를 이용한 의료기기용 생체분해성 마그네슘
EP2229189A4 (en) * 2008-01-17 2013-05-15 Univ Hong Kong IMPLANT FOR TISSUE ENGINEERING
JP2013524004A (ja) * 2010-03-25 2013-06-17 マグネシウム エレクトロン リミテッド 重希土類元素含有マグネシウム合金
JP2014505528A (ja) * 2010-12-21 2014-03-06 シンセス ゲーエムベーハー 生物分解性のマグネシウムベースの合金を含む医療用インプラントおよびその製造方法
JP2014132114A (ja) * 2012-12-07 2014-07-17 Nippon Sozai Kk 耐食性マグネシウム2元合金
WO2015186388A1 (ja) * 2014-06-05 2015-12-10 オリンパス株式会社 インプラントとその製造方法
WO2015186390A1 (ja) * 2014-06-03 2015-12-10 オリンパス株式会社 骨接合用インプラント
JP2016007479A (ja) * 2014-06-26 2016-01-18 オリンパス株式会社 インプラント
JP2016521312A (ja) * 2013-03-15 2016-07-21 チキソマット,インコーポレイテッド 高強度で生体吸収性のマグネシウム合金
KR20160101416A (ko) * 2015-02-17 2016-08-25 서울대학교산학협력단 생체 분해성 마그네슘 및 생체 분해성 마그네슘의 분해속도 제어방법
WO2017124613A1 (zh) * 2016-01-19 2017-07-27 周倩 一种全降解镁合金及其制备方法
CN107773283A (zh) * 2016-08-31 2018-03-09 微创神通医疗科技(上海)有限公司 植入物、植入物制备方法及植入物***
WO2018131476A1 (ja) 2017-01-10 2018-07-19 不二ライトメタル株式会社 マグネシウム合金
WO2020012529A1 (ja) 2018-07-09 2020-01-16 不二ライトメタル株式会社 マグネシウム合金
CN111228577A (zh) * 2020-01-15 2020-06-05 太原科技大学 一种可短期降解医用镁合金及其制备方法
US11160674B2 (en) 2017-01-30 2021-11-02 Japan Medical Device Technology Co., Ltd. High performance bioabsorbable stent

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
WO2008017028A2 (en) 2006-08-02 2008-02-07 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
JP2010503491A (ja) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 生物学的安定性無機層を有する生浸食性エンドプロスシーシス
WO2008034031A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
WO2008036548A2 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
US20080069858A1 (en) * 2006-09-20 2008-03-20 Boston Scientific Scimed, Inc. Medical devices having biodegradable polymeric regions with overlying hard, thin layers
ES2356274T3 (es) 2006-12-28 2011-04-06 Boston Scientific Limited Endoprótesis biodegradables y procedimientos de fabricación de las mismas.
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2403546A2 (en) 2009-03-02 2012-01-11 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8435281B2 (en) 2009-04-10 2013-05-07 Boston Scientific Scimed, Inc. Bioerodible, implantable medical devices incorporating supersaturated magnesium alloys
WO2011119573A1 (en) 2010-03-23 2011-09-29 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8834560B2 (en) * 2010-04-06 2014-09-16 Boston Scientific Scimed, Inc. Endoprosthesis
US11491257B2 (en) 2010-07-02 2022-11-08 University Of Florida Research Foundation, Inc. Bioresorbable metal alloy and implants
WO2012003502A2 (en) 2010-07-02 2012-01-05 University Of Florida Research Foundation, Inc. Bioresorbable metal alloy and implants made of same
WO2014028599A1 (en) * 2012-08-14 2014-02-20 Guo Yuebin A biodegradable medical device having an adjustable degradation rate and methods of making the same
US9155637B2 (en) 2013-03-13 2015-10-13 Medtronic Vascular, Inc. Bioabsorbable stent with hydrothermal conversion film and coating
CN103272285B (zh) * 2013-05-24 2014-12-03 华南理工大学 可全降解生物材料及其制备方法
WO2014203566A1 (ja) * 2013-06-18 2014-12-24 オリンパス株式会社 生体用インプラント
US10266922B2 (en) 2013-07-03 2019-04-23 University Of Florida Research Foundation Inc. Biodegradable magnesium alloys, methods of manufacture thereof and articles comprising the same
DE102013214636A1 (de) * 2013-07-26 2015-01-29 Heraeus Medical Gmbh Bioresorbierbare Werkstoffverbunde, enthaltend Magnesium und Magnesiumlegierungen sowie Implantate aus diesen Verbunden
US9795427B2 (en) 2013-11-05 2017-10-24 University Of Florida Research Foundation, Inc. Articles comprising reversibly attached screws comprising a biodegradable composition, methods of manufacture thereof and uses thereof
US20160271301A1 (en) * 2013-11-08 2016-09-22 Siddarth Senthil-Kumar Hybrid Corrosion Inhibiting and Bio-Functional Coatings for Magnesium-Based Materials for Development of Biodegradable Metallic Implants
CN103757511B (zh) * 2013-12-27 2016-09-07 南通河海大学海洋与近海工程研究院 弥散强化型医用Mg-Zn-Ce-Ca-Mn合金及其制备方法
CN104790009B (zh) * 2014-01-16 2017-09-29 深圳富泰宏精密工业有限公司 金属与树脂的复合体的制备方法及由该方法制得的复合体
CN103882274B (zh) * 2014-03-18 2016-06-08 北京科技大学 生物医用可降解Mg-Zn-Zr-Sc合金及其制备方法
WO2016033312A1 (en) * 2014-08-27 2016-03-03 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Magnesium enhanced/induced bone formation
WO2016094510A1 (en) * 2014-12-12 2016-06-16 University Of Pittsburgh-Of The Commonwealth System Of Higher Education ULTRAHIGH DUCTILITY, NOVEL Mg-Li BASED ALLOYS FOR BIOMEDICAL APPLICATIONS
WO2016118444A1 (en) 2015-01-23 2016-07-28 University Of Florida Research Foundation, Inc. Radiation shielding and mitigating alloys, methods of manufacture thereof and articles comprising the same
CN104593851A (zh) * 2015-02-12 2015-05-06 重庆大学 含细胞响应性耐腐蚀涂层的镁合金及其制备方法和应用
CN105411643B (zh) * 2015-12-17 2018-06-22 张韬 可降解医用弹簧圈
US10947609B2 (en) * 2015-12-28 2021-03-16 Korea Institute Of Materials Science Magnesium alloy having excellent mechanical properties and corrosion resistance and method for manufacturing the same
CN106757251A (zh) * 2017-01-18 2017-05-31 东南大学 一种镁合金表面复合涂层的制备方法
CN108193111B (zh) * 2018-01-31 2019-10-18 中南大学 一种稀土镁合金阳极材料及其制备方法
CN109457130B (zh) * 2019-01-14 2020-11-20 兰州理工大学 一种高韧生物医用镁合金及其制备方法
JP7313612B2 (ja) * 2019-03-25 2023-07-25 学校法人 芝浦工業大学 高純度マグネシウム製の医療用インプラント及びその製造方法
CN110669971A (zh) * 2019-07-23 2020-01-10 东莞理工学院 一种医用3d打印镁合金材料及其制备方法
IT201900023586A1 (it) * 2019-12-11 2021-06-11 Univ Degli Studi Di Palermo Metodo per il trattamento superficiale di leghe di magnesio per applicazioni biomedicali
CN110747382B (zh) * 2019-12-11 2021-04-23 浙江工贸职业技术学院 一种超高压力作用下的Mg-Sc-X合金及其制备方法
US20220354999A1 (en) 2021-05-10 2022-11-10 Cilag Gmbh International Bioabsorbable staple comprising mechanisms for slowing the absorption of the staple
CN113322403A (zh) * 2021-06-03 2021-08-31 郑州大学 一种新型可降解高强韧镁合金骨钉材料及其制备方法
CN113667872A (zh) * 2021-08-25 2021-11-19 哈尔滨工程大学 一种Ho强化镁锂合金及其制备方法
CN113718145A (zh) * 2021-09-02 2021-11-30 景烽医用材料(浙江)有限公司 一种用于心血管疾病支架合金的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181772A (ja) * 1999-12-21 2001-07-03 Showa Alum Corp Mg合金製押出品およびその製造方法
JP2002028229A (ja) * 2000-07-18 2002-01-29 Japan Science & Technology Corp 生体用マグネシウム材料及びその製造方法
JP2002511782A (ja) * 1997-05-16 2002-04-16 ノベル バイオケアー アーベー(パブル) インプラント素子
JP2003500159A (ja) * 1999-05-31 2003-01-07 ノベル バイオケアー アーベー (パブル) 骨または組織構造用のインプラント上に配置される層、かかるインプラント、および層の施用方法
JP2003190272A (ja) * 2001-10-17 2003-07-08 Tadashi Kokubo 生体親和性に優れた骨代替材料およびその製造方法
JP2004323908A (ja) * 2003-04-24 2004-11-18 Nec Tokin Corp 機能性医療機器及びその製造方法
JP2005021420A (ja) * 2003-07-03 2005-01-27 Dentsply Sankin Kk 骨接合用プレート
JP2005518830A (ja) * 2001-12-24 2005-06-30 ユニベルジテット ハノーバー ハロゲン化物で改質されたマグネシウム材料からなる医用インプラント、補装具、補装具部分、医用の器具、道具および補助手段

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176894A (ja) * 1995-12-21 1997-07-08 Sony Corp 表面処理方法
DE19731021A1 (de) * 1997-07-18 1999-01-21 Meyer Joerg In vivo abbaubares metallisches Implantat
US7736687B2 (en) * 2006-01-31 2010-06-15 Advance Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
US20060052824A1 (en) * 2003-06-16 2006-03-09 Ransick Mark H Surgical implant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511782A (ja) * 1997-05-16 2002-04-16 ノベル バイオケアー アーベー(パブル) インプラント素子
JP2003500159A (ja) * 1999-05-31 2003-01-07 ノベル バイオケアー アーベー (パブル) 骨または組織構造用のインプラント上に配置される層、かかるインプラント、および層の施用方法
JP2001181772A (ja) * 1999-12-21 2001-07-03 Showa Alum Corp Mg合金製押出品およびその製造方法
JP2002028229A (ja) * 2000-07-18 2002-01-29 Japan Science & Technology Corp 生体用マグネシウム材料及びその製造方法
JP2003190272A (ja) * 2001-10-17 2003-07-08 Tadashi Kokubo 生体親和性に優れた骨代替材料およびその製造方法
JP2005518830A (ja) * 2001-12-24 2005-06-30 ユニベルジテット ハノーバー ハロゲン化物で改質されたマグネシウム材料からなる医用インプラント、補装具、補装具部分、医用の器具、道具および補助手段
JP2004323908A (ja) * 2003-04-24 2004-11-18 Nec Tokin Corp 機能性医療機器及びその製造方法
JP2005021420A (ja) * 2003-07-03 2005-01-27 Dentsply Sankin Kk 骨接合用プレート

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2229189A4 (en) * 2008-01-17 2013-05-15 Univ Hong Kong IMPLANT FOR TISSUE ENGINEERING
JP2010013687A (ja) * 2008-07-02 2010-01-21 Chiba Inst Of Technology 高硬度酸化マグネシウム皮膜の形成方法
JP2010057590A (ja) * 2008-09-02 2010-03-18 Olympus Corp 移植材とその製造方法
JP2010063534A (ja) * 2008-09-09 2010-03-25 Olympus Corp 移植材とその製造方法
JP2010125156A (ja) * 2008-11-28 2010-06-10 Olympus Corp 移植材とその製造方法
JP2010148682A (ja) * 2008-12-25 2010-07-08 National Institute For Materials Science 医療用生体吸収性部材とその製造方法。
JP2010174363A (ja) * 2009-02-02 2010-08-12 National Institute For Materials Science Mg基構造部材
JP2011072617A (ja) * 2009-09-30 2011-04-14 Olympus Corp 移植材とその製造方法
US20120215301A1 (en) * 2009-10-30 2012-08-23 Acrostak Corp Bvi, Tortola Biodegradable implantable medical devices formed from super - pure magnesium-based material
WO2011093414A1 (ja) * 2010-01-27 2011-08-04 国立大学法人東京医科歯科大学 金属酸化物、金属材料、生体親和材料、および金属酸化物の製造方法
JPWO2011093414A1 (ja) * 2010-01-27 2013-06-06 国立大学法人 東京医科歯科大学 金属酸化物、金属材料、生体親和材料、および金属酸化物の製造方法
JP2013524004A (ja) * 2010-03-25 2013-06-17 マグネシウム エレクトロン リミテッド 重希土類元素含有マグネシウム合金
KR101250700B1 (ko) * 2010-12-06 2013-04-03 성균관대학교산학협력단 생체분해성 마그네슘의 분해속도 제어방법 및 이를 이용한 의료기기용 생체분해성 마그네슘
JP2014505528A (ja) * 2010-12-21 2014-03-06 シンセス ゲーエムベーハー 生物分解性のマグネシウムベースの合金を含む医療用インプラントおよびその製造方法
EP2668966A4 (en) * 2011-01-24 2015-04-01 Olympus Corp BIODEGRADABLE IMPLANT MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
WO2012102205A1 (ja) * 2011-01-24 2012-08-02 オリンパス株式会社 生分解性移植材およびその製造方法
US9510884B2 (en) 2011-01-24 2016-12-06 Olympus Corporation Biodegradable implant and fabrication method thereof
JP6027894B2 (ja) * 2011-01-24 2016-11-16 オリンパス株式会社 生分解性移植材およびその製造方法
JP2014132114A (ja) * 2012-12-07 2014-07-17 Nippon Sozai Kk 耐食性マグネシウム2元合金
JP2016521312A (ja) * 2013-03-15 2016-07-21 チキソマット,インコーポレイテッド 高強度で生体吸収性のマグネシウム合金
JP2015228906A (ja) * 2014-06-03 2015-12-21 オリンパス株式会社 骨接合用インプラント
WO2015186390A1 (ja) * 2014-06-03 2015-12-10 オリンパス株式会社 骨接合用インプラント
JP2015229792A (ja) * 2014-06-05 2015-12-21 オリンパス株式会社 インプラントとその製造方法
WO2015186388A1 (ja) * 2014-06-05 2015-12-10 オリンパス株式会社 インプラントとその製造方法
JP2016007479A (ja) * 2014-06-26 2016-01-18 オリンパス株式会社 インプラント
KR20160101416A (ko) * 2015-02-17 2016-08-25 서울대학교산학협력단 생체 분해성 마그네슘 및 생체 분해성 마그네슘의 분해속도 제어방법
KR101722310B1 (ko) 2015-02-17 2017-03-31 서울대학교산학협력단 생체 분해성 마그네슘 및 생체 분해성 마그네슘의 분해속도 제어방법
WO2017124613A1 (zh) * 2016-01-19 2017-07-27 周倩 一种全降解镁合金及其制备方法
CN107773283A (zh) * 2016-08-31 2018-03-09 微创神通医疗科技(上海)有限公司 植入物、植入物制备方法及植入物***
WO2018131476A1 (ja) 2017-01-10 2018-07-19 不二ライトメタル株式会社 マグネシウム合金
US11248282B2 (en) 2017-01-10 2022-02-15 Fuji Light Metal Co., Ltd. Magnesium alloy
US11160674B2 (en) 2017-01-30 2021-11-02 Japan Medical Device Technology Co., Ltd. High performance bioabsorbable stent
WO2020012529A1 (ja) 2018-07-09 2020-01-16 不二ライトメタル株式会社 マグネシウム合金
US11685975B2 (en) 2018-07-09 2023-06-27 Japan Medical Device Technology Co., Ltd. Magnesium alloy
CN111228577A (zh) * 2020-01-15 2020-06-05 太原科技大学 一种可短期降解医用镁合金及其制备方法

Also Published As

Publication number Publication date
EP1997522A4 (en) 2011-11-02
JPWO2007108450A1 (ja) 2009-08-06
EP1997522B1 (en) 2015-05-13
US20090131540A1 (en) 2009-05-21
EP1997522A1 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
WO2007108450A1 (ja) 医療用生分解性マグネシウム材
KR101670435B1 (ko) 생체 분해성 스텐트 및 이의 제조 방법
Jamesh et al. Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids
US9259516B2 (en) Implant and method for manufacturing
WO2019182003A1 (ja) 生体吸収性ステント
WO2008059968A1 (fr) Dispositif médical à base de magnésium et son procédé de fabrication
CN102908675A (zh) 吻合器用可吸收缝钉
CN104888271A (zh) 一种生物可降解镁合金表面锶羟基磷灰石涂层的制备方法
JP6739336B2 (ja) 耐バイオフィルム医療用インプラント
JP2008125622A (ja) 生分解性マグネシウム材
Etminanfar et al. The effect of hydroxyapatite coatings on the passivation behavior of oxidized and unoxidized superelastic nitinol alloys
JP2015511508A (ja) ボディインプラントのためのストロンチウムを含むコーティング
Han et al. Formation and corrosion behaviors of calcium phosphate coatings on plasma electrolytic oxidized Mg under changing chemical environment
Yu et al. Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy
JP5339347B2 (ja) 医療用生体吸収性部材とその製造方法。
CN108714252B (zh) 体内可控降解的镁合金固定螺钉的制备方法
CN108543118B (zh) 体内可控降解的镁合金固定螺钉
Shi et al. Advances in amelioration of plasma electrolytic oxidation coatings on biodegradable magnesium and alloys
Fukushima et al. Corrosion resistance and surface characterization of electrolyzed Ti-Ni alloy
WO2020196777A1 (ja) 非管腔領域用インプラント
JP2008142523A (ja) 生分解性マグネシウム材
CN103120805A (zh) 一种生物医用可降解镁合金的生物活性表面涂层及制备
Gao et al. Corrosion and bone response of magnesium implants after surface modification by heat-self-assembled monolayer
JP3129041B2 (ja) インプラント及びその製造方法
RU2522932C1 (ru) Устройство зонтичное (окклюдер) с модифицированным поверхностным слоем

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739014

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008506298

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12225369

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)