WO2020012529A1 - マグネシウム合金 - Google Patents

マグネシウム合金 Download PDF

Info

Publication number
WO2020012529A1
WO2020012529A1 PCT/JP2018/025869 JP2018025869W WO2020012529A1 WO 2020012529 A1 WO2020012529 A1 WO 2020012529A1 JP 2018025869 W JP2018025869 W JP 2018025869W WO 2020012529 A1 WO2020012529 A1 WO 2020012529A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
less
alloy
magnesium
alloy according
Prior art date
Application number
PCT/JP2018/025869
Other languages
English (en)
French (fr)
Inventor
祐規 上田
正士 井上
佐々木 誠
Original Assignee
不二ライトメタル株式会社
株式会社日本医療機器技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二ライトメタル株式会社, 株式会社日本医療機器技研 filed Critical 不二ライトメタル株式会社
Priority to CA3104447A priority Critical patent/CA3104447C/en
Priority to EP18926369.2A priority patent/EP3822378B1/en
Priority to JP2019555699A priority patent/JP6695546B1/ja
Priority to PCT/JP2018/025869 priority patent/WO2020012529A1/ja
Priority to ES18926369T priority patent/ES2930364T3/es
Priority to CN202210151600.2A priority patent/CN114686739A/zh
Priority to CN201880086293.6A priority patent/CN111801435A/zh
Publication of WO2020012529A1 publication Critical patent/WO2020012529A1/ja
Priority to US17/138,492 priority patent/US11685975B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to a magnesium alloy.
  • the present invention relates to a magnesium alloy having excellent deformation characteristics that can be used in applications such as medical magnesium alloys.
  • Patent Document 1 describes a medical biodegradable magnesium material containing magnesium oxide or hydroxide formed by anodic oxidation on the surface of crystallized magnesium or magnesium alloy, It describes that when the material contains a second component other than magnesium, the uneven distribution concentration of the second component at the crystal grain boundary is at least 1.2 times the average in the crystal grain.
  • magnesium alloys are sometimes used as materials for medical devices with deformation, such as stents, in which case the alloy has appropriate deformability (ductility) and becomes a fracture origin after deformation. It is preferred that coarse precipitates (compounds) do not exist.
  • the alloy has a uniform crystal grain size, and it is preferable that the grain size can be finely controlled when performing fine processing on a stent or the like.
  • An object of the present invention is to provide a magnesium alloy having a fine and uniform crystal distribution and excellent deformability.
  • the magnesium alloy of the present invention contains, by mass%, 0.95 to 2.00% of Zn, 0.05% or more and less than 0.30% of Zr, and 0.05 to 0.20% of Mn, with the balance being balance.
  • the magnesium alloy having the above-described structure has an alloy composed of a substantially all solid solution type single phase or a structure in which fine precipitates containing nanometer-sized Zr are dispersed in the alloy.
  • This magnesium alloy has excellent deformability (ductility, elongation) due to its fine and uniform particle size, and has no mechanical properties such as tensile strength and proof stress because it does not have coarse precipitates that serve as fracture starting points. Excellent.
  • the magnesium alloy preferably contains Fe, Ni, Co, and Cu as unavoidable impurities each having a content of less than 10 ppm. More preferably, the magnesium alloy does not contain Co as an unavoidable impurity.
  • the magnesium alloy preferably has a total amount of unavoidable impurities of 30 ppm or less and does not contain a rare earth element and aluminum.
  • the above magnesium alloy may have an elongation at break of 15 to 50% as measured by JIS Z2241.
  • the elongation at break preferably exceeds 30%.
  • the magnesium alloy may have a tensile strength of 250 to 300 MPa and a proof stress of 145 to 220 MPa measured according to JIS Z2241.
  • the magnesium alloy preferably does not contain a precipitate having a particle size of 500 nm or more, and more preferably does not contain a precipitate having a particle size of 100 nm or more.
  • the medical device of the present invention is a medical device including the metal member made of the magnesium alloy according to the present invention. Since the alloy as the material has excellent deformation characteristics, in such a medical device, the metal member deformed in the body can stably maintain its shape, and its biodegradation characteristics can be appropriately controlled.
  • FIG. 1 is an SEM (scanning electron microscope) image showing the structure of a magnesium alloy according to Example 1 of the present invention.
  • FIG. 2 is an SEM image showing the structure of a magnesium alloy according to Example 2 of the present invention.
  • FIG. 2 is a diagram illustrating a particle size distribution of a magnesium alloy according to Example 1 of the present invention. It is a figure which shows the particle size distribution of the magnesium alloy concerning Example 2 of this invention.
  • the magnesium alloy of the present invention contains, by mass%, 0.95 to 2.00% of Zn, 0.05% or more and less than 0.30% of Zr, and 0.05 to 0.20% of Mn, with the balance being balance.
  • FIG. 1 is an SEM image of an alloy according to Example 1 described later
  • FIG. 2 is an SEM image of an alloy according to Example 2.
  • the dark portion of the contrast is a magnesium alloy (light and dark depending on crystal grains), and the white bar at the bottom of the figure shows a scale of 1 ⁇ m. 1 and 2, only a small number of precipitates having a particle size of less than 100 nm are observed in the crystal grains of some magnesium alloys, and almost no precipitates are observed at the crystal grain boundaries.
  • Zr Zirconium
  • Zr Zirconium
  • Zr hardly forms a solid solution with Mg, forms fine precipitates, and prevents the crystal grain size of the alloy from becoming coarse. There is. If the addition amount of Zr is less than 0.05%, the effect of addition cannot be obtained. When the addition amount is 0.30% or more, the amount of the precipitate increases, and the effect of reducing the particle size decreases. Further, the segregated portion of the precipitate becomes a starting point of corrosion and destruction. Therefore, the content of Zr is set to 0.05% or more and less than 0.30%. The content of Zr may be 0.10% or more and less than 0.30%.
  • the content of inevitable impurities is also controlled. Since Fe, Ni, Co, and Cu promote the corrosion of the magnesium alloy, the content of each is preferably less than 10 ppm, more preferably 5 ppm or less, and it is preferable that they are not substantially contained.
  • the total amount of the inevitable impurities is preferably 30 ppm or less, more preferably 10 ppm or less. Further, it is preferable that the rare earth element and aluminum are not substantially contained.
  • the content in the alloy is less than 1 ppm, it is considered that it is not substantially contained.
  • the content of the inevitable impurities can be confirmed by, for example, ICP emission spectroscopy.
  • the magnesium alloy can be manufactured by charging a base metal or an alloy of Mg, Zn, Zr, and Mn into a crucible, melting and casting at a temperature of 650 to 800 ° C. in accordance with a normal magnesium alloy manufacturing method. If necessary, solution heat treatment may be performed after casting. Rare earths (and aluminum) are not included in the metal. Further, by using a high-purity metal, the amounts of Fe, Ni, Co, and Cu in impurities can be suppressed. Fe, Ni, and Co in the impurities may be removed by a deironing process at the stage of melting. And / or a metal refined and distilled may be used.
  • the magnesium alloy has an average crystal grain size of 1.0 to 3.0 ⁇ m, for example, 1.0 to 2.0 ⁇ m, and a standard deviation of 0, when viewed from the particle size distribution by controlling the composition and the manufacturing method described above. 0.7 or less, for example, 0.5 to 0.7. The standard deviation is preferably 0.65 or less.
  • Fine grain precipitates containing Zr can have a particle size of less than 500 nm, preferably less than 100 nm.
  • the mother phase except for the Zr precipitate is preferably an all solid solution of a ternary alloy of Mg—Zn—Mn.
  • the alloy has mechanical properties of a tensile strength of 230 to 380 MPa, for example, 250 to 300 MPa, a proof stress of 145 to 220 MPa, and an elongation at break of 15 to 50%, for example, 25 to 40%, as measured according to JIS Z2241.
  • the tensile strength preferably exceeds 280 MPa.
  • the elongation at break preferably exceeds 30%.
  • the magnesium alloy of the present invention has excellent ductility, and the components are adjusted to components and concentrations that do not cause biotoxicity, and thus have excellent properties as medical metals.
  • the magnesium alloy of the present invention can be suitably used as a metal member constituting a medical device such as a stent, a stapler, a screw, a plate, and a coil.
  • a stent may be manufactured by turning a magnesium alloy into a tube by hot extrusion, processing it into a tube by cold drawing, and then performing laser processing.
  • the impurity concentration of the sample thus obtained was measured using an ICP emission spectrometer (AGILENT 720 ICP-OES, manufactured by AGILENT).
  • Table 1 shows the components of Example 1 and Example 2.
  • the concentrations of Fe, Ni, and Cu were all 8 ppm or less (3 ppm or less for Ni and Cu), Al and rare earth elements were not detected, and Co was below the detection limit.
  • the total impurity concentration is 11 ppm.
  • the magnesium alloy provided by the present invention has excellent deformation properties, and the matrix is composed of a single-phase alloy of all solid solution type, and can avoid corrosion due to a potential difference, so that the decomposition rate in a living body is appropriately controlled. be able to. Therefore, for example, it is highly applicable as a metal member for a medical device such as a stent or a stapler, which is required to be deformed during use and stable biodegradability is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

質量%で、0.95~2.00%のZn、0.05%以上0.30%未満のZr、0.05~0.20%のMnを含有し、残部がMgおよび不可避的不純物からなり、平均結晶粒径が1.0~3.0μm、粒径の標準偏差が0.7以下の粒径分布を有するマグネシウム合金。

Description

マグネシウム合金
 本発明はマグネシウム合金に関する。特に本発明は、医療用マグネシウム合金等の用途で使用し得る変形特性に優れたマグネシウム合金に関する。
 従来から、ステント、ステープラー、人工関節等の、各種の医療用金属デバイスが開発されている。生体内に埋め込んだ金属デバイスは、除去手術を行わない限り、体内に残置されるが、その用途によっては、埋め込みの初期から一定期間は、体内で強度を保持し、生体組織の修復後は、体内で分解・吸収されることが望まれている。マグネシウムは、生体毒性が低く安全性が高い金属であって、体液により速やかに分解・吸収されるものであることから、マグネシウムおよびその合金は、医療用生分解性金属材料として各種の開発が進められている。
 例えば、特許文献1は、結晶化されたマグネシウムまたはマグネシウム合金の表面に、陽極酸化によって形成された、マグネシウム酸化物または水酸化物を含む、医療用生分解性マグネシウム材を記載しており、マグネシウム材がマグネシウム以外の第二成分を含む場合に、第二成分の結晶粒界への偏在濃度を、結晶粒内の平均の1.2倍以上とすることを記載している。
国際公開第2007/108450号明細書
 マグネシウム合金を生分解性の医療材料として使用する場合、患部の生体が修復されるまでの間は強度が保持される必要がある。マグネシウム合金がこれよりも電気的に貴となる金属と接触している場合、体液に接する環境では、急速にガルバニック腐食が進行するため、これを避けるためには、母相の相分離を避けることが好ましい。また、マグネシウム合金は、ステントなどのように変形を伴う医療機器の素材として使用される場合があるが、その際、合金は適切な変形性(延性)を有するとともに、変形後の破壊起点となる粗粒の析出物(化合物)は存在しないことが好ましい。
 また、生分解性を考慮すると、合金は均一な結晶粒径を有することが好ましく、ステント等に微細加工を施す上で、粒径を微細に制御し得ることが好ましい。
 本発明は、微細かつ均一な結晶分布を有し、すぐれた変形性を有するマグネシウム合金を提供することを目的とする。
 本発明のマグネシウム合金は、質量%で、0.95~2.00%のZn、0.05%以上0.30%未満のZr、0.05~0.20%のMnを含有し、残部がMgおよび不可避的不純物からなり、平均結晶粒径が1.0~3.0μm、標準偏差が0.7以下の粒径分布を有するマグネシウム合金である。
 上記構成のマグネシウム合金は、ほぼ全固溶型の単相からなる合金、または前記合金中に、ナノメータ大のZrを含む微粒の析出物が分散した組織を有する。このマグネシウム合金は、粒径が微細かつ均一であることから、変形性(延性、伸び)にすぐれ、破壊起点となる粗粒の析出物をともなわないことから、引張強度、耐力等の機械的特性にもすぐれる。
 上記マグネシウム合金は、不可避不純物としてのFe、Ni、Co、Cuの含有量が、それぞれ10ppm未満であることが好ましい。上記マグネシウム合金は、不可避不純物としてのCoを含有しないものであることがより好ましい。
 上記マグネシウム合金は、不可避不純物の総量が30ppm以下であり、希土類元素およびアルミニウムを含有しないものであることが好ましい。
 上記のマグネシウム合金は、JIS Z2241によって測定される破断伸びが15~50%となるものであってもよい。破断伸びは、30%を超えることが好ましい。
 上記マグネシウム合金は、JIS Z2241によって測定される引張強度が250~300MPa、耐力が145~220MPaとなるものであってもよい。
 上記マグネシウム合金は、粒径500nm以上の析出物を含有しないことが好ましく、粒径100nm以上の析出物を含有しないことがさらに好ましい。
 本発明の医療機器は、上記本発明に係るマグネシウム合金からなる金属部材を含む医療機器である。材料となる合金が変形特性にすぐれることから、このような医療機器では、体内で変形した金属部材が安定して形状を維持し、その生分解特性を適切に制御することができる。
 なお、請求の範囲および/または明細書に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付のクレームによって定まる。
図1は、本発明の実施例1にかかる、マグネシウム合金の組織を示すSEM(走査型電子顕微鏡)像である。 図2は、本発明の実施例2にかかる、マグネシウム合金の組織を示すSEM像である。 本発明の実施例1にかかる、マグネシウム合金の粒径分布を示す図である。 本発明の実施例2にかかる、マグネシウム合金の粒径分布を示す図である。
 以下、本発明の実施形態について説明する。
 [マグネシウム合金]
 本発明のマグネシウム合金は、質量%で、0.95~2.00%のZn、0.05%以上0.30%未満のZr、0.05~0.20%のMnを含有し、残部がMgおよび不可避的不純物からなり、平均結晶粒径が1.0~3.0μm、標準偏差が0.7以下の粒径分布を有するマグネシウム合金である。
 本発明では、マグネシウム合金の組成を上記範囲に制御することにより、塑性加工性が向上すること、合金の粒径微細化・均一化によって破断伸びなどの特性が向上することがわかった。
 上記構成のマグネシウム合金は、破壊の起点となる、粗粒の析出物の形成が回避されるため、変形時や変形後の破壊の可能性を抑制することができる。なお合金の結晶粒径微細化のために添加されるZrは析出物を形成する場合があるが、通常ナノメータサイズ(100nm未満のサイズ)で母相中に分散しており、合金の変形や腐食への影響はほとんど無視することができる。例えば、図1は後述の実施例1、図2は実施例2に係る合金のSEM像である。コントラストの暗い部分がマグネシウム合金(結晶粒によって明暗はある)、図の下部の白いバーは、1μmのスケールを示している。図1、2とも100nm未満の粒径の析出物が、一部のマグネシウム合金の結晶粒内に少数観察されるだけであり、結晶粒界には析出物はほとんどみられない。
亜鉛(Zn):質量%で0.95%以上、2.00%以下
 Znは、Mgと固溶し、合金の強度、伸びを向上するために添加される。Znの添加量が0.95%未満では所望の効果が得られない。Znの含有量が2.00%を超えると、固溶限界を超えて、Znに富む析出物が形成され、耐食性を低下させるため好ましくない。そのため、Znの含有量は、0.95%以上、2.00%以下とした。Znの含有量は2.00%未満であってもよい。
ジルコニウム(Zr):質量%で0.05%以上、0.30%未満
 ZrはMgとはほとんど固溶せず、微細な析出物を形成し、合金の結晶粒径の粗大化を防止する効果がある。Zrの添加量が0.05%未満では、添加の効果は得られない。添加量が0.30%以上となると、析出物の量が多くなり、粒径微細化の効果が低下する。また、析出物の偏析している箇所が腐食や破壊の起点となる。そのため、Zrの含有量は、0.05%以上、0.30%未満とした。Zrの含有量は、0.10%以上、0.30%未満であってもよい。
マンガン(Mn):質量%で0.05%以上、0.20%以下
 Mnは、合金の微細化、および耐食性向上の上で効果がある。Mnの含有量が0.05%未満では、所望の効果が得られない。Mnの含有量が0.20%を超えると、塑性加工性が低下する。そのため、Mnの含有量は、0.05%以上、0.20%以下とした。好ましいMn含有量は0.10%以上、0.20%以下である。
[不可避不純物]
 医療用マグネシウム合金においては、不可避不純物の含有量も制御されることが好ましい。Fe、Ni、Co、Cuは、マグネシウム合金の腐食を促進するため、それぞれの含有量は、10ppm未満とすることが好ましく、5ppm以下とすることがさらに好ましく、実質的含有しないことが好ましい。不可避不純物の総量は、30ppm以下とすることが好ましく、10ppm以下とすることがさらに好ましい。また、希土類元素およびアルミニウムは実質的に含まれないことが好ましい。ここで、合金中の含有量が1ppm未満であれば、実質的に含有しないとみなす。不可避不純物の含有量は、例えば、ICP発光分光分析により、確認できる。
[マグネシウム合金の製造]
 上記マグネシウム合金は、通常のマグネシウム合金の製法に従い、Mg、Zn、Zr、Mnの地金もしくは合金を坩堝に投入し、温度650~800℃で溶解、鋳造することによって製造することができる。必要に応じ、鋳造後に溶体化熱処理を行ってもよい。希土類(およびアルミニウム)は、地金には含まれない。また高純度の地金を用いることにより、不純物中のFe、Ni、Co、Cu量は抑制できる。不純物中のFe、Ni、Coについては、溶湯化した段階で脱鉄処理により除去してもよい。かつ/あるいは、蒸留製錬した地金を用いてもよい。
[金属組織及び機械的特性]
 マグネシウム合金は、上述の組成及び製造方法の制御により、粒径分布で見た場合に、平均結晶粒径が1.0~3.0μm、例えば、1.0~2.0μm、標準偏差が0.7以下、例えば0.5~0.7の微細かつ均一な組織を有するものとすることができる。標準偏差は0.65以下であることが好ましい。Zrを含む細粒の析出物は、粒径500nm未満、好ましくは100nm未満とすることができる。Zr析出物をのぞく母相は、Mg-Zn-Mn三元系合金の全固溶体であることが好ましい。
 合金は、JIS Z2241による測定で、引張強度230~380MPa、例えば250~300MPa、耐力145~220MPa、破断伸び15~50%、例えば25~40%の機械的特性を有する。ここで、引張強度は280MPaを超えることが好ましい。破断伸びは30%を越えることが好ましい。
[医療機器]
 本発明のマグネシウム合金は、延性にすぐれ、成分は生体毒性を生じない成分・濃度に調整されているので、医療用金属としてすぐれた特性を有する。本発明のマグネシウム合金は、ステント、ステープラー、スクリュー、プレート、コイルなどの医療機器を構成する金属部材として好適に使用できる。例えば、マグネシウム合金を熱間押出加工で管材とし、冷間引抜加工でチューブ状に加工し、さらにレーザ加工することによって、ステントを製造してもよい。
[マグネシウム合金の調製]
 Mg、Zn、Mn、Zrの高純度地金を材料として準備した。これらをそれぞれ表1に記載の成分濃度となるように秤量して坩堝に投入し、730℃で溶融し、撹拌したメルトを鋳造し、鋳塊とし、主成分の配合割合を本発明の範囲内とした実施例1、実施例2のマグネシウム合金を得た。使用した原料には、希土類元素やアルミニウムは、不可避的不純物としても含まれていない。マグネシウム地金には、不純物Cu濃度の低い、純度99.99%のものを用い、また溶湯から鉄、ニッケルを除去するための脱鉄処理を炉内で行った。このようにして得られた試料について、ICP発光分光分析計(AGILENT製、AGILENT 720 ICP-OES)を使用し、不純物濃度を測定した。実施例1と実施例2の成分を表1に示す。Fe、Ni、Cuの濃度はいずれも8ppm以下(Ni,Cuについては3ppm以下)で、Alおよび希土類元素は検出されず、Coも検出限界以下であった。不純物濃度の総量は11ppmである。
Figure JPOXMLDOC01-appb-T000001
[機械的特性の測定]
 実施例の各合金について、熱間押出し加工にて丸棒材を作製し、JISZ2241に従い引張強度、耐力、および破断伸びを測定した。その結果を表2に示す。
[金属組織の観察]
 押出材の断面を、Arイオンビームスパッタリングで清浄な面を得た後、走査型電子顕微鏡(JEOL製、JSM-7000F)で観察し、電子線後方散乱回折(EBSD)法により平均粒径を測定し、粒径分布の標準偏差を求めた。その結果を表2に、粒径分布のグラフを図3,4に示す。また、各試料について2mm×2mmの観察領域において析出物の観察を行ったが、粒径100nm以上の析出物は観察されなかった。
Figure JPOXMLDOC01-appb-T000002
 本発明が提供するマグネシウム合金は、変形特性に優れると共に、母相が全固溶型の単相の合金からなり、電位差による腐食を避けることができるので、生体中における分解速度を適切に制御することができる。そのため、例えば、使用時に変形をともなうとともに、安定した生分解性が要求される、ステント、ステープラー等の医療機器用の金属部材として利用性が高い。

Claims (7)

  1.  質量%で、0.95~2.00%のZn、0.05%以上0.30%未満のZr、0.05~0.20%のMnを含有し、残部がMgおよび不可避的不純物からなり、
     平均結晶粒径が1.0~3.0μm、標準偏差が0.7以下の粒径分布を有するマグネシウム合金。
  2.  請求項1に記載のマグネシウム合金であって、不可避的不純物としてのFe、Ni、Co、Cuの含有量が、それぞれ10ppm未満であるマグネシウム合金。
  3.  請求項1または2に記載のマグネシウム合金であって、不可避不純物の総量が30ppm以下であり、該不純物中に希土類元素およびアルミニウムを含有しない、マグネシウム合金。
  4.  請求項1から3のいずれか一項に記載のマグネシウム合金であって、JIS Z2241によって測定される破断伸びが15~50%である、マグネシウム合金。
  5.  請求項1から4のいずれか一項に記載のマグネシウム合金であって、JIS Z2241によって測定される引張強度が250~300MPa、耐力が145~220MPaである、マグネシウム合金。
  6.  請求項1から5のいずれか一項に記載のマグネシウム合金であって、粒径500nm以上の析出物を含有しない、マグネシウム合金。
  7.  請求項1から6のいずれか一項に記載のマグネシウム合金からなる金属部材を有する医療機器。
PCT/JP2018/025869 2018-07-09 2018-07-09 マグネシウム合金 WO2020012529A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3104447A CA3104447C (en) 2018-07-09 2018-07-09 Magnesium alloy
EP18926369.2A EP3822378B1 (en) 2018-07-09 2018-07-09 Magnesium alloy
JP2019555699A JP6695546B1 (ja) 2018-07-09 2018-07-09 マグネシウム合金
PCT/JP2018/025869 WO2020012529A1 (ja) 2018-07-09 2018-07-09 マグネシウム合金
ES18926369T ES2930364T3 (es) 2018-07-09 2018-07-09 Aleación de magnesio
CN202210151600.2A CN114686739A (zh) 2018-07-09 2018-07-09 镁合金
CN201880086293.6A CN111801435A (zh) 2018-07-09 2018-07-09 镁合金
US17/138,492 US11685975B2 (en) 2018-07-09 2020-12-30 Magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025869 WO2020012529A1 (ja) 2018-07-09 2018-07-09 マグネシウム合金

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,492 Continuation US11685975B2 (en) 2018-07-09 2020-12-30 Magnesium alloy

Publications (1)

Publication Number Publication Date
WO2020012529A1 true WO2020012529A1 (ja) 2020-01-16

Family

ID=69142588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025869 WO2020012529A1 (ja) 2018-07-09 2018-07-09 マグネシウム合金

Country Status (7)

Country Link
US (1) US11685975B2 (ja)
EP (1) EP3822378B1 (ja)
JP (1) JP6695546B1 (ja)
CN (2) CN114686739A (ja)
CA (1) CA3104447C (ja)
ES (1) ES2930364T3 (ja)
WO (1) WO2020012529A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158761A1 (ja) * 2019-01-30 2020-08-06 株式会社日本医療機器技研 生体吸収性ステント
WO2020196777A1 (ja) * 2019-03-28 2020-10-01 株式会社日本医療機器技研 非管腔領域用インプラント
WO2020196778A1 (ja) * 2019-03-28 2020-10-01 株式会社日本医療機器技研 表面改質マグネシウム合金

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036075B3 (de) * 2004-07-24 2006-02-16 Bos Gmbh & Co. Kg Anordnung für Seitenfensterrollo
CN112921224B (zh) * 2021-02-23 2023-01-31 山西瑞格金属新材料有限公司 一种压铸用超薄壁部件高强高导热镁合金及其制备方法
CN116024472A (zh) * 2023-02-09 2023-04-28 上海百悦医疗科技有限公司 一种新型可降解医用镁合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108450A1 (ja) 2006-03-20 2007-09-27 National Institute For Materials Science 医療用生分解性マグネシウム材
WO2013052791A2 (en) * 2011-10-06 2013-04-11 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biodegradable metal alloys
WO2015147184A1 (ja) * 2014-03-28 2015-10-01 古河電気工業株式会社 マグネシウム合金管材とその製造方法、及びそれを用いてなるステントとその製造方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB851871A (en) * 1957-10-25 1960-10-19 British Thomson Houston Co Ltd Improved magnesium alloys
JPS5018704B1 (ja) 1970-12-31 1975-07-01
GB9023270D0 (en) 1990-10-25 1990-12-05 Castex Prod Magnesium manganese alloy
CA2082410C (en) 1991-03-08 2003-09-23 Hideo Tamai Luminal stent, holding structure therefor and device for attaching luminal stent
JP3904035B2 (ja) * 1996-03-21 2007-04-11 株式会社豊田中央研究所 耐熱マグネシウム合金
DE19731021A1 (de) 1997-07-18 1999-01-21 Meyer Joerg In vivo abbaubares metallisches Implantat
US8257725B2 (en) 1997-09-26 2012-09-04 Abbott Laboratories Delivery of highly lipophilic agents via medical devices
US7960405B2 (en) 1998-09-24 2011-06-14 Abbott Laboratories Compounds and methods for treatment and prevention of diseases
EP1516597A4 (en) 2002-06-27 2010-11-10 Microport Medical Shanghai Co MEDICINES ELUTIONSSTENT
JP2004183062A (ja) * 2002-12-04 2004-07-02 Sumitomo Denko Steel Wire Kk マグネシウム基合金線及びその製造方法
JP4782987B2 (ja) 2003-06-19 2011-09-28 住友電気工業株式会社 マグネシウム基合金ねじの製造方法
CN100552241C (zh) * 2003-06-19 2009-10-21 住友电气工业株式会社 镁基合金螺钉及其制造方法
CN101010152B (zh) * 2004-06-30 2011-04-13 住友电气工业株式会社 生产镁合金材料的方法及其镁合金材料
JP2006087704A (ja) 2004-09-24 2006-04-06 Terumo Corp 医療用インプラント
WO2006108065A2 (en) 2005-04-05 2006-10-12 Elixir Medical Corporation Degradable implantable medical devices
US20070135908A1 (en) 2005-12-08 2007-06-14 Zhao Jonathon Z Absorbable stent comprising coating for controlling degradation and maintaining pH neutrality
NO20063703L (no) * 2006-08-18 2008-02-19 Magontec Gmbh Magnesium stopeprosess og legeringssammensetning
EP2068963B1 (en) 2006-09-18 2011-10-26 Boston Scientific Limited Endoprostheses
US20100145436A1 (en) 2006-09-18 2010-06-10 Boston Scientific Scimed, Inc. Bio-erodible Stent
US8361251B2 (en) * 2007-11-06 2013-01-29 GM Global Technology Operations LLC High ductility/strength magnesium alloys
CN101468216A (zh) 2007-12-26 2009-07-01 中国科学院金属研究所 一种带药可降解镁合金心血管支架及其制备方法
JP5467294B2 (ja) 2008-06-05 2014-04-09 独立行政法人産業技術総合研究所 易成形性マグネシウム合金板材及びその作製方法
CN101629260A (zh) 2008-07-18 2010-01-20 中国科学院金属研究所 医用可吸收Mg-Zn-Mn-Ca镁合金
US9283304B2 (en) 2008-11-25 2016-03-15 CARDINAL HEALTH SWITZERLAND 515 GmbH Absorbable stent having a coating for controlling degradation of the stent and maintaining pH neutrality
US9254350B2 (en) 2009-04-10 2016-02-09 Medtronic Vascular, Inc. Implantable medical devices having bioabsorbable primer polymer coatings
WO2010123302A2 (ko) 2009-04-22 2010-10-28 유앤아이 주식회사 생체분해성 임플란트 및 이의 제조방법
US8382823B2 (en) 2009-05-28 2013-02-26 Snu R&Db Foundation Biodegradable stent and method for manufacturing the same
JP5720926B2 (ja) 2010-10-12 2015-05-20 住友電気工業株式会社 マグネシウム合金の線状体及びボルト、ナット並びにワッシャー
US20130004362A1 (en) 2011-03-10 2013-01-03 Nagata Seiki Kabushiki Kaisha Process for production of medical instrument, and medical instrument
US20130090741A1 (en) 2011-10-07 2013-04-11 Medtronic Vascular, Inc. Magnesium Alloys for Bioabsorbable Stent
JP2013215332A (ja) 2012-04-06 2013-10-24 Japan Stent Technology Co Ltd 生体吸収性医療器具及びその分解速度調整方法
CN102719717A (zh) 2012-05-25 2012-10-10 河海大学 骨固定用可降解高强韧超细晶镁锌稀土合金及其制备方法
CH706803A1 (de) 2012-08-06 2014-02-14 Axetis Ag Beschichteter Stent.
US9504554B2 (en) * 2013-01-16 2016-11-29 Biotronik Ag Microstructured absorbable implant
US9155637B2 (en) 2013-03-13 2015-10-13 Medtronic Vascular, Inc. Bioabsorbable stent with hydrothermal conversion film and coating
US9593397B2 (en) 2013-03-14 2017-03-14 DePuy Synthes Products, Inc. Magnesium alloy with adjustable degradation rate
BR112015022632B1 (pt) 2013-03-14 2020-01-07 DePuy Synthes Products, Inc. Composição de liga de magnésio, implante, e método de produção da composição
CA2906876C (en) * 2013-03-15 2021-04-06 Thixomat, Inc. High strength and bio-absorbable magnesium alloys
CN103255329B (zh) * 2013-05-07 2015-08-26 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法
EP3062832B1 (en) 2013-10-29 2017-09-27 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy microstructures for endoprostheses
JP2015147541A (ja) 2014-02-07 2015-08-20 ヤマハ発動機株式会社 船舶推進機およびその製造方法
CN104046867B (zh) * 2014-06-26 2017-01-25 宝山钢铁股份有限公司 一种高塑性导热镁合金及其制备方法
CN105586521A (zh) * 2014-10-22 2016-05-18 上海交通大学深圳研究院 高导热Mg-Zn-Mn变形镁合金及其制备方法
US10322214B2 (en) 2014-11-06 2019-06-18 Medtronic Vascular, Inc. Protected magnesium alloys for bioresorbable stents
CN104498790B (zh) 2014-12-01 2017-04-26 中国兵器科学研究院宁波分院 一种可降解镁合金生物植入材料及其制备方法
CN104630587A (zh) 2015-02-28 2015-05-20 天津理工大学 一种骨折内固定用可降解镁合金板、棒材及其制备方法
CN105256213A (zh) * 2015-12-01 2016-01-20 天津东义镁制品股份有限公司 生物医用Mg-Zn-Zr-Mn镁合金及其制备方法
EP3342433A1 (de) 2016-12-27 2018-07-04 MeKo Laserstrahl-Materialbearbeitungen e.K. Stent aus einer biologisch abbaubaren magnesiumlegierung mit einer magnesiumfluorid-beschichtung und einer organischen beschichtung
AU2017393044B2 (en) * 2017-01-10 2022-03-10 Fuji Light Metal Co., Ltd. Magnesium alloy
EP3574928B1 (en) 2017-01-30 2023-12-27 JAPAN Medical Device Technology Co., Ltd. High performance bioabsorbable stent
CN107385419B (zh) 2017-06-28 2019-02-15 河南工业大学 一种提高医用镁合金表面耐腐蚀及亲水性能的涂层及其制备方法
CN114177366A (zh) 2018-03-22 2022-03-15 株式会社日本医疗机器技研 生物可吸收支架

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108450A1 (ja) 2006-03-20 2007-09-27 National Institute For Materials Science 医療用生分解性マグネシウム材
WO2013052791A2 (en) * 2011-10-06 2013-04-11 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biodegradable metal alloys
WO2015147184A1 (ja) * 2014-03-28 2015-10-01 古河電気工業株式会社 マグネシウム合金管材とその製造方法、及びそれを用いてなるステントとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822378A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158761A1 (ja) * 2019-01-30 2020-08-06 株式会社日本医療機器技研 生体吸収性ステント
WO2020196777A1 (ja) * 2019-03-28 2020-10-01 株式会社日本医療機器技研 非管腔領域用インプラント
WO2020196778A1 (ja) * 2019-03-28 2020-10-01 株式会社日本医療機器技研 表面改質マグネシウム合金

Also Published As

Publication number Publication date
US11685975B2 (en) 2023-06-27
EP3822378A4 (en) 2021-06-16
JPWO2020012529A1 (ja) 2020-07-16
CN111801435A (zh) 2020-10-20
CN114686739A (zh) 2022-07-01
EP3822378A1 (en) 2021-05-19
US20210115539A1 (en) 2021-04-22
ES2930364T3 (es) 2022-12-09
JP6695546B1 (ja) 2020-05-20
CA3104447C (en) 2022-02-15
EP3822378B1 (en) 2022-08-24
CA3104447A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6695546B1 (ja) マグネシウム合金
JP6644303B2 (ja) マグネシウム合金
Shi et al. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties
US10954587B2 (en) Uncoated biodegradable corrosion resistant bone implants
BRPI0919523B1 (pt) Ligas de magnésio contendo terras-raras
UA98491C2 (en) MAGNESIUM stents
EP2396444A2 (en) Process for manufacturing magnesium alloy based products
JP2023020858A (ja) チタン合金の製造方法
JP2020503430A (ja) 生体分解性マグネシウム合金及びその製造方法
Mohammadi et al. Microstructure characterization and effect of extrusion temperature on biodegradation behavior of Mg-5Zn-1Y-xCa alloy
Mollaei et al. Zinc based bioalloys processed by severe plastic deformation–A review
JP5404391B2 (ja) Mg基合金
JP5419061B2 (ja) マグネシウム合金
JP2005281728A (ja) Ti基合金形状記憶素子
JP2020152996A (ja) AlP化合物の微細化方法及びアルミニウム合金鋳物
CN117795109A (zh) 固溶退火回火中具有改进的可成形性的超高强度铜钛合金

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019555699

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3104447

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE