WO2007101099A3 - High-throughput printing of chalcogen layer and the use of an inter-metallic material - Google Patents

High-throughput printing of chalcogen layer and the use of an inter-metallic material Download PDF

Info

Publication number
WO2007101099A3
WO2007101099A3 PCT/US2007/062694 US2007062694W WO2007101099A3 WO 2007101099 A3 WO2007101099 A3 WO 2007101099A3 US 2007062694 W US2007062694 W US 2007062694W WO 2007101099 A3 WO2007101099 A3 WO 2007101099A3
Authority
WO
WIPO (PCT)
Prior art keywords
group
iiia
chalcogen
elements
particles
Prior art date
Application number
PCT/US2007/062694
Other languages
French (fr)
Other versions
WO2007101099A2 (en
Inventor
Duren Jeroen K J Van
Craig R Leidholm
Matthew R Robinson
Original Assignee
Duren Jeroen K J Van
Craig R Leidholm
Matthew R Robinson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/361,522 external-priority patent/US20070166453A1/en
Priority claimed from US11/395,438 external-priority patent/US20070163643A1/en
Application filed by Duren Jeroen K J Van, Craig R Leidholm, Matthew R Robinson filed Critical Duren Jeroen K J Van
Priority to JP2008556559A priority Critical patent/JP2009528680A/en
Priority to CN2007800146270A priority patent/CN101443892B/en
Priority to EP07757400A priority patent/EP1992010A2/en
Publication of WO2007101099A2 publication Critical patent/WO2007101099A2/en
Publication of WO2007101099A3 publication Critical patent/WO2007101099A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Methods and devices for high-throughput printing of a precursor material for forming a film of a group IB-IIIA- chalcogenide compound are disclosed. In one embodiment, the method comprises forming a precursor layer on a substrate, wherein the precursor layer comprises one or more discrete layers. The layers may include at least a first layer containing one or more group IB elements and two or more different group IDA elements and at least a second layer containing elemental chalcogen particles. The precursor layer may be heated to a temperature sufficient to melt the chalcogen particles and to react the chalcogen particles with the one or more group IB elements and group IDA elements in the precursor layer to form a film of a group IB-IIIA- chalcogenide compound. At least one set of the particles in the precursor layer are inter-metallic particles containing at least one group IB-IIIA inter-metallic alloy phase. The method may also include making a film of group IB-IIIA- chalcogenide compound that includes mixing the nanoparticles and/or nanoglobules and/or nanodroplets to form an ink, depositing the ink on a substrate, heating to melt the extra chalcogen and to react the chalcogen with the group IB and group IIIA elements and/or chalcogenides to form a dense film.
PCT/US2007/062694 2006-02-23 2007-02-23 High-throughput printing of chalcogen layer and the use of an inter-metallic material WO2007101099A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008556559A JP2009528680A (en) 2006-02-23 2007-02-23 High-throughput printing of chalcogen layers and the use of intermetallic materials
CN2007800146270A CN101443892B (en) 2006-02-23 2007-02-23 High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
EP07757400A EP1992010A2 (en) 2006-02-23 2007-02-23 High-throughput printing of chalcogen layer and the use of an inter-metallic material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/361,522 US20070166453A1 (en) 2004-02-19 2006-02-23 High-throughput printing of chalcogen layer
US11/361,522 2006-02-23
US11/395,438 2006-03-30
US11/395,438 US20070163643A1 (en) 2004-02-19 2006-03-30 High-throughput printing of chalcogen layer and the use of an inter-metallic material

Publications (2)

Publication Number Publication Date
WO2007101099A2 WO2007101099A2 (en) 2007-09-07
WO2007101099A3 true WO2007101099A3 (en) 2007-11-22

Family

ID=38459748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/062694 WO2007101099A2 (en) 2006-02-23 2007-02-23 High-throughput printing of chalcogen layer and the use of an inter-metallic material

Country Status (4)

Country Link
EP (1) EP1992010A2 (en)
JP (1) JP2009528680A (en)
CN (1) CN101443892B (en)
WO (1) WO2007101099A2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738601B2 (en) * 2008-03-05 2015-06-24 ハナジー・ハイ−テク・パワー・(エイチケー)・リミテッド Buffer layer deposition for thin film solar cells.
US8277869B2 (en) * 2008-03-05 2012-10-02 Global Solar Energy, Inc. Heating for buffer layer deposition
US20100087015A1 (en) 2008-03-05 2010-04-08 Global Solar Energy, Inc. Feedback for buffer layer deposition
JP4540724B2 (en) * 2008-05-20 2010-09-08 昭和シェル石油株式会社 CIS type thin film solar cell manufacturing method
JP5192990B2 (en) * 2008-11-11 2013-05-08 光洋應用材料科技股▲分▼有限公司 Copper-gallium alloy sputtering target, method for producing the sputtering target, and related applications
JP2011023520A (en) * 2009-07-15 2011-02-03 Panasonic Electric Works Co Ltd P-type semiconductor film and solar cell
CN102046836B (en) * 2009-07-27 2012-10-03 Jx日矿日石金属株式会社 Sintered Cu-Ga sputtering target and method for producing the target
US8308973B2 (en) * 2009-07-27 2012-11-13 Rohm And Haas Electronic Materials Llc Dichalcogenide selenium ink and methods of making and using same
JP5973913B2 (en) * 2009-09-08 2016-08-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Imaging measurement system with printed photodetector array
JP5639816B2 (en) * 2009-09-08 2014-12-10 東京応化工業株式会社 Coating method and coating apparatus
US20110076798A1 (en) * 2009-09-28 2011-03-31 Rohm And Haas Electronic Materials Llc Dichalcogenide ink containing selenium and methods of making and using same
JP5782672B2 (en) * 2009-11-06 2015-09-24 凸版印刷株式会社 COMPOUND SEMICONDUCTOR THIN FILM INK
KR101271753B1 (en) 2009-11-20 2013-06-05 한국전자통신연구원 Manufacturing method for thin film type absorber layer, manufacturing method for thin film solar cell using thereof and thin film solar cell
JP2011165790A (en) * 2010-02-08 2011-08-25 Fujifilm Corp Solar cell and method of manufacturing the same
CN101826574A (en) * 2010-02-10 2010-09-08 昆山正富机械工业有限公司 Method for making copper-indium-gallium-selenium light-absorbing layer under non-vacuum condition
CN101853885A (en) * 2010-02-10 2010-10-06 昆山正富机械工业有限公司 Manufacturing method of slurry of solar absorbing layer, slurry and absorbing layer
CN101818375A (en) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 Method for preparing copper-indium-gallium-selenium(sulfur) light absorption layer by adopting non-vacuum process
CN101820025A (en) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 Method for preparing copper-indium-gallium-selenium(sulfur) light absorption layer by adopting non-vacuum process
CN101820032A (en) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 Method for manufacturing light absorption layer by collocating CuInGaSe slurry under non-vacuum environment
CN101789470A (en) * 2010-02-12 2010-07-28 昆山正富机械工业有限公司 Method for fabricating CuInGaSe absorbed layer in antivacuum way
US8709917B2 (en) * 2010-05-18 2014-04-29 Rohm And Haas Electronic Materials Llc Selenium/group 3A ink and methods of making and using same
CN101937943A (en) * 2010-08-30 2011-01-05 浙江尚越光电科技有限公司 Preparation method of thin-film solar cell absorption layer with gradient gallium-indium atomic ratio distribution
CN101944556A (en) * 2010-09-17 2011-01-12 浙江尚越光电科技有限公司 Preparation method of high-uniformity copper-indium-gallium-selenium (CIGS) absorbed layer
WO2012043242A1 (en) * 2010-09-29 2012-04-05 京セラ株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
EP2660871A1 (en) * 2010-12-27 2013-11-06 Toppan Printing Co., Ltd. Compound semiconductor thin film solar cell, and process for production thereof
CN102569514B (en) * 2012-01-04 2014-07-30 中国科学院合肥物质科学研究院 Method for preparing copper indium gallium selenide solar cell optical absorption layer
WO2013106836A1 (en) * 2012-01-13 2013-07-18 The Regents Of The University Of California Metal-chalcogenide photovoltaic device with metal-oxide nanoparticle window layer
EP2647595A2 (en) * 2012-04-03 2013-10-09 Neo Solar Power Corp. Ink composition, chalcogenide semiconductor film, photovoltaic device and methods for forming the same
CN103915516B (en) * 2013-01-07 2016-05-18 厦门神科太阳能有限公司 A kind of sodium doping method of CIGS base film photovoltaic material
JP6126867B2 (en) * 2013-02-25 2017-05-10 東京応化工業株式会社 Coating apparatus and coating method
CN107078180B (en) * 2014-02-14 2020-12-11 新南创新有限公司 Photovoltaic cell and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219730A1 (en) * 2001-04-16 2004-11-04 Basol Bulent M. Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US20050183768A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743686A3 (en) * 1995-05-15 1998-12-02 Matsushita Electric Industrial Co., Ltd Precursor for semiconductor thin films and method for producing semiconductor thin films
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
AU2249201A (en) * 1999-11-16 2001-05-30 Midwest Research Institute A novel processing approach towards the formation of thin-film Cu(In,Ga)Se2
EP1556902A4 (en) * 2002-09-30 2009-07-29 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells
CN101894881A (en) * 2004-03-15 2010-11-24 索罗能源公司 Technique and apparatus for depositing thin layers of semiconductors for solar cell fabricaton

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219730A1 (en) * 2001-04-16 2004-11-04 Basol Bulent M. Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US20050183768A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing

Also Published As

Publication number Publication date
EP1992010A2 (en) 2008-11-19
CN101443892A (en) 2009-05-27
WO2007101099A2 (en) 2007-09-07
JP2009528680A (en) 2009-08-06
CN101443892B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2007101099A3 (en) High-throughput printing of chalcogen layer and the use of an inter-metallic material
WO2007065096A3 (en) Chalcogenide solar cells
WO2007101136A3 (en) High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
CN101438416B (en) High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
WO2005089330A3 (en) Technique and apparatus for depositing thin layers of semiconductors for solar cell fabricaton
WO2010005983A3 (en) Property modulated materials and methods of making the same
CN101443919B (en) Method for forming absorber layer, precursor material for forming absorber layer and solar cell
WO2009111053A3 (en) Buffer layer deposition for thin-film solar cells
WO2007084572A3 (en) Thermal interconnect and interface systems, methods of production and uses thereof
WO2007096746A3 (en) Decorating with powder material
WO2011017235A3 (en) Methods for photovoltaic absorbers with controlled stoichiometry
WO2008093090A3 (en) Deposition of organic layers
WO2011066370A3 (en) Chalcogenide absorber layers for photovoltaic applications and methods of manufacturing the same
WO2015091781A3 (en) Method of producing transition metal dichalcogenide layer
WO2008096089A3 (en) Method for depositing a thin layer and product thus obtained
WO2006073437A3 (en) Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
WO2009012026A3 (en) Method of patterning a substrate
WO2007149945A3 (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
WO2007067604A3 (en) Method of making undoped, alloyed and doped chalcogenide films by mocvd processes
WO2008102258A3 (en) Substrate preparation for enhanced thin film fabrication from group iv semiconductor nanoparticles
WO2009085948A3 (en) Material modification in solar cell fabrication with ion doping
JP2010519765A5 (en)
TW200734472A (en) Flexible metal clad laminate and method for manufacturing the same
CN101443130A (en) High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
EP1666526A4 (en) Inorganic powder-containing resin composition, film-forming material layer, transfer sheet, method for producing substrate with dielectric layer, and substrate with dielectric layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008556559

Country of ref document: JP

Ref document number: 7198/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007757400

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07757400

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 200780014627.0

Country of ref document: CN