JP5782672B2 - COMPOUND SEMICONDUCTOR THIN FILM INK - Google Patents

COMPOUND SEMICONDUCTOR THIN FILM INK Download PDF

Info

Publication number
JP5782672B2
JP5782672B2 JP2009255351A JP2009255351A JP5782672B2 JP 5782672 B2 JP5782672 B2 JP 5782672B2 JP 2009255351 A JP2009255351 A JP 2009255351A JP 2009255351 A JP2009255351 A JP 2009255351A JP 5782672 B2 JP5782672 B2 JP 5782672B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
particles
thin film
semiconductor thin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009255351A
Other languages
Japanese (ja)
Other versions
JP2011099059A (en
Inventor
毅聞 張
毅聞 張
山田 明
山田  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009255351A priority Critical patent/JP5782672B2/en
Publication of JP2011099059A publication Critical patent/JP2011099059A/en
Application granted granted Critical
Publication of JP5782672B2 publication Critical patent/JP5782672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、化合物半導体薄膜作製用インク、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、及びその太陽電池の製造方法に関する。   The present invention relates to an ink for preparing a compound semiconductor thin film, a compound semiconductor thin film obtained by using the ink, a solar cell including the compound semiconductor thin film, and a method for manufacturing the solar cell.

太陽電池は、光起電力効果を利用して光エネルギーを電気エネルギーに変換する装置であり、地球温暖化防止および枯渇資源代替対策などの観点から、近年、注目されている。   A solar cell is a device that converts light energy into electrical energy using the photovoltaic effect, and has recently attracted attention from the viewpoints of prevention of global warming and replacement of exhausted resources.

太陽電池は、最も重要な構成要素である光吸収層の材料の種類により、シリコン系(単結晶、多結晶、アモルファス、それらの複合体)、化合物半導体系(CIGS化合物、III-V族化合物、II-VI族化合物)、有機半導体系、及び色素増感系に大別される。これらの中でも、CIGS(CuInGaSe)化合物太陽電池は、光吸収層の光吸収係数が大きいこと、製造工程数が相対的に少ないこと、耐放射性能が高いこと、実験室では19%を超える光電変換効率を有すること等の優れた特性を有しているため、省資源及び温暖化抑止エネルギー源の一翼を担う次世代型太陽電池として期待されている。   Depending on the material of the light-absorbing layer, which is the most important component, the solar cell is composed of silicon (single crystal, polycrystal, amorphous, composite thereof), compound semiconductor (CIGS compound, III-V group compound, II-VI group compounds), organic semiconductor systems, and dye-sensitized systems. Among these, CIGS (CuInGaSe) compound solar cells have a large light absorption coefficient of the light absorption layer, a relatively small number of manufacturing steps, high radiation resistance, and photoelectric conversion exceeding 19% in the laboratory. Since it has excellent properties such as efficiency, it is expected as a next-generation solar cell that plays a role in resource conservation and an energy source for preventing global warming.

現在、CIGS化合物太陽電池の最も重要な構成要素である光吸収層は、主に蒸着、スパッタなどの真空プロセスにより形成されている。しかし、真空プロセスでは、高価な真空設備が必要となり、製造工程も複雑であるため、CIGS化合物太陽電池は、発電コストが高いという欠点がある。また、大面積の製膜の際に、面内各元素の分布の均一性を保つことが難しいという欠点もある。   Currently, the light absorption layer, which is the most important component of a CIGS compound solar cell, is mainly formed by a vacuum process such as vapor deposition or sputtering. However, since the vacuum process requires expensive vacuum equipment and the manufacturing process is complicated, the CIGS compound solar cell has a drawback that the power generation cost is high. In addition, there is also a drawback that it is difficult to maintain the uniformity of the distribution of each element in the plane when forming a film with a large area.

CIGS化合物太陽電池の更なる普及を図るためには、発電コストを更に低減することが不可欠である。最近、印刷工程という低コストの製膜方法によりCIGS層を形成する方法が提案されている(特許文献1参照)。この方法によると、高価な真空装置を必要とせず、工程もシンプルとなるため、発電コストが大幅に低下する可能性がある。また、面内各元素の分布が均一となり、変換効率が向上することも見込まれる。   In order to further promote the use of CIGS compound solar cells, it is essential to further reduce power generation costs. Recently, a method of forming a CIGS layer by a low-cost film forming method called a printing process has been proposed (see Patent Document 1). According to this method, an expensive vacuum device is not required and the process is simplified, so that the power generation cost may be significantly reduced. In addition, it is expected that the distribution of each element in the plane becomes uniform and the conversion efficiency is improved.

しかし、印刷法では、その後の高温かつ長時間の熱処理工程が必要であるため、その熱処理工程においてCIGS化合物に含まれるSeが気化して抜けてしまい、必要とするp型結晶を得ることが難しいため、上記特許文献1では、セレン雰囲気や硫黄雰囲気において熱処理工程を行っている。しかしながら、セレン雰囲気は有毒であり、硫黄雰囲気はコントロールが困難である。従って、そのような問題点の対策のため、熱処理工程は複雑となり、製造コストが高くなるという問題がある。   However, since the printing method requires a subsequent high-temperature and long-time heat treatment step, Se contained in the CIGS compound is vaporized and removed in the heat treatment step, and it is difficult to obtain the required p-type crystal. Therefore, in the said patent document 1, the heat processing process is performed in selenium atmosphere or sulfur atmosphere. However, the selenium atmosphere is toxic and the sulfur atmosphere is difficult to control. Therefore, there is a problem that the heat treatment process becomes complicated and the manufacturing cost becomes high for countermeasures against such problems.

特開2009−076842号公報JP 2009-076842 A

本発明は、上記課題に鑑みてなされたものである。すなわち、本発明の目的は、低コストの太陽電池の製造を可能とする化合物半導体薄膜作製用インク、その製造方法、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、及びその製造方法を提供することにある。   The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a compound semiconductor thin film preparation ink that enables the manufacture of a low-cost solar cell, a manufacturing method thereof, a compound semiconductor thin film obtained using the ink, a solar cell including the compound semiconductor thin film, And a manufacturing method thereof.

上記課題を解決するため、本発明の第1の態様は、CuIn x Ga 1-x Se 2 (0≦x<1)粒子、AgIn x Ga 1-x Se 2 (0≦x<1)粒子、及びCuIn x Ga 1-x (Se y 1-y 2 (0≦x<1、0≦y≦1)粒子からなる群から選ばれたSe原子を含む化合物粒子、及びSe粒子を、炭素数10未満のアルコール、ジエチルエーテル、ペンタン、ヘキサン、シクロヘキサンからなる群から選択された有機溶媒に分散させてなり、前記Se原子を含む化合物粒子は、CuIn x Ga 1-x Se 2 (0≦x<1)粒子であり、前記Se粒子と前記CuIn x Ga 1-x Se 2 (0≦x<1)粒子のモル比がSe/CuIn x Ga 1-x Se 2 =0.1〜3であることを特徴とする化合物半導体薄膜形成用インクを提供する。 In order to solve the above problems, the first aspect of the present invention includes CuIn x Ga 1-x Se 2 (0 ≦ x <1) particles, AgIn x Ga 1-x Se 2 (0 ≦ x <1) particles, And compound particles containing Se atoms selected from the group consisting of CuIn x Ga 1-x (Se y S 1-y ) 2 (0 ≦ x <1, 0 ≦ y ≦ 1) particles, and Se particles , number less than 10 alcohols, diethyl ether, pentane, hexane, Ri Na are dispersed in an organic solvent selected from the group consisting of cyclohexane, compound particles comprising said Se atoms, CuIn x Ga 1-x Se 2 (0 ≦ x <1) particles, and the molar ratio of the Se particles and the CuIn x Ga 1-x Se 2 (0 ≦ x <1) particles is Se / CuIn x Ga 1-x Se 2 = 0.1-3. Oh it provides a compound semiconductor thin film forming ink according to claim Rukoto.

このような化合物半導体薄膜形成用インクにおいて、平均粒径1nm以上200nm以下のSe粒子を用いることが出来る。また、平均粒径1nm以上200nm以下のSe原子を含む化合物粒子を用いることが出来る。   In such a compound semiconductor thin film forming ink, Se particles having an average particle diameter of 1 nm or more and 200 nm or less can be used. In addition, compound particles containing Se atoms having an average particle diameter of 1 nm to 200 nm can be used.

本発明の第2の態様は、上述した化合物半導体薄膜形成用インクを塗布又は印刷し、熱処理してなることを特徴とする化合物半導体薄膜を提供する。   According to a second aspect of the present invention, there is provided a compound semiconductor thin film obtained by applying or printing the above-described compound semiconductor thin film forming ink and performing heat treatment.

本発明の第3の態様は、上述した化合物半導体薄膜からなる光吸収層を具備することを特徴とする太陽電池を提供する。   According to a third aspect of the present invention, there is provided a solar cell comprising a light absorption layer comprising the compound semiconductor thin film described above.

本発明の第4の態様は、基板上に形成された電極上に、上述した化合物半導体薄膜形成用インクを塗布又は印刷し、化合物半導体塗膜を形成する工程、及び前記化合物半導体塗膜を熱処理して化合物半導体薄膜からなる光吸収層を形成する工程を具備することを特徴とする太陽電池の製造方法を提供する。   According to a fourth aspect of the present invention, there is provided a step of applying or printing the above-described compound semiconductor thin film forming ink on an electrode formed on a substrate to form a compound semiconductor coating film, and heat treating the compound semiconductor coating film. Then, the manufacturing method of the solar cell characterized by including the process of forming the light absorption layer which consists of a compound semiconductor thin film is provided.

本発明によれば、高い光電変換効率を有し、かつ低コストの化合物半導体薄膜を具備する太陽電池の製造を可能とする化合物半導体薄膜形成用インク、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、及びその太陽電池の製造方法が提供される。   According to the present invention, a compound semiconductor thin film forming ink capable of producing a solar cell having a high cost photoelectric conversion efficiency and a low cost compound semiconductor thin film, a compound semiconductor thin film obtained using the ink, A solar cell including the compound semiconductor thin film and a method for manufacturing the solar cell are provided.

本発明の実施例に係る太陽電池の全体の構造を示す断面図である。It is sectional drawing which shows the whole structure of the solar cell which concerns on the Example of this invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の第1の実施形態に係る化合物半導体薄膜形成用インクは、Se原子を含む化合物粒子、及びSe粒子を有機溶媒に分散させてなることを特徴とする。   The ink for forming a compound semiconductor thin film according to the first embodiment of the present invention is characterized in that compound particles containing Se atoms and Se particles are dispersed in an organic solvent.

Se粒子の平均粒径は、1nm以上200nm以下であることが好ましい。Se粒子の平均粒径が200nmより大きくなると、化合物半導体薄膜の熱処理工程において、化合物半導体薄膜に隙間ができやすく、光電変換効率が低下する傾向となる。一方、Se粒子の平均粒径が1nm未満であると、微粒子が凝集しやすくなり、インクの調製が困難となる。なお、Se粒子の平均粒径は、5nm以上100nm以下であることがより好ましい。   The average particle size of Se particles is preferably 1 nm or more and 200 nm or less. When the average particle size of Se particles is larger than 200 nm, a gap is easily formed in the compound semiconductor thin film in the heat treatment step of the compound semiconductor thin film, and the photoelectric conversion efficiency tends to be lowered. On the other hand, if the average particle size of the Se particles is less than 1 nm, the fine particles tend to aggregate and it becomes difficult to prepare ink. The average particle size of Se particles is more preferably 5 nm or more and 100 nm or less.

Se原子を含む化合物粒子の粒径は、1nm以上200nm以下であることが好ましい。Se原子を含む化合物粒子の平均粒径が200nmより大きくなると、化合物半導体薄膜の熱処理工程において、化合物半導体薄膜に隙間ができやすく、光電変換効率が低下する傾向となる。一方、Se原子を含む化合物粒子の平均粒径が1nm未満であると、微粒子が凝集しやすくなり、インクの調製が困難となる。なお、Se原子を含む化合物粒子の平均粒径は、5nm以上100nm以下であることがより好ましい。   The particle diameter of the compound particles containing Se atoms is preferably 1 nm or more and 200 nm or less. When the average particle diameter of the compound particles containing Se atoms is larger than 200 nm, a gap is easily formed in the compound semiconductor thin film in the heat treatment step of the compound semiconductor thin film, and the photoelectric conversion efficiency tends to be reduced. On the other hand, if the average particle size of the compound particles containing Se atoms is less than 1 nm, the fine particles are likely to aggregate and it is difficult to prepare ink. The average particle size of the compound particles containing Se atoms is more preferably 5 nm or more and 100 nm or less.

Se原子を含む化合物粒子としては、目的の化合物半導体材料あるいは反応により化合物半導体となる材料を粒子としたものを用いることができ、CuInGa1−xSe(0≦x≦1)粒子、AgInGa1−xSe、(0≦x≦1)粒子、CuInGa1−x(Se1−y(0≦x≦1、0≦y≦1)粒子等を挙げることが出来る。これらの中では、CuInGa1−xSe(0≦x≦1)粒子が好ましい。 As the compound particles containing Se atoms, the target compound semiconductor material or a material that becomes a compound semiconductor by reaction can be used, and CuIn x Ga 1-x Se 2 (0 ≦ x ≦ 1) particles, AgIn x Ga 1-x Se 2 , (0 ≦ x ≦ 1) particles, CuIn x Ga 1-x (Se y S 1-y ) 2 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) particles, etc. I can do it. Among these, CuIn x Ga 1-x Se 2 (0 ≦ x ≦ 1) particles are preferable.

Se原子を含む化合物粒子として、CuInGa1−xSe(0≦x≦1)粒子を用いた場合、InとGaの割合を調整することにより、禁制帯幅を適宜変更することができる。 When CuIn x Ga 1-x Se 2 (0 ≦ x ≦ 1) particles are used as the compound particles containing Se atoms, the forbidden band width can be appropriately changed by adjusting the ratio of In and Ga. .

また、Se粒子とCuInGa1−xSe(0≦x≦1)粒子のモル比は、Se/CuInGa1−xSe=0.1〜3であることが望ましい。このモル比(Se/CuInGa1−xSe)が0.1未満であると、熱処理の際にSeが気化により抜けてSeが不足するため、CIGS層の結晶成長が不十分となり、光電変換効率が低くなる。モル比が3より大きくなると、熱処理後もSe粒子が残留し、光電変換効率が低くなる。 Moreover, it is desirable that the molar ratio between the Se particles and the CuIn x Ga 1-x Se 2 (0 ≦ x ≦ 1) particles is Se / CuIn x Ga 1-x Se 2 = 0.1-3. When this molar ratio (Se / CuIn x Ga 1-x Se 2 ) is less than 0.1, Se is lost due to vaporization during heat treatment and Se is insufficient, so that crystal growth of the CIGS layer becomes insufficient, The photoelectric conversion efficiency is lowered. When the molar ratio is larger than 3, Se particles remain even after the heat treatment, and the photoelectric conversion efficiency is lowered.

本発明の第1の実施形態に係る化合物半導体薄膜形成用インクは、Se原子を含む化合物粒子及びSe粒子を有機溶媒中に分散させることにより製造することが出来る。   The ink for forming a compound semiconductor thin film according to the first embodiment of the present invention can be produced by dispersing compound particles containing Se atoms and Se particles in an organic solvent.

有機溶媒としては、特に制限はない。例えば、アルコール、エーテル、エステル、脂肪族炭化水素、脂環族炭化水素、芳香族炭化水素などを使用することが出来る。好ましい有機溶媒は、メタノール、エタノール、プタノール等の炭素数10未満のアルコール、ジエチルエーテル、ペンタン、ヘキサン、シクロヘキサン、トルエンであり、特に好ましい有機溶媒は、エタノール及びメタノールである。 There is no restriction | limiting in particular as an organic solvent. For example, alcohol, ether, ester, aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon and the like can be used. Preferred organic solvents are methanol, ethanol, alcohol having less than 10 carbon atoms in the Putanoru, diethyl chill ethers are pentane, hexane, cyclohexane, toluene, especially preferred organic solvents are ethanol and methanol.

本実施形態に係るインクには、Se原子を含む化合物粒子及びSe粒子を有機溶媒中に効率よく分散させるために、分散剤を配合することが出来る。分散剤としては、チオール類、セレノール類、炭素数10以上のアルコール類等を挙げることが出来る。   In the ink according to the present embodiment, a dispersant can be blended in order to efficiently disperse the compound particles containing Se atoms and the Se particles in an organic solvent. Examples of the dispersant include thiols, selenols, alcohols having 10 or more carbon atoms, and the like.

また、本実施形態に係るインクには、強度の高い化合物半導体薄膜を得るために、シリカバインダー等のバインダーを配合することも可能である。   In addition, the ink according to the present embodiment can be blended with a binder such as a silica binder in order to obtain a high-strength compound semiconductor thin film.

なお、有機溶媒中の粒子の濃度は、特に制限されないが、通常は、1〜20重量%である。   The concentration of the particles in the organic solvent is not particularly limited, but is usually 1 to 20% by weight.

本発明の第2の実施形態に係る化合物半導体薄膜は、上述したインクを基体上に塗布又は印刷し、乾燥して有機溶媒を除去し、次いで熱処理することにより形成されたものである。   The compound semiconductor thin film according to the second embodiment of the present invention is formed by applying or printing the above-described ink on a substrate, drying to remove the organic solvent, and then performing a heat treatment.

塗布方法としては、ドクター法、スピンコーティング法等が挙げられ、印刷方法としては、グラビア印刷法、スクリーン印刷法等が挙げられる。   Examples of the application method include a doctor method and a spin coating method, and examples of the printing method include a gravure printing method and a screen printing method.

塗布又は印刷により形成された塗膜の膜厚は、乾燥及び熱処理後の化合物半導体薄膜の膜厚が0.5〜10μm、例えば2μm程度になるような膜厚が好ましい。   The thickness of the coating film formed by coating or printing is preferably such that the thickness of the compound semiconductor thin film after drying and heat treatment is 0.5 to 10 μm, for example, about 2 μm.

熱処理は、加熱炉によるアニールのほか、ラピッドサーマルアニール(RTA)によっても行うことが出来る。   The heat treatment can be performed by rapid thermal annealing (RTA) in addition to annealing in a heating furnace.

熱処理温度は、化合物半導体の結晶化に必要な温度である必要があるため、400℃以上であるのが望ましく、また基板としてガラス基板を用いた場合には、ガラス基板に耐え得る温度である必要があるため、600℃以下、特に550℃以下であるのが望ましい。   Since the heat treatment temperature needs to be a temperature necessary for crystallization of the compound semiconductor, it is preferably 400 ° C. or more. When a glass substrate is used as the substrate, the heat treatment temperature must be able to withstand the glass substrate. Therefore, it is desirable that the temperature be 600 ° C. or lower, particularly 550 ° C. or lower.

本実施形態に係る化合物半導体薄膜の製造プロセスにおいて、結晶成長を促進する観点から、インクの塗膜の上に、CuSeのナノ粒子層を塗布することが望ましい。このようにCuSeのナノ粒子層を塗布することにより、熱処理に際しCuSe層が液相となり、化合物半導体の結晶成長を促進し、化合物半導体結晶の粒径を増大させる効果がある。   In the manufacturing process of the compound semiconductor thin film according to the present embodiment, it is desirable to apply a CuSe nanoparticle layer on the ink coating film from the viewpoint of promoting crystal growth. By applying the CuSe nanoparticle layer in this way, the CuSe layer becomes a liquid phase during the heat treatment, thereby promoting the crystal growth of the compound semiconductor and increasing the particle diameter of the compound semiconductor crystal.

CuSe粒子の平均粒径は、1nm以上200nm以下の範囲内であるのが好ましい。平均粒径が200nmより大きくなると、熱処理工程において、化合物半導体膜に隙間ができやすく、光電変換効率が低下する。平均粒径が1nm未満であると、微粒子が凝集しやすくなってしまい、インクの調製が困難となるため、1nm以上、より好ましくは 5nm以上の平均粒径が好ましい。   The average particle size of the CuSe particles is preferably in the range of 1 nm to 200 nm. When the average particle size is larger than 200 nm, a gap is easily formed in the compound semiconductor film in the heat treatment step, and the photoelectric conversion efficiency is lowered. If the average particle size is less than 1 nm, the fine particles are likely to aggregate and it becomes difficult to prepare the ink. Therefore, the average particle size is preferably 1 nm or more, more preferably 5 nm or more.

以上のように、本発明の第2の実施形態によると、化合物半導体形成可能なSe原子を含む化合物粒子及びSe粒子を分散したインクを塗布又は印刷し、乾燥及び熱処理することにより、従来の方法のように有毒なSe雰囲気やコントロールの困難な硫黄雰囲気を必要とすることなく、従ってシンプルな工程で低コストでの化合物半導体薄膜の形成が可能である。   As described above, according to the second embodiment of the present invention, by applying or printing the compound particles containing Se atoms capable of forming a compound semiconductor and the ink in which the Se particles are dispersed, drying and heat-treating the conventional method Thus, it is possible to form a compound semiconductor thin film at a low cost by a simple process without requiring a toxic Se atmosphere or a sulfur atmosphere that is difficult to control.

次に、本発明の第3の実施形態に係る太陽電池について、図1を参照して説明する。   Next, a solar cell according to a third embodiment of the present invention will be described with reference to FIG.

図1は、本発明の第3の実施形態に係る太陽電池を示す断面図である。図1に示す太陽電池では、基板101上に裏面電極102が形成されている。基板101としては、ソーダライムガラス、金属板、プラスチックフィルムなどを用いることができる。裏面電極102としては、モリブデン(Mo)、ニッケル(Ni)、銅(Cu)などの金属を用いることができる。   FIG. 1 is a cross-sectional view showing a solar cell according to a third embodiment of the present invention. In the solar cell shown in FIG. 1, a back electrode 102 is formed on a substrate 101. As the substrate 101, soda lime glass, a metal plate, a plastic film, or the like can be used. As the back electrode 102, a metal such as molybdenum (Mo), nickel (Ni), or copper (Cu) can be used.

裏面電極102上に、上述した本発明の第2の実施形態に係る化合物半導体薄膜が、光吸収層103として形成されている。即ち、光吸収層3は、上述した本発明の第1の実施形態に係るインクを裏面電極102上に塗布し、乾燥し、熱処理することにより形成される。   The compound semiconductor thin film according to the second embodiment of the present invention described above is formed on the back electrode 102 as the light absorption layer 103. That is, the light absorption layer 3 is formed by applying the ink according to the first embodiment of the present invention described above on the back electrode 102, drying, and heat-treating.

光吸収層103上には、バッファー層104、i層105、及びn層106が順次形成されている。バッファー層104としては、公知のCdS、Zn(S,O,OH)、Inを用いることができる。i層105としては、公知のZnOなどの金属酸化物を用いることができる。また、n層106としては、公知のAl、Ga、Bなどを添加したZnOを用いることができる。 A buffer layer 104, an i layer 105, and an n layer 106 are sequentially formed on the light absorption layer 103. As the buffer layer 104, known CdS, Zn (S, O, OH), and In 2 S 3 can be used. As the i layer 105, a known metal oxide such as ZnO can be used. As the n layer 106, known ZnO to which Al, Ga, B, or the like is added can be used.

そして、n層106上に表面電極107を形成して、太陽電池が完成する。表面電極107としては、公知のAl、Agなどの金属を用いることができる。   Then, the surface electrode 107 is formed on the n layer 106 to complete the solar cell. As the surface electrode 107, a known metal such as Al or Ag can be used.

なお、図示していないが、n層106上に、光の反射を抑え、より多い光を光吸収層で吸収させる役割を有する反射防止膜を設けることも可能である。反射防止膜の材質は特に制限されないが、例えばフッ化マグネシウム(MgF)を用いることが出来る。反射防止膜の膜厚は、100nm程度が適当である。 Although not shown, an antireflection film having a role of suppressing light reflection and absorbing more light by the light absorption layer may be provided on the n layer 106. The material of the antireflection film is not particularly limited, and for example, magnesium fluoride (MgF 2 ) can be used. An appropriate thickness of the antireflection film is about 100 nm.

以上のように構成される本発明の第3の実施形態に係る太陽電池は、化合物半導体形成可能なSe原子を含む化合物粒子及びSe粒子を分散したインクを塗布又は印刷し、乾燥及び熱処理することにより、光吸収層を形成しているため、従来の方法のように有毒なSe雰囲気やコントロールの困難な硫黄雰囲気を必要とすることなく、従ってシンプルな工程で低コストで製造される。   The solar cell according to the third embodiment of the present invention configured as described above is applied or printed with compound particles containing Se atoms capable of forming a compound semiconductor and ink dispersed with Se particles, and then dried and heat-treated. Thus, since the light absorption layer is formed, a toxic Se atmosphere and a sulfur atmosphere that is difficult to control as in the conventional method are not required, and therefore, the light absorption layer is manufactured by a simple process at a low cost.

実施例
以下、本発明を実施例に基づいて詳細に説明するが、本発明はこの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

(CIGSナノ粒子の合成)
CuI、InI、及びGaIをピリジンに溶解した溶液を、NaSeをメタノールに溶解した溶液と混合し、不活性ガス雰囲気下で0℃で反応させた。なお、混合溶液は、CuI、InI、GaI、NaSeのモル比が0.9:0.7:0.3:2.0となるように調製した。
(Synthesis of CIGS nanoparticles)
A solution in which CuI, InI 3 and GaI 3 were dissolved in pyridine was mixed with a solution in which Na 2 Se was dissolved in methanol, and reacted at 0 ° C. in an inert gas atmosphere. The mixed solution was prepared such that the molar ratio of CuI, InI 3 , GaI 3 , and Na 2 Se was 0.9: 0.7: 0.3: 2.0.

反応溶液をろ過し、メタノールで洗浄した後、得られたCIGSナノ粒子をエタノールに分散させた。   The reaction solution was filtered and washed with methanol, and the obtained CIGS nanoparticles were dispersed in ethanol.

(Seナノ粒子の合成)
濃度0.01MのHSeOと濃度0.01MのNaBHを、重量比1:10の割合になるように混合し、0℃で5分間反応させた。反応溶液をろ過し、得られたSeナノ粒子をエタノールに分散させた。
(Synthesis of Se nanoparticles)
0.01M H 2 SeO 3 and 0.01M NaBH 4 were mixed in a weight ratio of 1:10 and reacted at 0 ° C. for 5 minutes. The reaction solution was filtered, and the obtained Se nanoparticles were dispersed in ethanol.

(インクの作製)
以上のようにして得たSeナノ粒子分散液とCIGSナノ粒子分散液を、Seナノ粒子とCIGSナノ粒子のモル比が0.5/1の割合になるように混合した。この混合物の固形分が5重量%になるように、更にエタノールを加え、インクを調製した。
(Preparation of ink)
The Se nanoparticle dispersion liquid and the CIGS nanoparticle dispersion liquid obtained as described above were mixed so that the molar ratio of Se nanoparticles to CIGS nanoparticles was 0.5 / 1. Further ink was added to prepare an ink so that the solid content of the mixture was 5% by weight.

次に、図1に示す構造の太陽電池セルを以下のようにして製造した。   Next, the solar battery cell having the structure shown in FIG. 1 was manufactured as follows.

(裏面電極102の形成)
ソーダライムガラス101の上に、スパッタ法を用いて、0.6μmの厚さのMo層からなる裏面電極102を形成した。
(Formation of back electrode 102)
On the soda lime glass 101, a back electrode 102 made of a Mo layer having a thickness of 0.6 μm was formed by sputtering.

(光吸収層103の形成)
裏面電極102の上に、上で得たインクをドクター法により塗布し、250℃のオーブンで溶剤を蒸発した後、550℃で10分間加熱することにより、膜厚2μmのCIGSからなる光吸収層103を形成した。
(Formation of the light absorption layer 103)
On the back electrode 102, the ink obtained above is applied by a doctor method, the solvent is evaporated in an oven at 250 ° C., and then heated at 550 ° C. for 10 minutes, whereby a light absorption layer made of CIGS having a thickness of 2 μm. 103 was formed.

(バッファー層104の形成)
光吸収層103を形成した構造体を、それぞれのモル濃度が0.0015M、0.0075M、及び1.5Mの、硫酸カドミウム(CdSO)、チオ尿素(NHCSNH)、アンモニア水(NHOH)を加えた70℃の混合水溶液中に浸漬し、光吸収層103上に膜厚50nmのCdSからなるバッファー層104を形成した。
(Formation of buffer layer 104)
The structure in which the light absorption layer 103 is formed has a molar concentration of 0.0015 M, 0.0075 M, and 1.5 M, cadmium sulfate (CdSO 4 ), thiourea (NH 2 CSNH 2 ), aqueous ammonia (NH 4 OH) was added to the mixed aqueous solution at 70 ° C. to form a buffer layer 104 made of CdS having a thickness of 50 nm on the light absorption layer 103.

(i層105の形成)
バッファー層104の上に、ジエチル亜鉛と水を原料として、MOCVD法を用いて、厚さ50nmのZnOからなるi層105を形成した。
(Formation of i layer 105)
An i layer 105 made of ZnO having a thickness of 50 nm was formed on the buffer layer 104 using diethyl zinc and water as raw materials by MOCVD.

(n層106の形成)
i層105の上に、ジエチル亜鉛、水、及びジボランを原料として、MOCVD法を用いて厚さ1μmのZnO:Bからなるn層106を形成した。
(Formation of n layer 106)
An n layer 106 made of ZnO: B having a thickness of 1 μm was formed on the i layer 105 by using MOCVD method using diethyl zinc, water, and diborane as raw materials.

(表面電極107の形成)
n層106上に、蒸着法を用いて、厚さ3μmのAlからなる表面電極107を形成した。
(Formation of surface electrode 107)
A surface electrode 107 made of Al having a thickness of 3 μm was formed on the n layer 106 by vapor deposition.

以上により、CIGS太陽電池セルが完成した。   The CIGS solar cell was completed by the above.

比較例
光吸収層103の形成に、Seナノ粒子を含まないCIGSナノ粒子のみを5重量%含むエタノール分散液からなるインクを用いたことを除いて、実施例と同様にして、CIGS太陽電池セルを得た。
Comparative Example A CIGS solar battery cell was formed in the same manner as in the example except that the light absorption layer 103 was formed using an ink made of an ethanol dispersion containing 5 wt% of CIGS nanoparticles only without Se nanoparticles. Got.

上記の実施例及び比較例の太陽電池セルについて、標準太陽光シミュレータ(光強度:100mW/cm、エアマス:1.5)による評価を行った。 About the photovoltaic cell of said Example and comparative example, evaluation by a standard sunlight simulator (light intensity: 100 mW / cm < 2 >, air mass: 1.5) was performed.

その結果、実施例に係る太陽電池セルの光電変換効率は1.1%であるのに対し、比較例に係る太陽電池セルの光電変換効果は無かった。これは、実施例に係る太陽電池セルでは、塗布による光吸収層の形成に、CIGS粒子以外にSe粒子を含むインクを用いたため、熱処理によっても光吸収層には十分な量のSeが確保され、p型の半導体結晶が成長しているのに対し、比較例に係る太陽電池セルでは、Se粒子を含まずCIGS粒子のみを含むインクを用いたため、熱処理によりSeが気化してCIGSから抜け、Se量の不足によりp型の半導体結晶が得られなかったためと考えられる。
以下に、当初の特許請求の範囲に記載していた発明を付記する。
[1]
Se原子を含む化合物粒子、及びSe粒子を有機溶媒に分散させてなることを特徴とする化合物半導体薄膜形成用インク。
[2]
前記Se粒子の平均粒径が1nm以上200nm以下であることを特徴とする[1]に記載の化合物半導体薄膜形成用インク。
[3]
前記Se原子を含む化合物粒子の平均粒径が1nm以上200nm以下であることを特徴とする[1]又は[2]に記載の化合物半導体薄膜形成用インク。
[4]
前記Se原子を含む化合物粒子は、CuIn Ga 1−x Se (0≦x≦1)粒子、AgIn Ga 1−x Se 、(0≦x≦1)粒子、及びCuIn Ga 1−x (Se 1−y (0≦x≦1、0≦y≦1)粒子からなる群から選ばれた1種であることを特徴とする[1]〜[3]のいずれかに記載の化合物半導体薄膜形成用インク。
[5]
前記Se原子を含む化合物粒子は、CuIn Ga 1−x Se (0≦x≦1)粒子であることを特徴とする[4]に記載の化合物半導体薄膜形成用インク。
[6]
前記Se粒子とCuIn Ga 1−x Se (0≦x≦1)粒子のモル比がSe/CuIn Ga 1−x Se =0.1〜3であることを特徴とする[5]に記載の化合物半導体薄膜形成用インク。
[7]
[1]〜[6]のいずれかに記載の化合物半導体薄膜形成用インクを塗布又は印刷し、熱処理してなることを特徴とする化合物半導体薄膜。
[8]
[7]に記載の化合物半導体薄膜からなる光吸収層を具備することを特徴とする太陽電池。
[9]
基板上に形成された電極上に、[1]〜[6]のいずれかに記載の化合物半導体薄膜形成用インクを塗布又は印刷し、化合物半導体塗膜を形成する工程、及び
前記化合物半導体塗膜を熱処理して化合物半導体薄膜からなる光吸収層を形成する工程
を具備することを特徴とする太陽電池の製造方法。
As a result, the photoelectric conversion efficiency of the solar cell according to the example was 1.1%, whereas the photoelectric conversion effect of the solar cell according to the comparative example was not found. This is because, in the solar battery cell according to the example, since the ink containing Se particles in addition to CIGS particles was used for forming the light absorbing layer by coating, a sufficient amount of Se was secured in the light absorbing layer even by heat treatment. In contrast to the growth of p-type semiconductor crystals, the solar cell according to the comparative example used ink containing only CIGS particles without including Se particles, so that Se was vaporized by heat treatment and escaped from CIGS. This is probably because a p-type semiconductor crystal could not be obtained due to a lack of Se amount.
The invention described in the original claims is appended below.
[1]
An ink for forming a compound semiconductor thin film, comprising compound particles containing Se atoms and Se particles dispersed in an organic solvent.
[2]
The compound semiconductor thin film forming ink according to [1], wherein the Se particles have an average particle diameter of 1 nm to 200 nm.
[3]
The compound semiconductor thin film forming ink according to [1] or [2], wherein the compound particles containing Se atoms have an average particle diameter of 1 nm to 200 nm.
[4]
The compound particles containing Se atoms include CuIn x Ga 1-x Se 2 (0 ≦ x ≦ 1) particles, AgIn x Ga 1-x Se 2 , (0 ≦ x ≦ 1) particles, and CuIn x Ga 1−. Any one of [1] to [3], wherein x (Se y S 1-y ) 2 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) is selected from the group consisting of particles. 2. An ink for forming a compound semiconductor thin film according to 1.
[5]
The compound semiconductor thin film forming ink according to [4], wherein the compound particles containing Se atoms are CuIn x Ga 1-x Se 2 (0 ≦ x ≦ 1) particles.
[6]
The molar ratio of the Se particles and CuIn x Ga 1-x Se 2 (0 ≦ x ≦ 1) particles is Se / CuIn x Ga 1-x Se 2 = 0.1 to 3 [5] 2. An ink for forming a compound semiconductor thin film according to 1.
[7]
A compound semiconductor thin film obtained by applying or printing the compound semiconductor thin film forming ink according to any one of [1] to [6] and heat-treating it.
[8]
[7] A solar cell comprising a light absorption layer comprising the compound semiconductor thin film according to [7].
[9]
A step of applying or printing the compound semiconductor thin film forming ink according to any one of [1] to [6] on an electrode formed on the substrate to form a compound semiconductor coating film; and
A step of heat-treating the compound semiconductor coating to form a light absorption layer comprising a compound semiconductor thin film
The manufacturing method of the solar cell characterized by comprising.

101…ガラス基板
102…裏面電極
103…光吸収層
104…バッファー層
105…i層
106…n層
107…表面電極。
DESCRIPTION OF SYMBOLS 101 ... Glass substrate 102 ... Back electrode 103 ... Light absorption layer 104 ... Buffer layer 105 ... i layer 106 ... n layer 107 ... Surface electrode.

Claims (6)

CuIn x Ga 1-x Se 2 (0≦x<1)粒子、AgIn x Ga 1-x Se 2 、(0≦x<1)粒子、及びCuIn x Ga 1-x (Se y 1-y 2 (0≦x<1、0≦y≦1)粒子からなる群から選ばれたSe原子を含む化合物粒子、及びSe粒子を、炭素数10未満のアルコール、ジエチルエーテル、ペンタン、ヘキサン、シクロヘキサンからなる群から選択された有機溶媒に分散させてなり、
前記Se原子を含む化合物粒子は、CuIn x Ga 1-x Se 2 (0≦x<1)粒子であり、
前記Se粒子と前記CuInxGa1-xSe2(0≦x<1)粒子のモル比がSe/CuInxGa1-xSe2=0.1〜3であることを特徴とする化合物半導体薄膜形成用インク。
CuIn x Ga 1-x Se 2 (0 ≦ x <1) particles, AgIn x Ga 1-x Se 2 , (0 ≦ x <1) particles, and CuIn x Ga 1-x (Se y S 1-y ) 2 Compound particles containing Se atoms selected from the group consisting of (0 ≦ x <1, 0 ≦ y ≦ 1) particles, and Se particles are selected from alcohols having less than 10 carbon atoms, diethyl ether, pentane, hexane, and cyclohexane. Dispersed in an organic solvent selected from the group consisting of:
The compound particles containing Se atoms are CuIn x Ga 1 -x Se 2 (0 ≦ x <1) particles,
Wherein said Se particles CuIn x Ga 1-x Se 2 (0 ≦ x <1) of you, wherein the molar ratio of the particles is Se / CuIn x Ga 1-x Se 2 = 0.1~3 Compound semiconductor thin film forming ink.
前記Se粒子の平均粒径が1nm以上200nm以下であることを特徴とする請求項1に記載の化合物半導体薄膜形成用インク。   2. The compound semiconductor thin film forming ink according to claim 1, wherein an average particle diameter of the Se particles is 1 nm or more and 200 nm or less. 前記Se原子を含む化合物粒子の平均粒径が1nm以上200nm以下であることを特徴とする請求項1又は2に記載の化合物半導体薄膜形成用インク。   3. The compound semiconductor thin film forming ink according to claim 1, wherein the compound particles containing Se atoms have an average particle diameter of 1 nm to 200 nm. 請求項1〜のいずれかに記載の化合物半導体薄膜形成用インクを塗布又は印刷し、熱処理してなることを特徴とする化合物半導体薄膜。 Claim 1 compound semiconductor thin film forming ink to the coating or printing according to any one of 3, the compound semiconductor thin film characterized by comprising a heat treatment. 請求項に記載の化合物半導体薄膜からなる光吸収層を具備することを特徴とする太陽電池。 A solar cell comprising a light absorption layer comprising the compound semiconductor thin film according to claim 4 . 基板上に形成された電極上に、請求項1〜のいずれかに記載の化合物半導体薄膜形成用インクを塗布又は印刷し、化合物半導体塗膜を形成する工程、及び
前記化合物半導体塗膜を熱処理して化合物半導体薄膜からなる光吸収層を形成する工程
を具備することを特徴とする太陽電池の製造方法。
A step of applying or printing the compound semiconductor thin film forming ink according to any one of claims 1 to 3 on an electrode formed on a substrate to form a compound semiconductor coating, and heat treating the compound semiconductor coating And a step of forming a light absorption layer made of a compound semiconductor thin film.
JP2009255351A 2009-11-06 2009-11-06 COMPOUND SEMICONDUCTOR THIN FILM INK Expired - Fee Related JP5782672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255351A JP5782672B2 (en) 2009-11-06 2009-11-06 COMPOUND SEMICONDUCTOR THIN FILM INK

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255351A JP5782672B2 (en) 2009-11-06 2009-11-06 COMPOUND SEMICONDUCTOR THIN FILM INK

Publications (2)

Publication Number Publication Date
JP2011099059A JP2011099059A (en) 2011-05-19
JP5782672B2 true JP5782672B2 (en) 2015-09-24

Family

ID=44190511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255351A Expired - Fee Related JP5782672B2 (en) 2009-11-06 2009-11-06 COMPOUND SEMICONDUCTOR THIN FILM INK

Country Status (1)

Country Link
JP (1) JP5782672B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5755499B2 (en) * 2011-05-24 2015-07-29 株式会社神戸製鋼所 Solar cell and method for manufacturing solar cell
KR101389832B1 (en) * 2012-11-09 2014-04-30 한국과학기술연구원 Cigs or czts based film solar cells and method for preparing thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248627A (en) * 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Manufacture of cuinse2 film
JPH10229208A (en) * 1996-12-10 1998-08-25 Yazaki Corp Manufacture of compound semiconductor
EP1992010A2 (en) * 2006-02-23 2008-11-19 Van Duren, Jeroen K.J. High-throughput printing of chalcogen layer and the use of an inter-metallic material
KR101144807B1 (en) * 2007-09-18 2012-05-11 엘지전자 주식회사 Ink For Solar Cell And Manufacturing Method Of The Ink, And CIGS Film Solar Cell Using The Ink And Manufacturing Method Therof
KR101030780B1 (en) * 2007-11-14 2011-04-27 성균관대학교산학협력단 Synthesis of i-iii-vi2 nanoparticles and fabrication of polycrystalline absorber layers
CA2706380C (en) * 2007-11-30 2015-06-23 Nanoco Technologies Limited Preparation of nanoparticle material
AU2010206814A1 (en) * 2009-01-21 2011-08-11 Purdue Research Foundation Selenization of precursor layer containing CulnS2 nanoparticles
JP2010225883A (en) * 2009-03-24 2010-10-07 Honda Motor Co Ltd Method of manufacturing thin-film solar cell

Also Published As

Publication number Publication date
JP2011099059A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5867392B2 (en) Compound semiconductor thin film ink and method for producing solar cell
JP4303363B2 (en) Method for producing a compound semiconductor film based on an oxide and further producing an associated electronic device
JP2009076842A (en) Ink for forming thin film for solar cell and method for preparing the same, cigs thin film solar cell using the same and manufacturing method thereof
KR102037130B1 (en) Inorganic Salt-Nanoparticle Ink for Thin Film Photovoltaic Devices and Related Methods
JP5967837B2 (en) Method for producing ink for forming compound semiconductor thin film
JP6330051B2 (en) Method for doping Cu (In, Ga) (S, Se) 2 nanoparticles with sodium or antimony
JP5874645B2 (en) Compound semiconductor thin film solar cell and method for manufacturing the same
KR101865239B1 (en) Cigs nanoparticle ink formulation having a high crack-free limit
JP5782672B2 (en) COMPOUND SEMICONDUCTOR THIN FILM INK
TWI570949B (en) Method of manufacturing compound semiconductor thin film and solar cell having the compound semiconductor thin film
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
JP2017011128A (en) Semiconductor thin film forming dispersing liquid, solar cell, and manufacturing method thereof
JP2017191901A (en) Compound thin-film solar cell and method of manufacturing the same
JP2017069454A (en) Ink for light absorption layer formation, compound film solar battery, and manufacturing method for compound film solar battery
JP2017183463A (en) Czts-based compound thin-film solar battery, and method for manufacturing the same
JP2014167998A (en) Compound semiconductor thin film, process of manufacturing the same, and solar cell module
JP2014086527A (en) Compound semiconductor thin film, manufacturing method of the same and solar cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5782672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees