WO2007074312A1 - Procédé de synthèse de nanotubes de carbone. - Google Patents

Procédé de synthèse de nanotubes de carbone. Download PDF

Info

Publication number
WO2007074312A1
WO2007074312A1 PCT/FR2006/051423 FR2006051423W WO2007074312A1 WO 2007074312 A1 WO2007074312 A1 WO 2007074312A1 FR 2006051423 W FR2006051423 W FR 2006051423W WO 2007074312 A1 WO2007074312 A1 WO 2007074312A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
agglomerates
cnt
cnts
catalyst
Prior art date
Application number
PCT/FR2006/051423
Other languages
English (en)
Inventor
Serge Bordere
Patrice Gaillard
Carole Baddour
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2008546560A priority Critical patent/JP2009520673A/ja
Priority to US12/158,436 priority patent/US7622059B2/en
Priority to AT06847212T priority patent/ATE519713T1/de
Priority to EP06847212A priority patent/EP1968889B1/fr
Priority to CN2006800529911A priority patent/CN101374762B/zh
Priority to BRPI0619636-5A priority patent/BRPI0619636A2/pt
Publication of WO2007074312A1 publication Critical patent/WO2007074312A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/0652Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component containing carbon or carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a process for the synthesis of carbon nanotubes (CNTs) by chemical vapor deposition (CVD), using a fluidized bed of catalyst.
  • CNTs carbon nanotubes
  • CVD chemical vapor deposition
  • Carbon nanotubes are recognized today as materials with great advantages, due to their very high mechanical properties, very high aspect ratios (length / diameter) as well as their electrical properties.
  • Nanotubes composed of a single sheet are known: this is called SWNT (acronym for Single Wall Nanotubes) or nanotubes composed of several concentric sheets called MWNT (acronym for Multi Wall Nanotubes).
  • SWNTs are generally more difficult to manufacture than MWNTs.
  • carbon nanotubes can be implemented according to various processes such as electric discharge, laser ablation or chemical vapor deposition (in English terminology Chemical Vapor Deposition or CVD)
  • CVD seems to be the only one likely to be able to ensure the production of a large quantity of carbon nanotubes, an essential condition to ensure a cost price allowing to emerge massively in the polymer and / or resins applications used in various industries such as automotive, electronics, optoelectronics, thermal or electrical protection.
  • a carbon source is injected at a relatively high temperature over a catalyst, said catalyst being able to consist of a metal supported on an inorganic solid.
  • a metal supported on an inorganic solid preferentially Fe iron, cobalt Co, nickel Ni, molybdenum Mo and among the substrates below substrate, are often found alumina, silica or magnesia.
  • Possible carbon sources are methane, ethane, ethylene, acetylene, ethanol, methanol, acetone or even the synthesis gas CO + H 2 (HIPCO process).
  • the synthesis is carried out by contacting a catalyst containing iron (for example F ⁇ 3 ⁇ 4, Fe on a carbon substrate, Fe on an alumina substrate or Fe on a carbon fibril substrate) with a gaseous compound containing carbon (preferably CO or hydrocarbon (s)), advantageously in the presence of a compound capable of reacting with carbon to produce gaseous products, (for example CO, H 2 or H 2 O).
  • a catalyst containing iron for example F ⁇ 3 ⁇ 4, Fe on a carbon substrate, Fe on an alumina substrate or Fe on a carbon fibril substrate
  • a gaseous compound containing carbon preferably CO or hydrocarbon (s)
  • a compound capable of reacting with carbon to produce gaseous products for example CO, H 2 or H 2 O.
  • the catalysts are prepared by dry impregnation, precipitation or wet impregnation.
  • the carbon source is a hydrogen / ethylene mixture whose respective partial pressures are 0.66 and 0.33, the reaction time at 65O 0 C is 30 minutes and the catalyst is prepared by nitrate impregnation methanol paste on pyrolysis alumina (iron content not given, estimated at 15%); the productivity is 6.9 g / g in 30 minutes while it reaches between 10.9 and 11.8 when molybdenum salt is added, for iron levels of the order of 9 to 10% and molybdenum 1 to 2%.
  • the co-metal is cerium, chromium, manganese
  • the productivity in nanotubes is 8, 3, 9, 7 and 11, respectively.
  • iron acetylacetonate is less effective than iron nitrate.
  • Example 16 the impregnation is made in the aqueous route by precipitation at a pH substantially equal to 6 by simultaneous addition of iron nitrate solutions and sodium bicarbonate.
  • the catalyst gives a selectivity of 10.5 for an iron content of 15% and a semi-continuous introduction into the reactor.
  • the processes for synthesizing CNTs according to the CVD technique consist in bringing into contact, at a temperature of between 500 and 1500 ° C., a source of carbon with a catalyst, generally in the form of grains of coated substrate. of metal, put in fluidized bed.
  • the synthesized CNTs "settle" on the catalytic substrate grains in the form of an entangled three-dimensional network, forming agglomerates of d50 greater than one hundred microns, typically of the order of 300 to 600 microns.
  • the d50 represents the apparent diameter of 50% of the agglomerates population.
  • the CNTs thus obtained can be used as is for most applications; but it is also possible to subject them to a subsequent additional purification step, intended to separate the CNT grains from the catalytic substrate and also to reduce the size of the CNT agglomerates.
  • the method for synthesizing CNTs which is the subject of the present invention, makes it possible to obtain CNTs of greater purity while significantly improving the productivity of the catalyst used, to limit the formation of CNT agglomerates larger than 200 ⁇ m in size. and / or to reduce their number without requiring an additional purification step.
  • the term purity means the ratio (amount of CNT formed) / (amount of CNT formed + amount of catalyst introduced), the catalyst being made of the metal supported on an organic solid. Thanks to the process according to the invention, CNTs containing more than 93% of carbon are obtained.
  • the method for synthesizing CNTs according to the invention consists of: a / contacting, at a temperature of between 500 and 1500 ° C., a first carbon source with a new catalyst, preferably a fluidized bed, comprising at least one (one or more) multivalent transition metal, preferably covering porous substrate grains such as alumina, which makes it possible to obtain, by chemical vapor deposition (or CVD), CNTs in the form of three-dimensional network entangled around catalyst particles or CNT agglomerates, d50 between 300 and 600 ⁇ m, b / the grinding of at least a portion of the CNT agglomerates (three-dimensional network entangled with CNT around catalyst particles) from step a /, such that the d50 of the agglomerates at the end of the grinding is between 10 and 200 ⁇ m, preferably between 50 and 150 ⁇ m, preferably close to 100 ⁇ m or even preferably close to 50 ⁇ m, c / the fluidization of the crushed product resulting
  • the expression "included between” also covers the terminals.
  • new catalyst is meant a catalyst used for the first time, in other words, a non-regenerated catalyst.
  • the first and second carbon sources may be identical or different in terms of chemical nature and / or flow rate.
  • the carbon source (s) may be chosen from any type of carbonaceous material such as methane, ethane, propane, butane, hexane, cyclohexane or any other higher aliphatic alkane comprising number of carbon greater than 4, ethylene, propylene, butene, isobutene, or any other higher aliphatic alkene comprising a carbon number greater than 4, benzene, toluene, xylene, cumene, ethyl benzene, naphthalene, phenanthrene, anthracene, acetylene or any other higher alkyne comprising a carbon number greater than 4, formaldehyde, acetaldehyde, acetone, methanol, ethanol, monoxide carbon, etc., alone or in admixture.
  • carbonaceous material such as methane, ethane, propane, butane, hexane, cyclohexane or any other
  • the grinding step b / a is intended to deagglomerate the three-dimensional network entangled NTC on catalyst, reduce its particle size and make available active catalytic sites of said catalyst.
  • the grinding step b / can be implemented cold or hot and be carried out according to known techniques in devices such as ball mill, hammer mill, grinders, knives, jet gas or any other grinding system capable of reducing the size of the entangled network of CNT, while allowing its subsequent implementation (step c) according to a fluidized bed CVD technique.
  • the agglomerates of CNT have a d50 greater than 10 microns, between 10 and 200 microns, preferably between 50 and 150 microns and even more preferably close to 100 microns. Fluidization is not possible if the d50 CNT agglomerates at the end of the grinding step b / is less than 10 microns.
  • step b / grinding is performed according to a gas jet grinding technique.
  • the gases used as energy supply can advantageously be the reactive gases used for the synthesis of CNTs.
  • Figure 1 is a scanning electron microscope view of the CNTs obtained according to the prior art.
  • Figure 2 is a scanning electron microscope view of the crushed NTCs obtained at the end of step b / according to the invention.
  • FIG. 3 illustrates a grinding device, according to the invention, which can be installed within a synthesis reactor (6) of CNT by CVD (grinding practiced in-situ), or in an external loop allowing the possible recycling, total or partial crushed NTC within the reactor (ex-situ grinding).
  • the grinding device shown in FIG. 3 comprises a system of high velocity gas jets generated through injectors (2) which drive the CNT powder onto one or more targets (5) held by a support (4) in front of to be subjected to the bombardment of the agglomerates of NTC, thus making it possible to reduce the granulometry by impact.
  • the fluidization can be carried out by these injectors alone (2) and / or associated with a gas flow diffused by the distributor (3) around these injectors (2).
  • the dimensions of the grinding system and the gas inlet flow rates (1) and (2a) used are adapted to obtain a good fluidization and the desired particle size, according to the hardness and the density of the catalytic substrate.
  • the distributor (3) is intended to support the catalyst, which is in powder form, at time T 0 of the synthesis.
  • the shape of the grinding device will advantageously be adapted according to the materials used and / or the behavior of the fluidized bed.
  • the process according to the invention can be implemented semi-continuously or batchwise or preferably continuously.
  • At least a part of the entangled network of CNT / catalyst from step a / may be extracted from the synthesis reactor to a grinding device operating continuously, semi-continuously or in batch, and then injected (step c) either into the same synthesis reactor of step a / or in a second fluidized-bed CVD CNT synthesis reactor (finishing reactor).
  • step b / it is also possible to carry out grinding (step b /) in the synthesis reactor of step a /, provided with grinding means as represented by the device of FIG. 3, which avoids extracting the powder from the reactor and therefore limits the pressure losses, risks of powder explosion.
  • step b / is carried out inside the synthesis reactor (6) of CNT by injection of a part of the reactive gas (s) and / or a gas of filling through injection nozzles (2) distributed on the surface of the distributor (3), the vertical gas jet (s) (1) driving the particles towards a target (5); the particles consist of agglomerates of CNT and / or catalyst.
  • the target (5) is in the form of a cone, in stainless steel, to prevent particle deposition at the top of the target
  • This grinding makes accessible catalytic sites of growth of CNT; this allows, during step c / to grow new CNTs on these sites made accessible but also on the agglomerates of CNTs formed during step a / whose size and / or number have been reduced thanks to the grinding.
  • the growth of the CNTs during step a / and step c / can be ensured with identical gas sources (which is the case in a process involving in situ grinding) or with sources different in nature and flow (which is particularly the case during a process involving ex situ grinding).
  • the CNTs synthesized during the introduction of synthesis gas and new catalyst, in step c /, can be subjected to a new step d / grinding according to previously described conditions
  • CNTs have improved properties, especially dispersion in a particular polymeric material. It is thus possible to introduce a higher quantity of CNTs than in the prior art, with a better distribution and / or homogeneity, which improves the final properties of the material containing the CNTs.
  • CNTs can be used in all applications where CNTs are implemented, especially in areas where their electrical properties are sought (depending on the temperature and their structure, they can be conductors, semiconductors or insulators), and / or in areas where their mechanical properties are sought, for example for the reinforcement of composite materials (CNTs are a hundred times stronger and six times lighter than steel) and electromechanical (they can lengthen or contract by injection of charge).
  • CNTs are a hundred times stronger and six times lighter than steel
  • electromechanical they can lengthen or contract by injection of charge.
  • the use of CNTs can be mentioned in macromolecular compositions intended for example for the packaging of electronic components, for the manufacture of fuel lines (petrol or diesel) (fuel line), antistatic coatings (coating), in thermistors, electrodes in the energy sector in particular, for supercapacitors, etc. Examples
  • Example 1 (comparative - preparation of CNT by CVD according to the prior art: step a / only)
  • a 35% iron catalyst is prepared by impregnating an iron nitrate solution on a Puralox SCCA 5-150 gamma alumina having a median diameter of approximately 85 ⁇ m; the impregnation is carried out in a fluidized bed under air flow at 100 0 C to keep the powder dry throughout the operation.
  • 300 g of this catalyst are introduced into a reactor 25 cm in diameter and 1 m high effective, equipped with a disengagement to prevent the entrainment of fine particles (catalyst) downstream.
  • the mixture is heated at 300 ° C. under nitrogen for 40 minutes, then under hydrogen and nitrogen (20% / 80% vol / vol), increasing the temperature to 650 ° C. for 75 minutes.
  • an ethylene flow rate of 3000 NL / h and a hydrogen flow rate of 1000 NL / h are given, which corresponds to an ethylene partial pressure of 0.75.
  • the particle size measurement of the CNT agglomerates gives a d50 of 420 ⁇ m. (That is, a layer of the order of 150 ⁇ m of CNT at the catalyst surface, the median diameter of the catalyst (alumina + Fe substrate) being equal to about 85 ⁇ m).
  • Example 2 (according to the invention - ex situ grinding)
  • Example 1 The product obtained according to Example 1 is subjected to a tangential air jet grinding in an apparatus marketed by Alpine under the name Spiral jet mill 50 AS.
  • the gas flow rate and the injection time are adjusted to reduce the agglomerates obtained according to Example 1 to a d50 equal to 40 microns.
  • a sample of 5 g of this ground product is introduced into a reactor of 5 cm in diameter and according to the CNT synthesis conditions of Example 1 with an ethylene / hydrogen volume ratio of 3/1.
  • Example 3 (according to the invention - grinding in situ)
  • Example 1 The product obtained according to Example 1 is subjected to air jet grinding directly in the synthesis reactor according to Figure 3 attached.
  • the grinding is carried out at room temperature in the CNT synthesis reactor (6) which is a vertical tube 5 cm in diameter provided with a porous distributor (3) equipped with a nozzle (2) allowing the introduction of gas at high speed.
  • the medium (7) is fluidized by means of a stream of nitrogen (1) passing through the distributor and a second stream (2a) passing through the nozzle (2).
  • the gas flow rate and the injection time are adjusted to reduce the agglomerates obtained according to Example 1 to a d50 equal to 40 microns.
  • the final product thus obtained can be dispersed easily and homogeneously in a polymeric material, with a view to modifying its mechanical, electrical and / or thermal properties.

Abstract

La présente invention a pour objet un procédé de synthèse de nanotubes de carbone de plus grande pureté en carbone selon la technique de dépôt chimique en phase vapeur. Les nanotubes obtenus peuvent être avantageusement utilisés dans tous les domaines d'application des nanotubes de carbone connus.

Description

Procédé de synthèse de nanotubes de carbone
La présente invention a pour objet un procédé de synthèse de nanotubes de carbone (NTC) par dépôt chimique en phase gazeuse (CVD), mettant en œuvre un lit fluidisé de catalyseur. Technique antérieure
Les nanotubes de carbone sont reconnus aujourd'hui comme des matériaux présentant de grands avantages, du fait de leurs propriétés mécaniques, de leurs rapports de forme (longueur/diamètre) très élevés ainsi que de leurs propriétés électriques.
Ils se composent de feuillets graphitiques enroulés terminés par des hémisphères constitués de pentagones et d'hexagones de structure proche des fullerènes.
On connaît des nanotubes composés d'un seul feuillet : on parle alors de SWNT (acronyme anglais de Single Wall Nanotubes) ou de nanotubes composés de plusieurs feuillets concentriques appelés alors MWNT (acronyme anglais de Multi Wall Nanotubes). Les SWNT sont en général plus difficiles à fabriquer que les MWNT.
La production des nanotubes de carbone peut être mise en œuvre selon différents procédés comme la décharge électrique, l'ablation laser ou la déposition chimique en phase vapeur (en terminologie anglaise Chemical Vapor Déposition ou CVD)
Parmi ces techniques, la CVD semble être la seule susceptible de pouvoir assurer la fabrication en quantité importante de nanotubes de carbone, condition essentielle pour assurer un prix de revient permettant de déboucher massivement dans les applications polymères et/ou résines utilisées dans diverses industries telles que l'automobile, l'électronique, l'optoélectronique, la protection thermique ou électrique.
Selon cette méthode, on injecte une source de carbone à température relativement élevée sur un catalyseur, ledit catalyseur pouvant être constitué d'un métal supporté sur un solide inorganique. Parmi les métaux, sont cités de manière préférentielle le fer Fe, le cobalt Co, le nickel Ni, le molybdène Mo et parmi les supports ci-après substrat, on retrouve souvent l'alumine, la silice ou la magnésie. Les sources de carbone envisageables sont le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol, l'acétone, voire le gaz de synthèse CO + H2 (procédé HIPCO).
Parmi les documents présentant la synthèse de nanotubes de carbone, on peut citer le document WO 86/03455A1 d'Hyperion Catalysis International Inc. correspondant à EP 225.556 B1 que l'on peut considérer comme l'un des brevets de base sur la synthèse des NTC qui revendique des fibrilles de carbone (ancienne dénomination des NTC) quasi cylindriques dont le diamètre est compris entre 3,5 et 70 nm, le rapport de forme supérieur ou égal à 100 ainsi que leur procédé de préparation.
La synthèse se fait par mise en contact d'un catalyseur contenant du fer (par exemple Fβ3θ4, Fe sur un substrat de charbon, Fe sur un substrat d'alumine ou Fe sur un substrat en fibrille carbonée) avec un composé gazeux contenant du carbone (de préférence CO ou hydrocarbure(s)), avantageusement en présence d'un composé capable de réagir avec du carbone pour produire des produits gazeux, (par exemple CO, H2 ou H2O). Dans les exemples, les catalyseurs sont préparés par imprégnation à sec, par précipitation ou par imprégnation en voie humide.
Le document WO 87/07559 correspondant au document EP 270.666 B1 du même déposant revendique un procédé pour fabriquer des fibrilles de diamètre compris entre 3,5 et 70 nm mais de rapport de forme L/D compris entre 5 et 100, à partir des mêmes réactifs et catalyseurs.
Aucune information sur la productivité (qui serait exprimée comme la masse de fibrilles formées par gramme de catalyseur et par unité de temps) n'est donnée hormis le fait qu'il faut travailler, dans le cas où le composé gazeux contenant du carbone est le benzène, à plus de 8000C.
D'autres documents revendiquent des améliorations de procédé, telles que le lit fluidisé continu qui permet de contrôler l'état d'agrégation du catalyseur et des matériaux carbonés formés (voir par exemple le document WO 02/94713A1 au nom de l'Université de Tsinghua) ou des améliorations de produits telles que décrites dans le document WO 02/095097 A1 au nom de Trustées Of Boston Collège qui prépare des nanotubes de morphologie variée et non alignés, en jouant sur la nature du catalyseur et les conditions de réaction. Le document US 2001/0036549 A1 d'Hyperion Catalysis International Inc. décrit un procédé amélioré de préparation de NTC par décomposition d'une source de carbone en contact avec un métal de transition multivalent, ou de préférence un mélange de métaux (tel que Fe et Mo, Cr, Mn et/ou Ce), dont l'amélioration consiste en ce que le métal de transition, formant une multiplicité de sites catalytiques de taille comprise entre 3,5 et 70 nm, est supporté par un substrat inorganique de taille inférieure à 400 μm.
Dans les exemples, la source de carbone est un mélange hydrogène/éthylène dont les pressions partielles respectives sont de 0,66 et 0,33, le temps de réaction à 65O0C est de 30 minutes et le catalyseur est préparé par imprégnation de nitrate de fer en voie pâte méthanol sur alumine de pyrolyse (taux de fer non donné, estimé à 15 %) ; la productivité est de 6,9 g/g en 30 minutes tandis qu'elle atteint entre 10,9 et 11 ,8 lorsque du sel de molybdène est ajouté, pour des taux de fer de l'ordre de 9 à 10% et de molybdène de 1 à 2%. Quand le co-métal est le cérium, le chrome, le manganèse, la productivité en nanotubes est respectivement de 8, 3, 9, 7 et 11.
On constate aussi que l'acétylacétonate de fer est moins efficace que le nitrate de fer.
Dans l'exemple 16, l'imprégnation est faite en voie aqueuse par précipitation à pH sensiblement égal à 6 par ajout simultané de solutions de nitrate de fer et de bicarbonate de sodium. Le catalyseur conduit à une sélectivité de 10,5 pour un taux de fer de 15 % et une introduction en semi- continu dans le réacteur.
Un autre exemple par imprégnation en voie aqueuse de fer et de molybdène conduit à des résultats aussi bons que la voie méthanol.
Ce document montre aussi que le remplacement du fer par le molybdène à des teneurs supérieures à 2,5 % en Mo est plutôt défavorable puisqu'une productivité de 8,8 est atteinte en 30 minutes pour un mélange à proportions égales de Fe et Mo (total = 16,7%).
Toujours dans ce document US 2001/0036549 A1 , on constate, lorsqu'on utilise un substrat non poreux tel que l'alumine de pyrolyse vendue par Degussa de surface spécifique = 100 m2/g, qu'il est difficile d'imprégner de grandes quantités de fer car seule la couche externe est accessible au gaz et les couches inférieures n'auront pas d'action catalytique suffisante.
De plus, la technique utilisant ce genre de substrat est compliquée puisque la taille des particules est de 20 nm et la densité en vrac est de 0,06, ce qui augmente la difficulté de mise en œuvre industrielle.
D'une manière générale, les procédés de synthèse de NTC selon la technique CVD consistent à mettre en contact, à une température comprise entre 500 et 1500 0C, une source de carbone avec un catalyseur, en général sous forme de grains de substrat recouvert de métal, mis en lit fluidisé. Les NTC synthétisés se « fixent » sur les grains de substrat catalytique sous forme d'un réseau tridimensionnel enchevêtré, formant des agglomérats de d50 supérieur à la centaine de μm, typiquement de l'ordre de 300 à 600 μm. Le d50 représente le diamètre apparent de 50% de la population des agglomérats. Les NTC ainsi obtenus peuvent être utilisés tels quels dans la plupart des applications; mais il est également possible de les soumettre à une étape supplémentaire ultérieure de purification, destinée à séparer les NTC des grains du substrat catalytique et également à diminuer la taille des agglomérats de NTC.
Quelque soit le catalyseur utilisé, on constate que la synthèse des NTC par CVD conduit à une limite de productivité du catalyseur, que l'on peut exprimer par le rapport NTC formés / catalyseur mis en jeu. Cette limite est par exemple atteinte lorsque tous les sites catalytiques disponibles ont réagi et/ou lorsque l'enchevêtrement des NTC autour du substrat réduit la diffusion des gaz réactifs (de la source de carbone) vers les sites catalytiques ainsi que la surface de catalyseur qui peut réagir.
Le procédé de synthèse des NTC, objet de la présente invention, permet d'obtenir des NTC de plus grande pureté tout en améliorant significativement la productivité du catalyseur mis en œuvre, de limiter la formation d'agglomérats de NTC de taille supérieure à 200 μm et/ou de réduire leur nombre et ce, sans nécessiter d'étape supplémentaire de purification.
Selon l'invention, le terme pureté signifie le rapport (quantité de NTC formés)/( quantité de NTC formés +quantité de catalyseur introduit), le catalyseur étant constitué du métal supporté sur un solide organique. Grâce au procédé selon l'invention, on obtient des NTC contenant plus de 93 % de carbone.
Description détaillée de l'invention
Le procédé de synthèse de NTC selon l'invention consiste en : a/ la mise en contact, à une température comprise entre 500 et 1500 0C, d'une première source de carbone avec un catalyseur neuf, de préférence mis en lit fluidisé, comprenant au moins un (un ou plusieurs) métal de transition multivalent, de préférence recouvrant des grains de substrat poreux tel que de l'alumine, permettant l'obtention, par dépôt chimique en phase vapeur (ou CVD), de NTC sous forme de réseau tridimensionnel enchevêtré autour de particules de catalyseur ou agglomérats de NTC, de d50 compris entre 300 et 600 μm, b/ le broyage d'au moins une partie des agglomérats de NTC (réseau tridimensionnel enchevêtré de NTC autour de particules de catalyseur) issus de l'étape a/, de telle sorte que le d50 des agglomérats à l'issue du broyage soit compris entre 10 et 200 μm, de préférence entre 50 et 150 μm, de préférence proche de 100 μm ou encore de préférence proche, voisin de 50 μm, c/ la mise en fluidisation du produit broyé issu de l'étape b/, à une température comprise entre 500 et 1500 0C, en présence d'une seconde source de carbone en vue de l'obtention d'aggloméarts de NTC (réseau tridimensionnel enchevêtré de NTC), éventuellement en présence de catalyseur neuf, d/ éventuellement le broyage, selon les conditions opératoires de l'étape b/, d'au moins une partie des NTC formés lors de l'étape c/, e/ la récupération des NTC issus de l'étape c/ ou d.
Selon l'invention, l'expression « compris entre » couvre aussi les bornes.
On entend par catalyseur neuf, un catalyseur utilisé pour la première fois, en d'autres termes, un catalyseur non régénéré.
Selon l'invention, la première et la seconde sources de carbone peuvent être identiques ou différentes en termes de nature chimique et/ou de débit.
La ou les sources de carbone peuvent être choisies parmi tout type de matériau carboné tel que le méthane, l'éthane, le propane, le butane, l'hexane, le cyclohexane ou tout autre alcane aliphatique supérieur comprenant un nombre de carbone supérieur à 4, l'éthylène.le propylène, le butène, l'isobutène, ou tout autre alcène aliphatique supérieur comprenant un nombre de carbone supérieur à 4, le benzène, le toluène, le xylène, le cumène, l'éthyl benzène, le naphtalène, le phénanthrène, l'anthracène, l'acétylène ou tout autre alcyne supérieur comprenant un nombre de carbone supérieur à 4, le formaldéhyde, l'acétaldéhyde, l'acétone, le méthanol, l'éthanol, le monoxyde de carbone, etc, seuls ou en mélange.
L'étape de broyage b/ a pour but de désagglomérer le réseau tridimensionnel enchevêtré NTC sur catalyseur, réduire sa granulométrie et rendre accessibles des sites catalytiques actifs dudit catalyseur.
L'étape de broyage b/ peut être mise en œuvre à froid ou à chaud et être réalisée selon les techniques connues dans des appareils tels que le broyeur à boulets, à marteaux, à meules, à couteaux, à jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de NTC, tout en permettant sa mise en œuvre ultérieure (étape cl) selon une technique de CVD en lit fluidisé. Ainsi, à la suite de cette étape de broyage b/, les agglomérats de NTC présentent un d50 supérieur à 10 μm, compris entre 10 et 200 μm, de préférence compris entre 50 et 150 μm et encore plus préférentiellement proche de 100μm. La mise en fluidisation n'est pas possible si le d50 des agglomérats de NTC à l'issue de l'étape de broyage b/ est inférieur à 10 μm.
De manière préférentielle, l'étape b/ de broyage est pratiquée selon une technique de broyage par jet de gaz. Les gaz utilisés comme apport d'énergie peuvent avantageusement être les gaz réactifs utilisés pour la synthèse des NTC.
La présente invention va être maintenant illustrée par des exemples particuliers de réalisation ne visant, en aucun cas, à limiter la portée de la présente invention, en référence aux figures annexées, dans lesquelles :
La Figure 1 est une vue au microscope électronique à balayage des NTC obtenus selon l'art antérieur.
La Figure 2 est une vue au microscope électronique à balayage des NTC broyés obtenus à l'issue de l'étape b/ selon l'invention.
La Figure 3 illustre un dispositif de broyage, selon l'invention, qui peut être installé au sein même d'un réacteur de synthèse (6) de NTC par CVD (broyage pratiqué in-situ), soit dans une boucle externe permettant le recyclage éventuel, total ou partiel des NTC broyés au sein du réacteur (broyage ex-situ).
Le dispositif de broyage représenté à la Figure 3 comprend un système de jets de gaz à grande vitesse générés au travers d'injecteurs (2) qui entraînent la poudre de NTC sur une ou plusieurs cibles (5) maintenues par un support (4) devant être soumises au bombardement des agglomérats de NTC, permettant ainsi de réduire la granulométrie par impact. La fluidisation peut être réalisée par ces seuls injecteurs(2) et/ou associée à un flux gazeux diffusé par le distributeur (3) autour de ces injecteurs (2). Les dimensions du système de broyage et les débits d'entrée de gaz (1 ) et (2a) utilisés sont adaptés pour obtenir une bonne fluidisation et la granulométrie désirée, suivant la dureté et la densité du substrat catalytique. Le distributeur (3) est destiné à supporter le catalyseur, qui est sous forme de poudre, au temps T0 de la synthèse.
La forme du dispositif de broyage sera avantageusement adaptée selon les matériaux utilisés et/ou le comportement du lit fluidisé.
Le procédé selon l'invention peut être mis en œuvre en semi-continu ou en batch ou de préférence en continu.
Au moins une partie du réseau enchevêtré de NTC/catalyseur issue de l'étape a/ peut être extraite du réacteur de synthèse vers un dispositif de broyage opérant en continu, semi-continu ou en batch, puis injectée (étape cl) soit dans le même réacteur de synthèse de l'étape a/, soit dans un second réacteur de synthèse de NTC par CVD en lit fluidisé (réacteur de finition).
On peut aussi réaliser le broyage (étape b/) dans le réacteur de synthèse de l'étape a/, pourvu de moyens de broyage tel que représenté par le dispositif de la Figure 3, qui évite d'extraire la poudre du réacteur et donc limite les pertes de charges, les risques d'envolement des poudres.
Ainsi, selon un mode de l'invention, l'étape b/ est réalisée à l'intérieur du réacteur de synthèse (6) de NTC par injection d'une partie du ou des gaz réactifs et/ou d'un gaz d'appoint au travers de buses d'injection (2) réparties sur la surface du distributeur (3), le ou les jets de gaz verticaux (1 ) entraînant les particules vers une cible (5) ; les particules sont constituées d'agglomérats de NTC et /ou de catalyseur. La cible (5) se présente sous forme d'un cône, en acier inoxydable, permettant d'éviter le dépôt de particules au sommet de la cible
(5).
Ce broyage rend accessible des sites catalytiques de croissance de NTC ; ceci permet, lors de l'étape c/ de faire croître de nouveaux NTC sur ces sites rendus accessibles mais aussi sur les agglomérats de NTC formés au cours de l'étape a/ dont la taille et/ou le nombre ont été réduits grâce au broyage. La croissance des NTC lors de l'étape a/ et de l'étape c/ peut être assurée avec des sources de gaz identiques (ce qui est le cas lors d'un procédé mettant en jeu un broyage in situ) ou avec des sources différentes tant en nature qu'en débit (ce qui est, notamment, le cas lors d'un procédé mettant en jeu un broyage ex situ).
Les NTC synthétisés lors de l'introduction de gaz de synthèse et de catalyseur neuf, lors de l'étape c/, peuvent être soumis à une nouvelle étape d/ de broyage selon des conditions décrites précédemment
Les NTC ainsi obtenus après l'étape c/ ou d/ sont finalement récupérés.
Ces NTC présentent des propriétés améliorées, notamment de dispersion dans un matériau notamment polymère. Il est ainsi possible d'introduire une quantité plus élevée de NTC par rapport à l'art antérieur, avec une meilleure répartition et/ou homogénéité, ce qui améliore les propriétés finales du matériau contenant les NTC.
Ces NTC peuvent être utilisés dans toutes les applications où les NTC sont mis en œuvre, notamment dans des domaines où leurs propriétés électriques sont recherchées (selon la température et leur structure, ils peuvent être conducteurs, semi-conducteurs ou isolants), et/ou dans des domaines où leurs propriétés mécaniques sont recherchées, par exemple pour le renfort des matériaux composites (les NTC sont cent fois plus résistants et six fois plus légers que l'acier) et électromécanique (ils peuvent s'allonger ou se contracter par injection de charge). On peut par exemple citer l'utilisation de NTC dans des compositions macromoléculaires destinées par exemple à l'emballage de composants électroniques, à la fabrication de conduites de carburant (essence ou diesel) (fuel line), de revêtements (coating)antistatiques, dans des thermistors, des électrodes dans le secteur de l'énergie notamment, pour des supercapacités, etc. Exemples
Exemple 1 (comparatif - préparation de NTC par CVD selon l'art antérieur : étape a/ uniquement)
On prépare un catalyseur à 35 % de fer par imprégnation d'une solution de nitrate de fer sur une alumine gamma Puralox SCCA 5-150 de diamètre médian égal à environ 85 μm ; l'imprégnation est réalisée en lit fluidisé sous flux d'air à 100 0C pour garder la poudre sèche tout au long de l'opération. On introduit 300 g de ce catalyseur en couche dans un réacteur de 25 cm de diamètre et 1 m de hauteur efficace, équipé d'un désengagement destiné à éviter l'entraînement de fines particules (catalyseur) vers l'aval. On chauffe à 300 0C sous azote 40 min, puis sous hydrogène et azote (20%/80% vol./vol.) en augmentant la température jusqu'à 650 0C durant 75 min. A cette température, on met un débit d'éthylène de 3000 NL/h et un débit d'hydrogène de 1000 NL/h, ce qui correspond à une pression partielle en éthylène de 0,75.
Lorsque l'éthylène n'est plus consommé, on ne produit plus de NTC ; l'éthylène et l'hydrogène sont alors remplacés par un balayage à l'azote.
1 g de catalyseur permet d'obtenir 15 g de NTC. La production de NTC est donc de 15 ), soit une pureté de 93 % en carbone (15/(15+1)).
La mesure granulométrique des agglomérats de NTC donne un d50 de 420 μm. (soit une couche de l'ordre de 150 μm de NTC à la surface du catalyseur, le diamètre médian du catalyseur (substrat alumine +Fe) étant égal à environ 85 μm).
Sur la figure 1 , on observe de nombreux agglomérats de taille largement supérieure à 200 μm.
Exemple 2 (selon l'invention - broyage ex situ )
Le produit obtenu selon l'exemple 1 est soumis à un broyage à jet d'air tangentiel dans un appareil commercialisé par la société Alpine sous la dénomination Spiral jet mill 50 AS.
Le débit de gaz et la durée d'injection sont réglés pour réduire les agglomérats obtenus selon l'exemple 1 à un d50 égal à 40 μm. Un échantillon de 5 g de ce produit broyé est introduit, dans un réacteur de 5 cm de diamètre, et selon les conditions de synthèse de NTC de l'exemple 1 avec un ratio volumique éthylène/hydrogène de 3 /1.
En comparant la figure 2 à la figure 1 , on constate clairement que le procédé selon l'invention conduit à un nombre très limité d'agglomérats de NTC de diamètre supérieur à 200 μm. Le produit final ainsi formé est alors plus facilement dispersé au sein d'un matériau, notamment polymère
On récupère en fin de synthèse 6,4 g de produit final, soit un gain de 28 % par rapport à la quantité de produit introduit (6,4-5)/5*100). La production de NTC est donc de 19,2 (1 g de catalyseur permet d'obtenir 19,2 g de NTC), soit une pureté de 95 % en carbone (19,2/(19,2+1 ).
Exemple 3 (selon l'invention - broyage in-situ )
Le produit obtenu selon l'exemple 1 est soumis à un broyage à jet d'air directement dans le réacteur de synthèse selon la Figure 3 ci-jointe.
Le broyage est réalisé à température ambiante dans le réacteur de synthèse de NTC (6) qui est un tube vertical de 5 cm de diamètre muni d'un distributeur poreux (3) équipé d'une buse (2) permettant l'introduction de gaz à haute vitesse. Le milieu (7) est fluidisé grâce à un courant d'azote (1) traversant le distributeur et un second courant (2a) passant par la buse (2).
Le débit de gaz et la durée d'injection sont réglés pour réduire les agglomérats obtenus selon l'exemple 1 à un d50 égal à 40 μm.
Le produit final ainsi obtenu peut être dispersé facilement et de façon homogène dans un matériau polymérique, en vue d'en modifier ses propriétés mécaniques, électriques, et/ou thermiques.

Claims

REVENDICATIONS
1. Procédé de synthèse de nanotubes de carbone consistant en : a/ la mise en contact, à une température comprise entre 500 et 1500 0C, d'une première source de carbone avec un catalyseur neuf, comprenant au moins un métal de transition multivalent permettant l'obtention, par dépôt chimique en phase vapeur (CVD) de NTC sous forme de réseau tridimensionnel enchevêtré autour de particules de catalyseur ou d'agglomérats de d50 compris entre 300 et 600 μm, b/ le broyage d'au moins des agglomérats issus de l'étape a/ de telle sorte que le d50 des agglomérats à l'issue du broyage soit compris entre 10 et 200 μm, c/ la mise en fluidisation du produit broyé issu de l'étape b/, à une température comprise entre 500 et 1500 0C, en présence d'une deuxième source de carbone en vue de l'obtention d'agglomérats, éventuellement en présence de catalyseur neuf, d/ éventuellement, le broyage selon les conditions opératoires de l'étape b/ d'au moins une partie des NTC formés lors de l'étape c/, e/ la récupération des NTC issus de l'étape c/ ou d/.
2. Procédé selon la revendication 1 , caractérisé en ce que les sources de carbone sont de même nature chimique et débit.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le catalyseur est mis en lit fluidisé.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le métal de transition est recouvert des grains de substrat poreux.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il fonctionne en continu.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape b/ est réalisée à l'intérieur du réacteur de synthèse de NTC (broyage in-situ).
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape b/ est réalisée à l'intérieur du réacteur de synthèse (6) de NTC par injection d'une partie du ou des gaz réactifs et/ou d'un gaz d'appoint au travers de buses d'injection (2) réparties sur la surface du distributeur (3), les jets de gaz verticaux (1 ) entraînant les particules vers une cible (5).
8. Dispositif de broyage d'agglomérats de NTC pour la mise en œuvre du procédé selon l'une des revendications précédentes comprenant un système de jets de gaz à travers des injecteurs (2), au moins une cible (5) devant être soumise au bombardement des agglomérats.
9. Dispositif selon la revendication 8, dans lequel la cible est sous forme conique.
10. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'étape b/ est réalisée à l'extérieur du réacteur de synthèse (broyage ex-situ), . ynthèse de NTC (broyage in-situ
11. NTC susceptibles d'être obtenus selon le procédé tel que défini selon l'une quelconque des revendications précédentes.
12. Utilisation des NTC de la revendication 8 comme agents d'amélioration des propriétés mécaniques et/ou de conductivité électrique, notamment dans des compositions à base de polymères.
13. Utilisation selon la revendication 7 des NTC dans des conduites de carburants (fuels-lines), des revêtements (coatings) antistatiques, des thermistors, des électrodes pour supercapacités.
PCT/FR2006/051423 2005-12-23 2006-12-22 Procédé de synthèse de nanotubes de carbone. WO2007074312A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008546560A JP2009520673A (ja) 2005-12-23 2006-12-22 カーボンナノチューブの合成方法
US12/158,436 US7622059B2 (en) 2005-12-23 2006-12-22 Method for synthesis of carbon nanotubes
AT06847212T ATE519713T1 (de) 2005-12-23 2006-12-22 Syntheseverfahren für kohlenstoffnanoröhren
EP06847212A EP1968889B1 (fr) 2005-12-23 2006-12-22 Procédé de synthèse de nanotubes de carbone.
CN2006800529911A CN101374762B (zh) 2005-12-23 2006-12-22 合成碳纳米管的方法
BRPI0619636-5A BRPI0619636A2 (pt) 2005-12-23 2006-12-22 processo para sìntese de nanotubos de carbono

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0513230A FR2895393B1 (fr) 2005-12-23 2005-12-23 Procede de synthese de nanotubes de carbone
FR0513230 2005-12-23
US76405106P 2006-02-01 2006-02-01
US60/764,051 2006-02-01

Publications (1)

Publication Number Publication Date
WO2007074312A1 true WO2007074312A1 (fr) 2007-07-05

Family

ID=36968840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/051423 WO2007074312A1 (fr) 2005-12-23 2006-12-22 Procédé de synthèse de nanotubes de carbone.

Country Status (9)

Country Link
US (1) US7622059B2 (fr)
EP (1) EP1968889B1 (fr)
JP (1) JP2009520673A (fr)
KR (1) KR101008244B1 (fr)
CN (1) CN101374762B (fr)
AT (1) ATE519713T1 (fr)
BR (1) BRPI0619636A2 (fr)
FR (1) FR2895393B1 (fr)
WO (1) WO2007074312A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002025A1 (fr) * 2008-06-30 2010-01-07 Showa Denko K. K. Procédé de production d'un nanomatériau de carbone et système de production d'un nanomatériau de carbone
US20120148476A1 (en) * 2009-06-17 2012-06-14 Kenji Hata Method for producing carbon nanotube assembly having high specific surface area
WO2013093358A1 (fr) 2011-12-22 2013-06-27 Arkema France Procede de production d'un assemblage de nanotubes de carbone et de graphene
CN107986261A (zh) * 2018-01-09 2018-05-04 郑州大学 制备超大尺寸碳纳米管三维多孔块体的装置和方法
WO2019138193A1 (fr) 2018-01-12 2019-07-18 Arkema France Matiere solide agglomeree de nanotubes de carbone desagreges

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916330B1 (ko) * 2007-08-21 2009-09-11 세메스 주식회사 탄소나노튜브 합성 방법 및 장치
EP2213369B1 (fr) * 2009-01-15 2015-07-01 Carlo Vittorio Mazzocchia Procédé pour la préparation d'un catalyseur, catalyseur ainsi obtenu et son utilisation dans la production de nanotubes
US9199841B2 (en) * 2009-01-26 2015-12-01 Advanced Fiber Technologies, Inc. Method for disentanglement of carbon nanotube bundles
BRPI1013704A2 (pt) 2009-04-17 2016-04-05 Seerstone Llc método para produzir carbono sólido pela redução de óxidos de carbono
DE102009046680A1 (de) 2009-11-13 2011-05-19 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät mit Wärmetauscher aus thermoplastischem Kunststoff enthaltendem Werkstoff, sowie solcher Wärmetauscher
EP2636642A4 (fr) 2010-11-05 2017-12-27 National Institute of Advanced Industrial Science And Technology Liquide de dispersion de nanotubes de carbone, compact de nanotubes de carbone, composition de nanotubes de carbone, assemblage de nanotubes de carbone et procédé de production de chacun de ces éléments
KR101829907B1 (ko) * 2011-09-02 2018-02-19 엘에스전선 주식회사 탄소 동소체로 코팅된 선재를 포함하는 본딩 와이어
WO2013158156A1 (fr) 2012-04-16 2013-10-24 Seerstone Llc Procédés et structures de réduction d'oxydes de carbone avec des catalyseurs non ferreux
JP6242858B2 (ja) 2012-04-16 2017-12-06 シーアストーン リミテッド ライアビリティ カンパニー 炭素を捕捉および隔離するため、ならびに廃ガスストリーム中の酸化炭素の質量を低減するための方法およびシステム
WO2013158158A1 (fr) 2012-04-16 2013-10-24 Seerstone Llc Procédé de traitement d'un dégagement gazeux contenant des oxydes de carbone
CN104302575B (zh) 2012-04-16 2017-03-22 赛尔斯通股份有限公司 通过还原二氧化碳来产生固体碳的方法
NO2749379T3 (fr) 2012-04-16 2018-07-28
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
DE102012208619A1 (de) 2012-05-23 2013-11-28 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betrieb eines Trockners mit einem Latentwärmespeicher, sowie hierzu geeigneter Trockner
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
CN104619637B (zh) 2012-07-12 2017-10-03 赛尔斯通股份有限公司 包含碳纳米管的固体碳产物以及其形成方法
CN104619640B (zh) 2012-07-13 2017-05-31 赛尔斯通股份有限公司 用于形成氨和固体碳产物的方法和***
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
WO2014085378A1 (fr) 2012-11-29 2014-06-05 Seerstone Llc Réacteurs et procédés de production de matériaux de carbone solides
DE102012223613A1 (de) 2012-12-18 2014-06-18 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit effizientem Latentwärmespeicher sowie Verfahren zu seinem Betrieb
US10086349B2 (en) 2013-03-15 2018-10-02 Seerstone Llc Reactors, systems, and methods for forming solid products
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
US9783416B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Methods of producing hydrogen and solid carbon
US9586823B2 (en) 2013-03-15 2017-03-07 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
DE102013216785A1 (de) 2013-08-23 2015-02-26 BSH Bosch und Siemens Hausgeräte GmbH Waschmaschine mit elektrischem Direktantrieb und verbesserter Nutzung der Motorverlustleistung
DE102014200775A1 (de) 2014-01-17 2015-07-23 BSH Hausgeräte GmbH Waschmaschine mit Ausnutzung der Elektronikmodulverlustwärme
DE102014200774A1 (de) 2014-01-17 2015-07-23 BSH Hausgeräte GmbH Waschmaschine mit Riemenantrieb und verbesserter Nutzung der Motorverlustleistung
CN104760943B (zh) * 2015-02-10 2017-05-03 山东玉皇新能源科技有限公司 一种注射化学气相沉积合成螺旋碳纳米管的方法
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
WO2018022999A1 (fr) 2016-07-28 2018-02-01 Seerstone Llc. Produits solides en carbone comprenant des nanotubes de carbone comprimés dans un récipient et procédés pour leur formation
KR102579608B1 (ko) * 2016-08-04 2023-09-18 에스케이이노베이션 주식회사 탄소나노튜브의 제조방법
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
US11912898B2 (en) 2020-03-12 2024-02-27 Cabot Corporation Light color conductive coatings
WO2023156821A1 (fr) * 2022-02-18 2023-08-24 Ptt Lng Company Limited Procédé de production de nanotubes de carbone et produit de nanotubes de carbone résultant de celui-ci

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2002820A (en) * 1977-08-16 1979-02-28 Ishikawajima Harima Heavy Ind Apparatus for the granulation of molten slag
US6824086B1 (en) * 1999-10-06 2004-11-30 Cornerstone Technologies, L.L.C. Method of creating ultra-fine particles of materials using a high-pressure mill

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707916A (en) 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
CA1321863C (fr) 1986-06-06 1993-09-07 Howard G. Tennent Feuilles de carbone, methode de production connexe, et compositions contenant de tels elements
JP2862578B2 (ja) * 1989-08-14 1999-03-03 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド 樹脂組成物
ES2205746T3 (es) * 1998-04-09 2004-05-01 Horcom Limited Composicion a base de nanotubos y de un compuesto organico.
JP2002067209A (ja) * 2000-08-25 2002-03-05 Shimadzu Corp 導電性プラスチックシート
WO2002018671A1 (fr) * 2000-08-29 2002-03-07 Hitco Carbon Composites, Inc. Charbon pyrolytique en masse sensiblement pur et procedes de preparation
WO2002095097A1 (fr) * 2001-05-21 2002-11-28 Trustees Of Boston College, The Nanotubes de carbone de morphologie diverse et procedes de fabrication
CN1141250C (zh) 2001-05-25 2004-03-10 清华大学 一种流化床连续化制备碳纳米管的方法及其反应装置
JP4082099B2 (ja) * 2002-06-13 2008-04-30 三菱化学エンジニアリング株式会社 炭素質微細繊維状体の製造方法
US6905544B2 (en) * 2002-06-26 2005-06-14 Mitsubishi Heavy Industries, Ltd. Manufacturing method for a carbon nanomaterial, a manufacturing apparatus for a carbon nanomaterial, and manufacturing facility for a carbon nanomaterial
US7250148B2 (en) * 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts
KR100497775B1 (ko) * 2002-08-23 2005-06-23 나노미래 주식회사 탄소 나노 섬유 합성용 촉매 및 그 제조 방법과, 이를이용한 탄소 나노 섬유 및 그 제조 방법
GB0226590D0 (en) * 2002-11-14 2002-12-24 Univ Cambridge Tech Method for producing carbon nanotubes and/or nanofibres
JP2006505483A (ja) * 2002-11-26 2006-02-16 カーボン ナノテクノロジーズ インコーポレーテッド カーボンナノチューブ微粒子、組成物及びその使用法
CN1290763C (zh) * 2002-11-29 2006-12-20 清华大学 一种生产碳纳米管的方法
JP4004973B2 (ja) * 2003-02-19 2007-11-07 双葉電子工業株式会社 炭素物質とその製造方法及び電子放出素子、複合材料
KR100596676B1 (ko) * 2003-03-20 2006-07-04 이철진 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법
JP2005111406A (ja) * 2003-10-09 2005-04-28 Nippon Pneumatic Mfg Co Ltd 衝突部材冷却手段を備えた粉砕装置
US20050118091A1 (en) * 2003-12-01 2005-06-02 Cooper Alan C. Hydrogen storage utilizing carbon nanotube materials
FI121334B (fi) * 2004-03-09 2010-10-15 Canatu Oy Menetelmä ja laitteisto hiilinanoputkien valmistamiseksi
FR2872150B1 (fr) * 2004-06-23 2006-09-01 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne
JP4697941B2 (ja) * 2005-05-11 2011-06-08 株式会社日本製鋼所 低級炭化水素の直接分解による機能性ナノ炭素及び水素の製造方法
FR2914634B1 (fr) * 2007-04-06 2011-08-05 Arkema France Procede de fabrication de nanotubes de carbone a partir de matieres premieres renouvelables

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2002820A (en) * 1977-08-16 1979-02-28 Ishikawajima Harima Heavy Ind Apparatus for the granulation of molten slag
US6824086B1 (en) * 1999-10-06 2004-11-30 Cornerstone Technologies, L.L.C. Method of creating ultra-fine particles of materials using a high-pressure mill

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALLOUCHE H ET AL: "Chemical vapor deposition of pyrolytic carbon on carbon nanotubes - Part 1. Synthesis and morphology", CARBON, vol. 41, no. 15, 2003, pages 2897 - 2912, XP004470631, ISSN: 0008-6223 *
CUONG PHAM-HUU ET AL: "Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 4, no. 3, 1 February 2002 (2002-02-01), pages 514 - 521, XP002279644, ISSN: 1463-9076 *
HERNADI K ET AL: "SWNTs as catalyst and/or support in the catalytic decomposition of hydrocarbons", CHEMICAL PHYSICS LETTERS, NORTH-HOLLAND, AMSTERDAM, NL, vol. 367, no. 3-4, 6 January 2003 (2003-01-06), pages 475 - 481, XP002279643, ISSN: 0009-2614 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002025A1 (fr) * 2008-06-30 2010-01-07 Showa Denko K. K. Procédé de production d'un nanomatériau de carbone et système de production d'un nanomatériau de carbone
US20120148476A1 (en) * 2009-06-17 2012-06-14 Kenji Hata Method for producing carbon nanotube assembly having high specific surface area
WO2013093358A1 (fr) 2011-12-22 2013-06-27 Arkema France Procede de production d'un assemblage de nanotubes de carbone et de graphene
CN107986261A (zh) * 2018-01-09 2018-05-04 郑州大学 制备超大尺寸碳纳米管三维多孔块体的装置和方法
WO2019138193A1 (fr) 2018-01-12 2019-07-18 Arkema France Matiere solide agglomeree de nanotubes de carbone desagreges

Also Published As

Publication number Publication date
FR2895393A1 (fr) 2007-06-29
BRPI0619636A2 (pt) 2011-10-04
EP1968889B1 (fr) 2011-08-10
US7622059B2 (en) 2009-11-24
EP1968889A1 (fr) 2008-09-17
KR101008244B1 (ko) 2011-01-17
ATE519713T1 (de) 2011-08-15
KR20080071187A (ko) 2008-08-01
CN101374762A (zh) 2009-02-25
CN101374762B (zh) 2011-06-29
US20090134363A1 (en) 2009-05-28
JP2009520673A (ja) 2009-05-28
FR2895393B1 (fr) 2008-03-07

Similar Documents

Publication Publication Date Title
EP1968889B1 (fr) Procédé de synthèse de nanotubes de carbone.
EP1846157B1 (fr) Procede de synthese de nanotubes de carbone
FR2914634A1 (fr) Procede de fabrication de nanotubes de carbone a partir de matieres premieres renouvelables
EP1713959B1 (fr) Procede d obtention de nanotubes de carbone sur des supports
US20080233402A1 (en) Carbon black with attached carbon nanotubes and method of manufacture
FR2949074A1 (fr) Catalyseur bi-couche, son procede de preparation et son utilisation pour la fabrication de nanotubes
FR2909989A1 (fr) Procede de preparation de nanotubes de carbone a partir d'une source de carbone integree au catalyseur
JP3962773B2 (ja) 原料吹き付け式カーボンナノ構造物の製造方法及び装置
EP3089940B1 (fr) Procédé de production simultanée de nanotubes de carbone et d'un produit gazeux à partir de pétrole brut et de ses produits
FR2915745A1 (fr) Composite de nanotubes ou nanofibres sur mousse de beta-sic
US20210395090A1 (en) Device and method for single-stage continuous preparation of carbon nanotubes
FR2949075A1 (fr) Catalyseur fe/mo supporte, son procede de preparation et utilisation pour la fabrication de nanotubes
US10920085B2 (en) Alteration of carbon fiber surface properties via growing of carbon nanotubes
FR2881734A1 (fr) Procede de synthese de nanotubes de carbone
RU2516548C2 (ru) Способ получения углерод-металлического материала каталитическим пиролизом этанола
JP4674355B2 (ja) 原料吹き付け式高効率カーボンナノ構造物製造方法及び装置
RU2546154C1 (ru) Нанокомпозит на основе азотосодержащих углеродных нанотрубок с инкапсулированными частицами кобальта и никеля и способ его получения
FR2909369A1 (fr) Procede de synthese de nanotubes, notamment de carbone, et leurs utilisations.
FR2983741A1 (fr) Catalyseur de type metal de transition supporte par un substrat, son procede de fabrication et son utilisation pour la fabrication de nanotubes de carbone.
JP5269037B2 (ja) カーボンナノ構造物製造方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006847212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087014952

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008546560

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200680052991.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006847212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12158436

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0619636

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080623