WO2007063819A1 - 記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読み取り可能な記録媒体 - Google Patents

記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2007063819A1
WO2007063819A1 PCT/JP2006/323647 JP2006323647W WO2007063819A1 WO 2007063819 A1 WO2007063819 A1 WO 2007063819A1 JP 2006323647 W JP2006323647 W JP 2006323647W WO 2007063819 A1 WO2007063819 A1 WO 2007063819A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
images
series
motion vector
motion
Prior art date
Application number
PCT/JP2006/323647
Other languages
English (en)
French (fr)
Inventor
Hiroshi Iwamura
Motooki Sugihara
Hiroshi Yamazaki
Yoshiaki Moriyama
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38092152&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007063819(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to CN2006800446529A priority Critical patent/CN101317450B/zh
Priority to US12/085,575 priority patent/US20100214422A1/en
Priority to JP2007547934A priority patent/JPWO2007063819A1/ja
Priority to EP06833451A priority patent/EP1956839A4/en
Publication of WO2007063819A1 publication Critical patent/WO2007063819A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • H04N5/772Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera the recording apparatus and the television camera being placed in the same enclosure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/781Television signal recording using magnetic recording on disks or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/782Television signal recording using magnetic recording on tape
    • H04N5/783Adaptations for reproducing at a rate different from the recording rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/84Television signal recording using optical recording
    • H04N5/85Television signal recording using optical recording on discs or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/907Television signal recording using static stores, e.g. storage tubes or semiconductor memories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction

Definitions

  • the present invention relates to a recording device, a playback device, a recording method, a recording program, and a computer-readable recording medium that capture and record a video.
  • the use of the present invention is not limited to the above-described recording device, reproducing device, recording method, recording program, and computer-readable recording medium.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-203237
  • Patent Document 2 JP-A-5-268515
  • Patent Document 1 requires a low-resolution high-speed camera in addition to a normal (high-resolution) camera, and there is no block that adds motion blur.
  • the corresponding information in the high-resolution image is obtained using the matching information obtained from the low-resolution high-speed camera image or the known corresponding-point information as a constraint condition. In other words, there is nothing aimed at simultaneous shooting of still images and moving images.
  • Patent Document 2 obtains a motion vector at the time of reproduction for the addition of an afterimage, which makes it difficult to obtain a highly accurate motion vector and reduces the cost of the regenerator. The problem of raising it.
  • the recording apparatus moves on the basis of a photographing unit that continuously photographs a series of images at a high shutter speed, and a context of the series of images photographed by the photographing unit. It is characterized by comprising a calculating means for obtaining a vector and a recording means for recording an image photographed by the photographing means together with a motion vector corresponding to the image.
  • the recording apparatus moves based on a photographic means for continuously photographing a series of images at a high shutter speed and a context of the series of images photographed by the photographing means.
  • a calculating unit for obtaining a vector; an adding unit for determining a motion blur based on a motion vector determined by the calculating unit; and adding the motion blur to a series of images taken by the shooting unit; Recording means for recording a series of images with motion blur added by the means.
  • a reproducing apparatus is a reproducing apparatus for reproducing a series of images recorded by the recording apparatus according to any one of claims 1 to 7, wherein the recording apparatus Motion vectors recorded by the recording device on a series of images recorded by the device And / or an additional means for adding motion blur.
  • a playback device is a playback device for playing back a series of images recorded by the recording device according to any one of claims 1 to 7 and 9 to 15, A grouping unit that groups the motion vectors recorded by the recording device, and a processing unit that processes each object corresponding to the grouped motion vector.
  • a playback device is a playback device for playing back a series of images recorded by the recording device according to claim 7, wherein the still images recorded by the recording device are recorded.
  • First reproduction means for reproduction and second reproduction for reproducing as a moving image by adding motion blur to a series of images recorded by the recording device based on the motion vector recorded by the recording device And means.
  • a playback device is a playback device for playing back a series of images recorded by the recording device according to claim 15, and plays back a still image recorded by the recording device. It is characterized by comprising first reproducing means and second reproducing means for reproducing a series of images recorded by the recording device as moving images.
  • the recording method according to the invention of claim 23 has a shooting process of continuously shooting a series of images at a high shutter speed and a front-rear relationship of the series of images shot by the shooting process.
  • the recording method according to the invention of claim 24 is based on a photographing step of continuously photographing a series of images at a high shutter speed and a front-rear relationship of the series of images photographed by the photographing step. Calculating a motion vector, determining a motion blur based on the motion vector obtained by the calculation step, and adding the motion blur to a series of images taken by the photographing step, And a recording step of recording a series of images to which motion blur is added by the adding step.
  • a recording program according to the invention of claim 25 causes a computer to execute the recording method according to claim 23 or 24.
  • a computer-readable recording medium according to the invention of claim 26 records the recording program according to claim 25.
  • FIG. 1 is a block diagram illustrating a functional configuration of a recording apparatus without motion blur, which is useful for an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a functional configuration of a recording apparatus with a motion blur that is useful for an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a functional configuration of a reproducing apparatus that is useful for an embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining a recording process without motion blur.
  • FIG. 5 is a flow chart for explaining the reproduction processing of a signal recorded without motion blur.
  • FIG. 6 is a flowchart illustrating recording processing with motion blur.
  • FIG. 7 is a block diagram illustrating a configuration of a recording apparatus that records video by thinning out frames.
  • FIG. 8 is a block diagram illustrating the configuration of a recording apparatus that thins out frames and integrates MVs, and codes the integrated MVs to record video.
  • FIG. 9 is a block diagram for explaining a recording apparatus with frame thinning, MV integration, and motion blur.
  • FIG. 10 is a block diagram showing a recording device that multiplexes and records the motion vectors integrated by the MV integration unit.
  • FIG. 11 is a block diagram illustrating a configuration of a recording apparatus that records a video by performing resolution conversion processing.
  • FIG. 12 is a block diagram illustrating a configuration of a recording apparatus using a still image recording shutter.
  • FIG. 13 is a block diagram illustrating a configuration of a recording apparatus having a compatibility ensuring function.
  • FIG. 14 is a block diagram illustrating a playback apparatus that executes a frame interpolation process.
  • FIG. 15 is a block diagram illustrating a playback apparatus that performs motion vector interpolation processing.
  • FIG. 16 is a block diagram illustrating the configuration of a playback device that realizes high-quality slow playback.
  • FIG. 17 is a block diagram illustrating a configuration of a playback device that realizes playback by object.
  • FIG. 18 is a block diagram for explaining the configuration of a reproducing apparatus corresponding to a recording apparatus that multiplexes a still image generated by a motion blur adding unit by encoding with a separate encoder.
  • FIG. 19 is a block diagram illustrating a configuration of a playback device corresponding to a recording device that has a motion blur addition unit and encodes and multiplexes still images with individual encoders.
  • FIG. 20 is a block diagram illustrating the configuration of a recording apparatus when applied to a DVD video camera or HDV camera.
  • FIG. 21 is a block diagram illustrating a configuration of a recording device when applied to a DV camera.
  • Fig. 1 is a block diagram illustrating a functional configuration of a recording apparatus without motion blur, which is useful for an embodiment of the present invention.
  • the recording apparatus includes a high-speed camera 301, a memory 302, an MV calculation unit 303, a video encoder 304, an MV encoder 305, a multiplexer 306, and a recorder 303.
  • This motion blur is image blurring such as afterimages that occur in moving objects, and is hereinafter referred to as motion blur or motion blurring.
  • the high-speed camera 301 is a camera that shoots at a shutter speed higher than that of a normal camera. “High-speed” here refers to a shutter speed that produces a clear still image with little subject blurring, and is a shutter speed that appears to be intermittent and unnatural when continuously played back as a movie. .
  • the relationship with the frame rate is not related except that it is higher than the frame rate. For example, at a frame rate of 30 frames per second, the shutter speed may be 1Z60 seconds, 1Z250 seconds, or 1Z1000 seconds.
  • the memory 302 records an image taken by the high speed camera 301.
  • the image stored in the memory 302 is passed to the MV calculation unit 303 and the video encoder 304.
  • the MV calculation unit 303 calculates a motion vector between images read from the memory 302.
  • the calculated motion vector is input to the MV encoder 305.
  • the video encoder 304 encodes the image information stored in the memory 302 as video information.
  • the encoded video information is output to the multiplexer 306.
  • the MV encoder 305 encodes the motion vector calculated by the MV calculation unit 303.
  • the encoded video information and the encoded motion vector are output to the multiplexer 306.
  • the multiplexer 306 multiplexes the encoded information.
  • the multiplexed information is recorded by the recorder 307.
  • the memory 302, the MV calculation unit 303, the video encoder 304, the MV encoder 305, the multiplexer 306, and the recorder 307 are configured so that the CPU stores a program recorded in the ROM. This can be realized by using read and RAM as a work area.
  • the motion vector calculated by the MV calculation unit 303 is input to the video encoder 304, and the video encoding is performed.
  • the unit 304 may obtain motion information necessary for the video code from the motion vector. In this case, motion information necessary for video decoding is multiplexed in the video code data.
  • the motion information in the video code key data may be input as a motion vector used on the playback side.
  • the MV encoder 305 is unnecessary, and the encoded motion vector is not multiplexed by the multiplexer.
  • FIG. 2 is a block diagram for explaining the functional configuration of a recording apparatus with motion blur that is useful for the embodiment of the present invention.
  • This recording apparatus is configured to accept the input from the MV calculation unit 303 by adding a motion blur adding unit 310 between the memory 302 and the video encoder 304 in the recording device without motion blur shown in FIG. Is.
  • the motion blur adding unit 310 reads out the video recorded in the memory 302, calculates the motion blur based on the motion vector force obtained by the MV calculation unit 303, and adds the calculated motion blur to the read video. .
  • the video with motion blur added is output in the same way as in Fig. 1, with 304 video encoders. Then, the encoded video and motion vectors are processed as in FIG.
  • the motion calculated by the MV calculation unit 303 in the video encoder 304 is used.
  • a vector may be input, and the video encoder 304 may obtain the motion information necessary for the video code from the motion vector.
  • the motion information necessary for video decoding is It is multiplexed in the video encoded data.
  • the motion information in the video code key data may be used as a motion vector used on the reproduction side.
  • the MV encoder 305 is not required, and the encoded motion vector is not multiplexed in the multiplexer. Also, even if it is not assumed that the playback apparatus uses a motion vector other than the video decoder, it is not necessary to multiplex the motion vector with the multiplexer 303, so the MV encoder 305 Is no longer necessary.
  • FIG. 3 is a block diagram for explaining the functional configuration of a playback apparatus that is useful in the embodiment of the present invention.
  • This playback device includes a playback device 401, a demultiplexer 402, a video decoder 403, an MV decoder 404, a motion blur adding unit 405, a still image output unit 406, and a moving image output unit 407.
  • this playback device can decode and play back the video.
  • the regenerator 401 reproduces the encoded video and the encoded motion vector in a multiplexed state.
  • the demultiplexer 402 demultiplexes the encoded video and the encoded motion vector. Then, they are input to the video decoder 403 and the MV decoder 404, respectively. Further, the demultiplexer 402 outputs voice and the like.
  • the video decoder 403 decodes the encoded video.
  • the decoded video is output to the motion blur adding unit 405 and the still image output unit 406.
  • the MV decoder 404 receives the input from the demultiplexer 402 and decodes the motion vector.
  • the motion blur adding unit 405 receives the input of the decoded motion vector, and creates a video including motion blur for the video decoded by the video decoder 403.
  • motion blur is added using a motion vector during reproduction. That is, a smooth motion video is obtained simultaneously by adding motion blur to the still image obtained during recording using the motion vector obtained during recording.
  • a motion vector is the amount of movement in which the direction and distance of movement of a moving area can be obtained when a difference is obtained between an image to be referred to for an image and the current image.
  • the motion vector force can also determine the motion blur of the image for the region that moved during playback.
  • the calculated motion vector is read at the time of playback of a video recorded together with the motion vector for a series of captured images. Can do. Thereby, the video can be smoothly reproduced according to the motion blur that can be obtained from the motion vector. Therefore, on the playback side, a series of captured images can be reproduced from the same data as a clear still image without motion blur or a smooth moving image.
  • This “fast” shutter speed also depends on the force required to accurately determine the motion vector and the moving speed of the object in the image. Therefore, it is conceivable to estimate the moving speed in the video and apply the feedback by determining the shutter speed for the estimated moving force.
  • the shutter speed that is almost necessary depends on the type of subject and the shooting scene. Therefore, for example, a mode setting dial that the user sets before shooting is provided, and a reference value that matches each mode, such as 1Z250 for landscapes and slow-moving subjects, 1Z1000 for sports events, 1/10000 for motor sports, etc. May be set.
  • the shutter speed to be actually used is finally determined from the reference value based on the brightness of the subject, shooting sensitivity, aperture, etc.
  • FIG. 4 is a flowchart for explaining a recording process when there is no motion blur.
  • a series of images are continuously photographed at a high shutter speed (step S201).
  • a motion vector is obtained based on the context of a series of captured images (step S202).
  • a series of captured images are recorded together with motion vectors corresponding to the images (step S 203).
  • a series of processing ends.
  • the high-speed camera is used to shoot, detect the motion vector (MV), and record each frame image and motion vector.
  • FIG. 5 is a flowchart for explaining the reproduction processing of a signal recorded without motion blur. It is First, a series of images recorded by the recording device and a motion vector recorded by the recording device are separated (step S211). Next, it is determined whether the series of images is a shift between a still image or a moving image (step S212).
  • step S212 moving image
  • motion blur is added based on the separated motion vector! (Step S213).
  • the moving image is reproduced (step S 214).
  • step S212: still image the still image is played back (step S215).
  • the separated image is output as it is.
  • FIG. 6 is a flowchart for explaining a recording process with motion blur.
  • a series of images are continuously captured at a high shutter speed (step S221).
  • a motion vector is obtained based on the context of a series of captured images (step S222).
  • motion blur is determined based on the motion vector, and the motion blur determined for the series of images is added (step S223).
  • step S224 a series of images with motion blur added is recorded. Then, the series of processing ends.
  • MV motion vector
  • a still image with less blur and a moving image with smooth motion can be simultaneously recorded and reproduced. That is, by using the high-speed power camera 301, a still image can be taken, while motion blur can be produced by a motion vector obtained from a large number of still images taken at high speed. As a result, even a large number of still images captured at high speed can be played back with smooth motion.
  • each frame is a high-quality still image and the correlation between frames accurately detects the motion of the object. can do.
  • a motion-free video in each frame has an unnatural motion, it can be played back as a motion-smooth video by adding motion blur according to the direction and amount of motion indicated by the motion vector during playback. .
  • the code Z of the video Z audio does not need to use a specific method.
  • a motion compensated prediction code ⁇ represented by MPEG is used as the video encoding, as described above.
  • the motion vector is detected with high accuracy, so that the prediction residual force is reduced and the generation of the code amount can be suppressed. For this reason, there are advantages such as the ability to record for a long time with the same bit rate and high image quality compared to the case of normal MPEG encoding.
  • FIG. 7 is a block diagram illustrating the configuration of a recording apparatus that records video by thinning out frames.
  • the recording apparatus shown in FIG. 7 is obtained by adding a frame thinning unit 501 between the memory 302 and the video encoder 304 in the recording apparatus shown in FIG.
  • the high-speed power camera 301 can shoot at a frame rate that is faster than the normal video playback frame rate that is achieved only by a high shutter speed.
  • the frame decimation unit 501 executes frame decimation processing from the video read from the memory 302. In other words, after using each frame to acquire the necessary amount of motion vectors in the MV calculation unit 303, some of the frames taken by the high-speed camera 301 are thinned out except for the necessary frames. Only the remaining frames are left and output to the video encoder 304. Then, the encoded video and motion vectors are processed as in FIG.
  • FIG. 8 is a block diagram illustrating a configuration of a recording apparatus that thins out frames, integrates MVs in accordance with the frames, encodes the integrated MVs, and records them together with video.
  • This recording apparatus has a configuration in which an MV integration unit 601 is added to the recording apparatus shown in FIG.
  • the MV integration unit 601 integrates the motion vectors obtained by the MV calculation unit 303.
  • the integrated motion vector is output to the video encoder 304 and the MV encoder 305.
  • the video code encoder 304 encodes the video according to the thinned frame.
  • the MV encoder 305 encodes the integrated motion vector.
  • the encoded video and motion vector are multiplexed by a multiplexer 306 and recorded by a recorder 307.
  • the recording apparatus described above if shooting is performed at a higher frame rate than that of normal video shooting, the shape change between frames becomes smaller, so that the movement solid is characteristic.
  • the movement vector of the point can be obtained with high accuracy.
  • the frame rate is thinned to a frame rate suitable for normal reproduction, and the motion vector is integrated accordingly. Since frames are thinned out, the actual amount of data can be kept to the minimum necessary while shooting a large amount at high speed.
  • motion blur is added according to the direction and amount of motion indicated by the motion vector so that there is no unnatural motion during playback. Therefore, it is possible to increase the accuracy of motion blur that does not increase the data volume greatly.
  • the motion vectors may be multiplexed by encoding them corresponding to a high frame rate without integrating them.
  • the frame interpolation can be performed using the motion vector corresponding to the high-speed frame rate as it is in the reproduction apparatus, the slow reproduction can be performed with higher quality.
  • the amount of motion vector data increases, the amount of data is small compared to video data, so there is no significant effect.
  • FIG. 9 is a block diagram illustrating a recording apparatus with frame thinning, MV integration, and motion blur.
  • This recording apparatus has a configuration in which a motion blur adding unit 310 is added to the recording apparatus shown in FIG.
  • the motion blur adding unit 310 reads the video recorded in the memory 302, calculates the motion blur using the motion vector force integrated by the MV integration unit 601, and adds the calculated motion blur to the read video. .
  • the video with motion blur added is output to the video encoder 304 as in FIG. Then, the encoded video and motion vectors are processed as in FIG.
  • FIG. 10 is a block diagram showing a recording apparatus that multiplexes and records the motion vectors integrated by the MV integration unit 601.
  • the motion vectors obtained by the MV calculation unit 303 of the recording apparatus shown in FIG. 9 are integrated by the MV integration unit 601 and encoded and multiplexed.
  • the motion vector obtained by the MV calculation unit 303 is the MV code in FIG. It is sent to the keyboard 305 and also to the MV integration unit 601.
  • the motion vectors before integration are processed.
  • the motion vector obtained by the MV calculation unit 303 is integrated by the MV integration unit 601.
  • the integrated motion vector is sent to the MV encoder 305 and also to the motion blur adding unit 310. That is, the motion vector after the integration is processed by the MV encoder 305.
  • FIG. 11 is a block diagram illustrating a configuration of a recording apparatus that records a video by performing resolution conversion processing.
  • This recording apparatus is configured by adding a resolution converting unit 901 and a motion blur adding unit 310 to the recording apparatus shown in FIG.
  • the resolution conversion unit 901 reads the video recorded in the memory 302 and converts the resolution. After the resolution conversion processing, the motion blur addition unit 310 adds motion blur to the video based on the motion vector read from the MV calculation unit 303. Note that the motion blur adder 310 is not essential. If you want to add motion blur during recording, the motion blur adder 310 executes the process, but the playback device adds motion blur. For example, when it is not necessary to add motion blur at the time of recording, the video processed by the resolution conversion unit 901 can be output to the video encoder as it is without preparing the motion blur addition unit 310. Then, similar to the configuration of other recording devices, the encoded video and motion vector processing is executed.
  • FIG. 12 is a block diagram illustrating the configuration of a recording apparatus using a still image recording shutter.
  • This recording apparatus is the same as the recording apparatus shown in FIG. 1 except for the video encoder 304, with the addition of a resolution converter 901, a moving picture encoder 902, a still image recording shutter 1201, and a still image encoder 1202. It is configured.
  • the resolution conversion unit 901 converts the resolution of the video read from the memory 302. In the case of a moving image, the resolution may be lower than that of a still image in many cases, so the resolution conversion unit 901 reduces the resolution of this moving image if necessary.
  • the video with reduced resolution is output to the video decoder 9002.
  • the moving image encoder 902 encodes the resolution-converted image as a moving image.
  • the encoded video is output to the recorder 307 via the multiplexer 306. If it is not necessary to reduce the resolution of the video, there is no need for a resolution converter.
  • the still image recording shutter 1201 is used when recording a captured image as a still image. It is a shutter.
  • the still image encoder 1202 receives an image designation input from the still image recording shutter 1201 and encodes the image read from the memory 302 as a still image.
  • the encoded still image is output to the recorder 307 via the multiplexer 306.
  • the recording device of FIG. 12 uses a high-speed camera to obtain a motion vector and obtains a motion vector. If a moving image is required, the recording device performs resolution conversion as necessary and records the motion vector. Only the frames for which the still image recording shutter was pressed are recorded.
  • FIG. 13 is a block diagram illustrating a configuration of a recording apparatus that can perform moving image encoding with compatibility with a conventional reproduction system, as in FIG.
  • This recording apparatus is the same as the recording apparatus shown in FIG. 1, except for the video encoder 304 and the MV encoder 305, except for the resolution conversion unit 901, motion blur adding unit 310, moving image encoder 902, and still image recording.
  • the controller 1301 and the still picture encoder 1202 are added.
  • the resolution converter 901 reads an image taken from the memory 302 and converts the resolution of this image.
  • the converted image is output to the motion blur adding unit 310.
  • the motion blur adding unit 310 uses the motion vector output from the MV calculating unit 303 to add motion blur to the image whose resolution is converted by the resolution converting unit 901.
  • the moving image encoder 902 encodes the image with the motion blur added as a moving image.
  • the encoded video is output to the recorder 307 via the multiplexer 306.
  • the still image recording controller 1301 specifies, for example, intermittent recording of a still image.
  • the motion vector may not be recorded, or the motion vector may be integrated and recorded as a new motion vector in order to use the motion vector for image interpolation between still images in the playback device.
  • the still image recording controller 1301 may be a still image recording shirt. In that case, it is not necessary to record the motion vector.
  • the still image encoder 1202 encodes the image read from the memory 302 as a still image. Also, it receives an input from the still image recording controller 1301 and encodes the still image according to the instruction content. The encoded still image is output to the recorder 307 via the multiplexer 306.
  • FIG. 14 is a block diagram illustrating a playback device that performs frame interpolation processing.
  • This playback apparatus has a configuration in which a frame interpolation unit 1401 is added to the playback apparatus shown in FIG.
  • the frame interpolation unit 1401 performs frame interpolation so that the video obtained by thinning the frame can be reproduced in the original frame.
  • the frame interpolation unit 1401 performs frame interpolation on the video decoded by the video decoder 403 according to the motion vector decoded by the MV decoder 404. In this case, the motion vector corresponds to the original frame that has not been thinned out.
  • the frame-interpolated video is output to the still image output unit 406 for a still image and to the motion blur adding unit 405 for a moving image.
  • FIG. 15 is a block diagram illustrating a playback device that performs motion vector interpolation processing.
  • This playback apparatus has a configuration in which the playback apparatus shown in FIG. 14 is added to the MV interpolation unit 1501 and corresponds to a recording apparatus that thins out and records motion vectors in the same manner as video.
  • the MV interpolation unit 1501 interpolates the motion vector decoded by the MV decoder 404.
  • the interpolated motion vector corresponds to the original frame that has not been thinned out, and is output to the frame interpolation unit 1401 and the motion blur addition unit 405 in the same manner as the playback device shown in FIG.
  • the playback apparatus shown in FIGS. 14 and 15 can smoothly play back the video by adding motion blur after interpolating frames using motion vectors.
  • the input to the still image output unit 406 may be taken out from the video decoder 403 not from the frame interpolation unit 1401.
  • the reproducing apparatus corresponding to a recording apparatus having a motion blur addition unit as shown in FIG.
  • FIG. 16 is a block diagram illustrating the configuration of a playback device that realizes high-quality slow playback.
  • This playback device has a configuration in which the frame interpolation unit 1401, the video output unit 1602, and the playback speed controller 1601 are added to the playback device shown in FIG. 3 and the still image output unit 406 and the video output unit 407 are excluded. I will speak.
  • the frame interpolation unit 1401 performs frame interpolation on the decoded video output from the video decoder 403. Wait.
  • the frame interpolating unit 1401 performs interpolation based on the motion vector from the MV decoder 404 as well as the frame to which the video decoder power is input.
  • the video output unit 1602 plays back the video to which motion blur is added by the motion blur addition unit 405.
  • the playback speed controller 1601 inputs the speed control signal to each unit of the playback unit 401, the demultiplexer 402, the video decoder 403, the motion blur addition unit 405, and the frame interpolation unit 1401, thereby controlling the operation speed in each unit. Control, thereby controlling the playback speed.
  • the playback speed can be controlled by the playback speed controller 1601 in this way, the playback speed of the video can also be lowered, thereby realizing the slow playback of the video.
  • frames are interpolated by the frame interpolation unit 1401 with respect to a decrease in the number of frames displayed per unit time displayed by slow playback, so that the slow-played video can be viewed without a sense of incongruity.
  • the motion reproduced by the motion blur adding unit 405 is added to the slow-played video according to the motion vector decoded by the MV decoder 404. Thereby, the video output unit 1602 can output a video with smooth motion.
  • a high-quality interpolated image can be obtained by performing frame interpolation using a motion vector obtained with high accuracy in the recording device.
  • high-quality slow playback can be performed seamlessly from still images with little motion blur to smooth videos.
  • FIG. 17 is a block diagram illustrating the configuration of a playback device that realizes playback by object.
  • This playback device includes an MV grouping unit 1702, an object processing unit 1701, and a video output unit 1602 in addition to the playback device shown in FIG. 3, a motion blur addition unit 405, a still image output unit 40 06, and a video output unit. It is a configuration excluding 407.
  • the MV grouping unit 1702 groups the motion vectors decoded by the MV decoder 404 and outputs them to the object processing unit 1701.
  • the object processing unit 1701 receives the input of the grouped motion vectors output from the MV grooming unit 1702, and performs recognition 'tracking' separation of objects included in the video output from the video decoder 403. To do. In addition, color processing can be performed on the obtained object, or object replacement processing can be performed.
  • the video output unit 1602 reproduces the video output from the object processing unit 1701.
  • the motion vectors decoded by the MV decoder 404 are grouped into similar motion vectors by the MV grouping unit 1702. Therefore, objects with similar motion vectors can be processed separately by the object processing unit 1701.
  • the movement in units of pixels such as an optical flow can be accurately obtained.
  • the accuracy of object distance estimation and object recognition is improved, and stereoscopic processing can be performed as separate processing for each object, such as object replacement processing. That can be done at the same time as normal video recording.
  • the motion vector is obtained with high accuracy by dubbing similar motion vectors. it can. Therefore, the color and brightness can be adjusted for each object, and the object can be replaced with another object.
  • FIG. 18 is a block diagram illustrating the configuration of a playback apparatus corresponding to a recording apparatus that encodes and multiplexes still images generated by the motion blur addition unit with individual encoders as shown in FIG.
  • This playback device replaces the video decoder 403 of the playback device shown in FIG. 3 with a video decoder 1102, replaces the still image output unit 406 and the video output unit 407 with a video output unit 1103, and converts the still image decoder 1101. It is the composition which added.
  • Still image decoder 1101 decodes the still image demultiplexed by demultiplexer 402.
  • the decoded still image is output to the video output unit 1103.
  • the video decoder 1102 decodes the video demultiplexed by the demultiplexer 402, while the MV decoder 404 recovers the motion vector. Issue.
  • the motion blur adding unit 405 adds motion blur to the moving image and outputs the motion blur to the video output unit 1103.
  • the video output unit 1103 plays the input still image or moving image.
  • the playback apparatus shown in FIG. 18 described above plays back with motion blur added according to the direction and amount of motion indicated by the motion vector when playing back a moving image, and still with high resolution when playing back a still image.
  • the image can be played back.
  • FIG. 19 is a block diagram illustrating the configuration of a playback apparatus corresponding to a recording apparatus that has a motion blur addition unit and encodes and multiplexes still images with individual encoders as shown in FIG. .
  • This playback device has a configuration in which a still image decoder 801, a video decoder 802, and a video output unit 803 are added to the playback device 401 and the demultiplexer 402 of the playback device shown in FIG. .
  • Still image decoder 801 decodes a still image and outputs it to video output section 803 when a still image is output from demultiplexer 402.
  • the moving image decoder 802 decodes the moving image and outputs the decoded moving image to the video output unit 803.
  • the video output unit 803 reproduces the still image output from the still image decoder 801 or the moving image output from the moving image decoder 802.
  • FIG. 20 is a block diagram illustrating the configuration of a recording apparatus when applied to a DVD video camera or HDV camera.
  • This recording apparatus is the same as the recording apparatus shown in FIG. 8 except that the system control unit 2001, the rate adjustment unit 2002, the synchronous header generation unit 2003, the speech code generator Recorder 2004, knocking section 2005-2007, and recorder 307 replaced with DVD recording section 2010 and HD V recording section 2020.
  • the system control unit 2001, the rate adjustment unit 2002, the synchronous header generation unit 2003, the speech code generator Recorder 2004, knocking section 2005-2007, and recorder 307 replaced with DVD recording section 2010 and HD V recording section 2020.
  • FIG. 12 an example of application of the recording device to a DVD video camera ZHDV camera is shown.
  • the MV calculation unit 303 obtains the motion vector with high accuracy for the video obtained from the high-speed camera 301.
  • the MV integration unit 601 integrates the motion vectors in accordance with the frame decimation rate by the frame decimation unit 501. Then, in the video encoder 304 and the MV encoder 305, the motion vector integrated with the frame-thinned video is encoded.
  • MPEG is used for the video code
  • the integrated motion vector is used for video coding.
  • the motion vector is stored as motion information in the video data recording area, but it corresponds to motion vector data that cannot be stored in the video data recording area and any shape change obtained from the optical flow.
  • the motion vectors to be recorded can be packed in the packing unit 2006 separately from the video data and recorded as a private stream! ,.
  • the system control unit 2001 controls the bit rate adjustment of video data and audio data, if necessary, in order to cope with the increase in data amount by recording additional motion vector data.
  • the rate adjustment unit 2002 is controlled by the system control unit 20001, and controls the rates of the video encoder 304, the MV encoder 305, and the audio encoder 2004.
  • the synchronization header generation unit 2003 generates a synchronization header under the control of the system control unit 2001 and outputs the synchronization header to the packing units 2005 to 2007.
  • the speech encoder 2004 encodes the input speech.
  • the video encoder 304, the MV encoder 305, and the audio encoder 2004 are subjected to rate adjustment by the rate adjustment unit 2002, and output the encoded data to the knocking units 2005 to 2007, respectively.
  • the packing units 2005 to 2007 receive the synchronization header output from the synchronization header generation unit 2003, and perform the packing of the encoded data. That is, a synchronization packet header is added. Then, it is output to the multiplexer 306 together with the AUX data.
  • Multiplexer 306 multiplexes the knocked data and outputs it to DVD recording unit 2010 when recording to recording DVD2012, and to HDV recording unit 2020 when recording to HDV2022 .
  • the DVD recording unit 2010 performs modulation by the modulator 2011 and records it on the recording DVD 2012.
  • the recording DVD 2012 is a recordable DVD (digital video disc).
  • the HDV recording unit 2020 performs modulation by the modulator 2021 and records it in the HDV 2022.
  • the HDV media 2022 is a media that can record HDV video.
  • FIG. 21 is a block diagram illustrating the configuration of a recording apparatus when applied to a DV camera.
  • This recording apparatus has a configuration in which a speech encoder 2004, a modulator 2100, and a DV media 2101 are added to the recording apparatus shown in FIG.
  • FIG. 13 an application example of the recording apparatus to a DV (digital video) camera is shown.
  • the audio encoder 2004 encodes the input audio. Then, each is input to the multiplexer 306. Multiplexer 306, which receives other video and motion vectors of audio, multiplexes them and outputs them to modulator 2100. In the DV standard, no motion vector is used for the video code.
  • the high-accuracy motion vectors obtained from the high-speed camera image power are integrated in the MV integration unit 601 corresponding to the frame decimation rate.
  • the data is packed separately from the video data in the multiplexer 306 and multiplexed into the video data and audio data using the additional data area or the unused reserved area.
  • the signal is modulated by the modulator 2100 and recorded on the DV medium 2101.
  • DV media 2101 is a media capable of recording DV standard video.
  • the motion vector encoding and multiplexing in the present invention is a video code such as MPEG. It shall include coding and multiplexing of motion vectors in No. ⁇ .
  • each embodiment is not intended to limit the present invention, and each component described in each embodiment can be combined, and various modifications can be made by combination. For example, the resolution conversion in FIG. 11 and the frame thinning in FIG. 9 may be performed simultaneously for recording.
  • the recording method described above can be realized by executing a prepared program on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by reading the recording medium force by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Television Signal Processing For Recording (AREA)
  • Studio Devices (AREA)

Abstract

 記録装置において、高速度カメラ(301)は、一連の画像を高速のシャッター速度で連続して撮影する。次に、MV算出部(303)は、高速度カメラ(301)によって撮影された一連の画像の前後関係に基づいて、動きベクトルを求める。次に、記録器(307)は、高速度カメラ(301)によって撮影された画像を、この画像に対応する動きベクトルとともに記録する。一方、再生装置において、記録器(307)によって記録された一連の画像に、記録装置によって記録された動きベクトルを追加して再生する。

Description

明 細 書
記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読 み取り可能な記録媒体
技術分野
[0001] この発明は、映像を撮影して記録する記録装置、再生装置、記録方法、記録プログ ラムおよびコンピュータに読み取り可能な記録媒体に関する。ただしこの発明の利用 は、上述の記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読 み取り可能な記録媒体に限らない。
背景技術
[0002] 通常の写真の撮影は、ビデオ撮影と比べてシャッタースピードが高速である。これ には被写体ブレゃ手ブレなどの動きブレを抑える目的もあり、静止画として良い画質 を得るにはある程度高速なシャッタースピードが必要である場合が多 、。しかし動画 撮影時においては逆に、各フレームが動きブレを含むような低速なシャッタースピー ドとなる。これは、動きブレがないと、人間の目には動きの滑らかさのない間欠的な動 きに見えてしまうからである。そのため CGアニメーションなどでは、わざわざ各コマに モーションブラー(動きブレ)をカロえる処理を行って!/、る。
[0003] つまり、低速シャッターの撮影では動きの滑らかな動画を撮影できる力 動きブレの 少な 、静止画を撮影することはできず、高速シャッターでの撮影では動きブレの少な い静止画を得ることができる力 動画再生時に動きが間欠的に見え不自然になって しまう。したがって、動画と静止画の同時撮影機能を実現しょうとした場合、動画の滑 らかさを優先させれば動きブレのある静止画しか得られず、静止画の画質を優先させ れば動画の滑らかさが失われてしまうという問題がある。
[0004] 従来技術としては、通常の解像度のカメラに加え、低解像度高速度カメラを併用し てフレーム間のマッチングをとるものがある(たとえば、特許文献 1参照。 ) 0また、再生 時に残像を付加することにより自然な画質を得るものがある(たとえば、特許文献 2参 照。)。
[0005] 特許文献 1:特開 2003— 203237号公報 特許文献 2 :特開平 5— 268515号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら特許文献 1の従来技術では、通常の(高解像度)カメラの他に低解像 度高速度カメラが必要であり、動きブレを付加するブロックはない。この技術の目的は 、フレーム間の対応点を正確に求める(=動きベクトルを求める)ことであり、この場合 の高速度カメラ画像はマッチングをとるためだけに用いられる。そして、低解像度高 速度カメラ画像で得られたマッチング情報あるいは既知の対応点情報を拘束条件と して高解像度画像での対応点を求めている。すなわち、静止画と動画の同時撮影を 目的としたものはない。
[0007] また、特許文献 2の従来技術は、残像の付加のために再生時に動きベクトルを求め るものであり、高精度な動きベクトルを求めることが困難であるとともに、再生器のコス トを上げてしまうという問題が挙げられる。
課題を解決するための手段
[0008] 請求項 1の発明にかかる記録装置は、一連の画像を高速のシャッター速度で連続 して撮影する撮影手段と、前記撮影手段によって撮影された一連の画像の前後関係 に基づいて、動きベクトルを求める算出手段と、前記撮影手段によって撮影された画 像を、該画像に対応する動きベクトルとともに記録する記録手段と、を備えることを特 徴とする。
[0009] 請求項 8の発明にかかる記録装置は、一連の画像を高速のシャッター速度で連続 して撮影する撮影手段と、前記撮影手段によって撮影された一連の画像の前後関係 に基づいて、動きベクトルを求める算出手段と、前記算出手段によって求められた動 きベクトルに基づいて動きブレを求め、前記撮影手段によって撮影された一連の画 像に、前記動きブレを追加する追加手段と、前記追加手段によって動きブレを追加さ れた一連の画像を記録する記録手段と、を備えることを特徴とする。
[0010] 請求項 16の発明に力かる再生装置は、請求項 1〜7のいずれか一つに記載の記 録装置によって記録された一連の画像を再生する再生装置であって、前記記録装 置によって記録された一連の画像に、前記記録装置によって記録された動きベクトル に基づ!/、て動きブレを追加する追加手段と、を備えることを特徴とする。
[0011] 請求項 20の発明に力かる再生装置は、請求項 1〜7および 9〜 15のいずれか一つ に記載の記録装置によって記録された一連の画像を再生する再生装置であって、前 記記録装置によって記録された動きベクトルをグルーピングするグルーピング手段と 、前記グルーピングされた動きベクトルに対応するオブジェクト毎に処理する処理手 段と、を備えることを特徴とする。
[0012] 請求項 21の発明にかかる再生装置は、請求項 7に記載の記録装置によって記録さ れた一連の画像を再生する再生装置であって、前記記録装置によって記録された静 止画を再生する第一の再生手段と、前記記録装置によって記録された一連の画像 に、前記記録装置によって記録された動きベクトルに基づ 、て動きブレを追加して、 動画として再生する第二の再生手段と、を備えることを特徴とする。
[0013] 請求項 22の発明にかかる再生装置は、請求項 15に記載の記録装置によって記録 された一連の画像を再生する再生装置であって、前記記録装置によって記録された 静止画を再生する第一の再生手段と、前記記録装置によって記録された一連の画 像を動画として再生する第二の再生手段と、を備えることを特徴とする。
[0014] また、請求項 23の発明に力かる記録方法は、一連の画像を高速のシャッター速度 で連続して撮影する撮影工程と、前記撮影工程によって撮影された一連の画像の前 後関係に基づいて、動きベクトルを求める算出工程と、前記撮影工程によって撮影さ れた一連の画像を、該画像に対応する動きベクトルとともに記録する記録工程と、を 含むことを特徴とする。
[0015] 請求項 24の発明に力かる記録方法は、一連の画像を高速のシャッター速度で連 続して撮影する撮影工程と、前記撮影工程によって撮影された一連の画像の前後関 係に基づいて、動きベクトルを求める算出工程と、前記算出工程によって求められた 動きベクトルに基づいて動きブレを求め、前記撮影工程によって撮影された一連の 画像に、前記動きブレを追加する追加工程と、前記追加工程によって動きブレを追 加された一連の画像を記録する記録工程と、を含むことを特徴とする。
[0016] また、請求項 25の発明に力かる記録プログラムは、請求項 23または 24に記載の記 録方法をコンピュータに実行させることを特徴とする。 [0017] また、請求項 26の発明にかかるコンピュータに読み取り可能な記録媒体は、請求 項 25に記載の記録プログラムを記録したことを特徴とする。
図面の簡単な説明
[0018] [図 1]図 1は、この発明の実施の形態に力かるモーションブラーなしの記録装置の機 能的な構成を説明するブロック図である。
[図 2]図 2は、この発明の実施の形態に力かるモーションブラーありの記録装置の機 能的な構成を説明するブロック図である。
[図 3]図 3は、この発明の実施の形態に力かる再生装置の機能的な構成を説明する ブロック図である。
[図 4]図 4は、モーションブラーなしの記録処理を説明するフローチャートである。
[図 5]図 5は、モーションブラーなしで記録された信号の再生処理を説明するフローチ ヤートである。
[図 6]図 6は、モーションブラーありの記録処理を説明するフローチャートである。
[図 7]図 7は、フレームを間引いて映像を記録する記録装置の構成を説明するブロッ ク図である。
[図 8]図 8は、フレームを間引いて MV統合し、統合された MVを符号ィ匕して映像を記 録する記録装置の構成を説明するブロック図である。
[図 9]図 9は、フレーム間引き、 MV統合、モーションブラーありの記録装置を説明す るブロック図である。
[図 10]図 10は、 MV統合部で統合された動きベクトルを多重化して記録する記録装 置を示すブロック図である。
[図 11]図 11は、解像度変換処理して映像を記録する記録装置の構成を示すブロック 図である。
[図 12]図 12は、静止画記録シャッターを用いた記録装置の構成を説明するブロック 図である。
[図 13]図 13は、互換性確保機能を持つ記録装置の構成を説明するブロック図である [図 14]図 14は、フレーム補間処理を実行する再生装置を説明するブロック図である。 [図 15]図 15は、動きベクトルの補間処理を実行する再生装置を説明するブロック図 である。
圆 16]図 16は、高品位なスロー再生を実現する再生装置の構成を説明するブロック 図である。
[図 17]図 17は、オブジェクト別の再生を実現する再生装置の構成を説明するブロック 図である。
[図 18]図 18は、動きブレ追加部がなぐ静止画を個別の符号化器で符号ィ匕して多重 する記録装置に対応した再生装置の構成を説明するブロック図である。
[図 19]図 19は、動きブレ追加部があり、静止画を個別の符号化器で符号ィ匕して多重 する記録装置に対応した再生装置の構成を説明するブロック図である。
[図 20]図 20は、 DVDビデオカメラまたは HDVカメラに応用した場合の記録装置の 構成を説明するブロック図である。
[図 21]図 21は、 DVカメラに応用した場合の記録装置の構成を説明するブロック図で ある。
符号の説明
301 咼速度カメラ
302 メモリ
303 MV算出部
304 映像符号化器
305 MV符号化器
306 多重化器
307 曰し球
401 再生器
402 逆多重化器
403 映像復号器
404 MV復号器
405 動きブレ追加部
406 静止画出力部 407 動画出力部
発明を実施するための最良の形態
[0020] 以下に添付図面を参照して、この発明にかかる記録装置、再生装置、記録方法、 記録プログラムおよびコンピュータに読み取り可能な記録媒体の好適な実施の形態 を詳細に説明する。
[0021] 図 1は、この発明の実施の形態に力かるモーションブラーなしの記録装置の機能的 な構成を説明するブロック図である。この記録装置は、高速度カメラ 301、メモリ 302 、 MV算出部 303、映像符号化器 304、 MV符号化器 305、多重化器 306、記録器 3 07によって構成される。このモーションブラーとは、動いているものに発生する残像な どの画像のブレであり、以降、モーションブラーまたは動きブレと表現する。
[0022] 高速度カメラ 301は、通常のカメラよりも高速のシャッター速度で撮影するカメラであ る。ここでいう「高速」とは、被写体ブレの少ない鮮明な静止画が得られるシャッタース ピードであって、そのまま動画として連続再生すると間欠的で不自然な動きに見えて しまうようなシャッタースピードである。フレームレートとの関係は、フレームレート以上 であるという以外関連はない。例えば、 30フレーム毎秒のフレームレートにおいて、 シャッタースピードは 1Z60秒であったり 1Z250秒であったり 1Z1000秒であったり する。
[0023] メモリ 302は、高速度カメラ 301で撮影された画像を記録する。メモリ 302に記憶さ れた画像は、 MV算出部 303と映像符号化器 304に渡される。 MV算出部 303は、メ モリ 302から読み出した画像の間の動きベクトル(Motion Vector)を算出する。算 出された動きベクトルは MV符号化器 305に入力される。
[0024] 映像符号化器 304は、メモリ 302に記憶された画像情報を映像情報として符号ィ匕 する。符号化された映像情報は、多重化器 306に出力される。 MV符号化器 305は 、 MV算出部 303で算出された動きベクトルを符号ィ匕する。符号化された映像情報と 符号ィ匕された動きベクトルは、多重化器 306に出力される。
[0025] 多重化器 306は、符号化された情報を多重化する。多重化された情報は、記録器 307によって記録される。メモリ 302、 MV算出部 303、映像符号化器 304、 MV符号 ィ匕器 305、多重化器 306、記録器 307は、 CPUが、 ROMに記録されたプログラムを 読み出し、 RAMをワークエリアとして使用することにより実現できる。
[0026] 以上の構成により、高速シャッターを用いて撮影し、動きベクトル (MV)を検出し、 各フレーム画像と動きベクトルを記録する。高速シャッターを用いて撮影することによ り動きブレの少な!/ヽ鮮鋭な静止画を得て、そこから高精度な動きベクトルを推定する
[0027] なお、映像の符号ィ匕方式として、 MPEGなどの動き情報を利用する方式を用いる 場合は、映像符号化器 304に MV算出部 303で算出した動きベクトルを入力し、映 像符号化器 304が、動きベクトルから映像符号ィ匕に必要な動き情報を得るようにして もよい。この場合、映像の復号に必要な動き情報は映像符号ィ匕データの中に多重さ れる。
[0028] また、上記映像符号ィ匕データの中の動き情報を、再生側で用いる動きベクトルとす るよう〖こしてもよい。その場合は MV符号化器 305は不要となり、多重化器での符号 化された動きベクトルの多重化は行わな 、。
[0029] 図 2は、この発明の実施の形態に力かるモーションブラーありの記録装置の機能的 な構成を説明するブロック図である。この記録装置は、図 1に示したモーションブラー なしの記録装置において、動きブレ追加部 310を、メモリ 302と映像符号化器 304の 間に加え、 MV算出部 303からの入力を受け付ける構成にしたものである。
[0030] 動きブレ追加部 310は、メモリ 302に記録された映像を読み出し、また、 MV算出部 303で求められた動きベクトル力も動きブレを算出し、算出した動きブレを読み出した 映像に追加する。動きブレが追加された映像は、図 1と同様に映像符号化器 304〖こ 出力される。そして、図 1と同様に、符号化された映像と動きベクトルを処理する。
[0031] 以上の構成により、高速シャッターを用いて撮影し、動きベクトル (MV)を検出し、 動きベクトルによって動きブレを追カ卩した映像を、その元となる動くベクトルとともに記 録することができる。
[0032] なお、図 1の場合と同様に、映像の符号ィ匕方式として、 MPEGなどの動き情報を利 用する方式を用いる場合は、映像符号化器 304に MV算出部 303で算出した動きべ タトルを入力し、映像符号化器 304が、動きベクトルから映像符号ィ匕に必要な動き情 報を得るようにしてもよい。この場合も図 1と同様に、映像の復号に必要な動き情報は 映像符号化データの中に多重される。
[0033] また図 1の場合と同様に、上記映像符号ィ匕データの中の動き情報を、再生側で用 いる動きベクトルとするようにしてもよい。その場合、 MV符号化器 305は不要となり、 多重化器での符号ィ匕された動きベクトルの多重化は行わない。また、再生装置にお Vヽて映像復号器以外で動きベクトルを利用することを想定しな ヽ場合も、多重化器 3 06で動きベクトルを多重する必要がな 、ので、 MV符号化器 305は不要となる。
[0034] 図 3は、この発明の実施の形態に力かる再生装置の機能的な構成を説明するプロ ック図である。この再生装置は、再生器 401、逆多重化器 402、映像復号器 403、 M V復号器 404、動きブレ追加部 405、静止画出力部 406、動画出力部 407によって 構成される。この再生装置は、図 1に示した記録装置で符号化された映像を受け取る ことにより、映像を復号して再生することができる。
[0035] 再生器 401は、符号化された映像と符号化された動きベクトルを多重化された状態 で再生する。逆多重化器 402は、符号化された映像と符号化された動きベクトルを逆 多重化する。そして、それぞれ映像復号器 403および MV復号器 404に入力する。 また、逆多重化器 402では、音声等を出力する。
[0036] 映像復号器 403は、符号化された映像を復号する。復号された映像は、動きブレ追 加部 405および静止画出力部 406に出力される。 MV復号器 404は、逆多重化器 4 02からの入力を受けて、動きベクトルを復号する。動きブレ追加部 405は、復号され た動きベクトルの入力を受け、映像復号器 403で復号された映像について、動きブレ を含めた映像を作成する。
[0037] このように、再生時に動きベクトルを用いて動きブレを追加する。すなわち、記録時 に得られた静止画に、記録時に得られた動きベクトルを用いて動きブレをカ卩えること により滑らかな動きの動画を同時に得る。動きベクトルとは、ある画像について参照す べき画像と現在の画像の間で差分をとつたときの、動いた領域の移動の方向と移動 距離が求まる移動量をいう。この動きベクトルを用いることにより、再生時に、動いた 領域については動きベクトル力も画像の動きブレを求めることができる。
[0038] 以上のように説明した再生装置により、撮影した一連の画像について動きベクトルと ともに記録された映像について、再生時にこの算出した動きベクトルを読み出すこと ができる。それにより、この動きベクトルから求めることができる動きブレに従って、滑 らかに映像を再生することができる。したがって再生側では、撮影した一連の画像を 、動きブレのない鮮明な静止画像としても、滑らかな動画像としても同一のデータから 再生することができる。
[0039] なお、図 2のモンシヨンブラーありの記録装置に対応する再生装置では、再生側で 動きブレを追加する必要がなぐまた映像復号器 403からは動きブレのない静止画 は再生できないので、図 3より動きブレ追加部 405と静止画出力部 406を除いたもの になる。また、再生側で動きベクトルを利用しない場合は、 MV復号器 404も必要な いものとなる。
[0040] 次に、「高速」なシャッタースピードの設定方法の例について述べる。この「高速」な シャッタースピードは、動きベクトルを正確に求めるために必要である力 映像内の被 写体の移動スピードによっても異なる。そこで、その映像内の移動スピードを推定して その推定された移動量力もシャッタースピードを決定してフィードバックを掛ける方法 が考えられる。
[0041] また、被写体の種類や撮影シーンなどによってもほぼ必要なシャッタースピードは 決ってくる。そこで、例えばユーザーが撮影前に設定するモード設定ダイヤルを設け 、風景や動きの遅い被写体では 1Z250、運動会などでは 1Z1000、モータースポ ーッ等では 1/10000などのように各モードにあわせた基準値を設定しても良い。実 際に使用するシャッタースピードはその基準値に対し、被写体の明るさ、撮影感度、 絞り等から最終的に決定される。
[0042] 図 4は、モーションブラーなしの場合の記録処理を説明するフローチャートである。
まず、一連の画像を高速のシャッター速度で連続して撮影する (ステップ S201)。次 に、撮影された一連の画像の前後関係に基づいて、動きベクトルを求める (ステップ S 202)。次に、撮影された一連の画像を、この画像に対応する動きベクトルとともに記 録する (ステップ S 203)。そして一連の処理を終了する。以上の処理により、高速度 カメラを用いて撮影し、動きベクトル (MV)を検出し、各フレーム画像と動きベクトルを 記録する。
[0043] 図 5は、モーションブラーなしで記録された信号の再生処理を説明するフローチヤ ートである。まず、記録装置によって記録された一連の画像と記録装置によって記録 された動きベクトルを分離する (ステップ S211)。次に、一連の画像が静止画像また は動画像の 、ずれであるかを判定する (ステップ S212)。
[0044] 動画像の場合 (ステップ S212:動画像)、分離された動きベクトルに基づ!/、て動き ブレを追加する (ステップ S213)。そして、動画像を再生する (ステップ S 214)。静止 画像の場合 (ステップ S212 :静止画像)、静止画像を再生する (ステップ S215)。す なわち、分離された画像をそのまま出力する。
[0045] 以上の再生処理により、撮影した一連の画像について動きベクトルとともに記録さ れた映像をもとに、動きブレのない鮮明な静止画と、動きブレを追加した動きの滑ら 力な映像を同時に再生することができる。
[0046] 図 6は、モーションブラーありの記録処理を説明するフローチャートである。まず、一 連の画像を高速のシャッター速度で連続して撮影する (ステップ S221)。次に、撮影 された一連の画像の前後関係に基づいて、動きベクトルを求める(ステップ S222)。 次に、動きベクトルに基づいて動きブレを求め、一連の画像に求めた動きブレを追カロ する(ステップ S 223)。
[0047] 次に、動きブレを追加された一連の画像を記録する (ステップ S224)。そして一連 の処理を終了する。以上の処理により、高速シャッターを用いて撮影し、動きベクトル (MV)を検出し、動きベクトルによって動きブレを追加した映像を、その元となる動く ベクトルとともに記録することができる。
[0048] 以上のように、図 1〜図 6によって説明したこの発明の実施の形態によれば、ブレの 少ない静止画と滑らかな動きの動画の同時記録再生ができる。すなわち、高速度力 メラ 301を使用すること〖こより、静止画を撮影することができる一方で、高速で撮影さ れた多数の静止画から求められる動きベクトルにより、動きブレを出すことができる。 それにより、高速で撮影された多数の静止画力もでも滑らかな動きの動画を再生する ことができる。
[0049] また、通常多くの演算量が必要である動きベクトルの算出を記録側で実行するので 、再生器 401のコストを抑えられる。また、図 2によって説明したこの発明の実施の形 態によれば、記録側で高精度な動きベクトルを用いて動きブレを追加することにより、 再生側での動きブレ追加が不要となり、従来の再生システムとの互換性を持って高 画質な映像符号ィ匕が行えるともに、再生側での高精度な動きベクトルの応用が可能 となる。
[0050] また、高速度カメラ 301を用いることにより、動きベクトル検出精度を向上させること ができる。通常の動画撮影に用いられるシャッタースピードでは、動きブレが多く静止 画として適さないと同時に、動きブレの多いフレームと少ないフレームでは物体形状 が変ってしまっているため、動きベクトルを精度良く検出することができない。
[0051] これに対し、高速度カメラ 301を用いて撮影された画像は動きブレが少ないため、 各フレームが高画質な静止画であるとともに、フレーム間の相関力 物体の動きを精 度良く検出することができる。また、各フレームにブレのない動画は見た目に不自然 な動きとなるため、再生時に動きベクトルが示す動き方向と動き量に応じて動きブレを 追加することで、動きの滑らかな動画として再生できる。
[0052] また、映像 Z音声の符号ィ匕は、特定の方式を用いる必要はないが、例えば映像の 符号化として MPEGに代表される動き補償予測符号ィ匕を用いた場合、上記のように 動きベクトルをもとに符号ィ匕に用いる動き情報を生成することにより、動きベクトルが 高精度で検出されているため予測残差力 、さくなり、符号量の発生を抑えることがで きる。そのため通常の MPEG符号ィ匕を行った場合に比べ、同じビットレートで高画質 力 同程度の画質で長時間記録が行えるなどのメリットがある。
実施例
[0053] 以上の発明の実施の形態において、モーションブラーなし、モーションブラーありの 記録装置、これに対応する再生装置とその処理について説明した。ここで、この発明 の実施の形態で説明した記録装置および再生装置の適用例および変形例について 説明する。
[0054] 図 7は、フレームを間引いて映像を記録する記録装置の構成を説明するブロック図 である。この図 7に示す記録装置は、図 1に示した記録装置において、フレーム間引 き部 501を、メモリ 302と映像符号化器 304の間に加えたものである。また、高速度力 メラ 301はシャッター速度が高速なだけでなぐ通常の映像再生のフレームレートより も高速なフレームレートで撮影可能なものとする。 [0055] フレーム間引き部 501は、メモリ 302から読み出した映像から、フレームの間引き処 理を実行する。すなわち、 MV算出部 303で動きベクトルを必要な分だけ取得するの に各フレームを用いた後は、高速度カメラ 301で撮影したフレームのうち、必要なフレ ーム以外は間引く形で、一部のフレームだけ残して映像符号化器 304に出力する。 そして、図 1と同様に、符号化された映像と動きベクトルを処理する。
[0056] 図 8は、フレームを間引くとともにそれに合わせて MVを統合し、統合された MVを 符号ィ匕して映像とともに記録する記録装置の構成を説明するブロック図である。この 記録装置は、図 7に示した記録装置に MV統合部 601をカ卩えた構成になつている。
[0057] MV統合部 601は、 MV算出部 303で求められた動きベクトルを統合する。統合し た動きベクトルは、映像符号化器 304と MV符号化器 305に出力される。映像符号 ィ匕器 304は、間引かれたフレームに従って映像を符号ィ匕する。 MV符号化器 305は 、統合された動きベクトルを符号化する。符号ィ匕された映像および動きベクトルは、多 重化器 306で多重化され、記録器 307で記録される。
[0058] 動きベクトルを求める際、フレーム間での変形を伴う場合、 MPEG等で用いられて いるブロックマッチングではマッチングがとれない。形状変化に対応するためにピクセ ル単位のオプティカルフロー力 特徴点の移動ベクトルを求める方法もある力 動き 量が大きい場合や輝度変化がある場合はやはりマッチングがとれない。そのため、こ のような場合は正確な動きベクトルを求めるのが困難になる。
[0059] 以上のように説明した記録装置によれば、通常のビデオ撮影よりも高速のフレーム レートで撮影を行えば、フレーム間の形状変化'移動量が小さくなるので、動きべタト ルゃ特徴点の移動ベクトルを精度良く求めることができる。動きベクトルを求めた後は 、通常の再生に適したフレームレートに間引き、それに合わせて動きベクトルも統合 する。フレームを間引くので、高速で大量に撮影しつつも、実際のデータ量は必要最 小限にすることができる。また、再生時は動きの不自然さがないよう、動きベクトルが 示す動き方向と動き量に応じて動きブレを追加する。したがって、データ量は大きく 増やすことはなぐ動きブレについては精度を上げることができる。
[0060] すなわち、通常のビデオ撮影よりも高速のフレームレートで撮影を行うことにより、フ レーム間の物体の移動量が小さくなる。そのため、高精度な動きベクトルを求めること ができる。また、高速度撮影を行って動きベクトルを求めて力もフレームを間引くこと により、データ量を大きく増やすことなく高精度な動きベクトルを求めることができる。 この場合、移動量が大きい場合や照度の変化が大きい場合には推定が困難である オプティカルフローを求めたい場合などに特に有効である。
[0061] なお、図 7のように、動きベクトルは統合せずに高速のフレームレートに対応したも のを符号ィ匕して多重化してもよい。これにより、再生装置において高速のフレームレ ートに対応した動きベクトルをそのまま利用してフレーム補間できるので、スロー再生 をさらに高品位に行うことができる。この場合、動きベクトルのデータ量が増大するが 、映像データと比較してデータ量が少ないので、大きな影響はない。
[0062] また、フレーム間引きを通常のフレームレートよりも低くなるように行い、再生装置に おいて動きベクトルを用いてフレーム補間し、通常のフレームレートで再生することも できる。本実施例では、動くベクトルが高精度なので、このようにして映像のデータ量 を削減して記録しても、再生装置において良好な動画を再生することができる。この 場合も、動きベクトルを統合して多重化しても、統合しないで多重化しても、どちらで も可能である力 統合しないほうが、データ量が増加する力 フレーム補間の精度が 高められる。
[0063] 図 9は、フレーム間引き、 MV統合、モーションブラーありの記録装置を説明するブ ロック図である。この記録装置は、図 8に示した記録装置に動きブレ追加部 310をカロ えた構成になっている。
[0064] 動きブレ追加部 310は、メモリ 302に記録された映像を読み出し、また、 MV統合部 601で統合された動きベクトル力も動きブレを算出し、算出した動きブレを読み出した 映像に追加する。動きブレを追加した映像は、図 1と同様に映像符号化器 304に出 力する。そして、図 1と同様に、符号化された映像と動きベクトルを処理する。
[0065] 図 10は、 MV統合部 601で統合された動きベクトルを多重化して記録する記録装 置を示すブロック図である。この記録装置は、図 9に示した記録装置の MV算出部 30 3で求められた動きベクトルを、 MV統合部 601によって統合処理して符号化'多重 化処理する。
[0066] すなわち、 MV算出部 303で求められた動きベクトルは、図 9においては MV符号 ィ匕器 305に送られるとともに MV統合部 601にも送られる。そして、統合化前の動き ベクトルが処理対象となる。図 10においては、 MV算出部 303で求められた動きべク トルは、 MV統合部 601で統合処理される。そして、統合処理された動きベクトルが、 MV符号化器 305に送られるとともに動きブレ追加部 310にも送られる。すなわち、 統合ィ匕後の動きベクトルが MV符号化器 305で処理される。
[0067] 図 11は、解像度変換処理して映像を記録する記録装置の構成を示すブロック図で ある。この記録装置は、図 1に示した記録装置に、解像度変換部 901および動きブレ 追加部 310を加えた構成にしたものである。
[0068] 解像度変換部 901は、メモリ 302に記録された映像を読み出し、解像度を変換する 。解像度変換処理後は、動きブレ追加部 310が、 MV算出部 303から読み出した動 きベクトルに基づいて映像に動きブレを追加する。なお、動きブレ追加部 310は必須 ではなぐ記録時に動きブレを追カ卩しておきたい場合は動きブレ追加部 310で処理 を実行するが、再生装置で動きブレを追加する構成になっているなど、記録時に動き ブレを追加する必要がない場合は、動きブレ追加部 310を用意せずに、解像度変換 部 901で処理された映像を、そのまま映像符号化器に出力することも出来る。そして 、他の記録装置の構成と同様に、符号化された映像と動きベクトルの処理を実行する
[0069] 図 12は、静止画記録シャッターを用いた記録装置の構成を説明するブロック図で ある。この記録装置は、図 1に示した記録装置のうち映像符号化器 304を除き、解像 度変換部 901、動画符号化器 902、静止画記録シャッター 1201、静止画符号化器 1202を加えた構成になっている。
[0070] 解像度変換部 901は、メモリ 302から読み出した映像の解像度を変換する。動画の 場合、静止画に対して解像度が低くて良い場合が多いので、解像度変換部 901は、 この動画の解像度を必要であれば下げる。解像度を下げた映像は、動画復号化器 9 02に出力する。動画符号化器 902は、この解像度変換された画像を動画として符号 化する。符号ィ匕された動画は多重化器 306を経て、記録器 307に出力される。動画 の解像度を下げる必要がなければ、解像度変換部はなくて良い。
[0071] 静止画記録シャッター 1201は、撮影した画像を静止画として記録する際に用いる シャッターである。静止画符号化器 1202は、静止画記録シャッター 1201からの画像 指定の入力を受けて、メモリ 302から読み出した画像を静止画として符号ィ匕する。符 号ィ匕された静止画は多重化器 306を経て、記録器 307に出力される。
[0072] 以上のように、図 12の記録装置は、高速度カメラを用いて撮影して動きベクトルを 求めた後、動画が必要な場合、必要に応じて解像度変換を行って記録し、静止画は 静止画記録シャッターが押されたフレームだけ記録する。
[0073] 図 13は、図 2と同様に、従来の再生システムとの互換性を持って動画符号ィ匕が行 える記録装置の構成を説明するブロック図である。この記録装置は、図 1に示した記 録装置のうち映像符号化器 304と MV符号化器 305を除き、解像度変換部 901、動 きブレ追加部 310、動画符号化器 902、静止画記録コントローラ 1301、静止画符号 ィ匕器 1202を加えた構成になっている。
[0074] 解像度変換部 901は、メモリ 302から撮影された画像を読み出して、この画像の解 像度を変換する。変換された画像は、動きブレ追加部 310に出力する。動きブレ追 加部 310は、 MV算出部 303から出力された動きベクトルを使用して、解像度変換部 901で解像度変換した画像に動きブレを追加する。動画符号化器 902は、この動き ブレを追加した画像を動画として符号化する。符号ィ匕された動画は多重化器 306を 経て、記録器 307に出力される。
[0075] 静止画記録コントローラ 1301は、例えば、静止画の間欠記録を指定する。その場 合、動きベクトルは記録しないか、動きベクトルを再生装置における静止画間の画像 補間に利用するために動きベクトルを統合して新たな動きベクトルとして記録するよう にしてもよい。また例えば、静止画記録コントローラ 1301は、静止画記録用シャツタ 一であってもよ 、。その場合は動きベクトルを記録する必要はな 、。
[0076] 静止画符号化器 1202は、メモリ 302から読み出した画像を、静止画として符号ィ匕 する。また、静止画記録コントローラ 1301からの入力を受け、指示内容にしたがって 、静止画を符号化する。符号ィ匕した静止画は多重化器 306を経て、記録器 307に出 力される。
[0077] ここで図 13の記録装置において、高速度カメラ 301を用いて撮影して動きベクトル を求めた後、静止画はそのままあるいは必要なフレームだけ、動画は動きブレを加え て記録することにより、従来の再生システムとの動画符号ィ匕方式の互換性を保つこと ができる。
[0078] (再生装置)
図 14は、フレーム補間処理を実行する再生装置を説明するブロック図である。この 再生装置は、図 3に示した再生装置にフレーム補間部 1401をカ卩えた構成になって いる。フレーム補間部 1401により、フレームを間引き処理した映像を、もとのフレーム で再生できるようにフレーム補間する。このフレーム補間部 1401は、映像復号器 40 3で復号された映像を、 MV復号器 404で復号された動きベクトルにしたがって、フレ ーム補間する。この場合、動きベクトルは間引きされていない元のフレームに対応し たものとする。フレーム補間された映像は、静止画の場合は静止画出力部 406に、 動画の場合は動きブレ追加部 405に出力する。
[0079] 図 15は、動きベクトルの補間処理を実行する再生装置を説明するブロック図である 。この再生装置は、図 14に示した再生装置に MV補間部 1501に加えた構成であり、 動きベクトルも映像と同様に間引して記録する記録装置に対応している。 MV補間部 1501は、 MV復号器 404で復号された動きベクトルを補間する。補間された動きべク トルは、間引きされていない元のフレームに対応したものとなり、図 14に示した再生 装置と同様に、フレーム補間部 1401、動きブレ追加部 405に出力される。このような 構成により、図 14、図 15に示した再生装置では、動きベクトルを利用してフレームを 補間した後に動きブレを追加することにより、映像を滑らかに再生することができる。
[0080] なお、図 14、図 15において、静止画出力部 406への入力は、フレーム補間部 140 1からではなぐ映像復号器 403から取り出すようにしてもよい。また、図 2のように動き ブレ追加部を備えた記録装置に対応する再生装置の場合は、動きブレ追加部 405 は不要となる。
[0081] 図 16は、高品位なスロー再生を実現する再生装置の構成を説明するブロック図で ある。この再生装置は、図 3に示した再生装置に、フレーム補間部 1401、映像出力 部 1602、再生スピードコントローラ 1601をカ卩え、静止画出力部 406と動画出力部 4 07を除 ヽた構成になって ヽる。
[0082] フレーム補間部 1401は、映像復号器 403から出力された復号映像を、フレーム補 間する。フレーム補間部 1401は映像復号器力も入力されるフレームだけでなぐ M V復号器 404からの動きベクトルにも基づいて補間を実行する。
[0083] 映像出力部 1602は、動きブレ追加部 405で動きブレを追加された映像を再生する 。再生スピードコントローラ 1601は、再生器 401、逆多重化器 402、映像復号器 403 、動きブレ追加部 405、フレーム補間部 1401の各部に、スピード制御信号を入力す ることにより、各部における動作速度を制御し、それにより再生スピードを制御する。
[0084] このように再生スピードコントローラ 1601によって再生スピードを制御することがで きるので、映像の再生スピードを下げることもでき、それにより映像のスロー再生を実 現することができる。その一方で、スロー再生により表示される単位時間当たりのフレ ーム数の減少に対して、フレーム補間部 1401によってフレームを補間するので、ス ロー再生した映像を違和感なく視聴することができる。スロー再生された映像は、 MV 復号器 404によって復号された動きベクトルにしたがって動きブレ追加部 405による 動きブレを追加する。それにより、映像出力部 1602から滑らかな動きの映像を出力 することができる。
[0085] 以上のように説明した図 16の再生装置によれば、記録装置において高精度に求ま つた動きベクトルを用いてフレーム補間することにより、高画質な補間画像を得ること ができる。これを利用して、動きブレの少ない静止画から滑らかな動画までシームレス に高品位なスロー再生を行うことができる。
[0086] 高品位なスロー再生は、以下の i)〜iii)のいずれにおいても、補間するフレームに 対応する動きベクトルが高精度に求まって!/ヽれば、可能となる。
i)高いフレームレートで撮影して、通常の動画再生のレートまでフレーム間引きして 画像を記録した場合。
ii)通常の動画再生のフレームレートで撮影してそのまま画像を記録した場合。
iii)通常のフレームレート以下に間引きして画像を記録した場合。
[0087] 図 17は、オブジェクト別の再生を実現する再生装置の構成を説明するブロック図で ある。この再生装置は、図 3に示した再生装置に、 MVグルーピング部 1702、ォブジ ェクト処理部 1701、映像出力部 1602をカ卩え、動きブレ追加部 405、静止画出力部 4 06、動画出力部 407を除いた構成になっている。 [0088] MVグルーピング部 1702は、 MV復号器 404で復号された動きベクトルをグルー プ化してオブジェクト処理部 1701に出力する。オブジェクト処理部 1701は、 MVグ ルービング部 1702から出力された、グループ化された動きベクトルの入力を受けて、 映像復号器 403から出力された映像に含まれるオブジェクトの、認識 '追跡'分離を 実行する。また、得られたオブジェクトについて色処理を実行したり、オブジェクトの置 換処理を実行したりすることもできる。映像出力部 1602は、オブジェクト処理部 1701 力 出力された映像を再生する。
[0089] このように、 MV復号器 404によって復号された動きベクトルは、 MVグルーピング 部 1702によって似た動きのベクトルがグルーピングされる。したがって、オブジェクト 処理部 1701によって似た動きのベクトルによるオブジェクトを、別々に処理すること ができる。
[0090] ここでさらに、記録装置において高速度撮影を行うことによって、オプティカルフロ 一などのピクセル単位の動きも正確に求められるようになる。そして、ピクセル単位の 動きを解析することによって、物体の距離の推定やオブジェクト認識の精度が高まり、 立体視化ゃオブジェクトごとの別処理'オブジェクトの置換処理なども可能となる。そ のようなことが、通常の動画撮影と同時に行える。
[0091] 以上のように説明した図 17の再生装置によれば、例えば似た動きのベクトルをダル 一ビングすることにより、動きベクトルが高精度に求まっているため、オブジェクト認識 •追跡 '分離ができる。したがって、オブジェクト毎に色や明るさを調整したり、ォブジ ェクトを別のオブジェクトに置換したりすることができる。
[0092] 図 18は、図 12のように、動きブレ追加部がなぐ静止画を個別の符号化器で符号 化して多重する記録装置に対応した再生装置の構成を説明するブロック図である。こ の再生装置は、図 3に示した再生装置の映像復号器 403を動画復号器 1102に置き 換え、静止画出力部 406と動画出力部 407を映像出力部 1103に置き換え、静止画 復号器 1101を加えた構成になっている。
[0093] 静止画復号器 1101は、逆多重化器 402で逆多重化された静止画を復号する。復 号後の静止画は、映像出力部 1103に出力する。動画復号器 1102は、逆多重化器 402で逆多重化された動画を復号する一方、 MV復号器 404は、動きベクトルを復 号する。そして、動きブレ追加部 405は、動画に動きブレを追加して、映像出力部 11 03に出力する。映像出力部 1103は、入力された静止画または動画を再生する。
[0094] 以上のように説明した図 18の再生装置は、動画再生時は動きベクトルが示す動き 方向と動き量に応じて動きブレを追加して再生し、静止画再生時には高解像度の静 止画を再生することができる。
[0095] 図 19は、図 13のように、動きブレ追加部があり、静止画を個別の符号化器で符号 化して多重する記録装置に対応した再生装置の構成を説明するブロック図である。こ の再生装置は、図 3に示した再生装置の再生器 401と逆多重化器 402に、静止画復 号器 801、動画復号器 802、映像出力部 803をカ卩えた構成になっている。
[0096] 静止画復号器 801は、逆多重化器 402から静止画が出力された場合、静止画を復 号して映像出力部 803に出力する。動画復号器 802は、逆多重化器 402から動画 が出力された場合、動画を復号して映像出力部 803に出力する。映像出力部 803は 、静止画復号器 801から出力された静止画、または動画復号器 802から出力された 動画を再生する。
[0097] 以上のように説明した図 19の再生装置が対応する記録装置では、高速度カメラで 得られたブレの少ない高画質な静止画をユーザー領域などに多重化するものとする 。一方、動画は必要に応じて解像度変換を行ったあと動きベクトルが示す動き方向と 動き量に応じて動きブレを追加し、従来の再生装置で再生可能な領域に多重化する ものとする。これにより、従来の再生装置では通常の動画が再生でき、本記録装置に 対応した図 19の再生装置では、通常の動画に加えてブレの少ない高画質な静止画 ち再生でさる。
[0098] このようにして、従来の動画再生装置と互換性を確保しつつ高画質な静止画の再 生を行うことができる。なお、記録装置において、静止画を間欠記録して、静止画間 の動きベクトルも記録するようにすれば、対応再生装置で MV復号器を持てば、静止 画を利用した高解像度の動画あるいは擬似動画を再生することができる。
[0099] 図 20は、 DVDビデオカメラまたは HDVカメラに応用した場合の記録装置の構成を 説明するブロック図である。この記録装置は、図 8に示した記録装置に、システムコン トロールユニット 2001、レート調整部 2002、同期ヘッダ生成部 2003、音声符号ィ匕 器 2004、 ノ ッキング部 2005〜2007を加え、記録器 307を DVD記録部 2010、 HD V記録部 2020に置き換えた構成になっている。この図 12を参照して、記録装置の D VDビデオカメラ ZHDVカメラへの応用例を示す。
[0100] この記録装置では、高速度カメラ 301から得られた映像について、 MV算出部 303 は、動きベクトルを高い精度で求める。 MV統合部 601は、フレーム間引き部 501に よるフレーム間引きのレートに対応してこの動きベクトルを統合する。そして、映像符 号化器 304および MV符号化器 305では、フレーム間引きされた映像と統合された 動きベクトルがそれぞれ符号化される。ここで映像符号ィ匕には MPEGを用いるものと し、統合された動きベクトルを映像符号化に利用している。
[0101] その際、動きベクトルは映像データ記録領域の中に動き情報として収納されるが、 映像データ記録領域に収納しきれな ヽ動きベクトルデータや、オプティカルフローか ら求めた任意形状変化に対応する動きベクトルなどは、映像データとは別にパッキン グ部 2006でパッキングを行 、プライベートストリームとして記録しても良!、。
[0102] システムコントロールユニット 2001は、付加的な動きベクトルデータ分を記録するこ とによるデータ量増加分に対応するため、必要であれば映像データや音声データの ビットレート調整を制御する。レート調整部 2002は、システムコントロールユニット 20 01による制御を受け、映像符号化器 304、 MV符号化器 305、音声符号化器 2004 のレートを制御する。同期ヘッダ生成部 2003は、システムコントロールユニット 2001 による制御を受けて同期ヘッダを生成し、パッキング部 2005〜2007に出力する。
[0103] 一方、音声符号化器 2004は、入力された音声を符号化する。映像符号化器 304、 MV符号化器 305、音声符号化器 2004は、レート調整部 2002によるレート調整を 受けて、ノ ッキング部 2005〜2007にそれぞれ符号ィ匕したデータを出力する。パッ キング部 2005〜2007は、同期ヘッダ生成部 2003から出力された同期ヘッダを受 けて、符号化されたデータのパッキングを実行する。すなわち、同期用のパケットへッ ダーを付加する。そして、 AUXデータとともに多重化器 306に出力する。
[0104] 多重ィ匕器 306は、ノ ッキングされたデータを多重化して、記録用 DVD2012に記録 する場合は、 DVD記録部 2010に、 HDV2022に記録する場合は、 HDV記録部 20 20に出力する。 [0105] その後、 DVD記録部 2010は、変調器 2011で変調を実行して記録用 DVD2012 に記録する。記録用 DVD2012は、記録可能な DVD (デジタルビデオディスク)であ る。 HDV記録部 2020は、変調器 2021で変調を実行して、 HDV2022に記録する 。 HDVメディア 2022は、 HDV規格の映像を記録することができるメディアである。
[0106] 以上のように説明した図 20の記録装置によれば、動きブレの少ない映像と高精度 の動きベクトルを記録するので、ブレの少ない静止画あるいは動きブレを含む滑らか な動きの動画の再生を、 DVDビデオカメラまたは HDVカメラにぉ ヽて実現すること ができる。さらに、動きベクトルの精度が高いので、従来と同一のビットレートでより高 画質な記録、あるいは同程度の画質でより長時間の記録を行うことができる。
[0107] 図 21は、 DVカメラに応用した場合の記録装置の構成を説明するブロック図である 。この記録装置は、図 8に示した記録装置に、音声符号化器 2004、変調器 2100、 DVメディア 2101をカ卩えた構成になっている。この図 13を参照して、記録装置の DV (デジタルビデオ)カメラへの応用例を示す。
[0108] 映像符号化器 304が映像を符号ィ匕し、 MV符号化器 305が動きベクトルを符号ィ匕 するのと同様に、音声符号化器 2004は、入力された音声を符号化する。そして、そ れぞれ多重化器 306に入力する。多重化器 306〖こは、音声の他映像、動きベクトル が入力されるのでこれらを多重化して変調器 2100に出力する。なお、 DV規格では 、映像符号ィ匕には動きベクトルを利用しない。
[0109] 高速度カメラ映像力も得られた高精度動きベクトルは、 MV統合部 601にお 、て、 フレーム間引きのレートに対応して統合する。そして符号ィ匕されたのち、多重化器 30 6において、映像データとは別にパッキングされ、付加データ領域あるいは未使用の リザーブ領域を利用して映像データ、音声データに多重される。そして、変調器 210 0において変調した上で、 DVメディア 2101に記録される。 DVメディア 2101は、 DV 規格の映像を記録することができるメディアである。
[0110] 以上のように説明した図 21の記録装置によれば、動きブレの少ない映像と高精度 の動きベクトルを記録するので、ブレの少ない静止画あるいは動きブレを含む滑らか な動きの動画の再生を、 DVカメラにぉ 、て実現することができる。
[0111] なお、本発明における動きベクトルの符号ィ匕と多重化とは、 MPEGのような映像符 号ィ匕における動きベクトルの符号化と多重化を含むものとする。また、各実施例は、 本発明を限定するものではなぐ各実施例で説明した各構成要素は、組み合わせる ことが可能であり、組み合わせにより種々変形例を作ることができる。たとえば、図 11 の解像度変換と図 9のフレーム間引きを同時に行って記録してもよい。
なお、以上のように説明した記録方法は、予め用意されたプログラムをパーソナル コンピュータやワークステーションなどのコンピュータで実行することにより実現するこ とができる。このプログラムは、ハードディスク、フレキシブルディスク、 CD-ROM, MO、 DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータ によって記録媒体力も読み出されることによって実行される。またこのプログラムは、ィ ンターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよ い。

Claims

請求の範囲
[1] 一連の画像を高速のシャッター速度で連続して撮影する撮影手段と、
前記撮影手段によって撮影された一連の画像の前後関係に基づいて、動きべタト ルを求める算出手段と、
前記撮影手段によって撮影された一連の画像を、該画像に対応する動きベクトルと ともに記録する記録手段と、
を備えることを特徴とする記録装置。
[2] 前記一連の画像からフレームを間弓 Iくフレーム間弓 Iき手段を備えることを特徴とす る請求項 1に記載の記録装置。
[3] 前記間弓 Iかれたフレームに対応する動きベクトルを統合する動きベクトル統合手段 を備え、
前記記録手段は、前記一連の画像を、前記統合された動きベクトルとともに記録す ることを特徴とする請求項 2に記載の記録装置。
[4] 前記一連の画像の解像度を変換する解像度変換手段を備えることを特徴とする請 求項 1〜3のいずれか一つに記載の記録装置。
[5] 前記求められた動きベクトルを用いて、前記一連の画像を符号化する符号化手段 を備えることを特徴とする請求項 1に記載の記録装置。
[6] 前記符号化手段は、前記一連の画像とともに動きベクトルを当該一連の画像の符 号ィ匕データの一部として多重化することを特徴とする請求項 5に記載の記録装置。
[7] 前記一連の画像に含まれる画像のうち、静止画を記録するタイミングを制御する制 御手段を備えることを特徴とする請求項 1に記載の記録装置。
[8] —連の画像を高速のシャッター速度で連続して撮影する撮影手段と、
前記撮影手段によって撮影された一連の画像の前後関係に基づいて、動きべタト ルを求める算出手段と、
前記算出手段によって求められた動きベクトルに基づいて動きブレを求め、前記撮 影手段によって撮影された一連の画像に、前記動きブレを追加する追加手段と、 前記追加手段によって動きブレを追加された一連の画像を記録する記録手段と、 を備えることを特徴とする記録装置。
[9] 前記記録手段は、前記動きベクトルを、前記動きブレを追加された一連の画像とと もに記録することを特徴とする請求項 8に記載の記録装置。
[10] 前記一連の画像力 フレームを間引くフレーム間引き手段を備えることを特徴とす る請求項 8または 9に記載の記録装置。
[11] 前記間弓 Iかれたフレームに対応する動きベクトルを統合する動きベクトル統合手段 を備え、
前記記録手段は、前記一連の画像を、前記統合された動きベクトルとともに記録す ることを特徴とする請求項 10に記載の記録装置。
[12] 前記一連の画像の解像度を変換する解像度変換手段を備えることを特徴とする請 求項 8に記載の記録装置。
[13] 前記求められた動きベクトルを用いて、前記一連の画像を符号化する符号化手段 を備えることを特徴とする請求項 8に記載の記録装置。
[14] 符号化手段は、前記一連の画像とともに動きベクトルを当該一連の画像の符号ィ匕 データの一部として多重化することを特徴とする請求項 8に記載の記録装置。
[15] 前記一連の画像に含まれる画像のうち、静止画を記録するタイミングを制御する制 御手段を備えることを特徴とする請求項 8に記載の記録装置。
[16] 請求項 1〜7のいずれか一つに記載の記録装置によって記録された一連の画像を 再生する再生装置であって、
前記記録装置によって記録された一連の画像に、前記記録装置によって記録され た動きベクトルに基づいて動きブレを追加する追加手段と、
を備えることを特徴とする再生装置。
[17] 前記動きベクトルに基づいて、フレームを補間するフレーム補間手段を備えることを 特徴とする請求項 16に記載の再生装置。
[18] 前記動きベクトルを補間する動きべ外ル補間手段を備えることを特徴とする請求項
17に記載の再生装置。
[19] 前記一連の画像を再生する速度を制御する速度制御手段を備えることを特徴とす る請求項 16〜18のいずれか一つに記載の再生装置。
[20] 請求項 1〜7および 9〜15のいずれか一つに記載の記録装置によって記録された 一連の画像を再生する再生装置であって、
前記記録装置によって記録された動きベクトルをグルーピングするグルーピング手 段と、
前記グルーピングされた動きベクトルに対応するオブジェクト毎に処理する処理手 段と、
を備えることを特徴とする再生装置。
[21] 請求項 7に記載の記録装置によって記録された一連の画像を再生する再生装置で あって、
前記記録装置によって記録された静止画を再生する第一の再生手段と、 前記記録装置によって記録された一連の画像に、前記記録装置によって記録され た動きベクトルに基づ 、て動きブレを追加して、動画として再生する第二の再生手段 と、
を備えることを特徴とする再生装置。
[22] 請求項 15に記載の記録装置によって記録された一連の画像を再生する再生装置 であって、
前記記録装置によって記録された静止画を再生する第一の再生手段と、 前記記録装置によって記録された一連の画像を動画として再生する第二の再生手 段と、
を備えることを特徴とする再生装置。
[23] 一連の画像を高速のシャッター速度で連続して撮影する撮影工程と、
前記撮影工程によって撮影された一連の画像の前後関係に基づいて、動きべタト ルを求める算出工程と、
前記撮影工程によって撮影された一連の画像を、該画像に対応する動きベクトルと ともに記録する記録工程と、
を含むことを特徴とする記録方法。
[24] 一連の画像を高速のシャッター速度で連続して撮影する撮影工程と、
前記撮影工程によって撮影された一連の画像の前後関係に基づいて、動きべタト ルを求める算出工程と、 前記算出工程によって求められた動きベクトルに基づいて動きブレを求め、前記撮 影工程によって撮影された一連の画像に、前記動きブレを追加する追加工程と、 前記追加工程によって動きブレを追加された一連の画像を記録する記録工程と、 を含むことを特徴とする記録方法。
[25] 請求項 23または 24に記載の記録方法をコンピュータに実行させることを特徴とす る記録プログラム。
[26] 請求項 25に記載の記録プログラムを記録したことを特徴とするコンピュータに読み 取り可能な記録媒体。
PCT/JP2006/323647 2005-11-29 2006-11-28 記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読み取り可能な記録媒体 WO2007063819A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800446529A CN101317450B (zh) 2005-11-29 2006-11-28 记录装置、再现装置、记录方法
US12/085,575 US20100214422A1 (en) 2005-11-29 2006-11-28 Recording Apparatus, Reproducing Apparatus, Recording Method, Recording Program, and Computer-Readable Recording Medium
JP2007547934A JPWO2007063819A1 (ja) 2005-11-29 2006-11-28 記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読み取り可能な記録媒体
EP06833451A EP1956839A4 (en) 2005-11-29 2006-11-28 RECORDING DEVICE, REPRODUCING DEVICE, RECORDING METHOD AND PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-343026 2005-11-29
JP2005343026 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063819A1 true WO2007063819A1 (ja) 2007-06-07

Family

ID=38092152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323647 WO2007063819A1 (ja) 2005-11-29 2006-11-28 記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読み取り可能な記録媒体

Country Status (5)

Country Link
US (1) US20100214422A1 (ja)
EP (1) EP1956839A4 (ja)
JP (1) JPWO2007063819A1 (ja)
CN (1) CN101317450B (ja)
WO (1) WO2007063819A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098749A1 (ja) * 2008-02-04 2009-08-13 Panasonic Corporation 画像合成装置、画像合成方法、画像合成プログラム及び集積回路並びに撮像システム及び撮像方法
JP2010124369A (ja) * 2008-11-21 2010-06-03 Sharp Corp フレーム補間装置、画像符号化装置、および画像復号装置
JP2011055278A (ja) * 2009-09-02 2011-03-17 Sharp Corp 動き情報取得装置及び画像処理装置
US8390698B2 (en) 2009-04-08 2013-03-05 Panasonic Corporation Image capturing apparatus, reproduction apparatus, image capturing method, and reproduction method
JP5389049B2 (ja) * 2008-12-16 2014-01-15 パナソニック株式会社 撮像装置、半導体集積回路、および動きベクトル判定方法
WO2018194040A1 (ja) * 2017-04-17 2018-10-25 ソニー株式会社 送信装置、送信方法、受信装置、受信方法、記録装置および記録方法
JP2019080104A (ja) * 2017-10-20 2019-05-23 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2019139310A (ja) * 2018-02-06 2019-08-22 Kddi株式会社 情報処理装置、方法及びプログラム
JP2020108175A (ja) * 2014-07-02 2020-07-09 ソニー株式会社 画像処理装置、画像処理方法、及びプログラム
JP2020145660A (ja) * 2019-03-08 2020-09-10 キヤノン株式会社 情報処理装置およびその制御方法ならびにプログラム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674620B2 (ja) * 2008-07-29 2011-04-20 ソニー株式会社 画像処理装置、画像処理方法、及びプログラム
JP4613990B2 (ja) * 2008-07-31 2011-01-19 ソニー株式会社 画像処理装置、画像処理方法、プログラム
US8130278B2 (en) * 2008-08-01 2012-03-06 Omnivision Technologies, Inc. Method for forming an improved image using images with different resolutions
JP2010087778A (ja) * 2008-09-30 2010-04-15 Casio Computer Co Ltd 撮像装置、変速撮像方法、及びプログラム
US9930310B2 (en) * 2009-09-09 2018-03-27 Apple Inc. Audio alteration techniques
SG11201400429RA (en) 2011-09-08 2014-04-28 Paofit Holdings Pte Ltd System and method for visualizing synthetic objects withinreal-world video clip
US9196016B2 (en) * 2012-01-18 2015-11-24 Linkedin Corporation Systems and methods for improving video stutter in high resolution progressive video
US9560308B2 (en) * 2012-01-25 2017-01-31 Sony Corporation Applying motion blur to only select objects in video
CN103281486B (zh) * 2013-05-22 2018-01-30 上海斐讯数据通信技术有限公司 一种照相模式的实现方法及移动终端
JP2015122731A (ja) * 2013-11-19 2015-07-02 パナソニックIpマネジメント株式会社 動画再生装置及び動画再生方法
WO2015183194A1 (en) 2014-05-30 2015-12-03 Paofit Technology Pte Ltd Systems and methods for motion-vector-aided video interpolation using real-time smooth video playback speed variation
JP6601729B2 (ja) * 2014-12-03 2019-11-06 パナソニックIpマネジメント株式会社 データ生成方法、データ再生方法、データ生成装置及びデータ再生装置
PT4109906T (pt) 2014-12-03 2024-01-11 Panasonic Ip Man Co Ltd Dispositivo de geração de dados
JP6489879B2 (ja) * 2015-03-09 2019-03-27 キヤノン株式会社 画像再生装置及び画像再生方法
US9704298B2 (en) 2015-06-23 2017-07-11 Paofit Holdings Pte Ltd. Systems and methods for generating 360 degree mixed reality environments
US10607386B2 (en) 2016-06-12 2020-03-31 Apple Inc. Customized avatars and associated framework
US10861210B2 (en) 2017-05-16 2020-12-08 Apple Inc. Techniques for providing audio and video effects

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125068A (ja) * 1987-11-09 1989-05-17 Matsushita Electric Ind Co Ltd ぶれ補正装置
JPH02235488A (ja) * 1989-03-08 1990-09-18 Sony Corp ビデオ信号の再生装置
JPH04302589A (ja) * 1991-03-29 1992-10-26 Sony Corp 手振れ補正可能なビデオ信号記録再生装置
JPH05268515A (ja) * 1992-03-24 1993-10-15 Hitachi Ltd カメラ一体型磁気記録再生装置
JPH05347748A (ja) * 1992-06-12 1993-12-27 Fuji Photo Film Co Ltd ビデオ信号の再生処理方法および装置
JP2000023024A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 画像入力装置
JP2000165740A (ja) * 1998-11-27 2000-06-16 Matsushita Electric Ind Co Ltd 撮像装置
JP2001036909A (ja) * 1999-07-23 2001-02-09 Oki Electric Ind Co Ltd 動きベクトル検出装置
JP2002056393A (ja) * 2000-08-14 2002-02-20 Canon Inc 画像処理方法及び装置並びに記憶媒体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2231228B (en) * 1989-04-27 1993-09-22 Sony Corp Video signal to photographic film conversion
GB2262853B (en) * 1991-12-20 1995-07-19 Sony Broadcast & Communication Digital video signal processing
US5473441A (en) * 1992-06-12 1995-12-05 Fuji Photo Film Co., Ltd. Video signal reproduction processing method and apparatus for reproduction of a recorded video signal as either a sharp still image or a clear moving image
US6337928B1 (en) * 1996-08-26 2002-01-08 Canon Kabushiki Kaisha Image transmission apparatus and method therefor
AU1941797A (en) * 1997-03-17 1998-10-12 Mitsubishi Denki Kabushiki Kaisha Image encoder, image decoder, image encoding method, image decoding method and image encoding/decoding system
US6151075A (en) * 1997-06-11 2000-11-21 Lg Electronics Inc. Device and method for converting frame rate
JPH11298890A (ja) * 1998-04-13 1999-10-29 Hitachi Ltd 画像データの圧縮又は伸張方法とその装置、並びに、それを用いた画像伝送システム及び監視システム
JP3855522B2 (ja) * 1999-02-23 2006-12-13 松下電器産業株式会社 動画変換装置
US6442203B1 (en) * 1999-11-05 2002-08-27 Demografx System and method for motion compensation and frame rate conversion
JP3444266B2 (ja) * 2000-04-21 2003-09-08 日本電気株式会社 リアルタイム録画再生装置
JP4596221B2 (ja) * 2001-06-26 2010-12-08 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
WO2004047441A1 (ja) * 2002-11-15 2004-06-03 Sony Corporation 伝送装置と伝送方法と再生装置と再生方法およびプログラムと記録媒体
US7616220B2 (en) * 2003-12-23 2009-11-10 Intel Corporation Spatio-temporal generation of motion blur
US7817193B2 (en) * 2004-11-25 2010-10-19 Sony Corporation Image pickup apparatus and image pickup method to display or record images picked up at high rate in real time
JP4668040B2 (ja) * 2005-11-18 2011-04-13 富士フイルム株式会社 動画生成装置、動画生成方法、及びプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125068A (ja) * 1987-11-09 1989-05-17 Matsushita Electric Ind Co Ltd ぶれ補正装置
JPH02235488A (ja) * 1989-03-08 1990-09-18 Sony Corp ビデオ信号の再生装置
JPH04302589A (ja) * 1991-03-29 1992-10-26 Sony Corp 手振れ補正可能なビデオ信号記録再生装置
JPH05268515A (ja) * 1992-03-24 1993-10-15 Hitachi Ltd カメラ一体型磁気記録再生装置
JPH05347748A (ja) * 1992-06-12 1993-12-27 Fuji Photo Film Co Ltd ビデオ信号の再生処理方法および装置
JP2000023024A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 画像入力装置
JP2000165740A (ja) * 1998-11-27 2000-06-16 Matsushita Electric Ind Co Ltd 撮像装置
JP2001036909A (ja) * 1999-07-23 2001-02-09 Oki Electric Ind Co Ltd 動きベクトル検出装置
JP2002056393A (ja) * 2000-08-14 2002-02-20 Canon Inc 画像処理方法及び装置並びに記憶媒体

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098749A1 (ja) * 2008-02-04 2009-08-13 Panasonic Corporation 画像合成装置、画像合成方法、画像合成プログラム及び集積回路並びに撮像システム及び撮像方法
US8237820B2 (en) 2008-02-04 2012-08-07 Panasonic Corporation Image synthesis device for generating a composite image using a plurality of continuously shot images
JP5226705B2 (ja) * 2008-02-04 2013-07-03 パナソニック株式会社 画像合成装置、画像合成方法、画像合成プログラム及び集積回路並びに撮像システム及び撮像方法
JP2010124369A (ja) * 2008-11-21 2010-06-03 Sharp Corp フレーム補間装置、画像符号化装置、および画像復号装置
JP5389049B2 (ja) * 2008-12-16 2014-01-15 パナソニック株式会社 撮像装置、半導体集積回路、および動きベクトル判定方法
US8780990B2 (en) 2008-12-16 2014-07-15 Panasonic Intellectual Property Corporation Of America Imaging device for motion vector estimation using images captured at a high frame rate with blur detection and method and integrated circuit performing the same
US8390698B2 (en) 2009-04-08 2013-03-05 Panasonic Corporation Image capturing apparatus, reproduction apparatus, image capturing method, and reproduction method
JP2011055278A (ja) * 2009-09-02 2011-03-17 Sharp Corp 動き情報取得装置及び画像処理装置
JP2020108175A (ja) * 2014-07-02 2020-07-09 ソニー株式会社 画像処理装置、画像処理方法、及びプログラム
JP7143359B2 (ja) 2014-07-02 2022-09-28 ソニーグループ株式会社 画像処理装置、画像処理方法、及びプログラム
JPWO2018194040A1 (ja) * 2017-04-17 2020-02-27 ソニー株式会社 送信装置、送信方法、受信装置、受信方法、記録装置および記録方法
WO2018194040A1 (ja) * 2017-04-17 2018-10-25 ソニー株式会社 送信装置、送信方法、受信装置、受信方法、記録装置および記録方法
US11523120B2 (en) 2017-04-17 2022-12-06 Saturn Licensing Llc Transmission apparatus, transmission method, reception apparatus, reception method, recording apparatus, and recording method
JP7300985B2 (ja) 2017-04-17 2023-06-30 ソニーグループ株式会社 情報処理装置および情報処理方法
JP2019080104A (ja) * 2017-10-20 2019-05-23 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2019139310A (ja) * 2018-02-06 2019-08-22 Kddi株式会社 情報処理装置、方法及びプログラム
JP2020145660A (ja) * 2019-03-08 2020-09-10 キヤノン株式会社 情報処理装置およびその制御方法ならびにプログラム
JP7389558B2 (ja) 2019-03-08 2023-11-30 キヤノン株式会社 情報処理装置およびその制御方法ならびにプログラム

Also Published As

Publication number Publication date
EP1956839A1 (en) 2008-08-13
EP1956839A4 (en) 2010-03-17
US20100214422A1 (en) 2010-08-26
JPWO2007063819A1 (ja) 2009-05-07
CN101317450A (zh) 2008-12-03
CN101317450B (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
WO2007063819A1 (ja) 記録装置、再生装置、記録方法、記録プログラムおよびコンピュータに読み取り可能な記録媒体
JP5296193B2 (ja) 撮像装置、再生装置、撮像方法及び再生方法
JP4515465B2 (ja) 動画撮影装置および動画撮影方法、記録媒体に記録された映像信号を再生する動画再生装置および動画再生方法
JP4483501B2 (ja) 静止画を動画再生するための前処理を行う画像処理装置、プログラム、および方法
JP2008228282A (ja) 画像処理装置
CN107251551B (zh) 图像处理设备、图像捕获装置、图像处理方法和存储介质
KR101423919B1 (ko) 기록 장치, 재생 장치, 기록 방법, 재생 방법 및 그 방법을실현시키는 프로그램을 기록한 저장 매체
JP4938615B2 (ja) 動画像記録再生装置
JP2010178124A (ja) 記録装置及び記録方法
US20110292250A1 (en) Image processing apparatus
JP2008118508A (ja) 記録装置及び記録プログラム
JP2009152672A (ja) 記録装置、再生装置、記録方法、再生方法及びプログラム
JP4973497B2 (ja) 撮像画像記録装置、撮像画像記録方法、撮像画像再生装置、撮像画像再生方法及び撮像画像記録再生システム
JP4323685B2 (ja) 再生装置及び再生方法
JP3925487B2 (ja) 撮像装置と撮像方法
KR100899046B1 (ko) 동영상 촬영 장치, 동영상 재생 장치, 동영상 촬영 방법, 부호화 영상 신호 재생 방법, 및 동영상 재생 방법
JP2009246775A (ja) 画像再生装置
JP2008288934A (ja) 動画撮影装置および動画再生装置
JPWO2008129648A1 (ja) フレームレート変換装置、フレームレート変換方法及び動画像符号化装置
JP2004056582A (ja) 再生装置および方法、並びにプログラム
JP5306068B2 (ja) 撮像装置及びその制御方法
JP5859100B2 (ja) 画像記録装置
JP4974841B2 (ja) 映像データ記録装置
JP2018074208A (ja) 電子機器
JP2010141717A (ja) 画像記録再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044652.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007547934

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006833451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12085575

Country of ref document: US