WO2007052714A1 - 駆動システム - Google Patents

駆動システム Download PDF

Info

Publication number
WO2007052714A1
WO2007052714A1 PCT/JP2006/321896 JP2006321896W WO2007052714A1 WO 2007052714 A1 WO2007052714 A1 WO 2007052714A1 JP 2006321896 W JP2006321896 W JP 2006321896W WO 2007052714 A1 WO2007052714 A1 WO 2007052714A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive system
secondary battery
battery
disposed
motor
Prior art date
Application number
PCT/JP2006/321896
Other languages
English (en)
French (fr)
Inventor
Hideaki Horie
Osamu Shimamura
Takamitsu Saito
Takaaki Abe
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to EP06832412A priority Critical patent/EP1950868A1/en
Priority to CN2006800412382A priority patent/CN101300727B/zh
Priority to US12/084,463 priority patent/US8151914B2/en
Publication of WO2007052714A1 publication Critical patent/WO2007052714A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a drive system.
  • a hybrid vehicle has a motor as a drive source and a secondary battery for supplying electric power to the motor (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 11 185831
  • the present invention has been made to solve the problems associated with the above-described conventional technology, and an object thereof is to provide a drive system having good mountability.
  • the present invention includes a motor as a drive source, and a secondary battery integrated with the motor for supplying electric power to the motor.
  • a drive system comprising a plurality of unit cells stacked.
  • the motor and the secondary battery are integrated, and it is not necessary to prepare each space, so that the dead space is small.
  • the secondary battery since the secondary battery has a plurality of unit cells stacked, it is easy to compact. Therefore, the degree of freedom of mounting is great.
  • FIG. 1 is a cross-sectional view for explaining a drive system according to a first embodiment.
  • FIG. 2 is a side view for explaining a power generation device to which the drive system shown in FIG. 1 is applied.
  • FIG. 3 is a cross-sectional view for explaining a secondary battery included in the drive system shown in FIG.
  • FIG. 4 is a side view for explaining a unit cell included in the secondary battery shown in FIG. 3.
  • FIG. 5 is a cross-sectional view for explaining a secondary battery according to Embodiment 2.
  • FIG. 6 is a side view for explaining a unit cell included in the secondary battery shown in FIG. 2.
  • FIG. 7 is an exploded view for explaining the secondary battery according to Embodiment 3.
  • FIG. 8 is a cross-sectional view for explaining a method of forming the secondary battery shown in FIG. 7, showing the first component.
  • FIG. 9 is a cross-sectional view for explaining a method of forming the secondary battery shown in FIG. 7, showing the second component!
  • FIG. 10 is a cross-sectional view for explaining a method of forming the secondary battery shown in FIG. 7, and shows a third component.
  • FIG. 11 is a cross-sectional view for explaining the drive system according to the fourth embodiment.
  • FIG. 12 is a cross-sectional view for explaining the drive system according to the fifth embodiment.
  • FIG. 13 is a conceptual diagram for explaining a drive system according to a sixth embodiment.
  • FIG. 1 is a cross-sectional view for explaining a drive system according to Embodiment 1
  • FIG. 2 is a side view for explaining a power generation device to which the drive system shown in FIG. 1 is applied. .
  • the drive system 100 includes a motor 110, a secondary battery 120, a motor controller, and battery cooling means, and is disposed (built in) the transmission unit 20 of the power generation device 10.
  • the power generation mounting 10 is, for example, an engine of a hybrid vehicle.
  • the motor 110 includes a rotor 112 and a cylindrical rotor housing that houses the rotor 112.
  • the rotor housing 114 is provided with a magnetic field generating winding.
  • the secondary battery 120 is used to supply electric power to the motor 110, and is disposed adjacent to a cylindrical outer housing 116 facing the outside, and has a substantially cylindrical shape.
  • the motor controller has an inverter case 170 disposed adjacent to the outer periphery of the rotor housing 114.
  • the inverter case 170 is cylindrical and has a SiC switching element.
  • An inverter 172 having a child is arranged. The inverter 172 is used to convert the direct current output from the secondary battery 120 into alternating current and drive the motor 110.
  • the SiC switching element is preferable because it can be driven with a large current and has high-speed response.
  • IGBT Insulated Gate Bipolar Transistor
  • FET Field Effect Transistor
  • the battery cooling means includes a cooling jacket 180 disposed between the secondary battery 120 and the inverter case 170 (inverter 172).
  • the cooling jacket 180 is a cylindrical member formed of a material having good thermal conductivity, and has a path 182 through which a cooling medium flows.
  • the path 182 is connected to an external cooling medium piping system (not shown).
  • the cooling medium is a gas or liquid force.
  • the gas is, for example, compressed air.
  • the liquid is, for example, an antifreeze such as oil or ethylene glycol, or water.
  • the battery cooling means for example, maintains the temperature of the secondary battery 120 at 50 ° C to 100 ° C, and the motor 110 and The temperature of inverter 172 is controlled to 120 ° C or less.
  • FIG. 3 is a cross-sectional view for explaining the secondary battery included in the drive system shown in FIG. 1
  • FIG. 4 is a side view for explaining the single battery included in the secondary battery shown in FIG. It is.
  • the secondary battery 120 has a plurality of unit cells 130 to be stacked.
  • the part where the positive electrode and the negative electrode are arranged in the unit cell 130 has a curvature. This is preferred for vibration and thermal stress relaxation.
  • the unit cells 130 are connected in series to form an assembled battery, and the voltage that can be supplied is increased. This is because the coil winding is dominant in the size of the motor, and assuming a motor with the same output, the higher the drive voltage, the smaller the current value and the smaller the coil winding in the motor. Is preferable.
  • the unit cells 130 are stacked in three layers or more and 400 layers or less.
  • the output density of the secondary battery 120 is preferably 3 kWZL or more, and the output Z capacity ratio of the secondary battery 120 is preferably 30 (lZh) or more.
  • the unit cell 130 is a lithium ion battery and includes a positive electrode active material layer and an electron conductive layer.
  • the electrolyte 134 is made of a gel electrolyte or a solid electrolyte.
  • the thickness of one pair of electrodes composed of the positive electrode active material layer, the negative electrode active material layer, the electrolyte 134, and the electron conductive layer is preferably 50 m or less.
  • the unit cell 130 is formed by applying the positive electrode 132 and the negative electrode 138 to the electrolyte 134 by an inkjet method. That is, in the cell 130, the material necessary for forming each layer constituting the positive electrode 132 and the negative electrode 138 is applied to the electrolyte 13 as a base material, as in the case of printing an image using an inkjet printer. In other words, the nozzles are selectively ejected from the nozzle, and the layers adjacent to the electrolyte 13 are sequentially formed.
  • a method for forming the unit cell 130 is not particularly limited to the ink-jet method, and a stacking method such as a vacuum deposition method may be applied.
  • the electrolyte 134 is preferably composed of an electrolyte containing a heat-resistant polymer material having a melting temperature of 100 ° C or higher, or an electrolyte containing a PEO (polyethylene oxide) polymer material.
  • a heat-resistant polymer material having a melting temperature of 100 ° C or higher
  • an electrolyte containing a PEO (polyethylene oxide) polymer material for example, polyvinylidene fluoride (PVdF) is preferable as the heat-resistant polymer material.
  • PVdF polyvinylidene fluoride
  • the positive electrode active material layer includes a positive electrode active material, a conductive auxiliary agent for increasing electron conductivity, a lithium salt for increasing ionic conductivity, a binder, a polymer gel electrolyte, and the like.
  • the positive electrode active material is, for example, a lithium transition metal composite oxide.
  • the negative electrode active material layer is composed of a negative electrode active material, a conductive auxiliary agent for increasing electronic conductivity, a lithium salt for increasing ionic conductivity, a binder, a polymer gel electrolyte (polymer matrix, electrolytic solution, etc.), etc. Is included.
  • the negative electrode active material is, for example, carbon or lithium-transition metal composite oxide.
  • the electron conductive layer has a function of blocking ions, and includes, for example, a metal, a conductive polymer, a conductive rubber, and the like! /
  • a high-power cable for connecting the motor 110 and the secondary battery 120 is not necessary, and output loss due to the high-power cable is reduced.
  • the voltage can be adjusted by changing the number of stacked unit cells 130, and can be easily applied to various motors having different required maximum voltages.
  • the drive system 100 can also be disposed adjacent to the transmission unit 20 of the power generation device 10.
  • the inverter 172 may be provided as a separate unit as necessary.
  • the battery cooling means (cooling jacket) is disposed between the secondary battery 120 and the rotor housing 114.
  • the cooling jacket 180 of the battery cooling means can be disposed adjacent to the outer periphery of the primary battery 120.
  • the path 182 through which the cooling medium flows uses a clearance formed between the rotor housing 114 and the outer housing 116, for example, a clearance formed between the secondary battery 120 and the inverter case 170. It is also possible.
  • the battery cooling means can be separated or omitted as necessary.
  • FIG. 5 is a cross-sectional view for explaining the secondary battery according to Embodiment 2
  • FIG. 6 is a side view for explaining the single battery included in the secondary battery shown in FIG.
  • members having the same functions as those in Embodiment 1 are denoted by similar reference numerals, and description thereof is omitted as appropriate in order to avoid duplication.
  • Embodiment 2 is generally different from Embodiment 1 in terms of the structure of unit cell 230 and secondary battery 220.
  • the unit cell 230 has a positive electrode 232, an electrolyte 234 and a negative electrode 238.
  • the electrolyte 234 is long and has a processed portion 235 and a non-processed portion 236 that are subjected to non-conductive treatment that does not allow ions to pass therethrough.
  • a plurality of processing parts 235 are arranged at predetermined intervals.
  • the deconducting treatment does not add gel to the case portion or repels the case portion of the separator. It consists of adding such processing.
  • solid polymer electrolyte In the case of using, it is also possible to constitute by reducing the ionic conductivity by affecting the molecular structure by heat treatment.
  • a plurality of the positive electrode 232 and the negative electrode 238 are arranged on one and the other surfaces of the electrolyte 234, for example, by coating.
  • the positive electrode 232 and the negative electrode 238 are arranged in the non-caloe portion 236 and aligned. That is, the electrolyte 234 is shared by the plurality of single cells 230.
  • the secondary battery 220 is formed by winding an electrolyte 234 on which a plurality of positive electrodes 232 and negative electrodes 238 are arranged around a cooling jacket. That is, the unit cells 230 can be easily stacked.
  • the length of the unrolled portion 236, that is, the total length of the positive electrode 232 (negative electrode 238) and the length of the unrolled portion 235 is substantially the same as the outer diameter length of the cooling jacket. . Therefore, the positive electrode 232 of the inner unit cell 230 overlaps with the negative electrode 238 of the adjacent outer unit cell 230.
  • the current collector foil 240 is disposed on the surface where the positive electrode 232 and the negative electrode 238 overlap each time one turn is made.
  • the current collector foil 240 is composed of, for example, copper, aluminum, stainless steel, conductive polymer, conductive rubber, or the like.
  • the thickness of the secondary battery 220 increases depending on the number of turns (the number of stacks), the diameter of the lowermost layer and the diameter of the uppermost layer differ greatly, and inconvenience arises in the overlap between the positive electrode 232 and the negative electrode 238. In this case, it can be dealt with by changing the coating width, that is, the width of the non-powered portion 236.
  • the unit cells 230 can be easily stacked.
  • FIG. 7 is an exploded view for explaining the secondary battery according to Embodiment 3, and FIGS. 8 to: LO is a sectional view for explaining a method for forming the secondary battery shown in FIG. Yes, the first to third components are shown.
  • Embodiment 3 is generally different from Embodiment 1 with respect to the structure of unit cell 330 and secondary battery 320.
  • the secondary battery 320 includes a single battery 330 and a current collector foil 340.
  • the current collector foil 340 is located above the positive electrode 332 of the uppermost cell 330A, below the negative electrode 338 of the lowermost cell 330C, and adjacent to the positive electrode 332 and the negative electrode of the intermediate cell 330B. It is placed between the poles 338.
  • the unit cells 330A, 330B, and 330C are connected directly to the IJ to ensure the required voltage.
  • Reference numeral 334 denotes an electrolyte.
  • the secondary battery 320 is formed by using, for example, three components 321, 322, and 323.
  • the first component 321 includes a current collector foil 340 and a positive electrode 332 disposed on one surface of the current collector foil 340.
  • the second component 322 includes a current collector foil 340, and a positive electrode 332 and a negative electrode 338 disposed on one and other surfaces of the current collector foil 340.
  • the third component 323 includes a current collector foil 340 and a negative electrode 338 disposed on one surface of the current collector foil 340.
  • the positive electrode 332 and the negative electrode 338 are disposed on the current collector foil 340, for example, by coating.
  • the third component box 323 is arranged at the lowest position.
  • the current collector foil 340 of the third component 323 faces the outside and forms the lowermost layer of the secondary battery 320.
  • An electrolyte 334 is disposed above the negative electrode 338 of the third component 323.
  • the second component 322 is disposed above the electrolyte 334.
  • the positive electrode 332 of the second component 3 22 faces the electrolyte 334.
  • An electrolyte 334 is disposed above the negative electrode 338 of the second component 322.
  • the current collector foil 340 can be easily disposed between the unit cells 330.
  • FIG. 11 is a cross-sectional view for explaining the drive system according to the fourth embodiment.
  • the fourth embodiment is generally different from the first embodiment regarding the configuration of the battery cooling means.
  • the battery cooling means has a cooling jacket 480 and a heat shield layer 486.
  • the cooling jacket 480 is disposed adjacent to the periphery of the inverter case 470. Thermal barrier
  • cooling jacket 486 is arranged between the cooling jacket 480 and the secondary battery 420, and covers the cooling jacket 480. It is.
  • the heat shield layer 486 is formed of a material having a lower thermal conductivity than the material forming the inverter case 470, and suppresses heat conduction from the inverter case side to the secondary battery side. Therefore, the temperature of the secondary battery 120 is maintained at 50 ° C. to 100 ° C., and the temperatures of the motor 410 and the inverter 472 are easily controlled to 120 ° C. or less.
  • reference numerals 412, 414, 416, and 482 indicate a rotor, a rotor housing, an outer housing, and a path.
  • the temperature of secondary battery 420 can be easily managed.
  • FIG. 12 is a cross-sectional view for explaining the drive system according to the fifth embodiment.
  • the fifth embodiment is generally different from the first embodiment regarding the configuration of the battery cooling means.
  • the battery cooling means has a two-layered cooling jacket 580 having an inner layer path 582 and an outer layer path 584.
  • Inner layer path 582 is arranged in an inner layer facing inverter case 570.
  • the cooling jacket 580 is connected to an external cooling medium piping system (not shown).
  • the cooling medium is introduced into the inner layer path 582 via the outer layer path 584, thereby cooling the inverter 572 (inverter case 570) after cooling the secondary battery 520. That is, since the cooling medium cools the secondary battery 520 first, it is easy to keep the secondary battery 520 at a low temperature.
  • the temperature of the cooling medium rises by cooling secondary battery 520.
  • the temperature target of the secondary battery 120 is 50 ° C. to 100 ° C.
  • the temperature target of the power inverter 572 and the motor 510 is 120 ° C. or less. Therefore, the cooling medium after cooling secondary battery 520 can be used for cooling inverter 572 and motor 510.
  • Reference numerals 512, 514, and 516 denote a rotor, a rotor housing, and an outer housing.
  • the secondary battery 520, the inverter 572, and the motor 510 can be efficiently cooled.
  • the battery cooling means (cooling jacket) is disposed between the secondary battery 520 and the rotor housing 214, and after cooling the secondary battery 520, the motor 510 (rotor The housing 514) will be cooled.
  • engine cooling water cooled by a radiator of the hybrid vehicle can be used as the cooling medium.
  • engine cooling water cooled by a radiator of the hybrid vehicle can be used.
  • the cooling jacket 580 to the engine cooling water circulation system and introducing the engine cooling water into the inner layer path 582 via the outer layer path 584 and then returning it to the engine cooling jacket, the secondary battery 520, the inverter 572 and The motor 510 can be cooled.
  • FIG. 13 is a conceptual diagram for explaining a drive system 600 according to the sixth embodiment.
  • Embodiment 6 is generally different from Embodiment 1 in that it further includes an external power supply 690.
  • External power supply 690 is a large-capacity secondary battery, and is connected to inverter 672 through a booster circuit (DCZDC converter) 692.
  • An external power source 690 is used to assist the secondary battery 520.
  • the external power source 690 can be used at a low load
  • the secondary battery 620 can be used at an instantaneous high load.
  • the step-up circuit 692 is preferable because it reduces the capacity of the cable 694 that connects the external power source 690 and the inverter 672 and favors the handling of the cable 694, but can be omitted as appropriate.
  • Embodiment 6 further includes external power supply 690, the degree of freedom in system construction is great.
  • the secondary battery may be configured as a composite battery pack in which a plurality of single cells connected in series and a plurality of single cells connected in parallel are combined.
  • Embodiment 6 can be combined with Embodiments 1 to 5 as appropriate.
  • the motor and the secondary battery are integrated, and it is not necessary to prepare each space, the dead space is small. Further, since the secondary battery has a plurality of unit cells stacked, it is easy to compact. Therefore, the degree of freedom for mounting is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

 モータと二次電池を有する車両の駆動システムにおいて、モータと二次電池を一体化することにより、良好な搭載性を有する駆動システムを提供する。モータ(110)の円筒状外部ハウジング(116)とロータ(112)との間隙に、積層状の円筒状二次電池を外部ハウジングの内部に配設する。ロータと二次電池の間にさらに円筒状の冷却部材(180)を配設する。

Description

明 細 書
駆動システム
技術分野
[0001] 本発明は、駆動システムに関する。
背景技術
[0002] 例えば、ハイブリッド車両は、駆動源であるモータおよびモータに電力を供給するた めの二次電池を有する(例えば、特許文献 1参照)。
特許文献 1 :特開平 11 185831号公報
発明の開示
[0003] しかし、モータと二次電池は別体であり、それぞれのスペースを用意する必要があ るため、デッドスペースが大きぐ搭載性に問題を有している。
[0004] 本発明は、上記従来技術に伴う課題を解決するためになされたものであり、良好な 搭載性を有する駆動システムを提供することを目的とする。
[0005] 上記目的を達成するための本発明は、駆動源であるモータ、および、前記モータに 一体化され、前記モータに電力を供給するための二次電池を有し、前記二次電池は
、積層される複数の単電池を有することを特徴とする駆動システムである。
[0006] 本発明によれば、モータと二次電池は一体化されており、それぞれのスペースを用 意する必要はないため、デッドスペースが小さい。また、二次電池は、積層される複 数の単電池を有するためコンパクトィ匕が容易である。したがって、搭載性の自由度が 大きい。
[0007] つまり、良好な搭載 '性を有する駆動システムを提供することが可能である。
図面の簡単な説明
[0008] [図 1]図 1は、実施の形態 1に係る駆動システムを説明するための断面図である。
[図 2]図 2は、図 1に示される駆動システムが適用される動力発生装置を説明するた めの側面図である。
[図 3]図 3は、図 1に示される駆動システムが有する二次電池を説明するための断面 図である。 [図 4]図 4は、図 3に示される二次電池が有する単電池を説明するための側面図であ る。
[図 5]図 5は、実施の形態 2に係る二次電池を説明するための断面図である。
[図 6]図 6は、図 2に示される二次電池が有する単電池を説明するための側面図であ る。
[図 7]図 7は、実施の形態 3に係る二次電池を説明するための分解図である。
[図 8]図 8は、図 7に示される二次電池の形成方法を説明するための断面図であり、 第 1コンポーネントを示して 、る。
[図 9]図 9は、図 7に示される二次電池の形成方法を説明するための断面図であり、 第 2コンポーネントを示して!/、る。
[図 10]図 10は、図 7に示される二次電池の形成方法を説明するための断面図であり 、第 3コンポーネントを示している。
[図 11]図 11は、実施の形態 4に係る駆動システムを説明するための断面図である。
[図 12]図 12は、実施の形態 5に係る駆動システムを説明するための断面図である。
[図 13]図 13は、実施の形態 6に係る駆動システムを説明するための概念図である。 発明を実施するための最良の形態
[0009] 以下、本発明の実施の形態を、図面を参照しつつ説明する。
[0010] 図 1は、実施の形態 1に係る駆動システムを説明するための断面図、図 2は、図 1に 示される駆動システムが適用される動力発生装置を説明するための側面図である。
[0011] 駆動システム 100は、モータ 110、二次電池 120、モータコントローラおよび電池冷 却手段を有し、動力発生装置 10のトランスミッション部 20に配置(内蔵)される。
[0012] 動力発生装着 10は、例えば、ハイブリッド車両のエンジンである。
[0013] モータ 110は、ロータ 112、およびロータ 112を収容する円筒状のロータハウジング
114を有する。ロータハウジング 114は、磁界発生用卷線が配置される。
[0014] 二次電池 120は、モータ 110に電力を供給するために使用され、外部に面する円 筒状の外側ハウジング 116に隣接して配置され、略円筒状形状を有する。
[0015] モータコントローラは、ロータハウジング 114の外周に隣接して配置されるインバー タケース 170を有する。インバータケース 170は、円筒状であり、 SiCスイッチング素 子を有するインバータ 172が配置される。インバータ 172は、二次電池 120から出力 される直流を交流に変換し、モータ 110を駆動するために使用される。
[0016] SiCスイッチング素子は、大電流での駆動が可能であり、高速応答性を有するため 好ましい。例えば、 SiCスイッチング素子として、 IGBT (絶縁ゲートバイポーラトランジ スタ: INSULATED GATE BIPOLAR TRANSISTOR)や、 FET (電解効果ト ランジスタ: FIELD EFFECT TRANSISTOR)が利用可能である。
[0017] 電池冷却手段は、二次電池 120とインバータケース 170 (インバータ 172)との間に 配置される冷却ジャケット 180を有する。冷却ジャケット 180は、良好な熱伝導率を有 する材料から形成される円筒状部材であり、冷却媒体が流通する経路 182を有する 。経路 182は、外部の冷却媒体配管系(不図示)に連結されている。冷却媒体は、気 体あるいは液体力 なる。気体は、例えば圧縮空気である。液体は、例えば、油、ェ チレングリコールなどの不凍液や、水である。
[0018] モータ 110、インバータ 172および二次電池 120の許容温度範囲を考慮し、電池 冷却手段は、例えば、二次電池 120の温度を、 50°C〜100°Cに維持し、モータ 110 およびインバータ 172の温度を、 120°C以下に制御する。
[0019] 図 3は、図 1に示される駆動システムが有する二次電池を説明するための断面図、 図 4は、図 3に示される二次電池が有する単電池を説明するための側面図である。
[0020] 二次電池 120は、積層される複数の単電池 130を有する。単電池 130における正 極電極および負極電極が配置されている部位は曲率を有する。これは、振動および 熱応力緩和に関し、好ましい。
[0021] 単電池 130は、直列接続されることで組み電池を構成しており、供給可能な電圧を 上昇させている。これは、モータのサイズは、コイル卷線が支配的であり、同出力のモ ータを想定した場合、駆動用電圧が高いほど電流値が小さくなり、モータ内のコイル 卷線が細くすることができるため、好ましい。
[0022] 単電池 130は、 3層以上かつ 400層以下に積重ねられている。二次電池 120の出 力密度は、 3kWZL以上であり、二次電池 120の出力 Z容量比は、 30 (lZh)以上 であることが好ましい。
[0023] 単電池 130は、リチウムイオン電池であり、正極活物質層および電子伝導層を含ん でいる正極電極 132、電解質 134、および負極活物質層および電子伝導層を含ん でいる負極電極 138を有する。電解質 134は、ゲル状電解質あるいは固体電解質か らなる。
[0024] なお、正極活物質層、負極活物質層、電解質 134、および電子伝導層から構成さ れる電極 1ペアの厚みは、 50 m以下が好ましい。
[0025] 単電池 130は、電解質 134に正極電極 132および負極電極 138を、インクジェット 方式で塗布することで形成される。すなわち、単電池 130は、インクジェットプリンタを 用いて画像を印刷するのと同様に、正極電極 132および負極電極 138を構成する各 層の形成に必要な材料を、基材としての電解質 13に向カゝつて、ノズルから選択的に 吐出させ、電解質 13に隣接する層から、順番に形成される。単電池 130の形成方法 は、インクジェット方式の塗布に特に限定されず、真空蒸着法などの積層法を適用す ることち可會である。
[0026] 電解質 134は、好ましくは、融解温度 100°C以上の耐熱高分子材料を含んでいる 電解質、あるいは PEO (ポリエチレンォキシド)系高分子材料を含んで!/ヽる電解質か らなる。耐熱高分子材料は、例えば、ポリフッ化ビ-リデン (PVdF)が好ましい。
[0027] 正極活物質層は、正極活物質、電子伝導性を高めるための導電助剤、イオン伝導 性を高めるためのリチウム塩、バインダ、高分子ゲル電解質などを含んでいる。正極 活物質は、例えば、リチウム 遷移金属複合酸ィ匕物である。
[0028] 負極活物質層は、負極活物質、電子伝導性を高めるための導電助剤、イオン伝導 性を高めるためのリチウム塩、バインダ、高分子ゲル電解質 (ポリマーマトリックス、電 解液など)などを含んでいる。負極活物質は、例えば、カーボンもしくはリチウム—遷 移金属複合酸化物である。
[0029] 電子伝導層は、イオンを遮断する機能を有し、例えば、金属、導電性ポリマー、導 電性ゴムなどを含んで!/、る。
[0030] 以上のように、実施の形態 1に係る駆動システム 100においては、モータ 110、二次 電池 120、インバータ 172および電池冷却手段が、一体化されており、それぞれのス ペースを用意する必要はないため、デッドスベースが小さい。また、二次電池 120は 、積層される複数の単電池 130を有するため、コンパクトィ匕が容易である。したがって 、搭載性の自由度が大きい。つまり、良好な搭載性を有する駆動システムを提供する ことが可能である。
[0031] また、モータ 110と二次電池 120とを接続するための強電ケーブルが不要であり、 強電ケーブルによる出力損失が低減される。さらに、単電池 130の積層数を変更す ることで、電圧を調整することが可能であり、要求最大電圧が異なる多様なモータに、 容易に適用可能である。
[0032] なお、駆動システム 100は、動力発生装置 10のトランスミッション部 20に隣接して、 配置することも可能である。
[0033] インバータ 172は、必要に応じ、別体とすることも可能である。この場合、電池冷却 手段(冷却ジャケット)は、二次電池 120とロータハウジング 114との間に配置される。
[0034] 電池冷却手段の冷却ジャケット 180は、一次電池 120の外周に隣接して配置する ことも可能である。
[0035] 冷却媒体が流通する経路 182は、ロータハウジング 114と外側ハウジング 116との 間に形成される隙間、例えば、二次電池 120とインバータケース 170との間に形成さ れる隙間を、利用することも可能である。電池冷却手段を、必要に応じ別体としたり省 略したりすることも可能である。
[0036] 図 5は、実施の形態 2に係る二次電池を説明するための断面図、図 6は、図 5に示さ れる二次電池が有する単電池を説明するための側面図である。なお、以下において 実施の形態 1と同様の機能を有する部材については類似する符号を吏用し、重複を 避けるため、その説明を適宜省略する。
[0037] 実施の形態 2は、単電池 230および二次電池 220の構造に関し、実施の形態 1と 概して異なっている。
[0038] 単電池 230は、正極電極 232、電解質 234および負極電極 238を有する。電解質 234は、長尺であり、イオンを通さない不導ィ匕処理が施されている加工部 235および 未加工部 236を有する。加工部 235は、所定の間隔で、複数配置されている。
[0039] 不導化処理は、例えば、セパレータとゲル状の電解質力 なるゲル電解質を用いる 場合、当該カ卩ェ部分にゲルを添加しない、もしくはセパレータの当該カ卩ェ部分にゲ ル電解質をはじくような処理を加えることから、構成される。また、固体高分子電解質 を用いる場合、 加熱処理により、分子構造に影響を与えてイオン導電性を低下させ ることにより構成することも可會である。
[0040] 正極電極 232および負極電極 238は、電解質 234の一方および他方の面に、例え ば、塗布によって、複数配置される。正極電極 232および負極電極 238は、未カロェ 部 236に配置され、位置合せされている。つまり、電解質 234は、複数の単電池 230 で共有されている。
[0041] 二次電池 220は、複数の正極電極 232および負極電極 238が配置される電解質 2 34を、冷却ジャケットに巻くことで形成される。つまり、単電池 230の積層が容易であ る。
[0042] 未カロ工部 236の長さ、つまり、正極電極 232 (負極電極 238)の長さと、カロ工部 235 の長さとの合計値は、冷却ジャケットの外径長と略一致されている。したがって、内側 の単電池 230の正極電極 232は、隣接する外側の単電池 230の負極電極 238と重 なること〖こなる。なお、正極電極 232と負極電極 238の接触を良くし、抵抗の増加を 防ぐため、 1周巻く毎に、正極電極 232と負極電極 238とが重なる面に、集電箔 240 が配置される。集電箔 240は例えば、銅、アルミニウム、ステンレス鋼、導電性ポリマ 一、導電性ゴムなど力 構成される。
[0043] また、巻き数 (積層数)によって、二次電池 220の厚みが増加し、最下層の径と最上 位の径が大きく異なり、正極電極 232と負極電極 238との重なりに不都合が生じる場 合、塗布幅つまり未力卩ェ部 236の幅を変更することで対処することが可能である。
[0044] 以上のように、実施の形態 2は、単電池 230を容易に積層することが可能である。
[0045] 図 7は、実施の形態 3に係る二次電池を説明するための分解図、図 8〜: LOは、図 7 に示される二次電池の形成方法を説明するための断面図であり、第 1〜3コンポーネ ントを、示している。
[0046] 実施の形態 3は、単電池 330および二次電池 320の構造に関し、実施の形態 1と 概して異なっている。
[0047] 二次電池 320は、単電池 330および集電箔 340を有する。集電箔 340は、最上位 の単電池 330Aの正極電極 332の上方、最下位の単電池 330Cの負極電極 338の 下方、および、中間位の単電池 330Bにおける隣接する正極電極 332および負極電 極 338の間に酉己置される。単電池 330A、 330B、 330Cは、直歹 IJに接続され、必要と される電圧が確保される。なお、符号 334は、電解質である。
[0048] 二次電池 320は、例えば、 3つのコンポーネント 321、 322、 323を利用して形成さ れる。
[0049] 第 1コンポーネント 321は、集電箔 340と、集電箔 340の一方の面に配置される正 極電極 332とを有する。第 2コンポーネント 322は、集電箔 340と、集電箔 340の一 方および他方の面に配置されるおよび正極電極 332および負極電極 338とを有する 。第 3コンポーネント 323は、集電箔 340と、集電箔 340の一方の面に配置される負 極電極 338とを有する。正極電極 332および負極電極 338は、例えば、塗布によつ て、集電箔 340上に配置される。
[0050] 第 3コンポーネン卜 323は、最下位に配置される。第 3コンポーネント 323の集電箔 340は、外側に面し、二次電池 320の最下層を形成する。第 3コンポーネント 323の 負極電極 338の上方には、電解質 334が配置される。
[0051] 電解質 334の上方には、第 2コンポーネント 322が配置される。第 2コンポーネント 3 22の正極電極 332は、電解質 334に面する。そして、第 2コンポーネント 322の負極 電極 338の上方には、電解質 334が配置される。
[0052] 第 2コンポーネント 322と電解質 334との積層力 必要に応じて所定回数繰り返され る。これにより、集電箔 340が、単電池 330の間に配置されることになる。その後、電 解質 334の上方に、第 1コンポーネント 321が配置される。第 1コンポーネント 321の 正極電極 332は、電解質 334に面する。第 1コンポーネント 321の集電箔 340は、外 側に面し、二次電池 320の最上層を形成する。
[0053] 以上のように、実施の形態 3は、集電箔 340を単電池 330の間に容易に配置するこ とが可能である。
[0054] 図 11は、実施の形態 4に係る駆動システムを説明するための断面図である。
[0055] 実施の形態 4は、電池冷却手段の構成に関し、実施の形態 1と概して異なっている
。詳述すると、電池冷却手段は、冷却ジャケット 480および遮熱層 486を有する。
[0056] 冷却ジャケット 480は、インバータケース 470の周囲に隣接して配置される。遮熱層
486は、冷却ジャケット 480と二次電池 420の問に配置され、冷却ジャケット 480を覆 つている。
[0057] 遮熱層 486は、インバータケース 470を形成する材料より、熱伝導率が小さい材料 から形成され、インバータケース側から二次電池側に向う熱伝導を抑制する。したが つて、二次電池 120の温度を、 50°C〜100°C〖こ維持し、かつモータ 410およびイン バー夕 472の温度を、 120°C以下に制御することが容易となる。
[0058] なお、符号 412、 414、 416、 482は、ロータ、ロータハウジング、外側ハウジングお よび経路を示している。
[0059] 以上のように実施の形態 4は、二次電池 420の温度を、容易に管理することが可能 である。
[0060] 図 12は、実施の形態 5に係る駆動システムを説明するための断面図である。
[0061] 実施の形態 5は、電池冷却手段の構成に関し、実施の形態 1と概して異なっている
。詳述すると、電池冷却手段は、内層経路 582および外層経路 584を有する 2層構 造の冷却ジャケット 580を有.する。
[0062] 内層経路 582は、インバータケース 570に面する内側層に配置される。外層経路 5
84は、二次電池 520に面する外側層に配置される。
[0063] 冷却ジャケット 580は、外部の冷却媒体配管系(不図示)に連結されている。冷却 媒体は、外層経路 584を経由して内層経路 582に導入されることで、二次電池 520 を冷却後、インバータ 572 (インバータケース 570)を冷却する。つまり、冷却媒体は、 二次電池 520を最初に冷却するため、二次電池 520を低温に保持すことが容易であ る。
[0064] 一方、冷却媒体は、二次電池 520を冷却することで、温度が上昇する。しかし、二 次電池 120の温度目標は、 50°C〜100°Cである力 インバータ 572およびモータ 51 0の温度目標は、 120°C以下である。したがって、二次電池 520を冷却後の冷却媒 体を、インバータ 572およびモータ 510の冷却に利用することが可能である。
[0065] なお、符号 512、 514および 516は、ロータ、ロータハウジングおよび外側ハウジン グを示している。
[0066] 以上のように、実施の形態 5は、二次電池 520、インバータ 572およびモータ 510を 、効率よく冷却することが可能である。 [0067] なお、インバータ 572を別体とする場合、電池冷却手段 (冷却ジャケット)は、二次 電池 520とロータハウジング 214との間に配置され、二次電池 520を冷却後、モータ 510 (ロータハウジング 514)を冷却することとなる。
[0068] また、冷却媒体は、ハイブリッド車両のラジェータによって冷却されたエンジン冷却 水を利用することが可能である。例えば、冷却ジャケット 580をエンジン冷却水循環 系に連結し、エンジン冷却水を、外層経路 584を経由して内層経路 582に導入後、 エンジンの冷却ジャケットに戻すことで、二次電池 520、インバータ 572およびモータ 510を冷却することが可能である。
[0069] 図 13は、実施の形態 6に係る駆動システム 600を説明するための概念図である。
[0070] 実施の形態 6は、外部電源 690をさらに有する点で実施の形態 1と概して異なって いる。
[0071] 外部電源 690は、大容量の 2次電池であり、昇圧回路(DCZDCコンバータ) 692 を軽由し、インバータ 672に接続される。外部電源 690は、二次電池 520を補助する ために使用される。
[0072] したがって、外部電源 690と、モータ 610に一体化される二次電池 620との間で、 必要な機能を適宜分割することで、多様なシステムを構築することが容易である。例 えば、外部電源 690を、低負荷時に利用し、二次電池 620は、瞬間的な高負荷時に 利用することが可能である。
[0073] 昇圧回路 692は、外部電源 690とインバータ 672とを接続するケーブル 694の容量 を下げ、ケーブル 694の取り回しを有利とするため好ましいが、適宜省略することも可 能である。
[0074] 以上のように、実施の形態 6は、外部電源 690をさらに有するため、システム構築の 自由度が大きい。
[0075] なお、本発明は、上述した実施の形態に限定されるものではなぐ特許請求の範囲 の範囲内で種々改変することができる。
[0076] 例えば、 2次電池は、直列接続された複数の単電池と、並列接続された複数の単 電池とが組み合わされた複合組電池カゝら構成することも可能である。また、実施の形 態 6を、実施の形態 1〜5に適宜組み合わせることも可能である。 産業上の利用の可能性
[0077] 本発明によれば、モータと二次電池は一体化されており、それぞれのスペースを用 意する必要はないため、デッドスペースが小さい。また、二次電池は、積層される複 数の単電池を有するため、コンパクトィ匕が容易である。したがって、搭載性の自由度 が大きい。
[0078] つまり、良好な搭載 '性を有する駆動システムを提供することが可能である。

Claims

請求の範囲
[I] 駆動源であるモータ、および、前記モータに一体ィ匕され、前記モータに電力を供給 するための二次電池を有し、前記二次電池は、積層される複数の単電池を有するこ とを特徴とする駆動システム。
[2] 前記単電池は、直列接続されていることを特徴とする請求項 1に記載の駆動システ ム。
[3] 前記二次電池は、外部に面する外側ハウジングと、前記モータのロータを収容する 円筒状のロータハウジングとの間に配置されていることを特徴とする請求項 1又は請 求項 2に記載の駆動システム。
[4] 前記単電池における正極電極および負極電極が配置されている部位は、曲率を有 することを特徴とする請求項 1又は 2に記載の駆動システム。
[5] 前単電池は、 3層以上かつ 400層以下に積重ねられていることを特徴とする請求項
1又は 2のいずれか 1項に記載の駆動システム。
[6] 前記単電池は、リチウムイオン電池であることを特徴とする請求項 1に記載の駆動シ ステム。
[7] 前記リチウムイオン電池は、融解温度 100°C以上の高分子材料を含んでいる電解 質を有することを特徴とする請求項 6に記載の駆動システム。
[8] 前記リチウムイオン電池は、ポリエチレンォキシド系高分子材料を含んでいる電解 質を有することを特徴とする 6に記載の駆動システム。
[9] 前記モータに 1隣接して配置されるモータコントローラを、さらに有することを特徴と する請求項 1に記載の駆動システム。
[10] 前記モータコントローラは、インバータを含んでいることを特徴とする請求項 9に記 載の駆動システム。
[II] 前記インバータは、前記二次電池と前記ロータハウジングの間に配置されることを 特徴とする請求項 10に記載の駆動システム。
[12] 前記インバータは、 SiCスイッチング素子を有することを特徴とする請求項 10又は 請求項 11に記載の駆動システム。
[13] 前記二次電池を冷却するための電池冷却手段を、さらに有することを特徴とする請 求項 1に記載の駆動システム。
[14] 前記二次電池を冷却するための電池冷却手段を、さらに有し、前記電池冷却手段 は、前記二次電池と前記ロータハウジングの間に配置されることを特徴とする請求項
1に記載の駆動システム。
[15] 前記電池冷却手段は、気体あるいは液体からなる冷却媒体が流通する経路を有す ることを特徴とする請求項 14に記載の駆動システム。
[16] 前記経路は、二次電池側に配置される内層経路と、ロータハウジングイ側に配置さ れる外層経路とを有し、前記冷却媒体は、前記外層線路を経由して前記内層経路に 導入されることで、前記一次電池を冷却後、前記ロータハウジングを冷却することを 特徴とする請求項 15に記載の駆動システム。
[17] 前記二次電池を冷却するための電池冷却手段を、さらに有し、前記電池冷却手段 は、前記インバータと前記二次電池の間に配置されることを特徴とする請求項 11〖こ 記載の駆動システム。
[18] 前記電池冷却手段は、気体あるいは液体からなる冷却媒体が流通する経路在有 することを特徴とする請求項 17に記載の駆動システム。
[19] 前記経路は、二次電池側に配置される内層経路と、インバータ側に配置される外 層経路とを有し、前記冷却媒体は、前記外層経路を経由して前記内層経路に導入さ れることで、前記二次電池を冷却後、前記インバータを冷却することを特徴とする請 求項 18に記載の駆動システム。
[20] 前記駆動システムは、動力発生装置のトランスミッション部に配置され、あるいは、 前記トランスミッション部に隣接して配置されることを特徴とする請求項 1に記載の駆 動システム。
[21] 前記動力発生装置は、ハイブリッド車両のエンジンであることを特徴とする請求項 2
0に記載の駆動システム。
[22] 前記駆動システムは、ハイブリッド車両に配置され、前記冷却媒体は、前記ハイプリ ッド車両のラジェータによって冷却されたエンジン冷却水であることを特徴とする請求 項 15、 16、 18又は 19に記載の駆動システム。
PCT/JP2006/321896 2005-11-04 2006-11-01 駆動システム WO2007052714A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06832412A EP1950868A1 (en) 2005-11-04 2006-11-01 Drive system
CN2006800412382A CN101300727B (zh) 2005-11-04 2006-11-01 驱动***
US12/084,463 US8151914B2 (en) 2005-11-04 2006-11-01 Drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-321553 2005-11-04
JP2005321553A JP4826214B2 (ja) 2005-11-04 2005-11-04 駆動システム

Publications (1)

Publication Number Publication Date
WO2007052714A1 true WO2007052714A1 (ja) 2007-05-10

Family

ID=38005868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321896 WO2007052714A1 (ja) 2005-11-04 2006-11-01 駆動システム

Country Status (6)

Country Link
US (1) US8151914B2 (ja)
EP (1) EP1950868A1 (ja)
JP (1) JP4826214B2 (ja)
KR (1) KR100985638B1 (ja)
CN (1) CN101300727B (ja)
WO (1) WO2007052714A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318988A (ja) * 2006-05-25 2007-12-06 Gm Global Technology Operations Inc 電気モータ上に直径に沿って取り付けられた電力用コンデンサ
JP2008187889A (ja) * 2007-01-30 2008-08-14 Gm Global Technology Operations Inc 関連する変速装置の直径の周りに取り付けられたacモータ用の電力コンデンサ

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687332B (zh) 2010-02-01 2015-09-02 株式会社Lg化学 线缆型二次电池
KR101283488B1 (ko) * 2010-02-01 2013-07-12 주식회사 엘지화학 케이블형 이차전지
KR101279409B1 (ko) 2010-02-01 2013-06-27 주식회사 엘지화학 케이블형 이차전지
DE102010027856B4 (de) * 2010-04-16 2023-12-14 Robert Bosch Gmbh Batterie mit integriertem Pulswechselrichter
KR20110127972A (ko) * 2010-05-20 2011-11-28 주식회사 엘지화학 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
KR101351896B1 (ko) * 2010-06-28 2014-01-22 주식회사 엘지화학 케이블형 이차전지용 음극 및 이를 구비하는 케이블형 이차전지
AT511428B1 (de) * 2011-04-21 2013-05-15 Avl List Gmbh Elektrische maschine
US9461488B2 (en) 2011-06-09 2016-10-04 Henry Shum Battery with integrated power inverter
US9479014B2 (en) * 2012-03-28 2016-10-25 Acme Product Development, Ltd. System and method for a programmable electric converter
WO2014178590A1 (ko) 2013-04-29 2014-11-06 주식회사 엘지화학 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2014182064A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182063A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
CN104393324B (zh) 2013-05-07 2017-08-15 株式会社Lg化学 线缆型二次电池
CN104393329B (zh) 2013-05-07 2017-04-12 株式会社Lg化学 线缆型二次电池及其制备
EP2846381B1 (en) 2013-05-07 2018-02-28 LG Chem, Ltd. Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same
EP2822084B1 (en) 2013-05-07 2016-12-14 LG Chem, Ltd. Cable-type secondary battery
CN104466191B (zh) 2013-05-07 2018-01-23 株式会社Lg化学 二次电池用电极、其制备、以及包含其的二次电池和线缆型二次电池
FR3021524A1 (fr) 2014-06-02 2015-12-04 Small Bone Innovations Internat Tige d'ancrage metacarpien, notamment pour une prothese trapezo-metacarpienne
DE102015013403A1 (de) * 2015-10-19 2017-04-20 Bergische Universität Wuppertal Elektro-Antriebssystem
JP7205351B2 (ja) * 2019-03-29 2023-01-17 株式会社デンソー 回転電機及び回転電機の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274240A (ja) * 1999-03-23 2000-10-03 Isuzu Motors Ltd ハイブリッド車両用冷却装置
JP2003017127A (ja) * 2001-07-04 2003-01-17 Nissan Motor Co Ltd 電池システム
JP2003151510A (ja) * 2001-11-08 2003-05-23 Mitsubishi Chemicals Corp 二次電池及び二次電池の製造方法
JP2004153875A (ja) * 2002-10-28 2004-05-27 Koyo Seiko Co Ltd モータ
JP2004153897A (ja) * 2002-10-29 2004-05-27 Hitachi Unisia Automotive Ltd インバータ付き電気機械
JP2005510995A (ja) * 2001-11-27 2005-04-21 ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー 各ステータ電磁石毎に個別の制御モジュールを有する回転電動機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220383B1 (en) * 1997-10-13 2001-04-24 Denso Corporation Electric power unit
JP3675139B2 (ja) 1997-10-13 2005-07-27 株式会社デンソー バッテリ装置
CN2409705Y (zh) * 1999-12-30 2000-12-06 杨泰和 手持电控装置的位移发电结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274240A (ja) * 1999-03-23 2000-10-03 Isuzu Motors Ltd ハイブリッド車両用冷却装置
JP2003017127A (ja) * 2001-07-04 2003-01-17 Nissan Motor Co Ltd 電池システム
JP2003151510A (ja) * 2001-11-08 2003-05-23 Mitsubishi Chemicals Corp 二次電池及び二次電池の製造方法
JP2005510995A (ja) * 2001-11-27 2005-04-21 ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー 各ステータ電磁石毎に個別の制御モジュールを有する回転電動機
JP2004153875A (ja) * 2002-10-28 2004-05-27 Koyo Seiko Co Ltd モータ
JP2004153897A (ja) * 2002-10-29 2004-05-27 Hitachi Unisia Automotive Ltd インバータ付き電気機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318988A (ja) * 2006-05-25 2007-12-06 Gm Global Technology Operations Inc 電気モータ上に直径に沿って取り付けられた電力用コンデンサ
JP2008187889A (ja) * 2007-01-30 2008-08-14 Gm Global Technology Operations Inc 関連する変速装置の直径の周りに取り付けられたacモータ用の電力コンデンサ

Also Published As

Publication number Publication date
US8151914B2 (en) 2012-04-10
EP1950868A1 (en) 2008-07-30
KR20080067371A (ko) 2008-07-18
CN101300727A (zh) 2008-11-05
CN101300727B (zh) 2011-01-05
KR100985638B1 (ko) 2010-10-05
JP2007129858A (ja) 2007-05-24
JP4826214B2 (ja) 2011-11-30
US20090107746A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4826214B2 (ja) 駆動システム
US7029789B2 (en) Flat-type cell and combined battery utilizing the same
JP4164212B2 (ja) 電池モジュール及び電力供給装置
WO2007132621A1 (ja) 組電池および車両
JP4569534B2 (ja) 組電池
KR101601142B1 (ko) 단열재를 포함하여 2이상의 분리된 유로를 가진 히트싱크
KR101642326B1 (ko) 수직 배치된 공통 출입구가 형성된 2이상의 분리된 유로를 가진 히트싱크
WO2007114310A1 (ja) 積層型電池
KR101715697B1 (ko) 냉각부재로서 열전소자부를 갖는 전지모듈
JP2007207746A (ja) 2次電池モジュール用隔壁およびこれを含む2次電池モジュール
JP5458898B2 (ja) 固体電池スタック
JP2012528424A (ja) 電極コイル
WO2007114311A1 (ja) 積層型電池およびその製造方法
KR101601149B1 (ko) 2이상의 분리된 유로를 가진 히트싱크
JP2006066083A (ja) 組電池
JP2023509216A (ja) 電池、電池モジュール、電池パック及び電気自動車
JP2009117105A (ja) 電池ユニット
JP2008282633A (ja) 電池一体化回路装置
JP2009231042A (ja) 蓄電装置及び車両
CN109301378B (zh) 用于软包电池的接片冷却
JP2019212440A (ja) 蓄電装置
KR101760865B1 (ko) 열전소자를 이용한 배터리팩 자가 냉각 방법 및 시스템
JP2007234453A (ja) 2次電池およびその車両搭載構造
KR20230082218A (ko) 이차전지모듈
JP5162089B2 (ja) 冷却構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041238.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006832412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12084463

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087013369

Country of ref document: KR