WO2014178590A1 - 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지 - Google Patents

케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지 Download PDF

Info

Publication number
WO2014178590A1
WO2014178590A1 PCT/KR2014/003737 KR2014003737W WO2014178590A1 WO 2014178590 A1 WO2014178590 A1 WO 2014178590A1 KR 2014003737 W KR2014003737 W KR 2014003737W WO 2014178590 A1 WO2014178590 A1 WO 2014178590A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
secondary battery
moisture barrier
type secondary
electrode
Prior art date
Application number
PCT/KR2014/003737
Other languages
English (en)
French (fr)
Inventor
권요한
오병훈
김상훈
김제영
김효미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14737131.4A priority Critical patent/EP2822059B1/en
Priority to CN201480000804.XA priority patent/CN104396043B/zh
Priority to JP2015514943A priority patent/JP6073469B2/ja
Priority to US14/445,144 priority patent/US9324978B2/en
Publication of WO2014178590A1 publication Critical patent/WO2014178590A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cable-type secondary battery packaging and a cable-type secondary battery comprising the same, and more particularly to a cable-type secondary battery packaging having excellent moisture barrier properties and a cable-type secondary battery comprising the same.
  • a secondary battery is a device that converts external electrical energy into chemical energy, stores it, and generates electricity when needed.
  • the term “rechargeable battery” is also used to mean that it can be charged multiple times.
  • Commonly used secondary batteries include lead storage batteries, nickel cadmium batteries (NiCd), nickel hydrogen storage batteries (NiMH), lithium ion batteries (Li-ion), and lithium ion polymer batteries (Li-ion polymer). Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
  • Secondary batteries are currently used where low power is used. Examples are devices, handhelds, tools, and uninterruptible power supplies that help start up the car. Recently, the development of wireless communication technology has led to the popularization of portable devices, and there is also a tendency to wirelessize many kinds of conventional devices, and the demand for secondary batteries is exploding. In addition, hybrid vehicles and electric vehicles have been put to practical use in terms of prevention of environmental pollution, and these next-generation vehicles employ technologies that use secondary batteries to reduce value, weight, and extend life.
  • secondary batteries are cylindrical, rectangular or pouch type batteries. This is because the secondary battery is manufactured by mounting an electrode assembly composed of a negative electrode, a positive electrode, and a separator inside a pouch-shaped case of a cylindrical or rectangular metal can or an aluminum laminate sheet, and injecting an electrolyte into the electrode assembly. Therefore, since a certain space for mounting the secondary battery is essentially required, the cylindrical, square or pouch type of the secondary battery has a problem in that it acts as a limitation for the development of various types of portable devices. Accordingly, there is a need for a new type of secondary battery that is easily deformed.
  • a cable type secondary battery which is a battery having a very large ratio of length to cross sectional diameter.
  • the packaging for protecting the cable type secondary battery has not been disclosed in detail.
  • water may be penetrated through the micropores of the polymer, thereby contaminating the electrolyte in the battery, thereby causing deterioration of battery performance.
  • LiPF 6 as a Li salt
  • the problem to be solved by the present invention is to prevent the deterioration of battery performance by blocking the reaction between the electrolyte and the water as much as possible through the packaging excellent in the moisture barrier properties inside the cable-type secondary battery.
  • the present invention is to provide a cable-type secondary battery having such a packaging.
  • Another object of the present invention is to provide a method for providing a cable-type battery excellent in the moisture barrier properties.
  • the present invention is a cable-type secondary battery packaging surrounding the outer surface of the cable battery electrode assembly, the cable-type secondary battery packaging, both sides of the sealant polymer layer and the sealant polymer layer on both outer surfaces.
  • a moisture barrier layer comprising a moisture barrier film, wherein the moisture barrier layer is formed in a tubular shape surrounding the outer surface of the electrode assembly, and the sealant polymer layers at both ends of the moisture barrier layer are bonded to each other by a predetermined portion. It provides a cable-type secondary battery packaging, characterized in that.
  • the moisture barrier film may include a metal sheet or a polymer sheet.
  • the metal sheet is iron (Fe), carbon (C), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), aluminum (Al) and It may include any one or two or more alloys selected from the group consisting of the equivalents.
  • the polymer sheet is at least one selected from the group consisting of a polyethylene (PE) -based sheet, a polypropylene (PP) -based sheet, a polymer clay composite and a liquid crystalline polymer sheet It may be abnormal.
  • the sealant polymer layer is a polypropylene-acrylic acid copolymer, polyethylene-acrylic acid copolymer, chloride polypropylene, polypropylene-butylene-ethylene terpolymer, polypropylene polyethylene and ethylene- It may include at least any one selected from the group consisting of propylene copolymers.
  • the moisture barrier layer may further include an adhesive layer between the moisture barrier film and the sealant polymer layer.
  • it may further include a heat shrink tube surrounding the outer surface of the moisture barrier layer.
  • the heat shrink tube may include at least one selected from the group consisting of polyolefin, polyester, fluoro resin and polyvinyl chloride (PVC).
  • the moisture barrier layer may include a mechanical support layer on at least one side between the moisture barrier film and both sealant polymer layers.
  • the mechanical support layer may be at least one selected from the group consisting of polyolefin-based, polyester-based, polyimide and polyamide-based polymer.
  • the moisture barrier layer may include a metal sheet.
  • it may further include an adhesive layer between the moisture barrier film and the mechanical substrate layer.
  • the present invention includes an internal electrode including an internal current collector and the internal electrode active material; A separation layer which prevents a short circuit of the electrode formed to surround the internal electrode; And an external electrode including an external current collector and an external electrode active material formed to surround the outer surface of the separation layer, the electrode assembly having a horizontal cross section having a predetermined shape and extending in a longitudinal direction, and surrounding the outer surface of the electrode assembly. It provides a cable-type secondary battery comprising a packaging for the cable-type secondary battery is formed in close contact.
  • the cable type secondary battery packaging may be formed in close contact with the outer surface of the electrode assembly so that both ends of the electrode assembly is exposed to the outside.
  • the inner electrode of the electrode assembly is a lithium ion supply core portion containing an electrolyte, at least one wire-type internal current collector and the inner electrode wound around the outer surface of the lithium ion supply core portion
  • An active material layer can be provided.
  • the internal electrode, the internal electrode active material layer is formed on the entire surface of the wire-type internal current collector;
  • the inner electrode active material layer may have a structure formed surrounding the outer surface of the wire-shaped inner current collector.
  • the internal current collector stainless steel, aluminum, nickel, titanium, calcined carbon, copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Or it may be made of a conductive polymer.
  • the external electrode includes a sheet type external current collector formed around the outer surface of the separation layer and the external electrode active material layer formed surrounding the outer surface of the sheet type external current collector or And a sheet type external current collector formed around the outer surface of the separation layer and a sheet type external current collector formed around the outer surface of the external electrode active material layer and wound around the separation layer.
  • the external electrode may be formed by winding a sheet external electrode formed by bonding the external electrode active material layer and the sheet type external current collector to surround the outer surface of the separation layer.
  • the external electrode is formed on an external current collector, an external electrode active material layer formed on one surface of the external current collector, an upper surface of the external electrode active material layer, and includes a conductive material and a binder.
  • the sheet-type external electrode may include a conductive layer, a porous first support layer formed on the upper surface of the conductive layer, and a second support layer formed on the other surface of the external current collector.
  • the external current collector may be a mesh current collector.
  • the external current collector stainless steel, aluminum, nickel, titanium, calcined carbon, copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste including carbon powder which is graphite, carbon black, or carbon nanotubes.
  • the electrode assembly includes a lithium ion supply core unit including an electrolyte; An internal electrode including at least one wire type current collector wound around an outer surface of the lithium ion supply core and an internal electrode active material layer formed on a surface of the wire type current collector; A separation layer which prevents a short circuit of the electrode formed surrounding the outer surface of the inner electrode; And a winding formed surrounding the outer surface of the separation layer, and formed on an outer current collector, an outer electrode active material layer formed on one surface of the outer current collector, an upper surface of the outer electrode active material layer, and a conductive material and a binder. And a sheet type external electrode including a layer, a porous first support layer formed on an upper surface of the conductive layer, and a second support layer formed on the other surface of the external current collector.
  • the inner electrode and the outer electrode may be a cathode and an anode or an anode and a cathode, respectively.
  • the separation layer may be a cable-type secondary battery, characterized in that the electrolyte layer or a separator.
  • the present invention is a predetermined electrode including an internal electrode, a separation layer for preventing the short circuit of the electrode formed surrounding the inner electrode and an outer electrode formed surrounding the outer surface of the separation layer Preparing an electrode assembly extending in the longitudinal direction with a horizontal cross section in shape; (S2) preparing a moisture barrier layer having a length longer than an outer circumference of the electrode assembly and including a moisture barrier film on both outer surfaces of the sealant polymer layer and the sealant polymer layers on both outer surfaces; (S3) surrounding the moisture barrier layer on an outer surface of the electrode assembly such that the sealant polymer layers at both ends of the moisture barrier layer overlap a predetermined portion of each other; And (S4) heating the electrode assembly surrounded by the moisture barrier layer, and bonding a predetermined portion of the sealant polymer layers at both ends of the moisture barrier layer to overlap each other.
  • the moisture barrier layer prepared in step (S2) may be a moisture barrier layer including a mechanical support layer on at least one side between the moisture barrier film and both sealant polymer layers,
  • the moisture barrier layer prepared in the step (S2) may be a moisture barrier layer having a structure sequentially laminated with a sealant polymer layer, a mechanical support layer, a metal sheet moisture barrier layer, and a sealant polymer layer.
  • the step (S4) is the electrode assembly surrounded by the moisture barrier layer is inserted into a heat shrink tube and heated, so that the sealant polymer layers at both ends of the moisture barrier layer overlap each other Bonding a predetermined portion, and the heat shrink tube is contracted to bond the heat shrink tube and the electrode assembly surrounded by the moisture barrier layer.
  • the packaging for a cable type secondary battery prevents moisture that may penetrate into the electrode assembly, thereby preventing contamination of an electrolyte present in the cable type secondary battery due to moisture, and thus prolongs the life of the battery.
  • the characteristic is improved, and deterioration of battery performance can be prevented.
  • 1 is a moisture barrier layer before applying a heat treatment according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the moisture barrier layer before surrounding the electrode assembly according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the moisture barrier layer before surrounding the electrode assembly according to an embodiment of the present invention, in which the adhesive layer is added between the sealant polymer layer and the moisture barrier film in the moisture barrier layer of FIG. 2.
  • FIG. 4 is a cross-sectional view of the moisture barrier layer before surrounding the electrode assembly according to an embodiment of the present invention, in which the mechanical support layer is further included in the moisture barrier layer of FIG. 2.
  • FIG. 5 is a cross-sectional view of the moisture barrier layer before surrounding the electrode assembly according to an embodiment of the present invention, in which the adhesive layer is further added between the mechanical support layer and the moisture barrier film in the moisture barrier layer of FIG. 4.
  • FIG. 6 is a packaging for a cable-type secondary battery before the heat treatment according to an embodiment of the present invention.
  • FIG. 7 is an exploded perspective view schematically showing a cable-type secondary battery including a packaging according to an embodiment of the present invention.
  • FIG. 8 is an exploded perspective view schematically showing a cable type secondary battery including a packaging according to another embodiment of the present invention.
  • FIG. 9 is an exploded perspective view schematically showing a cable type secondary battery including a packaging according to another embodiment of the present invention.
  • FIG. 10 is an exploded perspective view schematically illustrating a cable type secondary battery including a packaging according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a cross section of the sheet-type external current collector according to an embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a cable-type secondary battery including two or more internal electrodes according to another embodiment of the present invention.
  • 13 is an experimental result of the life characteristics of the packed cable-type secondary battery according to an embodiment of the present invention and the secondary battery having no packaging according to the present invention.
  • FIG. 14 is a photograph showing the outer surface of the cable-type secondary battery packaging according to an embodiment of the present invention, is a cable-type secondary battery packaging introducing a moisture barrier layer and a heat shrink tube.
  • 15 is a photograph showing the outer surface of the cable-type secondary battery packaging according to an embodiment of the present invention, is a cable-type secondary battery packaging incorporating only a moisture barrier layer.
  • the present invention provides a cable type secondary battery packaging surrounding an outer surface of a cable battery electrode assembly, wherein the cable type secondary battery packaging includes a sealant polymer layer on both outer surfaces and a sealant polymer layer on both outer surfaces. And a moisture barrier layer, wherein the moisture barrier layer has a tubular shape surrounding the outer surface of the electrode assembly, and a sealant polymer layer at both ends of the moisture barrier layer is bonded to each other by a predetermined portion overlapping each other. .
  • the present invention relates to a cable type secondary battery packaging for preventing the blocking of moisture, and includes a water barrier layer including a multilayer polymer including a sealant polymer layer on both outer surfaces and a water barrier film between the sealant polymer layers on both outer surfaces.
  • the sealant polymer layer at both ends of the moisture barrier layer is characterized by being bonded to each other overlapping a predetermined portion.
  • FIG. 1 is a bent moisture barrier layer before heat is applied to seal both polymer layers. More specifically, before the sealing by applying heat, the moisture barrier layer 10 includes a moisture barrier film 1 and a sealant polymer layer 2 on both sides of the moisture barrier film. There is a part where the moisture barrier layer overlaps with two layers, such as the part shown in FIG. 1. The portion where the sealant polymer layers at both ends of the moisture barrier layer overlap with each other means a portion thereof.
  • the moisture barrier layer according to the present invention has a shape including a sealant polymer layer on both sides of the outer surface as shown in FIGS. 1 to 5. This allows the sealant polymer portions to be in contact with each other at both ends of the moisture barrier layer of the overlapping portion when the predetermined portion overlaps the outer surface of the electrode assembly.
  • the sealant polymer layers at both ends of the moisture barrier layer having a predetermined portion are melted to seal the moisture barrier layer, and thus the tube has a tube shape, that is, an 'O' shape tube.
  • the secondary battery packaging has a sealant layer formed only on one side thereof, so when applied as a packaging of a cable battery, the sealant layer cannot be sealed by an 'O' shaped tube, and the sealant layer is formed to face each other. Sealing in the form of a ruler is difficult to close the packaging to the battery assembly, there is no choice but to create an empty space. Therefore, such a packaging can be sealed with a 'O' shaped tube, especially when applied to cable-type secondary battery packaging, compared to the general secondary battery packaging, it is possible to completely adhere the packaging to the cable-type battery assembly, This is more useful in that it can increase the energy density per volume of the cable cell.
  • the predetermined portion means that when the moisture barrier layer surrounds the outer surface of the electrode structure, the length of the moisture barrier layer is longer than the circumference of the electrode structure, so that the sealant layers at both ends of the moisture barrier layer come into contact with each other. It means to exist.
  • the predetermined portion may be 1 to 99%, or 1 to 70% around the outer surface of the electrode structure, preferably 3 to 50%, more preferably 5 to 30%.
  • the moisture barrier film serves to prevent the penetration of moisture from the outside to the inside, it may be selected from a metal sheet or polymer sheet having a water barrier properties.
  • the metal sheet having the water barrier property is selected from the group consisting of iron (Fe), carbon (C), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), aluminum (Al), and equivalents thereof. It may be any one or two or more alloys.
  • the metal sheet is not limited to the above exemplified type, and the metal sheet has high mechanical strength when applying a material containing iron, and flexibility when applying a material containing aluminum.
  • the polymer sheet having a moisture barrier property includes at least one selected from the group consisting of a polyethylene (PE) -based sheet, a polypropylene (PP) -based sheet, a polymer clay composite, and a liquid crystalline polymer sheet. can do.
  • the polymer clay composite refers to a composite obtained by dispersing a plate-shaped clay in a polymer. Since the plate-shaped clay is arranged in the polymer, a pass way length through which gas or the like escapes is increased to suppress the passage of gas components, and the same principle can block water.
  • the liquid crystalline polymer sheet is a liquid crystal polymer whose base material is a liquid crystal polymer, which is characterized by a rigid segment composed of aromatic groups similar in behavior to liquid crystals. As the clay of the polymer clay, it is possible to block the penetration of moisture by increasing the migration path.
  • the sealant polymer layer has a heat-adhesive or heat-sealed adhesiveness by heat, polypropylene-acrylic acid copolymer, polyethylene-acrylic acid copolymer, polypropylene chloride, polypropylene-butylene -At least one selected from the group consisting of ethylene terpolymers, polypropylene, polyethylene, and ethylene propylene copolymers.
  • an adhesive layer may be included between the moisture barrier film and the sealant polymer layer.
  • the material of the adhesive layer include, but are not limited to, a composition containing a urethane material, an acrylic material, and a thermoplastic elastomer.
  • a composition containing a urethane material, an acrylic material, and a thermoplastic elastomer For example, when the moisture barrier layer is manufactured by dry lamination, an adhesive layer may be required, and when the melted sealant material is directly formed on the metal layer, the adhesive layer may have sufficient adhesive force, and thus an additional adhesive layer may not be required.
  • an adhesive layer 3 may be included between the moisture barrier film 1 and the sealant polymer layer 2 disposed on both sides of the moisture barrier film 1.
  • the moisture barrier layer according to another preferred embodiment of the present invention may include a mechanical support layer on at least one side between the moisture barrier film and both sealant polymer layers.
  • the mechanical support layer is a support layer exhibiting a large modulus, and due to this property, it is possible to suppress cracking of the moisture barrier layer (more specifically, the metal sheet moisture barrier layer) when the moisture barrier layer is stretched (pulling force). have. Therefore, the breakage of the moisture barrier layer (more specifically, the metal sheet moisture barrier layer) can be controlled even more effectively when the external bending is performed.
  • the mechanical support layer is a support layer having a large modulus value, specifically, a polymer material having a modulus value of 0.5 to 6 GPa, and more specifically, a group consisting of polyolefin-based, polyester-based, polyimide- and polyamide-based polymers. It may be at least one selected from.
  • the moisture barrier film is preferably a metal sheet.
  • an adhesive layer may be included between the moisture barrier film and the mechanical substrate layer.
  • an adhesive layer having an electrolytic resistance should be used.
  • the moisture barrier layer may include a sealant polymer layer 2, a mechanical support layer 4, a moisture barrier film 1, preferably a metal sheet moisture barrier layer and a sealant polymer layer 2, as shown in FIG. 4. ) Stacked in order.
  • the structure of FIG. 4 may include an adhesive layer 5, preferably an adhesive layer exhibiting electrolytic resistance, between the moisture barrier film 1 and the mechanical support layer 4.
  • the moisture barrier layer according to the present invention may be used alone as a cable type secondary battery packaging, or may further include various types of polymer such as a polymer resin layer as an outer layer of the moisture barrier layer.
  • the packaging for a cable type secondary battery according to the present invention may include a moisture barrier layer and a heat shrink tube surrounding an outer surface of the moisture barrier layer.
  • the heat-shrinkable tube is a tube that contracts when heated, and means a material that tightly wraps a terminal or a material having a different shape or size.
  • the present invention wraps the moisture barrier layer on the outer surface of the electrode assembly in a predetermined portion, and when heat is applied after inserting the moisture barrier layer into the heat shrink tube, the moisture barrier blocks the melted polymer of the moisture barrier layer by heat transmitted through the heat shrink tube.
  • the heat shrink tube is heated and contracted at the same time, thereby providing a tight packaging between the water barrier layer and the heat shrink tube surrounding the outer surface of the electrode structure.
  • the tight tight packaging further improves the moisture blocking performance of the packaging, and the insulation effect can be achieved through the heat shrink tube.
  • the structure of the heat shrink tube may be present in the pores due to its structure, so that the water flows into the battery, but the present invention includes both the water barrier layer and the heat shrink tube, and thus the cable with the effect of water blocking. The protective role of the battery was sufficient.
  • the heat shrinkable tube of the soft material is formed in the moisture barrier layer according to the present invention, since the heat shrinkable tube fixes the moisture barrier layer in close contact, the possibility of wrinkle formation on the surface of the moisture barrier layer is significantly lowered. Through this can be an advantage in terms of flexibility of the battery.
  • FIG. 6 is a state before applying heat of a cable type secondary battery packaging including a moisture barrier layer and a heat shrink tube. That is, the moisture barrier layer 10 including the sealant polymer layer 2 on both sides of the moisture barrier film 1 surrounds the outer surface of the electrode structure so that a predetermined portion overlaps, and the heat shrink tube ( 6) will exist. After the heat is applied, the sealing of the portion where the moisture barrier layer overlaps with the heat transmitted through the heat shrink tube proceeds, and the heat shrink tube shrinks tightly between the moisture barrier layer and the heat shrink tube surrounding the electrode structure. .
  • the heat shrink tube has a commercially available heat shrink tube having a variety of materials and forms, it can be easily obtained and used for the purpose of the present invention.
  • the temperature of the shrinkage processing it is generally 70 to 200 ° C, preferably 70 to 150 ° C, more preferably 100 to 150 ° C, even more preferably The shrinkage is required to be completed at a temperature of 70 to 120 ° C.
  • the heat shrinkable tube layer is selected from the group consisting of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, polyvinyl chloride and the like. Either one or a mixture of two or more thereof may be included.
  • the present invention also provides a cable-type secondary battery comprising a packaging for a cable-type secondary battery according to the present invention.
  • the packed cable type battery according to the present invention has a horizontal cross section of a predetermined shape including an internal electrode, a separation layer which prevents a short circuit of an electrode formed to surround the internal electrode, and an external electrode formed to surround an outer surface of the separation layer.
  • An electrode assembly extending in the longitudinal direction; And it includes a packaging for the cable-type secondary battery according to the present invention in close contact with the outer surface of the electrode assembly.
  • the predetermined shape means that the shape is not particularly limited, and any shape that does not impair the essence of the present invention is possible.
  • the cable-type secondary battery of the present invention has a horizontal cross section of a predetermined shape, has a linear structure elongated in the longitudinal direction of the horizontal cross section, and has flexibility so that deformation is free.
  • the packaging may be formed to be in close contact with the outer surface of the electrode assembly so that both ends of the electrode assembly are exposed to the outside.
  • the packaging is formed such that both ends of the electrode assembly are exposed to the outside, and then one end of the electrode assembly is joined to the metal tab for the internal electrode, and the other end is bonded to the metal tab for the external electrode, thereby serving as a battery. You can do it.
  • the metal tabs may be formed in the same manner as in a general cell, and a sealant layer may be locally formed to improve insulation.
  • an internal electrode including an internal electrode current collector 120 and an internal electrode active material layer 130 formed on a surface of the internal electrode current collector 120; An outer layer formed around the outer surface of the outer electrode active material layer 150 and the outer electrode active material layer 150 formed to surround the outer surface of the separation layer and the outer layer formed to surround the outer surface of the inner electrode; An electrode assembly 100 including an external electrode having an electrode current collector 160; And a packaging 170 formed to be in close contact with the outer surface of the electrode assembly 100, wherein the packaging 170 is a secondary battery packaging according to the present invention described above.
  • the inner electrode of the electrode assembly is a lithium ion supply core portion containing an electrolyte, at least one wire-type internal current collector and the inner electrode active material wound around the outer surface of the lithium ion supply core portion Layers may be provided.
  • the internal electrode has a structure in which the internal electrode active material layer is formed on the entire surface of the wire-type internal current collector; Or a structure formed surrounding the outer surface of the wire-type inner current collector in which the inner electrode active material layer is wound; Etc. are possible.
  • one wire type current collector 220 is a lithium ion supply core unit 210.
  • the internal electrode active material layer 230 may be formed on the surface of the wire-shaped internal current collector 220 in advance, and as shown in FIG. 9, the internal electrode active material layer 330 may be formed on the surface thereof.
  • At least two wire-shaped internal current collectors 320 may be formed to cross each other and be wound. As such, when two or more wire-shaped internal current collectors 320 are wound together, it is advantageous to improve the rate characteristic of the battery.
  • the wound wire type inside may be formed to surround the inner electrode active material layer.
  • the wire-type internal current collector (220, 320, 420, 520) of the present invention is stainless steel, aluminum, nickel, titanium, calcined carbon, copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Or manufactured using a conductive polymer.
  • the current collector collects electrons generated by the electrochemical reaction of the active material or serves to supply electrons required for the electrochemical reaction. Generally, a metal such as copper or aluminum is used.
  • Such conductive materials may be polyacetylene, polyaniline, polypyrrole, polythiophene, polysulfuride, ITO (Indum Thin Oxide), silver, palladium and nickel, and the conductive polymer is polyacetylene, polyaniline, polypyrrole, polythiol Offen, polysulfuritride and the like can be used.
  • the non-conductive polymer used for the current collector is not particularly limited in kind.
  • the external electrode as shown in FIGS. 8 and 9, the sheet type external current collectors 250 and 350 and the sheet type external current collectors 250 and 350 wound around the outer surfaces of the separation layers 240 and 340 are formed.
  • It may be a structure having an external electrode active material layer 260, 360 formed to surround the outer surface of the), but is not limited thereto, the outer surface of the outer electrode active material layer and the outer electrode active material layer formed surrounding the outer surface of the separation layer
  • the structures and the like that comprises the entire said winding is formed of a sheet-like outside the house possible.
  • an external electrode active material layer is formed on at least one surface of the sheet external current collector to form a sheet-like assembly, and then the sheet-shaped assembly is formed on the outer surface of the separation layer. It may be wound to form an external electrode. That is, as illustrated in FIG. 10, the external electrodes include sheet-like assemblies 450 and 460 formed by bonding the external electrode active material layer 460 and the sheet type external current collector 450 to the outer surface of the separation layer 440. It may be wound around.
  • the sheet type external current collectors 250, 350, 450, and 550 may be mesh type current collectors to further increase the surface area.
  • the external current collectors 250, 350, 450, and 550 include stainless steel, aluminum, nickel, titanium, calcined carbon, and copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste containing carbon powder which is graphite, carbon black or carbon nanotubes.
  • a plurality of recesses may be formed on at least one surface.
  • the plurality of recesses may have a continuous pattern or an intermittent pattern. That is, it may have a recess of a continuous pattern formed in the longitudinal direction spaced apart from each other, or may have an intermittent pattern in which a plurality of holes are formed.
  • the plurality of holes may be circular or polygonal.
  • the external electrode is disposed on an external current collector 451, an external electrode active material layer 452 formed on one surface of the external current collector, and an upper surface of the external electrode active material layer.
  • a sheet type including a conductive layer 453 including a conductive material and a binder, a porous first support layer 454 formed on an upper surface of the conductive layer, and a second support layer 455 formed on the other surface of the external current collector. It may be an external electrode.
  • the first support layer 454 may be a mesh type porous membrane or a nonwoven fabric.
  • the electrolyte flows into the external electrode active material layer 452 smoothly, and the first support layer 454 itself is excellent in impregnation of the electrolyte solution, thereby ensuring ion conductivity, thereby allowing resistance inside the battery. This prevents the battery from degrading by preventing the increase.
  • the first support layer 454 high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene terephthalate (polyethyleneterephthalate), polybutylene terephthalate (polybutyleneterephthalate), polyester (polyester), Polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylene It may be formed of any one selected from the group consisting of sulfide (polyphenylenesulfide) and polyethylenenaphthalene (polyethylenenaphthalene) or a mixture of two or more thereof.
  • sulfide polyphenylenesulfide
  • polyethylenenaphthalene polyethylenenaphthalene
  • the upper surface of the first support layer 454 may further include a conductive material coating layer having a conductive material and a binder.
  • the conductive material coating layer prevents deterioration of battery performance by improving conductivity of the electrode active material layer to reduce resistance of the electrode.
  • the conductive material and the binder may be the same as those used in the conductive layer to be described later.
  • the negative electrode since the conductivity of the negative electrode active material layer is relatively excellent, even if the conductive material coating layer is not included, the negative electrode exhibits similar performance to that in the case where a general negative electrode is used. This is particularly advantageous when applied to the positive electrode to reduce the resistance inside the battery because the performance degradation phenomenon can be intensified.
  • the conductive material coating layer, the conductive material and the binder may be mixed in a weight ratio of 80:20 to 99: 1.
  • the resistance of the electrode may be excessively increased, but when the content of the aforementioned numerical range is satisfied, the resistance of the electrode is prevented from being excessively increased.
  • the first support layer has a buffering effect to prevent the detachment phenomenon of the electrode active material layer, even if a relatively small amount of binder is included, the flexibility of the electrode is not significantly prevented.
  • the second support layer 455 may be a polymer film, and may be formed of any one selected from the group consisting of polyolefin resin, polyester resin, polyimide resin, and polyamide resin, or a mixture of two or more thereof. Can be.
  • the conductive layer 453 may be formed by mixing the conductive material and the binder in a weight ratio of 1:10 to 8:10.
  • the conductive layer 453 may form a porous structure to facilitate the introduction of the electrolyte into the electrode active material layer, wherein the size of the pores formed in the conductive layer is 0.01 ⁇ m to 5 ⁇ m, porosity May be 5 to 70%.
  • the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotubes, and graphene, or a mixture of two or more thereof. It is not.
  • the binder may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride trichloro Ethylene (polyvinylidene fluoride-co-trichloroethylene), polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate Cellulose acetate propionate, cyanoethylpullu Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrenebutadiene rubber
  • the lithium ion supply cores 110, 210, 310, 410, and 510 include an electrolyte, but the electrolyte is not particularly limited in its type, but ethylene carbonate (EC), propylene carbonate (PC), Butylene carbonate (BC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl formate (MF), gamma-butyrolactone ( ⁇ -BL nonaqueous electrolyte using butyrolactone, sulfolane, methylacetate (MA), or methylpropionate (MP); Poly (ethylene oxide) (PEO), poly (vinylidene fluoride), PVdF-polyvinyllidene fluoride-co-hexafluoropropylene (PVdF-HFP), poly (methyl methacrylte), PMMA (polyacrylonitrile), or polyacylonitrile (PVAc) A
  • the lithium ion supply core unit 110, 210, 310, 410, 510 may be composed of only an electrolyte, in the case of a liquid electrolyte may be configured using a porous carrier.
  • the inner electrode may be a cathode or an anode
  • the outer electrode may be an anode or a cathode corresponding to the inner electrode.
  • the electrode active material layer of the present invention functions to move ions through a current collector, and the movement of these ions is caused by interaction through occlusion of ions from the electrolyte layer and release of ions into the electrolyte layer.
  • the electrode active material layer may be classified into a negative electrode active material layer and a positive electrode active material layer.
  • the inner electrode active material layer is a negative electrode active material, natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And any one active material particles selected from the group consisting of metals (Me) and a composite of carbon, or a mixture of two or more thereof.
  • the external electrode active material layer is a positive electrode active material, and includes LiCoO 2, LiNiO 2, LiMn 2 O 4, and the like.
  • LiCoPO4, LiFePO4, LiNiMnCoO2 and LiNi 1-xy-zCoxM1yM2zO2 (M1 and M2 are each independently selected from the group consisting of Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and Mo)
  • X, y and z are each independently selected from the group consisting of 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, and x + y + z ⁇ 1 as atomic fractions of the oxide composition elements. It may include any one active material particles or a mixture of two or more thereof.
  • the internal electrode active material layer may be a positive electrode active material layer
  • the external electrode active material layer may be a negative electrode active material layer
  • the electrode active material layer includes an electrode active material, a binder, and a conductive material, and combines with the current collector to form an electrode.
  • deformation occurs, such as the electrode being folded or severely bent by an external force, detachment of the electrode active material occurs. Due to the desorption of the electrode active material, a decrease in battery performance and battery capacity occurs.
  • the wound sheet-type external current collector since the wound sheet-type external current collector has elasticity, it plays a role of dispersing the force at the time of deformation due to external force, and thus less deformation of the electrode active material layer occurs, thereby preventing detachment of the active material. example
  • the separation layers 140, 240, 340, 440, and 540 of the present invention may use an electrolyte layer or a separator.
  • the electrolyte layer serving as a passage for these ions includes PEO (poly (ethylene oxide), PVdF (poly (vinylidene fluoride)), PVdF-HFP (poly (vinylidene fluoride-cohexafluoropropylene)), PMMA (poly (methyl methacrylte)), PAN ( gel polymer electrolyte using polyacrylonitrile) or polyvinyl acetate (PVAc); or poly (ethylene oxide) (PEO), poly (propylene oxide), poly (ethylene imine), polyethylene sulphide (PES), or polyethylene sulphide (PES) solid electrolyte using polyvinyl acetate), etc.
  • PEO poly (ethylene oxide)
  • PVdF poly (vinylidene fluoride)
  • PVdF-HFP poly (vinylidene
  • the matrix of the solid electrolyte is preferably made of polymer or ceramic glass as a basic skeleton.
  • polymer electrolyte even if the ionic conductivity is satisfied, in terms of reaction rate Since ions can move very slowly, it is preferable to use an electrolyte of a gel polymer which can easily move ions rather than a solid.
  • the gel polymer electrolyte does not have good mechanical properties.
  • it is the role of the membrane, so it may not use a separate separator.
  • the electrolyte layer of the present invention may further include a lithium salt.
  • Lithium salts can improve ionic conductivity and reaction rates, including, but not limited to, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2) 2NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium and tetraphenyl borate may be used.
  • the separator is not limited to a kind thereof, but a porous material made of a polyolefin-based polymer selected from the group consisting of ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer.
  • Porous substrates made of a polymer selected from the group consisting of polyesters, polyacetals, polyamides, polycarbonates, polyimides, polyetheretherketones, polyethersulfones, polyphenyleneoxides, polyphenylenesulfides and polyethylenenaphthalenes;
  • a porous substrate formed of a mixture of inorganic particles and a binder polymer may be used.
  • the polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, and polyphenylene sulfone It is preferable to use a separator of a nonwoven material corresponding to a porous substrate made of a polymer selected from the group consisting of pit and polyethylene naphthalene.
  • the internal electrode active material layer 430 is wound around the wire-type internal current collector 420 formed on the surface to prepare an internal electrode having an empty space in the center thereof.
  • a general coating method may be applied, and specifically, an electroplating or anodization process
  • it is preferable to manufacture the electrode slurry including the active material by using a comma coater or a slot die coater.
  • the electrode slurry containing the active material it is also possible to manufacture by using a method of extrusion coating using a dip coating or an extruder.
  • a separation layer 440 is formed to surround the outer surface of the inner electrode.
  • an external electrode active material layer 460 is formed on one surface of the sheet-shaped external current collector 450 to produce sheet-like assemblies 450 and 460, and then the sheet-like assemblies 450 and 460 are separated.
  • An electrode assembly is fabricated by winding the outer surface of layer 440 to form an external electrode.
  • an electrolyte is injected into an empty space formed at the center of the internal electrode to form a lithium ion supply core part 410.
  • the lithium ion supply core part 410 may be formed by injecting electrolyte after the packaging 470 is formed on the outer surface of the electrode assembly, but before forming the wound wire type internal electrode, the polymer electrolyte may be extruded. It may be formed in advance in the form of a wire using a wire, or prepared by injecting a non-aqueous electrolyte into a sponge-like carrier after preparing the carrier, or after preparing the internal electrode, the non-aqueous electrolyte in an empty space in the center of the internal electrode By implanting the lithium ion supply core portion 410 may be formed.
  • the electrolyte injection portion is completely sealed to manufacture a cable type secondary battery.
  • the cable type secondary battery includes two or more lithium ion supply core parts 510 including an electrolyte, and each of the lithium ion supply core parts 510.
  • Two or more internal electrodes disposed in parallel with each other, including one or more wire-shaped internal current collectors 520 and an internal electrode active material layer 530 wound around the outer surface;
  • a separation layer 540 surrounding the outer surfaces of the inner electrodes together to prevent a short circuit of the formed electrodes;
  • an external electrode including a sheet type external current collector 550 wound around the outer surface of the separation layer 540 and an external electrode active material layer 560, and having a horizontal cross section having a predetermined shape and extending in a longitudinal direction.
  • An electrode assembly, and a packaging 570 according to the present invention is formed in close contact with the outer surface of the electrode assembly.
  • the cable type secondary battery includes an internal electrode composed of a plurality of electrodes, it is easy to adjust the loading amount and battery capacity of the electrode active material layer by adjusting the number of internal electrodes, and the plurality of electrodes are provided to prevent the possibility of disconnection. can do.
  • the present invention also provides a method of manufacturing a packed cable type secondary battery.
  • (S1) an electrode assembly extending in the longitudinal direction with a horizontal cross section of a predetermined shape including an internal electrode, a separation layer for preventing a short circuit of the electrode formed surrounding the internal electrode, and an external electrode formed surrounding the outer surface of the separation layer Preparing a;
  • the moisture barrier layer prepared in the step (S2) may be a mechanical support layer on at least one side between the moisture barrier film and both sealant polymer layers, or the sealant polymer layer, mechanical support layer, metal sheet
  • the structure may be sequentially stacked with a moisture barrier layer and a sealant polymer layer.
  • the moisture barrier film having a length longer than the outer circumference of the electrode assembly is to allow the sealant polymer layers at both ends of the moisture barrier layer to overlap each other with a predetermined length, for example, longer than the outer circumference of the electrode assembly.
  • the length may be 1 to 99%, or 1 to 70%, around the outer surface of the electrode structure, preferably 3 to 50%, more preferably 5 to 30%.
  • the electrode assembly surrounded by the moisture barrier layer is inserted into a heat shrink tube, and then heated, thereby adhering a predetermined portion of the sealant polymer layers at both ends of the moisture barrier layer to overlap each other.
  • the heat shrink tube may be applied by contracting the heat shrink tube to bond the heat shrink tube and the electrode assembly surrounded by the moisture barrier layer.
  • the prepared four wire electrodes were wound to form an internal electrode part having an open structure in which a lithium ion supply core part was present.
  • the separator was wound around the separator to form a separation layer.
  • a sheet type external electrode was manufactured by drying. The sheet-shaped external electrode was cut to have a width of 2 mm, and then the sheet-type external electrode was wound around the internal electrode / separation layer to prepare an electrode assembly.
  • a water barrier layer (PP / PET / Al sheet / PP) having a moisture barrier film on the outer surface of the prepared electrode structure, a sealant polymer layer on both sides of polypropylene, and a mechanical support layer on PET was prepared. Afterwards a portion of the moisture barrier layer is enclosed so as to overlap, and the moisture barrier layer is formed in the form of O superimposed on the surface of the electrode assembly. When forming this, place the electrode assembly formed with a moisture barrier layer inside the mold of the U-shaped upper and lower parts, and then heat-pressurized for 3 seconds at 150 ° C. and 50 kg to bond the sealant polymer layer (in this case, the inlet for the electrolyte solution is not sealed. Keep it in an unused state).
  • a non-aqueous electrolyte (1M LiPF 6 , EC / PC / DEC) was injected into the center of the internal electrode support having an open structure by using an unsealed portion to form a lithium ion supply core, and an unsealed moisture barrier layer was formed. Seal it completely.
  • a PET polymer heat shrink tube was introduced and heated at a temperature of 130 ° C. for 1 minute to seal the moisture barrier layer, and a package was formed on the outer surface of the electrode assembly so that the heat shrink tube was constricted and tightly manufactured to manufacture a packed cable type secondary battery. It was.
  • the outer surface of the cable type secondary battery packaging is shown in the photograph of FIG.
  • a packed cable type secondary battery was manufactured by forming a package in which a PET polymer heat shrink tube was introduced except for a moisture barrier layer in the same electrode assembly as in Example 1.
  • Example 1 In the same electrode assembly as Example 1, a cable type secondary battery in which a packaging having a moisture barrier layer in which a sealant polymer layer is formed on only one side of the same electrode assembly, was manufactured.
  • a cable type secondary battery in which a package having a moisture barrier layer having a shape (tube form) that does not overlap a portion of the same electrode assembly as that of Example 1 was manufactured was manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 케이블 전지 전극 조립체의 외면을 둘러싸는 케이블형 이차전지용 패키징에 있어서, 상기 케이블형 이차전지용 패키징은, 양쪽 외면에 실란트 폴리머층 및 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 수분 차단층을 구비하며, 상기 수분 차단층은 상기 전극 조립체의 외면을 둘러싸는 관형태이고, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 소정 부분 서로 겹쳐서 접착되어 있는 케이블형 이차전지용 패키징으로써, 본 발명에 따른 케이블형 이차전지용 패키징을 이용함으로써 전극 조립체 내에 침투할 수 있는 수분을 막고, 전지의 수명 특성이 향상되며 전지 성능의 열화를 방지할 수 있다.

Description

케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
본 발명은 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지에 관한 것으로서, 더욱 자세하게는 수분 차단 특성이 뛰어난 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지에 관한 것이다.
본 출원은 2013년 4월 29일에 출원된 한국출원 제10-2013-0047473호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2014년 4월 28일에 출원된 한국출원 제10-2014-0050843호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
이차 전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치를 말한다. 여러 번 충전할 수 있다는 뜻으로 "충전식 전지"(rechargeable battery)라는 명칭도 쓰인다. 흔히 쓰이는 이차전지로는 납 축전지, 니켈 카드뮴 전지(NiCd), 니켈 수소 축전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer)가 있다. 이차 전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.
이차 전지는 현재 낮은 전력을 사용하는 곳에 쓰인다. 이를테면 자동차의 시동을 돕는 기기, 휴대용 장치, 도구, 무정전 전원 장치를 들 수 있다. 최근 무선통신 기술의 발전은 휴대용 장치의 대중화를 주도하고 있으며, 종래의 많은 종류의 장치들을 무선화하는 경향도 있어, 이차전지에 대한 수요가 폭발하고 있다. 또한, 환경오염 등의 방지 측면에서 하이브리드 자동차, 전기 자동차가 실용화되고 있는데, 이들 차세대 자동차들은 이차전지를 사용하여 값과 무게를 줄이고 수명을 늘리는 기술을 채용하고 있다.
일반적으로 이차전지는 원통형, 각형 또는 파우치형의 전지가 대부분이다. 이는 이차전지가 음극, 양극 및 분리막으로 구성된 전극조립체를 원통형 또는 각형의 금속캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극 조립체에 전해질을 주입시켜 제조하기 때문이다. 따라서, 이차전지 장착을 위한 일정한 공간이 필수적으로 요구되므로, 이러한 이차전지의 원통형, 각형 또는 파우치형의 형태는 다양한 형태의 휴대용 장치의 개발에 대한 제약으로 작용하게 되는 문제점이 있다. 이에, 형태의 변형이 용이한 신규한 형태의 이차전지가 요구되고 있다.
이러한 요구에 대하여, 단면적 직경에 대해 길이의 비가 매우 큰 전지인 케이블형 이차전지가 제안되었다. 다만, 이러한 케이블형 이차전지를 보호하는 패키징에 대해서는 구체적으로 개시된 바가 없다. 특히 일반적인 고분자 재질의 튜브 패키징을 사용하게 될 경우, 고분자의 미세기공을 통해 수분의 침투가 가능하게 되어, 전지 내부에 있는 전해질을 오염시켜, 전지 성능의 열화가 발생할 수 있는 문제점이 있다. 보다 구체적으로 LiPF6를 Li salt로 사용하는 전해액에 있어서, 전지 내부에 유입되는 수분과의 반응에 의하여 전지의 성능 열화의 주 원인이 되고 있다.
따라서 본 발명이 해결하고자 하는 과제는 케이블형 이차전지의 내부에 수분 차단 특성이 뛰어난 패키징을 통하여, 전해질과 수분과의 반응을 최대한 차단하여 전지 성능 열화를 방지할 수 있도록 하는 것이다. 또한, 본 발명은 이러한 패키징을 구비하는 케이블형 이차전지를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 과제는 상기 수분 차단 특성이 뛰어난 케이블형 전지를 제공하는 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 케이블 전지 전극 조립체의 외면을 둘러싸는 케이블형 이차전지용 패키징에 있어서, 상기 케이블형 이차전지용 패키징은, 양쪽 외면에 실란트 폴리머층 및 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 수분 차단층을 구비하며, 상기 수분 차단층은 상기 전극 조립체의 외면을 둘러싸는 관형태이고, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 소정 부분 서로 겹쳐서 접착되어 있는 것을 특징으로 하는 케이블형 이차전지용 패키징을 제공한다.
본 발명의 일 실시예에 따르면, 상기 수분 차단성 필름이 금속 시트 또는 폴리머 시트를 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 금속 시트가 철(Fe), 탄소(C), 크롬(Cr), 망간(Mn), 니켈(Ni), 구리(Cu), 알루미늄(Al) 및 그 등가물로 이루어진 군으로부터 선택되는 어느 하나 또는 2종 이상의 합금을 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 폴리머 시트가 PE(polyethylene)계 시트, PP(polypropylene)계 시트, 폴리머 클레이 복합체(polymer clay composite) 및 액정성 폴리머 시트로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 실란트 폴리머층이 폴리프로필렌-아크릴산 공중합체, 폴리에틸렌-아크릴산 공중합체, 염화폴리 프로필렌, 폴리프로필렌-부틸렌-에틸렌 삼원공중합체, 폴리프로필렌 폴리에틸렌 및 에틸렌-프로필렌 공중합체로 이루어진 군에서 선택되는 적어도 어느 하나 이상을 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 수분 차단층은 상기 수분 차단성 필름 및 상기 실란트 폴리머층 사이에 접착층을 더 포함할 수 있다.
본 발명의 바람직한 또 다른 일 실시예에 따르면, 상기 수분 차단층의 외면을 둘러싸는 열수축 튜브를 더 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 열수축 튜브가 폴리올레핀, 폴리에스테르, 플루오로 수지 및 폴리염화비닐(PVC)로 이루어진 군에서 선택된 적어도 어느 하나 이상을 포함할 수 있다.
본 발명의 바람직한 또 다른 일 실시예에 따르면, 상기 수분 차단층은 수분 차단성 필름 및 양쪽 실란트 폴리머층 사이 적어도 한쪽면 이상에 기계적 지지층이 포함될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 기계적 지지층은 폴리올레핀계, 폴리에스테르계, 폴리이미드 및 폴리아미드계 고분자로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 기계적 지지층을 포함하는 경우, 수분 차단층은 금속 시트를 포함할 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 상기 수분 차단성 필름 및 기계적 기재층 사이에 접착층을 더 포함할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 본 발명은 내부집전체 및 내부전극 활물질을 포함한 내부전극; 상기 내부전극을 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및 상기 분리층의 외면을 둘러싸며 형성된 외부집전체 및 외부전극 활물질을 포함하는 외부전극;을 구비하고 소정 형상의 수평 단면을 가지며 길이 방향으로 연장된 전극 조립체, 및 상기 전극 조립체의 외면을 둘러싸며 밀착되어 형성되는 상기 케이블형 이차전지용 패키징을 포함하는 것을 특징으로 하는 케이블형 이차전지를 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 상기 케이블형 이차전지용 패키징은 상기 전극 조립체의 양 끝단이 외부에 노출되도록 상기 전극 조립체의 외부면을 감싸며 밀착되어 형성될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 전극 조립체의 내부전극이 전해질을 포함하는 리튬이온 공급 코어부, 상기 리튬이온 공급 코어부의 외면을 둘러싸며 권선된 하나 이상의 와이어형 내부집전체와 내부전극 활물질층을 구비할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 내부전극은, 내부전극 활물질층이 와이어형 내부집전체의 전표면에 형성된 구조; 또는 상기 내부전극 활물질층이 권선된 와이어형 내부집전체의 외부면을 둘러싸며 형성된 구조일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 내부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄- 카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 외부전극은, 상기 분리층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체와 상기 시트형 외부집전체의 외면을 둘러싸며 형성된 외부전극 활물질 층을 구비하거나, 상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 상기 외부전극 활물질층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체를 구비하거나, 상기 분리층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체와 상기 시트형 외부집전체의 외면을 둘러싸며 상기 분리층과 접촉하도록 형성된 외부전극 활물질층을 구비하거나, 또는 상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층, 및 상기 외부전극 활물질층 내에 피복되어 있고, 상기 분리층의 외면을 이격된 상태로 둘러싸며 권선되어 형성된 시트형 외부집전체를 구비할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 외부전극은, 상기 외부전극 활물질층과 상기 시트형 외부집전체가 접합되어 형성된 시트형 외부전극이 상기 분리층의 외면을 둘러싸며 권선되어 형성될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 외부전극은 외부집전체, 상기 외부집전체의 일면에 형성된 외부전극 활물질층, 상기 외부전극 활물질층의 상면에 형성되며, 도전재와 바인더를 포함하는 도전층, 상기 도전층의 상면에 형성된 다공성의 제1 지지층, 및 상기 외부집전체의 타면에 형성된 제2 지지층을 포함하는 시트형 외부전극일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 외부집전체는, 메쉬형 집전체일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 외부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 전극조립체는 전해질을 포함하는 리튬이온 공급 코어부; 상기 리튬이온 공급 코어부의 외면을 둘러싸며 권선된 하나 이상의 와이어형 내부집전체와 상기 와이어형 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극; 상기 내부전극의 외면을 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및 상기 분리층의 외면을 둘러싸며 권선되어 형성되고, 외부집전체, 상기 외부집전체의 일면에 형성된 외부전극 활물질층, 상기 외부전극 활물질층의 상면에 형성되며, 도전재와 바인더를 포함하는 도전층, 상기 도전층의 상면에 형성된 다공성의 제1 지지층, 및 상기 외부집전체의 타면에 형성된 제2 지지층을 포함하는 시트형 외부전극;을 포함하는 케이블형 이차전지일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 내부전극 및 상기 외부전극이 각각 음극 및 양극이거나 또는 양극 및 음극일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 분리층은, 전해질층 또는 세퍼레이터인 것을 특징으로 하는 케이블형 이차전지일 수 있다.
본 발명의 또 다른 일 측면에 따르면, 본 발명은 (S1) 내부전극, 상기 내부전극을 둘러싸며 형성된 전극의 단락을 방지하는 분리층 및 상기 분리층의 외면을 둘러싸며 형성된 외부전극을 포함하는 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극 조립체를 준비하는 단계; (S2) 상기 전극 조립체의 외면 둘레보다 더 긴 길이이며, 양쪽 외면에 실란트 폴리머층과 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 수분 차단층을 준비하는 단계; (S3) 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 소정 부분 겹치도록 상기 전극 조립체의 외면에 상기 수분 차단층을 둘러싸는 단계; 및 (S4) 상기 수분 차단층이 둘러싸여진 전극 조립체를 가열하며, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 겹쳐진 소정 부분을 접착시키는 단계를 포함하는 케이블형 이차전지의 제조방법을 제공한다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 (S2) 단계에서 준비되는 수분 차단층은 수분 차단성 필름 및 양쪽 실란트 폴리머층 사이 적어도 한쪽면 이상에 기계적 지지층이 포함된 수분 차단층일 수 있으며, 또는 상기 (S2) 단계에서 준비되는 수분 차단층은 실란트 폴리머층, 기계적 지지층, 금속 시트 수분 차단층 및 실란트 폴리머층으로 차례로 적층된 구조의 수분 차단층일 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 (S4)단계가 상기 수분 차단층이 둘러싸여진 전극 조립체를 열수축 튜브에 삽입한 후에 가열하여, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 겹친 소정 부분을 접착시키고, 상기 열수축 튜브가 수축되어 열수축 튜브와 상기 수분 차단층이 둘러싸여진 전극 조립체를 접합시키는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 케이블형 이차전지용 패키징은 전극 조립체 내에 침투할 수 있는 수분을 막음으로써, 수분으로 인한 케이블형 이차전지의 내부에 존재하는 전해질의 오염을 방지할 수 있고, 전지의 수명 특성이 향상되며 전지 성능의 열화를 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따르는 열처리를 가하기 전의 수분 차단층이다.
도 2는 본 발명의 일 실시예에 따르는 전극 조립체를 둘러싸기 전의 수분 차단층의 단면도이다.
도 3은 본 발명의 일 실시예에 따르는 전극 조립체를 둘러싸기 전의 수분 차단층의 단면도로서, 도 2의 수분 차단층에서 실란트 폴리머층과 수분 차단성 필름 사이에 접착층이 추가된 구조이다.
도 4는 본 발명의 일 실시예에 따르는 전극 조립체를 둘러싸기 전의 수분 차단층의 단면도로서, 도 2의 수분 차단층에서 기계적 지지층이 더 포함된 구조이다.
도 5는 본 발명의 일 실시예에 따르는 전극 조립체를 둘러싸기 전의 수분 차단층의 단면도로서, 도 4의 수분 차단층에서 기계적 지지층 및 수분 차단성 필름 사이에 접착층이 더 추가된 구조이다.
도 6는 본 발명의 일 실시예에 따르는 열처리를 가하기 전의 케이블형 이차전지용 패키징이다.
도 7는 본 발명의 일 실시예에 따르는 패키징을 포함하는 케이블형 이차전지를 개략적으로 나타낸 분해사시도이다.
도 8는 본 발명의 또 다른 일 실시예에 따르는 패키징을 포함하는 케이블형 이차전지를 개략적으로 나타낸 분해 사시도이다.
도 9는 본 발명의 또 다른 일 실시예에 따르는 패키징을 포함하는 케이블형 이차전지를 개략적으로 나타낸 분해 사시도이다.
도 10은 본 발명의 또 다른 일 실시예에 따르는 패키징을 포함하는 케이블형 이차전지를 개략적으로 나타낸 분해 사시도이다.
도 11은 본 발명의 일 실시예에 따르는 시트형 외부집전체의 단면을 개략적으로 나타낸 단면도이다.
도 12는 본 발명의 또 다른 일 실시예에 따르는 2 이상의 내부전극을 구비한 케이블형 이차전지의 단면을 개략적으로 나타낸 단면도이다.
도 13은 본 발명의 일 실시예에 따르는 패킹된 케이블형 이차전지와 본 발명에 따른 패키징을 가지지 않는 이차전지의 수명 특성에 관한 실험결과이다.
도 14는 본 발명의 일 실시예에 따른 케이블형 이차전지 패키징의 외면을 나타내는 사진으로, 수분 차단층 및 열수축 튜브를 도입한 케이블형 이차전지 패키징이다.
도 15는 본 발명의 일 실시예에 따른 케이블형 이차전지 패키징의 외면을 나타내는 사진으로, 수분 차단층만을 도입한 케이블형 이차전지 패키징이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 기재된 구성은 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 케이블 전지 전극 조립체의 외면을 둘러싸는 케이블형 이차전지용 패키징에 있어서, 상기 케이블형 이차전지용 패키징은, 양쪽 외면에 실란트 폴리머층 및 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 수분 차단층을 구비하며, 상기 수분 차단층은 상기 전극 조립체의 외면을 둘러싸는 관형태이고, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 소정 부분이 서로 겹쳐서 접착되어 있는 케이블형 이차전지용 패키징이다.
일반적인 고분자 재질의 튜브 패키징을 사용하게 되면, 고분자의 미세기공을 통해 수분의 침투가 가능하게 되어, 전지 내부에 존재하는 전해질을 오염시킴으로써, 전지 성능의 열화를 발생할 수 있다. 본 발명은 수분의 차단을 막기 위한 케이블형 이차전지용 패키징으로써, 양쪽 외면에 실란트 폴리머층 및 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 다층 형상 포함하는 수분 차단층을 포함하며, 또한 수분 차단층 양 끝단의 실란트 폴리머층이 서로 소정 부분 겹쳐서 접착되어 있음을 특징으로 한다.
도 1 및 도 2를 참고하면, 상기 도 1은 열을 가하여, 양쪽 실란트 폴리머층의 실링이 되기 전의 상태의 굽혀진 수분 차단층이며. 보다 구체적으로 열을 가하여 실링이 되기 전에는 수분 차단층(10)은 수분 차단성 필름(1) 및 상기 수분 차단성 필름의 양쪽면에 실란트 폴리머층(2)을 포함하고 있으며, 상기 수분 차단층은 도 1에 표시된 원안의 부분과 같이 수분 차단층이 두 층으로 겹치는 부분이 존재한다. 상기 수분 차단층 양 끝단의 실란트 폴리머층이 소정 부분 서로 겹친다는 부분은 이 부분을 의미한다.
본 발명에 따른 수분 차단층은 도 1 내지 도 5와 같이 외면 양쪽면에 실란트 폴리머층을 포함하는 형상이다. 이는 전극 조립체 외면을 감싸면서 소정 부분이 겹치도록 둘러쌓도록 할 때, 겹쳐지는 부분의 수분 차단층 양 끝 단에 서로 접촉되는 실란트 폴리머 부분이 존재할 수 있도록 한다. 열을 가하게 되면, 소정 부분이 겹쳐진 수분 차단층의 상기 양 끝단의 실란트 폴리머층이 녹으면서 수분 차단층의 실링이 진행되게 되어 관형태, 즉 'O'자 형태의 관을 가지게 된다. 이와 같이 실란트 층의 실링을 통하여, 전극 조립체 외면에 수분 차단층을 완전히 둘러쌓을 수 있게 되며, 따라서 수분이 전지 내부에 침투하는 것을 최대한 효과적으로 방지할 수 있다. 일반적인 이차전지용 패키징은 내부 한쪽 면에만 실란트 층이 형성되어 있어 케이블 전지의 패키징으로 적용하였을 시, 'O'자 형태의 관으로 실링할 수 없고, 실란트 층이 형성된 부분을 서로 마주보도록 하여 'U'자 형태로 실링하게 되면 전지 조립체에 패키징을 밀착시키기 어려워 빈공간이 생길 수 밖에 없다. 따라서, 이와 같은 패키징은 일반적인 이차전지용 패키징에 비하여 특히 케이블형 이차전지 패키징에 적용되었을 때, 'O'자 형태의 관으로 실링할 수 있어 케이블 형태의 전지 조립체에 패키징을 완전히 밀착시킬 수 있으며, 이로 인해 케이블 전지의 부피당 에너지 밀도를 높일 수 있다는 점에서 더 유용하다.
본 발명에 있어서 소정 부분이란, 수분 차단층이 전극 구조체의 외면을 둘러쌓을 때, 수분 차단층의 길이가 전극구조체의 둘레보다 더 길어서, 수분 차단층 양 끝단의 실란트층이 서로 맞닿게 되는 부분이 존재하는 하는 것을 의미한다. 예를 들어, 소정 부분이 전극 구조체 외면 둘레의 1 내지 99%, 또는 1 내지 70%가 될 수 있으며, 바람직하게 3 내지 50%, 더 바람직하게 5 내지 30%가 될 수 있다.
본 발명의 일 실시예에 있어서, 상기 수분 차단성 필름은 외부로부터 내부로의 수분이 침투하는 것을 방지하는 역할을 하는 것으로서, 수분 차단이 특성이 있는 금속 시트 또는 폴리머 시트 중에서 선택될 수 있다.
상기 수분 차단 특성이 있는 금속 시트은 철(Fe), 탄소(C), 크롬(Cr), 망간(Mn), 니켈(Ni), 구리(Cu), 알루미늄(Al) 및 그 등가물로 이루어진 군으로부터 선택되는 어느 하나 또는 2종 이상의 합금일 수 있다. 상기 예시된 종류에 한정되는 것은 아니며, 상기 금속 시트는 철이 함유된 재질을 적용하는 경우에는 기계적 강도가 강해지고, 알루미늄이 함유된 재질을 적용하는 경우에는 유연성이 좋아지게 된다.
또한, 상기 수분 차단 특성이 있는 폴리머 시트는 PE(polyethylene)계 시트, PP(polypropylene)계 시트, 폴리머 클레이 복합체(polymer clay composite) 및 액정성 폴리머 시트로 이루어진 군으로부터 선택되는 적어도 어느 하나 이상을 포함할 수 있다.
상기 폴리머 클레이 복합체란 폴리머 내에 판상형으로 생긴 클레이를 분산시킨 복합체를 의미한다. 판상형으로 생긴 클레이가 폴리머 내에 배열되어 있기 때문에 기체 등이 빠져나가는 이동 경로(pass way length)가 증가되어 기체 성분의 통과를 억제하여 주며, 동일한 원리로 수분을 차단할 수 있다. 또한, 상기 액정성 폴리머 시트는 그 기본 물질이 액정성 폴리머(liquid crystal polymer)로서, 이러한 액정성 폴리머는 그 특징상 방향족 그룹으로 이루어진 단단한 부분(rigid segment)이 액정과 유사한 거동을 하고 이러한 부분들이 상기 폴리머 클레이의 클레이와 같이 이동경로를 증가시켜 수분 침투를 차단할 수 있다.
본 발명의 일 실시예에 있어서, 상기 실란트 폴리머층은 열에 의하여 접착되는 열접착성 또는 열융착성을 가지며, 폴리프로필렌-아크릴산 공중합체, 폴리에틸렌-아크릴산 공중합체, 염화폴리 프로필렌, 폴리프로필렌-부틸렌-에틸렌 삼원공중합체, 폴리프로필렌, 폴리에틸렌 및 에틸렌 프로필렌 공중합체로 이루어진 군에서 선택되는 적어도 어느 하나 이상을 포함할 수 있다.
또한, 상기 수분 차단성 필름과 상기 실란트 폴리머층간의 접착력이 낮은 조합을 고려하여, 상기 수분 차단성 필름 및 상기 실란트 폴리머층 사이에 접착층을 포함할 수 있다. 이를 통하여 접착특성 및 수분 차단 특성을 더욱 향상시킬 수 있다. 상기 접착층의 소재로는 예를 들어, 우레탄계 물질, 아크릴계 물질, 열가소성 엘라스토머를 함유하는 조성물이 있으며 이에 한정되지 아니한다. 예를 들면 Dry lamination 식으로 수분 차단층을 제조하는 경우에는 접착층이 필요할 수 있으며, Melted 실란트 물질을 직접 금속층에 형성시키는 경우에는 충분한 접착력을 가지고 있는 바, 추가의 접착층이 필요하지 않을 수 있다.
도 3을 참고하면, 상기 수분 차단성 필름(1) 및 수분 차단성 필름의 양쪽에 위치한 실란트 폴리머층(2) 사이에 접착층(3)을 포함할 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따른 수분 차단층은 수분 차단성 필름 및 양쪽 실란트 폴리머층 사이 적어도 한쪽면 이상에 기계적 지지층이 포함될 수 있다. 상기 기계적 지지층은 큰 모듈러스(modulus)를 보이는 지지층으로서, 이러한 특성으로 인하여 수분차단층을 연신(당겨지는 힘)시 수분 차단층(보다 구체적으로 금속 시트 수분차단층)에 균열이 생기는 것을 억제할 수 있다. 따라서, 외부의 연속적인 구부림시에도 수분 차단층(보다 구체적으로 금속 시트 수분 차단층)의 파단을 제어하여 전지내로의 수분 차단층 효과를 보다 현저하게 효과적으로 유지할 수 있다.
상기 기계적 지지층은 큰 모듈러스 값을 가지는 지지층으로서, 구체적으로 모듈러스(Tensile Modulus) 값이 0.5 내지 6 GPa인 고분자 재료로서, 보다 구체적으로 폴리올레핀계, 폴리에스테르계, 폴리이미드 및 폴리아미드계 고분자로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있다.
상기 수분 차단층이 기계적 지지층을 포함할 때, 수분 차단성 필름은 금속 시트를 사용하는 것이 바람직하다
바람직하게, 상기 수분 차단성 필름 및 기계적 기재층 사이에 접착층을 포함할 수 있으며, 이 때 접착성은 내전해성을 띄는 접착층을 사용해야한다.
보다 구체적인 또 다른 일 실시예에 따른 수분 차단층은 도 4와 같이 실란트 폴리머층(2), 기계적 지지층(4), 수분 차단 필름(1), 바람직하게 금속 시트 수분 차단층 및 실란트 폴리머층(2)으로 차례로 적층된 구조이다. 또한, 도 5를 참고하면, 도 4의 구조에서 수분 차단 필름(1) 및 기계적 지지층(4) 사이에 접착층(5), 바람직하게 내전해성을 띄는 접착층을 포함할 수 있다.
상기 본 발명에 따른 수분 차단층은 케이블형 이차전지용 패키징 단독으로 사용될 수 있으며, 또는 고분자 수지층 등 다양한 종류의 고분자를 수분 차단층의 외곽층으로 더 구비할 수 있다.
바람직하게 본 발명에 따른 케이블형 이차전지용 패키징은 수분 차단층 및 상기 수분 차단층의 외면을 둘러싸는 열수축 튜브를 포함할 수 있다. 상기 열수축 튜브는 가열하면 수축하는 튜브로서, 단자(端子) 또는 형태나 크기가 다른 물질을 빈틈없이 꽉 싸게 되는 물질을 의미한다. 본 발명은 상기 수분 차단층을 전극 조립체 외면에 소정 부분 겹치게 감싸고, 이를 열수축 튜브에 삽입한 이후에 열을 가하게 되면, 상기 열수축 튜브를 통하여 전해지는 열에 의하여 수분 차단층의 실링 폴리머가 녹으면서 수분 차단층의 실링이 진행되며, 동시에 열수축 튜브가 가열되면서 수축되어, 상기 전극 구조체 외면을 둘러쌓은 수분 차단층과 열수축 튜브 사이를 빈틈없이 타이트한 패키징을 제공할 수 있다. 빈틈없는 타이트한 패키징을 통하여 패키징의 수분 차단 성능을 보다 더 향상시키게 되며, 열수축 튜브를 통하여 절연의 효과도 동시에 얻을 수 있다. 또한, 열수축 튜브만 사용하게 되면 열수축 튜브의 그 구조상 기공이 존재하여 수분이 전지 내부로 유입되는 현상이 발생되기도 하지만, 본 발명은 수분 차단층 및 열수축 튜브를 모두 포함하여서 수분 차단의 효과와 함께 케이블 전지의 보호 역할을 충분히 하도록 하였다. 본 발명에 따른 수분 차단층에 부드러운 재질의 열 수축 튜브를 형성시키게 되면, 열 수축 튜브가 수분 차단층을 밀착하여 고정시켜 주기 때문에, 수분 차단층 표면에 주름 생성 가능성을 현저하게 낮춰주게 되고, 이를 통하여 전지의 유연성 측면에서 장점으로 작용할 수 있다.
도 6을 참고하면, 상기 도 6은 수분 차단층 및 열수축 튜브를 포함하는 케이블형 이차전지용 패키징의 열을 가하기 전 상태이다. 즉, 수분 차단용 필름(1)의 양쪽면에 실란트 폴리머층(2)을 포함하는 수분 차단층(10)이 전극 구조체의 외면을 감싸면서 소정 부분이 겹치도록 되어 있으며, 그 외곽에 열수축 튜브(6)이 존재하게 된다. 이 후에 열을 가하게 되면, 열수축 튜브를 통하여 전해진 열로 수분 차단층이 겹치는 부분의 실링이 진행되게 되며, 열수축 튜브는 수축하여 전극 구조체를 감싸는 수분 차단층 및 열수축 튜브 사이를 빈틈없이 타이트하게 패키징되게 된다.
상기 열수축 튜브는 다양한 재질 및 형태를 갖는 열수축 튜브가 상용화 되어 있으므로, 본 발명의 목적에 적합한 것을 용이하게 입수하여 사용할 수 있다. 이차전지의 열적 손상을 주지 않도록, 수축 가공의 온도를 저온으로 하는 것이 필요하며, 일반적으로는 70 내지 200℃, 바람직하게는 70 내지 150℃, 더 바람직하게는 100 내지 150℃, 보다 더 바람직하게는 70 내지 120℃의 온도로 수축이 완료되는 것이 요구된다. 이러한 열수축 튜브층은, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에틸렌테레프탈레이트 등의 폴리에스테르계, 폴리비닐리덴플루오라이드, 폴리테트라플루오로에틸렌 등의 플루오로수지 및 폴리염화비닐 등으로 이루어진 군으로 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명은 또한, 본 발명에 따른 케이블형 이차전지용 패키징을 포함하는 케이블형 이차전지를 제공한다.
본 발명에 따른 패킹된 케이블형 전지는 내부전극, 상기 내부전극을 둘러싸며 형성된 전극의 단락을 방지하는 분리층 및 상기 분리층의 외면을 둘러싸며 형성된 외부전극을 포함하는 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극 조립체; 및 상기 전극 조립체의 외면을 둘러싸며 밀착되는 본 발명에 따른 케이블형 이차전지용 패키징을 포함하게 된다.
본 발명에 있어서, 소정의 형상이라 함은 특별히 형상을 제한하지 않는 다는 의미로서, 본 발명의 본질을 훼손하지 않는 어떠한 형상도 가능하다는 의미이다. 본 발명의 케이블형 이차전지는 소정의 형상의 수평 단면을 가지며, 수평 단면의 길이방향으로 길게 늘어진 선형구조를 갖고, 가요성을 가지므로 변형이 자유롭다.
본 발명의 일 실시예에 따르면, 상기 패키징은 전극 조립체의 양 끝단이 외부에 노출되도록 상기 전극 조립체의 외부면을 감싸며 밀착되어 형성될 수 있다. 상기 패키징은 상기 전극 조립체의 양 끝단이 외부에 노출되도록 형성되어, 추후 상기 전극 조립체의 일단은 내부전극용 금속탭과 접합하게 되며, 타단은 외부전극용 금속탭과 접합하게 됨으로써 전지로서의 역할을 수행할 수 있게 된다. 상기 금속탭들은, 일반적인 전지에서와 같은 방식으로 형성될 수 있으며, 절연성을 향상시키기 위해 국부적으로 실란트층이 형성될 수 있다.
도 7을 참고하면, 내부전극 집전체(120)와 상기 내부전극 집전체(120)의 표면에 형성된 내부전극 활물질층(130)을 구비하는 내부전극; 상기 내부전극의 외면을 둘러싸며 형성된 전극의 단락을 방지하는 분리층(140) 및 상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층(150)과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부전극 집전체(160)를 구비하는 외부전극을 포함하는 전극 조립체(100); 및 상기 전극 조립체(100)의 외면을 둘러싸며 밀착되어 형성되는 패키징(170)을 포함하되, 상기 패키징(170)은 상기 기술된 본 발명에 따른 이차전지용 패키징이다.
이하 본 발명에 따른 전극조립체에 대하여 보다 구체적으로 설명한다.
본 발명의 바람직한 일 실시예에 있어서, 상기 전극조립체의 내부전극은 전해질을 포함하는 리튬이온 공급 코어부, 상기 리튬이온 공급 코어부의 외면을 둘러싸며 권선된 하나 이상의 와이어형 내부집전체와 내부전극활물질층을 구비할 수 있다.
상기 내부전극은, 상기 내부전극 활물질층이 상기 와이어형 내부집전체의 전 표면에 형성된 구조; 또는 상기 내부전극 활물질층이 권선된 와이어형 내부집전체의 외부면을 둘러싸며 형성된 구조; 등이 가능하다.
그 중, 상기 내부전극 활물질층이 상기 와이어형 내부집전체의 전 표면에 형성된 구조와 관련하여, 도 8에 도시된 바와 같이 하나의 와이어형 내부집전체(220)가 리튬이온 공급 코어부(210)의 외면에 권선되기 전에, 미리 와이어형 내부집전체(220)의 표면에 내부전극 활물질층(230)이 형성될 수 있고, 도 9에 도시된 바와 같이 내부전극 활물질층(330)이 표면에 형성된 둘 이상의 와이어형 내부집전체(320)가 교차하며 권선될 수도 있다. 이와 같이 둘 이상의 와이어형 내부집전체(320)가 함께 권선될 경우, 전지의 레이트 특성의 향상에 유리하다.
그리고, 상기 내부전극 활물질층이 권선된 와이어형 내부집전체의 외부면을 둘러싸며 형성된 구조와 관련하여, 리튬이온 공급 코어부의 외면에 와이어형 내부집전체를 권선한 후, 상기 권선된 와이어형 내부집전체의 외부면을 내부전극 활물질층이 둘러싸도록 형성될 수 있다.
그리고, 본 발명의 와이어형 내부집전체(220, 320, 420, 520)로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자를 사용하여 제조된 것이 바람직하다. 집전체는 활물질의 전기화학 반응에 의해 생성된 전자를 모으거나 전기화학반응에 필요한 전자를 공급하는 역할을 하는 것으로, 일반적으로 구리나 알루미늄 등의 금속을 사용한다. 특히, 도전재로 표면처리된 비전도성 고분자 또는 전도성 고분자로 이루어진 고분자 전도체를 사용하는 경우에는 구리나 알루미늄과 같은 금속을 사용한 경우보다 상대적으로 가요성이 우수하다. 또한, 금속 집전체를 대체하여 고분자 집전체를 사용하여 전지의 경량성을 달성할 수 있다.
이러한 도전재로는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리설퍼니트리드, ITO(Indum Thin Oxide), 은, 팔라듐 및 니켈 등이 가능하며, 전도성 고분자는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 등이 사용 가능하다. 다만, 집전체에 사용되는 비전도성 고분자는 특별히 종류를 한정하지는 않는다.
한편, 상기 외부전극은, 도 8 및 도 9에서와 같이 상기 분리층(240, 340)의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체(250, 350)와 상기 시트형 외부집전체(250, 350)의 외면을 둘러싸며 형성된 외부전극 활물질층(260, 360)을 구비하는 구조일 수 있으나, 이에만 한정되는 것은 아니고, 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 외부전극 활물질층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체를 구비하는 구조, 분리층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체와 시트형 외부집전체의 외면을 둘러싸며 분리층과 접촉하도록 형성된 외부전극 활물질층을 구비하는 구조, 또는 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층, 및 상기 외부전극 활물질층 내에 피복되어 있고, 분리층의 외면을 이격된 상태로 둘러싸며 권선되어 형성된 시트형 외부집전체를 구비하는 구조 등이 가능하다.
나아가, 시트형 외부집전체가 분리층의 외면에 권선되기 전에, 시트형 외부 집전체의 적어도 일면에 외부전극 활물질층을 형성하여 시트형의 접합체를 제작한 후, 상기 시트형의 접합체를 상기 분리층의 외면에 권선하여 외부전극을 형성할 수도 있다. 즉, 도 10에서와 같이 상기 외부전극은, 상기 외부전극 활물질층(460)과 상기 시트형 외부집전체(450)가 접합되어 형성된 시트형 접합체(450, 460)가 상기 분리층(440)의 외면을 둘러싸며 권선된 것일 수 있다.
그리고, 상기 시트형 외부집전체(250, 350, 450, 550)는 표면적을 더욱 증가시키기 위해 메쉬형 집전체일 수도 있다. 이러한 외부집전체(250, 350, 450, 550)로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조된 것을 사용할 수 있다.
한편, 상기 외부집전체의 표면적을 더욱 증가시키기 위해, 적어도 일면에, 복수의 함입부가 형성될 수 있다. 이때, 상기 복수의 함입부는, 연속적인 패턴을 갖거나, 또는 단속적인 패턴을 가질 수 있다. 즉, 서로 이격되어 길이방향으로 형성된 연속적인 패턴의 함입부를 가지거나, 또는 복수개의 구멍들이 형성된 단속적인 패턴을 가질 수 있다. 상기 복수개의 구멍들은 원형일 수도 있고, 다각형일 수도 있다.
또한, 본 발명의 바람직한 일 실시예로서, 도 11과 같이 상기 외부전극은 외부집전체(451), 상기 외부집전체의 일면에 형성된 외부전극 활물질층(452), 상기 외부전극 활물질층의 상면에 형성되며, 도전재와 바인더를 포함하는 도전층(453), 상기 도전층의 상면에 형성된 다공성의 제1 지지층(454) 및 상기 외부집전체의 타면에 형성된 제2 지지층(455)을 포함하는 시트형 외부전극일 수 있다.
상기 제1 지지층(454)은, 메쉬형 다공성 막 또는 부직포일 수 있다. 이와 같이 다공성의 구조를 가짐으로써, 외부전극 활물질층(452)으로의 전해액 유입을 원활하게 하며, 제1 지지층(454) 그 자체로도 전해액의 함침성이 뛰어나 이온 전도성이 확보되어 전지 내부의 저항증가를 방지하여 전지의 성능저하를 방지한다.
그리고, 상기 제1 지지층(454)은, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide) 및 폴리에틸렌나프탈렌(polyethylenenaphthalene)으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성될 수 있다.
한편, 상기 제1 지지층(454)의 상면에, 도전재와 바인더를 구비하는 도전재 코팅층을 더 포함할 수 있다. 상기 도전재 코팅층은, 전극 활물질층의 전도성을 향상시켜 전극의 저항을 감소시킴으로써 전지의 성능 저하를 방지한다.
이때, 상기 도전재와 바인더는 후술할 도전층에 사용되는 것과 동일한 것들이 사용될 수 있다.
음극의 경우 음극 활물질층의 전도성은 비교적 우수하기 때문에 상기 도전재 코팅층을 포함하지 않더라도, 일반적인 음극이 사용된 경우와 유사한 성능을 나타내지만, 양극의 경우에는 양극 활물질층의 전도성이 낮아 전극 저항 증가에 따른 성능 저하 현상이 심화될 수 있기 때문에, 전지 내부의 저항 감소를 위해 양극에 적용될 때 특히 유리하다.
이때, 상기 도전재 코팅층은, 상기 도전재와 상기 바인더가 80:20 내지 99:1의 중량비로 혼합된 것일 수 있다. 상기 바인더의 함량이 증가하게 되면, 전극의 저항이 과도하게 증가될 수 있지만, 전술한 수치범위의 함량을 만족하게 되면, 전극의 저항이 과도하게 증가하는 것을 방지하게 된다. 나아가 전술한 바와 같이 제1 지지층이 전극 활물질층의 탈리현상을 방지해 주는 완충작용을 하기 때문에, 비교적 소량의 바인더가 포함되더라도, 전극의 유연성 확보에는 크게 지장을 받지 않게 된다.
한편, 상기 제2 지지층(455)은, 고분자 필름일 수 있고, 폴리올레핀수지, 폴리에스테르수지, 폴리이미드수지 및 폴리아미드수지로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성되는 것일 수 있다.
한편, 상기 도전층(453)은, 상기 도전재와 상기 바인더가 1:10 내지 8:10의 중량비로 혼합되어 형성될 수 있다.
이때, 상기 도전층(453)은 전극 활물질층으로의 전해액 유입을 원활하도록 하기 위해 다공성 구조를 형성할 수 있으며, 이때, 상기 도전층에 형성된 기공의 크기가, 0.01 ㎛ 내지 5 ㎛이고, 기공도가 5 내지 70 %일 수 있다.
그리고, 상기 도전재는, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있으나, 이에만 한정하는 것은 아니다.
그리고, 상기 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있지만 이에만 한정하는 것은 아니다.
한편, 상기 리튬이온 공급 코어부(110, 210, 310, 410, 510)는, 전해질을 포함하는데, 이러한 전해질로는 그 종류를 특별히 한정하는 것은 아니지만 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 비닐렌카보네이트(VC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸포르메이트(MF), 감마-부티로락톤(γ-BL;butyrolactone), 설포레인(sulfolane), 메틸아세테이트(MA; methylacetate), 또는 메틸프로피오네이트(MP; methylpropionate)를 사용한 비수전해액; PEO(poly(ethylene oxide), PVdF(poly(vinylidene fluoride), PVdF-HFP(poly(vinylidene fluoride-co-hexafluoropropylene)), PMMA(poly(methyl methacrylte)), PAN(polyacrylonitrile) 또는 PVAc(polyvinyl acetate)를 사용한 겔형 고분자 전해질; 또는 PEO(poly(ethylene oxide)), PPO(poly(propylene oxide)), PEI(poly(ethylene imine)), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 등을 사용할 수 있다. 그리고, 이러한 전해질은, 리튬염을 더 포함할 수 있는데, 이러한 리튬염으로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 등을 사용하는 것이 바람직하다.
한편, 이러한 리튬 이온 공급 코어부(110, 210, 310, 410, 510)는 전해질로만 구성될 수 있으며, 액상의 전해액의 경우에는 다공질의 담체를 사용하여 구성될 수도 있 다. 상기 내부전극은, 음극 또는 양극일 수 있으며, 상기 외부전극은, 상기 내부 전극과 상응하는 양극 또는 음극일 수 있다. 본 발명의 전극 활물질층은 집전체를 통해서 이온을 이동시키는 작용을 하고, 이들 이온의 이동은 전해질층으로부터의 이온의 흡장 및 전해질층으로의 이온의 방출을 통한 상호작용에 의한다.
이러한 전극 활물질층은 음극 활물질층과 양극 활물질층으로 구분할 수 있다.
구체적으로, 상기 내부전극이 음극이고, 상기 외부전극이 양극인 경우, 상기 내부전극 활물질층은 음극 활물질로서, 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있고, 상기 외부전극 활물질층은 양극 활물질로서, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
또한, 상기 내부전극이 양극이고, 상기 외부전극이 음극인 경우에는 내부전극 활물질층은 양극 활물질층이 되고, 외부전극 활물질층은 음극 활물질층이 될 수 있다.
전극 활물질층은 전극 활물질, 바인더 및 도전재를 포함하며 집전체와 결합하여 전극을 구성한다. 전극이 외부의 힘에 의해서 접히거나 심하게 구부러지는 등의 변형이 일어나는 경우에는, 전극 활물질의 탈리가 발생하게 된다. 이러한 전극활물질의 탈리로 인하여 전지의 성능 및 전지 용량의 저하가 발생하게 된다. 하지만, 권선된 시트형 외부집전체가 탄성을 가지므로 외부의 힘에 따른 변형시에 힘을 분산하는 역할을 하므로 전극 활물질층에 대한 변형이 적게 일어나고 따라서 활물질의 탈리를 예방할 수 있다. 본
발명의 분리층(140, 240, 340, 440, 540)은 전해질층 또는 세퍼레이터를 사용할 수 있다. 이러한 이온의 통로가 되는 전해질층으로는 PEO(poly(ethylene oxide), PVdF(poly(vinylidene fluoride), PVdF-HFP(poly(vinylidene fluoride-cohexafluoropropylene)), PMMA(poly(methyl methacrylte)), PAN(polyacrylonitrile) 또는 PVAc(polyvinyl acetate)를 사용한 겔형 고분자 전해질; 또는 PEO(poly(ethylene oxide)), PPO(poly(propylene oxide)), PEI(poly(ethylene imine)), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 등을 사용한다. 고체 전해질의 매트릭스(matrix)는 고분자 또는 세라믹 글라스를 기본골격으로 하는 것이 바람직하다. 일반적인 고분자 전해질의 경우에는 이온전도도가 충족되더라도 반응속도적 측면에서 이온이 매우 느리게 이동할 수 있으므로, 고체인 경우보다 이온의 이동이 용이한 겔형 고분자의 전해질을 사용하는 것이 바람직하다. 겔형 고분자 전해질은 기계적 특성이 우수하지 않으므로 이를 보완하기 위해서 기공구조 지지체 또는 가교 고분자를 포함할 수 있다. 본 발명의 전해질층은 분리막의 역할이 가능하므로 별도의 분리막을 사용하지 않을 수 있다.
본 발명의 전해질층은, 리튬염을 더 포함할 수 있다. 리튬염은 이온 전도도 및 반응속도를 향상시킬 수 있는데, 이들의 비제한적인 예로는, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트 라페닐붕산리튬 등을 사용할 수 있다.
상기 세퍼레이터로는 그 종류를 한정하는 것은 아니지만 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군에서 선택된 고분자로 제조한 다공성 기재; 또는 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재 등을 사용할 수 있다. 특히, 리튬이온 공급 코어부의 리튬이온이 외부전극에도 쉽게 전달되기 위해서는 상기 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트 및 폴리에틸렌나프탈렌으로 이루어진 군에서 선택된 고분자로 제조한 다공성 기재에 해당하는 부직포 재질의 세퍼레이터를 사용하는 것이 바람직하다.
이하에서는 일 실시예에 따른 케이블형 이차전지의 제조방법을 도 10을 참조 하여 간략하게 살펴본다.
먼저, 내부전극 활물질층(430)이 표면에 형성된 와이어형 내부집전체(420)를 권선하여 중심부에 빈 공간이 형성된 내부전극을 준비한다. 상기 와이어형 내부집전체(420)의 표면에 내부전극 활물질층(430)을 형성하는 방법으로는 일반적인 코팅방법이 적용될 수 있으며, 구체적으로는 전기도금(electroplating) 또는 양극산화처리(anodic oxidation process) 방법이 사용 가능하지만, 활물질을 포함하는 전극슬러리를 콤마코터기(comma coater) 또는 슬롯다이코터기(slot die coater)를 이용하여 코팅하는 방법을 사용하여 제조하는 것이 바람직하다. 또한, 활물질을 포함하는 전극슬러리인 경우에는 딥코팅(dip coating) 또는 압출기를 사용하여 압출코팅하는 방법을 사용하여 제조하는 것도 가능하다.
이어서, 전극의 단락을 방지하는 분리층(440)을 상기 내부전극의 외면을 둘러싸도록 형성시킨다. 그 후, 시트형 외부집전체(450)의 일면에 외부전극 활물질층(460)을 형성하 여 시트형의 접합체(450, 460)를 제작한 후, 이어서 상기 시트형의 접합체(450, 460)를 상기 분리층(440)의 외면에 권선하여 외부전극을 형성함으로써 전극 조립체를 제작한다.
이어서, 상기 내부전극의 중심부에 형성된 빈 공간에 전해질을 주입하여 리튬이온 공급 코어부(410)를 형성한다.
이와 같이, 상기 리튬이온 공급 코어부(410)는, 전극조립체의 외면에 패키징(470)까지 형성된 후에 전해액이 주입됨으로써 형성될 수도 있지만, 권선된 와이어형 내부전극을 형성하기 전에, 고분자 전해질을 압출기 등을 사용하여 와이어 형태로 미리 형성하거나, 스폰지 재질의 와이어 형태의 담체를 준비한 후에 이에 비수전해액을 주입함으로써 미리 형성할 수도 있고, 또는, 내부전극을 준비한 후에, 내부전극 중심부의 빈 공간에 비수전해액을 주입함으로써 리튬이온 공급 코 어부(410)를 형성할 수도 있다.
이어서, 전해액 주입부를 완전히 밀봉하여 케이블형 이차전지를 제조한다
이하에서는, 또 다른 가능한 실시예를 도 12를 참고하여 설명한다.
도 12를 참조하면, 본 발명의 일 실시예에 따른 본 발명의 케이블형 이차전지는, 전해질을 포함하는 2 이상의 리튬이온 공급 코어부(510), 각각의 상기 리튬이온 공급 코어부(510)의 외면을 둘러싸며 권선된 하나 이상의 와이어형 내부 집전체(520)와 내부전극 활물질층(530)을 구비하는 서로 평행하게 배치된 2 이상의 내부전극; 상기 내부전극들의 외면을 함께 둘러싸며 형성된 전극의 단락을 방지하는 분리층(540); 및 상기 분리층(540)의 외면을 둘러싸며 권선되는 시트형 외부집전체(550)와 외부전극 활물질층(560)을 포함하는 외부전극;을 구비하고 소정 형상의 수평 단면을 가지며 길이방향으로 연장되는 전극 조립체, 및 상기 전극 조립체의 외면을 둘러싸며 밀착되어 형성되는 본 발명에 따른 패키징(570)을 포함한다.
이러한 케이블형 이차전지는 복수의 전극으로 이루어진 내부전극을 구비하므로, 내부전극의 개수를 조절함으로써 전극 활물질층의 로딩량 및 전지 용량의 조정이 용이하고, 다수의 전극을 구비하므로 단선의 가능성을 방지할 수 있다.
또한, 본 발명은 패킹된 케이블형 이차전지의 제조방법을 제공한다.
(S1) 내부전극, 상기 내부전극을 둘러싸며 형성된 전극의 단락을 방지하는 분리층 및 상기 분리층의 외면을 둘러싸며 형성된 외부전극을 포함하는 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극 조립체를 준비하는 단계;
(S2) 상기 전극 조립체의 외면 둘레보다 더 긴 길이이며, 양쪽 외면에 실란트 폴리머층과 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 수분 차단층을 준비하는 단계;
(S3) 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 소정 부분 겹치도록 상기 전극 조립체의 전체 외면에 상기 수분 차단층을 둘러싸는 단계; 및
(S4) 상기 수분 차단층이 둘러싸여진 전극 조립체를 가열하며, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 겹쳐진 소정 부분을 접착시키는 단계를 포함한다.
바람직하게, 상기 (S2) 단계에서 준비되는 수분 차단층은 수분 차단성 필름 및 양쪽 실란트 폴리머층 사이 적어도 한쪽면 이상에 기계적 지지층이 포함된 것 일 수 있으며, 또는 실란트 폴리머층, 기계적 지지층, 금속 시트 수분 차단층 및 실란트 폴리머층으로 차례로 적층된 구조일 수 있다.
상기 전극 조립체의 외면 둘레보다 더 긴길이의 수분 차단성 필름이란, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 소정 부분 겹치도록 하기 위한 것으로써, 예를 들어, 전극 조립체의 외면 둘레보다 더 긴 길이는 전극 구조체 외면 둘레의 1 내지 99%, 또는 1 내지 70%가 될 수 있으며, 바람직하게 3 내지 50%, 더 바람직하게 5 내지 30%가 될 수 있다.
또한 바람직하게, 상기 상기 (S4)단계가 상기 수분 차단층이 둘러싸여진 전극 조립체를 열수축 튜브에 삽입한 후에 가열하여, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 겹친 소정 부분을 접착시키고, 상기 열수축 튜브가 수축되어 열수축 튜브와 상기 수분 차단층이 둘러싸여진 전극 조립체를 접합시키는 단계를 통하여 열수축 튜브를 적용할 수도 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<패킹된 케이블 전지의 제조>
실시예 1
250㎛의 CU wire에 Graphite/ Denka black/ PVdF (=70/5/25wt%)로 이루어진 슬러리를 제조한 후 이를 코팅하여 Graphite 전극층이 형성된 와이어형 전극을 준비하였다. 준비된 와이어 전극 4개를 권선하여 스프링 형태로 내부가 비어있어 리튬 이온 공급 코어부가 존재 가능한 열린 구조의 내부 전극부를 형성하였고, 그 주변에 세퍼레이터를 권선하여 분리층을 형성하였다. Al foil 위에 LiCoO2/Denka black/PVdF (=85/5/15 wt%)를 형성한 후, 도전층 슬러리(Denka black/PVdF=40/60)을 전극층위에 코팅하면서 도전층 슬러리 위에 다공성 폴리머 기재인 부직포를 위치한 후 건조를 통해 시트형 외부 전극을 제조하였다. 제조된 시트형 외부전극을 폭이 2mm가 되게 자른 후, 내부전극/분리층 주변에 시트형 외부 전극을 권선하여 전극 조립체를 준비하였다.
상기 준비된 전극 구조체에 외면에 수분 차단성 필름을 Al 시트로 하고, 양쪽의 실란트 폴리머층을 폴리프로필렌으로 하며, 기계적 지지층을 PET로 하는 수분 차단층(PP/PET/Al sheet/PP)을 제조한 후 일정 부분의 수분 차단층이 겹치도록 둘러싸고, 1차 적으로 수분 차단층을 전극 조립체 표면에 겹쳐진 O형태로 형성한다. 이를 형성할 때, 상하부가 U자로 된 금형 내부에 수분 차단층이 형성된 전극 조립체를 위치한 후 150℃, 50kg중, 3초간 가열 가압하여 실란트 폴리머 층을 접합시킨다(이때 전해액이 들어갈 투입구는 실링을 하지 않은 상태로 유지한다). 실링이 되지 않은 부분을 이용하여 열린 구조의 내부전극 지지체 중심부에 비수전해액 (1M LiPF6, EC/PC/DEC)을 주사기를 이용하여 주입하여 리튬이온 공급 코어부를 형성하였고, 실링되지 않은 수분 차단층을 완전히 밀봉한다.
이후, PET 폴리머 열수축 튜브를 도입하여 130℃의 온도로 1분간 가열하여 수분 차단층이 실링되며, 열수축 튜브가 수축되어 타이트하게 밀봉되도록 전극 조립체 외면에 패키징을 형성하여 패킹된 케이블형 이차전지를 제조하였다.
상기 케이블형 이차전지 패키징의 외면은 도 14의 사진으로 나타내었다.
실시예 2
상기 실시예 1과 동일한 전극 조립체에 PET 폴리머 열수축 튜브를 제외하고 수분 차단층(PP/PET/Al sheet/PP)만을 도입하여 패키징이 형성된 케이블형 이차전지를 제조하였다. 사용된 패키징은 도 15의 사진으로 나타내었다.
비교예 1
상기 실시예 1과 동일한 전극 조립체에 수분 차단층을 제외하고 PET 폴리머 열수축 튜브를 도입한 패키징을 형성하여 패킹된 케이블형 이차전지를 제조하였다.
비교예 2
상기 실시예 1과 동일한 전극 조립체에 3층 형상이 아닌 한쪽 면에만 실란트 폴리머층이 형성되어 있는 수분 차단층을 구비한 패키징이 형성된 케이블형 이차전지를 제조하였다.
비교예 3
상기 실시예 1과 동일한 전극 조립체에 일정 부분을 겹치지 않은 형태(튜브 형태)의 수분 차단층을 구비한 패키징이 형성된 케이블형 이차전지를 제조하였다.
시험예
0.5C의 전류 밀도로 4.2~3.0V의 전압조건에서 충방전 실험을 진행하였다. 실험결과는 도 13에 나타내었다. 도 13에 나타난 것과 같이 열수축 튜브만 도입한 비교예 1에 비하여 수분 차단층을 도입한 실시예의 향상된 전지 수면 특성을 확인할 수 있었으며, 이러한 패키징 구조 도입을 통하여 케이블 전지의 수분에 의한 수명 열화 현상을 효과적으로 억제할 수 있음을 확인하였다.
또한, 수분 차단층 한쪽 면에만 실란트 층이 형성된 비교예 2, 수분 차단층이 일정 부분 겹쳐지지 않고 형성된 비교예 3과 실시예 1을 비교하였을 때, 케이블 전지의 수분에 의한 수명 열화 형상을 효과적으로 억제할 수 있음을 확인하였다.
[부호의 설명]
1 - 수분 차단성 필름
2 - 실란트 폴리머층
3 - 수분 차단성 필름 및 실란트 폴리머 층의 접착층
4 - 기계적 지지층
5 - 수분 차단성 필름 및 기계적 지지층의 접착층
6 - 열수축 튜브
10, 20, 30, 40, 50 - 수분 차단층
30, 170, 270, 370, 470, 570 - 케이블형 이차전지용 패키징
210, 310, 410, 510 - 리튬이온 공급 코어부
120, 220, 320, 420, 520 - 내부 집전체
130, 230, 330, 430, 530 - 내부전극 활물질층
140, 240, 340, 440, 540 - 분리층
150, 250, 350, 450, 550 - 외부전극 활물질층
160, 260, 360, 4560, 560 - 외부 집전체
451 - 외부집전체
452 - 외부전극 활물질층
453 - 도전층
454 - 제1 지지층
455 - 제2 지지층

Claims (31)

  1. 케이블 전지 전극 조립체의 외면을 둘러싸는 케이블형 이차전지용 패키징에 있어서,
    상기 케이블형 이차전지용 패키징은, 양쪽 외면에 실란트 폴리머층 및 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 수분 차단층을 구비하며,
    상기 수분 차단층은 상기 전극 조립체의 외면을 둘러싸는 관형태이고, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 소정 부분 서로 겹쳐서 접착되어 있는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  2. 제1항에 있어서,
    상기 수분 차단성 필름이 금속 시트 또는 폴리머 시트를 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  3. 제2항에 있어서,
    상기 금속 시트가 철(Fe), 탄소(C), 크롬(Cr), 망간(Mn), 니켈(Ni), 구리(Cu), 알루미늄(Al) 및 그 등가물로 이루어진 군으로부터 선택되는 어느 하나 또는 2종 이상의 합금을 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  4. 제2항에 있어서,
    상기 폴리머 시트가 PE(polyethylene)계 시트, PP(polypropylene)계 시트, 폴리머 클레이 복합체(polymer clay composite) 및 액정성 폴리머 시트로 이루어진 군으로부터 선택되는 적어도 하나 이상인 것을 특징으로 하는 케이블형 이차전지용 패키징.
  5. 제1항에 있어서,
    상기 실란트 폴리머층이 폴리프로필렌-아크릴산 공중합체, 폴리에틸렌-아크릴산 공중합체, 염화폴리 프로필렌, 폴리프로필렌-부틸렌-에틸렌 삼원공중합체, 폴리프로필렌 폴리에틸렌 및 에틸렌-프로필렌 공중합체로 이루어진 군에서 선택되는 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  6. 제1항에 있어서,
    상기 수분 차단층이 상기 수분 차단성 필름 및 상기 실란트 폴리머층 사이에 접착층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  7. 제1항에 있어서,
    상기 수분 차단층의 외면을 둘러싸는 열수축 튜브를 더 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  8. 제7항에 있어서,
    상기 열수축 튜브가 폴리올레핀, 폴리에스테르, 플루오로 수지 및 폴리염화비닐(PVC)로 이루어진 군에서 선택된 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  9. 제1항에 있어서,
    상기 수분 차단층은 수분 차단성 필름 및 양쪽 실란트 폴리머층 사이 적어도 한쪽면 이상에 기계적 지지층이 포함된 것을 특징으로 하는 케이블형 이차전지용 패키징.
  10. 제9항에 있어서,
    상기 수분 차단층은 실란트 폴리머층, 기계적 지지층, 금속 시트 수분 차단성 필름 및 실란트 폴리머층으로 차례로 적층된 구조인 것을 특징으로 하는 케이블형 이차전지용 패키징.
  11. 제9항에 있어서,
    상기 기계적 지지층은 폴리올레핀계, 폴리에스테르계, 폴리이미드 및 폴리아미드계 고분자로 이루어진 군으로부터 선택되는 적어도 하나 이상인 것을 특징으로 하는 케이블형 이차전지용 패키징.
  12. 제9항에 있어서,
    상기 수분 차단성 필름이 금속 시트를 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  13. 제9항에 있어서,
    상기 수분 차단성 필름 및 기계적 기재층 사이에 접착층을 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  14. 제9항에 있어서,
    상기 수분 차단층의 외면을 둘러싸는 열수축 튜브를 더 포함하는 것을 특징으로 하는 케이블형 이차전지용 패키징.
  15. 내부집전체 및 내부전극 활물질을 포함한 내부전극; 상기 내부전극을 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및 상기 분리층의 외면을 둘러싸며 형성되고 외부집전체 및 외부전극 활물질을 포함하는 외부전극;을 구비하고 소정 형상의 수평 단면을 가지며 길이 방향으로 연장된 전극 조립체; 및
    상기 전극 조립체의 외면을 둘러싸며 밀착되어 형성되는 제1항 내지 제14항 중 어느 한 항의 케이블형 이차전지용 패키징을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  16. 제15항에 있어서,
    상기 케이블형 이차전지용 패키징은 상기 전극 조립체의 양 끝단이 외부에 노출되도록 상기 전극 조립체의 외부면을 감싸며 밀착되어 형성되어 있는 것을 특징으로 하는 케이블형 이차전지.
  17. 제15항에 있어서,
    상기 전극 조립체의 내부전극이 전해질을 포함하는 리튬이온 공급 코어부, 상기 리튬이온 공급 코어부의 외면을 둘러싸며 권선된 하나 이상의 와이어형 내부집전체와 내부전극 활물질층을 구비하는 것을 특징으로 하는 케이블형 이차전지.
  18. 제15항에 있어서,
    상기 내부전극은, 내부전극 활물질층이 와이어형 내부집전체의 전표면에 형성된 구조; 또는 내부전극 활물질층이 권선된 와이어형 내부집전체의 외부면을 둘러싸며 형성된 구조;인 것을 특징으로 하는 케이블형 이차전지.
  19. 제15항에 있어서,
    상기 내부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄- 카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조된 것을 특징으로 하는 케이블형 이차전지.
  20. 제15항에 있어서,
    상기 외부전극은, 상기 분리층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체와 상기 시트형 외부집전체의 외면을 둘러싸며 형성된 외부전극 활물질 층을 구비하거나, 상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 상기 외부전극 활물질층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체를 구비하거나, 상기 분리층의 외면을 둘러싸며 권선되어 형성된 시트형 외부집전체와 상기 시트형 외부집전체의 외면을 둘러싸며 상기 분리층과 접촉하도록 형성된 외부전극 활물질층을 구비하거나, 또는 상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층, 및 상기 외부전극 활물질층 내에 피복되어 있고, 상기 분리층의 외면을 이격된 상태로 둘러싸며 권선되어 형성된 시트형 외부집전체를 구비하는 것을 특징으로 하는 케이블형 이차전지.
  21. 제15항에 있어서,
    상기 외부전극은, 상기 외부전극 활물질층과 시트형 외부집전체가 접합되어 형성된 시트형 외부전극이 상기 분리층의 외면을 둘러싸며 권선되어 형성된 것을 특징으로 하는 케이블형 이차전지.
  22. 제15항에 있어서,
    상기 외부전극은 외부집전체, 상기 외부집전체의 일면에 형성된 외부전극 활물질층, 상기 외부전극 활물질층의 상면에 형성되며, 도전재와 바인더를 포함하는 도전층, 상기 도전층의 상면에 형성된 다공성의 제1 지지층, 및 상기 외부집전체의 타면에 형성된 제2 지지층을 포함하는 시트형 외부전극인 것을 특징으로 하는 케이블형 이차전지.
  23. 제15항에 있어서,
    상기 외부집전체는, 메쉬형 집전체인 것을 특징으로 하는 케이블형 이차전지.
  24. 제15항에 있어서,
    상기 외부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조된 것을 특징으로 하는 케이블형 이차전지.
  25. 제15항에 있어서
    상기 전극조립체는 전해질을 포함하는 리튬이온 공급 코어부;
    상기 리튬이온 공급 코어부의 외면을 둘러싸며 권선된 하나 이상의 와이어형 내부집전체와 상기 와이어형 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극;
    상기 내부전극의 외면을 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및 상기 분리층의 외면을 둘러싸며 권선되어 형성되고, 외부집전체, 상기 외부집전체의 일면에 형성된 외부전극 활물질층, 상기 외부전극 활물질층의 상면에 형성되며, 도전재와 바인더를 포함하는 도전층, 상기 도전층의 상면에 형성된 다공성의 제1 지지층, 및 상기 외부집전체의 타면에 형성된 제2 지지층을 포함하는 시트형 외부전극;을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  26. 제15항에 있어서,
    상기 내부전극 및 상기 외부전극이 각각 음극 및 양극이거나 또는 양극 및 음극인 것을 특징으로 하는 케이블형 이차전지.
  27. 제15항에 있어서,
    상기 분리층은, 전해질층 또는 세퍼레이터인 것을 특징으로 하는 케이블형 이차전지.
  28. (S1) 내부전극, 상기 내부전극을 둘러싸며 형성된 전극의 단락을 방지하는 분리층 및 상기 분리층의 외면을 둘러싸며 형성된 외부전극을 포함하는 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극 조립체를 준비하는 단계;
    (S2) 상기 전극 조립체의 외면 둘레보다 더 긴 길이이며, 양쪽 외면에 실란트 폴리머층과 상기 양쪽 외면의 실란트 폴리머층 사이에 수분 차단성 필름을 포함하는 수분 차단층을 준비하는 단계;
    (S3) 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 소정 부분 겹치도록 상기 전극 조립체의 외면에 상기 수분 차단층을 둘러싸는 단계; 및
    (S4) 상기 수분 차단층이 둘러싸여진 전극 조립체를 가열하며, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 겹쳐진 소정 부분을 접착시키는 단계를 포함하는 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  29. 제28항에 있어서,
    상기 (S2) 단계에서 준비되는 수분 차단층은 수분 차단성 필름 및 양쪽 실란트 폴리머층 사이 적어도 한쪽면 이상에 기계적 지지층이 포함된 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  30. 제28항에 있어서,
    상기 (S2) 단계에서 준비되는 수분 차단층은 실란트 폴리머층, 기계적 지지층, 금속 시트 수분 차단층 및 실란트 폴리머층으로 차례로 적층된 구조인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  31. 제28항에 있어서,
    상기 (S4)단계가 상기 수분 차단층이 둘러싸여진 전극 조립체를 열수축 튜브에 삽입한 후에 가열하여, 상기 수분 차단층 양 끝단의 실란트 폴리머층이 서로 겹친 소정 부분을 접착시키고, 상기 열수축 튜브가 수축되어 열수축 튜브와 상기 수분 차단층이 둘러싸여진 전극 조립체를 접합시키는 단계를 포함하는 것을 특징으로 하는 케이블형 이차전지의 제조방법.
PCT/KR2014/003737 2013-04-29 2014-04-28 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지 WO2014178590A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14737131.4A EP2822059B1 (en) 2013-04-29 2014-04-28 Packaging for cable-type secondary battery and cable-type secondary battery comprising same
CN201480000804.XA CN104396043B (zh) 2013-04-29 2014-04-28 线缆型二次电池用包装和包含其的线缆型二次电池
JP2015514943A JP6073469B2 (ja) 2013-04-29 2014-04-28 ケーブル型二次電池用パッケージ及びそれを含むケーブル型二次電池
US14/445,144 US9324978B2 (en) 2013-04-29 2014-07-29 Packaging for cable-type secondary battery and cable-type secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130047473 2013-04-29
KR10-2013-0047473 2013-04-29
KR1020140050843A KR101470554B1 (ko) 2013-04-29 2014-04-28 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
KR10-2014-0050843 2014-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/445,144 Continuation US9324978B2 (en) 2013-04-29 2014-07-29 Packaging for cable-type secondary battery and cable-type secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2014178590A1 true WO2014178590A1 (ko) 2014-11-06

Family

ID=51999947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003737 WO2014178590A1 (ko) 2013-04-29 2014-04-28 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지

Country Status (6)

Country Link
US (1) US9324978B2 (ko)
EP (1) EP2822059B1 (ko)
JP (1) JP6073469B2 (ko)
KR (2) KR101470554B1 (ko)
CN (1) CN104396043B (ko)
WO (1) WO2014178590A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4254614A1 (en) * 2022-03-28 2023-10-04 Ningde Amperex Technology Limited Electrochemical device and electronic device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393324B (zh) 2013-05-07 2017-08-15 株式会社Lg化学 线缆型二次电池
WO2014182064A1 (ko) * 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
KR102343691B1 (ko) * 2014-11-28 2021-12-27 삼성에스디아이 주식회사 아연공기전지 및 이의 제조방법
KR101856820B1 (ko) 2015-03-06 2018-05-10 주식회사 엘지화학 케이블형 이차전지
US10263224B2 (en) 2015-04-23 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
KR102070369B1 (ko) * 2015-09-03 2020-01-28 주식회사 엘지화학 케이블형 이차전지 및 이의 제조방법
KR102065733B1 (ko) 2015-10-21 2020-01-13 주식회사 엘지화학 전극 복합체, 그를 포함하는 이차전지 및 케이블형 전지 이차전지
US10770758B2 (en) 2015-10-21 2020-09-08 Lg Chem, Ltd. Cable-type secondary battery including winding core having guide portions
CN208284582U (zh) 2016-02-05 2018-12-25 株式会社Lg化学 线缆型二次电池
US11127999B2 (en) 2016-03-15 2021-09-21 Intel Corporation Package-less battery cell apparatus, and method for forming the same
KR20170139303A (ko) * 2016-06-09 2017-12-19 주식회사 엘지화학 이차전지
JP6967339B2 (ja) * 2016-09-06 2021-11-17 日東電工株式会社 電池外装用粘着テープ
KR102381736B1 (ko) 2017-11-06 2022-04-04 주식회사 엘지에너지솔루션 플렉서블 이차전지의 패키징 방법, 및 이 방법을 통해 제조된 플렉서블 이차전지와 그의 제조방법
KR102053853B1 (ko) * 2017-11-20 2019-12-09 한국생산기술연구원 나노 양극 활물질 입자를 포함하는 양극 및 이를 포함하는 플렉서블 이차전지 적층체
KR102164709B1 (ko) * 2017-11-20 2020-10-12 한국생산기술연구원 음극 집전체층, 이를 포함하는 음극 복합체 및 이를 포함하는 플렉서블 이차전지 적층체
US11211606B2 (en) 2017-12-28 2021-12-28 The Hong Kong Polytechnic University Electrode for battery and fabrication method thereof
KR102255537B1 (ko) * 2018-01-12 2021-05-25 주식회사 엘지에너지솔루션 파우치 필름 및 그의 제조 방법
KR102367368B1 (ko) * 2018-07-13 2022-02-23 주식회사 엘지에너지솔루션 케이블 배터리를 구비한 데이터 케이블 장치
JP2018186103A (ja) * 2018-08-30 2018-11-22 昭和電工パッケージング株式会社 蓄電デバイス用チューブ型外装体及び蓄電デバイス
US20210234218A1 (en) * 2018-10-19 2021-07-29 Lg Chem, Ltd. Film for packaging secondary battery and secondary battery comprising the same
KR102521578B1 (ko) * 2018-10-19 2023-04-13 주식회사 엘지에너지솔루션 플렉서블 이차전지용 패키징 및 이를 포함하는 플렉서블 이차전지
JP7194802B2 (ja) * 2019-02-27 2022-12-22 日本碍子株式会社 リチウム二次電池
EP3772121B1 (en) * 2019-08-02 2023-08-30 Prologium Technology Co., Ltd. Electricity supply system and package structure thereof
FR3125633B1 (fr) * 2021-07-22 2023-08-04 Renault Sas Cellule électrochimique de stockage d’énergie électrique
WO2023190997A1 (ja) * 2022-03-31 2023-10-05 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112461A1 (en) * 2001-03-01 2005-05-26 The University Of Chicago Packaging for primary and secondary batteries
JP2007265989A (ja) * 2006-03-02 2007-10-11 Sony Corp 電池素子外装材、これを用いた非水電解質二次電池及び電池パック
KR20080005627A (ko) * 2006-07-10 2008-01-15 주식회사 엘지화학 실링부의 안전성이 향상된 이차전지
KR20120094871A (ko) * 2011-02-17 2012-08-27 주식회사 엘지화학 케이블형 이차전지
KR20130040166A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079456A (en) 1960-10-28 1963-02-26 Joseph C Pawlak Deferred action battery
US4522897A (en) 1983-10-14 1985-06-11 Cape Cod Research, Inc. Rope batteries
DE3829419C1 (ko) 1988-08-31 1989-12-28 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn Gmbh & Co Kg, 5790 Brilon, De
FR2652450B1 (fr) 1989-09-22 1991-11-29 Accumulateurs Fixes Procede de fabrication d'une electrode a support de type mousse pour generateur electrochimique et electrode obtenue par ce procede.
JP2792144B2 (ja) * 1989-10-12 1998-08-27 松下電器産業株式会社 集合電池
JP3371301B2 (ja) 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
US5478676A (en) 1994-08-02 1995-12-26 Rexam Graphics Current collector having a conductive primer layer
JP3407501B2 (ja) 1995-09-29 2003-05-19 松下電器産業株式会社 ポリマ電解質およびそれを用いたリチウム・ポリマ電池
EP0876683B1 (en) 1996-01-25 2002-09-25 Danionics A/S Electrode/current collector, laminates for an electrochemical device
JP3260319B2 (ja) 1998-04-08 2002-02-25 ティーディーケイ株式会社 シート型電極・電解質構造体の製造方法
US6277514B1 (en) 1998-12-17 2001-08-21 Moltech Corporation Protective coating for separators for electrochemical cells
KR100329560B1 (ko) 1999-04-16 2002-03-20 김순택 집전체와 전극 및 이 전극을 이용한 이차전지
EP1115166A4 (en) 1999-06-22 2004-09-15 Mitsubishi Electric Corp CELL SEPARATOR, CELL, AND PROCESS FOR PRODUCING THE SAME
US6403263B1 (en) 2000-09-20 2002-06-11 Moltech Corporation Cathode current collector for electrochemical cells
JP5001487B2 (ja) * 2000-12-28 2012-08-15 株式会社フジシールインターナショナル 電池外装用ラベル
US7195844B2 (en) 2002-03-28 2007-03-27 Tdk Corporation Lithium secondary battery
US7174440B2 (en) * 2002-10-28 2007-02-06 Sandisk Corporation Method and apparatus for performing block caching in a non-volatile memory system
JP2004281156A (ja) * 2003-03-14 2004-10-07 Toyo Aluminium Kk 蓄電用容器、蓄電用容器集合体及びこれらの製造方法
JP2005038612A (ja) 2003-07-15 2005-02-10 Ngk Spark Plug Co Ltd リチウムイオン二次電池およびその製造方法
JP4518865B2 (ja) 2003-09-30 2010-08-04 三洋電機株式会社 非水電解質二次電池およびその製造方法
TWI258238B (en) 2003-11-05 2006-07-11 Lg Chemical Ltd Functional polymer film-coated electrode and electrochemical device using the same
US7279250B2 (en) 2003-11-24 2007-10-09 The Gillette Company Battery including aluminum components
KR100569188B1 (ko) 2004-01-16 2006-04-10 한국과학기술연구원 탄소-다공성 지지체 복합 전극 및 그 제조방법
KR100666821B1 (ko) 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
KR100625892B1 (ko) 2004-04-12 2006-09-20 경상대학교산학협력단 실형태의 가변형 전지
TWI313945B (en) 2004-05-17 2009-08-21 Lg Chemical Ltd Electrode, and method for preparing the same
US20060008702A1 (en) 2004-06-23 2006-01-12 Sang-Eun Cheon Secondary battery
JP2006069559A (ja) * 2004-08-31 2006-03-16 Toppan Printing Co Ltd 積層体および包装材料
US8247135B2 (en) 2004-09-14 2012-08-21 Case Western Reserve University Light-weight, flexible edge collected fuel cells
CN101048898B (zh) 2004-10-29 2012-02-01 麦德托尼克公司 锂离子电池及医疗装置
KR100582557B1 (ko) 2004-11-25 2006-05-22 한국전자통신연구원 표면 패터닝된 음극 집전체로 이루어지는 리튬금속 고분자이차전지용 음극 및 그 제조 방법
KR100772305B1 (ko) 2005-03-02 2007-11-02 마쯔시다덴기산교 가부시키가이샤 리튬이온 이차전지 및 그 제조법
JP4826214B2 (ja) 2005-11-04 2011-11-30 日産自動車株式会社 駆動システム
US8828591B2 (en) 2006-03-02 2014-09-09 Sony Corporation External packaging material for battery device, nonaqueous electrolyte secondary battery using the same, and battery pack
JP2007280617A (ja) * 2006-04-03 2007-10-25 Sony Corp 電池パック
KR100918751B1 (ko) 2006-07-26 2009-09-24 주식회사 엘지화학 분리막과의 계면 접착이 향상된 전극 및 이를 포함하는전기 화학 소자
US7955731B2 (en) 2006-08-14 2011-06-07 Sony Corporation Nonaqueous electrolyte secondary cell
WO2008049037A2 (en) 2006-10-17 2008-04-24 Maxwell Technologies, Inc. Electrode for energy storage device
US7976976B2 (en) 2007-02-07 2011-07-12 Rosecreek Technologies Inc. Composite current collector
JP5879018B2 (ja) 2007-05-10 2016-03-08 日立マクセル株式会社 電気化学素子およびその製造方法
EP2026403B1 (en) 2007-08-15 2017-05-24 Nissan Motor Co., Ltd. Cell and battery incorporating the cell
JP4301340B2 (ja) 2007-08-15 2009-07-22 日産自動車株式会社 組電池
KR101147604B1 (ko) * 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
US8871387B2 (en) 2007-10-26 2014-10-28 Sion Power Corporation Primer for battery electrode
US20100273056A1 (en) 2007-11-13 2010-10-28 Sumitomo Electric Industries, Ltd. Lithium battery and method for producing the same
JP5153734B2 (ja) 2008-07-29 2013-02-27 パナソニック株式会社 非水電解質二次電池用集電体
WO2010027203A2 (ko) 2008-09-03 2010-03-11 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
JP5308753B2 (ja) * 2008-09-11 2013-10-09 株式会社イノアックコーポレーション 蓄電装置用容器
JP2010160984A (ja) 2009-01-08 2010-07-22 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US8697290B2 (en) 2009-01-12 2014-04-15 A123 Systems Llc Laminated battery cell comprising multilayer composite separator and methods for creating the same
JP2010165471A (ja) 2009-01-13 2010-07-29 Sanyo Electric Co Ltd リチウム二次電池
JP4527190B1 (ja) 2009-01-14 2010-08-18 パナソニック株式会社 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP4835742B2 (ja) * 2009-02-20 2011-12-14 ソニー株式会社 電池および電池パック
KR101036164B1 (ko) 2009-04-24 2011-05-23 성균관대학교산학협력단 복합전극 및 이의 제조방법
CN102326218B (zh) * 2009-04-28 2013-01-02 太阳诱电株式会社 电化学器件及其制造方法
KR101064986B1 (ko) 2009-06-04 2011-09-15 강원대학교산학협력단 세라믹 다공성 지지체, 그를 이용한 강화 복합 전해질 막 및 그를 구비한 막-전극 어셈블리
CN105206793B (zh) 2009-08-24 2017-12-22 赛昂能源有限公司 用于电化学电池的剥离***
JP5646831B2 (ja) 2009-09-04 2014-12-24 日立マクセル株式会社 リチウム二次電池およびその製造方法、並びにリチウム二次電池用セパレータ
CN102484239B (zh) 2009-10-02 2015-04-08 丰田自动车株式会社 锂二次电池和该电池用正极
KR101115922B1 (ko) * 2010-02-02 2012-02-13 주식회사 엘지화학 케이블형 이차전지의 제조방법
JP2011192620A (ja) 2010-03-17 2011-09-29 Toyo Ink Sc Holdings Co Ltd リチウムイオン二次電池電極用カーボンブラック分散体の製造方法
KR101105355B1 (ko) 2010-03-26 2012-01-16 국립대학법인 울산과학기술대학교 산학협력단 플렉서블한 전극용 집전체, 이의 제조방법 및 이를 이용한 음극
KR20110127972A (ko) 2010-05-20 2011-11-28 주식회사 엘지화학 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
WO2011159083A2 (ko) 2010-06-14 2011-12-22 주식회사 엘지화학 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
KR101432862B1 (ko) 2010-06-15 2014-08-26 코오롱인더스트리 주식회사 다공성 지지체 및 그 제조방법
FR2961637B1 (fr) 2010-06-16 2012-07-27 Commissariat Energie Atomique Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur
KR20120000708A (ko) 2010-06-28 2012-01-04 주식회사 엘지화학 전기화학소자용 음극, 그 제조방법 및 이를 구비한 전기화학소자
KR101351896B1 (ko) 2010-06-28 2014-01-22 주식회사 엘지화학 케이블형 이차전지용 음극 및 이를 구비하는 케이블형 이차전지
US8980472B2 (en) 2010-08-05 2015-03-17 Toyota Jidosha Kabushiki Kaisha Secondary battery
KR101252981B1 (ko) 2010-08-05 2013-04-15 주식회사 엘지화학 안전성이 향상된 이차전지용 파우치 및 이를 이용한 파우치형 이차전지, 중대형 전지팩
KR101326623B1 (ko) 2010-08-09 2013-11-07 주식회사 엘지화학 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지
KR101322695B1 (ko) 2010-08-25 2013-10-25 주식회사 엘지화학 케이블형 이차전지
KR101322693B1 (ko) 2010-08-27 2013-10-25 주식회사 엘지화학 케이블형 이차전지
KR101423688B1 (ko) * 2010-11-04 2014-07-25 주식회사 엘지화학 케이블형 이차전지 및 그의 제조방법
US20120115259A1 (en) 2010-11-10 2012-05-10 Keon Jae Lee Method for fabricating flexible electronic device and electronic device fabricated thereby
KR101198806B1 (ko) 2010-12-06 2012-11-07 현대자동차주식회사 다공절연층을 포함하는 이차전지 전극 및 그 제조 방법
US20130288150A1 (en) 2010-12-23 2013-10-31 Garal Pty Ltd Fuel cell and electrolyser structure
ES2664321T3 (es) 2010-12-31 2018-04-19 General Electric Company Procedimiento de cámara de vacío para formar revestimientos de polímero sobre un soporte poros
CN103430370B (zh) 2011-03-11 2015-12-23 株式会社Lg化学 线缆型二次电池
CN102804455B (zh) 2011-03-16 2016-01-20 松下知识产权经营株式会社 卷绕式电池及其制造方法
JP5761687B2 (ja) 2011-07-11 2015-08-12 学校法人武庫川学院 数式出力コンピュータ、数式出力方法、数式出力プログラム、および数式出力プログラムを記録したコンピュータ読取可能な記録媒体
US9812730B2 (en) * 2011-08-02 2017-11-07 Johnson & Johnson Vision Care, Inc. Biocompatible wire battery
KR101506690B1 (ko) 2011-10-13 2015-03-27 주식회사 엘지화학 케이블형 이차전지
WO2013055188A1 (ko) 2011-10-13 2013-04-18 주식회사 엘지화학 케이블형 이차전지
KR101506689B1 (ko) * 2011-10-13 2015-03-27 주식회사 엘지화학 케이블형 이차전지
EP2772966B1 (en) 2011-10-25 2016-11-23 LG Chem, Ltd. Cathode for secondary battery and secondary battery having same
EP2772965B1 (en) 2011-10-25 2016-04-20 LG Chem, Ltd. Cathode for secondary battery and secondary battery having same
KR101522656B1 (ko) 2011-10-25 2015-05-22 주식회사 엘지화학 케이블형 이차전지
US8993172B2 (en) 2011-12-10 2015-03-31 Kalptree Energy, Inc. Li-ion battery and battery active components on metal wire
US8895189B2 (en) 2012-02-03 2014-11-25 Nanotek Instruments, Inc. Surface-mediated cells with high power density and high energy density
KR101470559B1 (ko) 2012-08-30 2014-12-08 주식회사 엘지화학 케이블형 이차전지용 음극 및 그를 포함하는 케이블형 이차전지
JP5912190B2 (ja) 2012-12-12 2016-04-27 エルジー・ケム・リミテッド 二次電池用電極、それを含む二次電池及びケーブル型二次電池
KR101548789B1 (ko) 2012-12-21 2015-09-01 주식회사 엘지화학 케이블형 이차전지 및 이의 제조 방법
EP2846381B1 (en) 2013-05-07 2018-02-28 LG Chem, Ltd. Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112461A1 (en) * 2001-03-01 2005-05-26 The University Of Chicago Packaging for primary and secondary batteries
JP2007265989A (ja) * 2006-03-02 2007-10-11 Sony Corp 電池素子外装材、これを用いた非水電解質二次電池及び電池パック
KR20080005627A (ko) * 2006-07-10 2008-01-15 주식회사 엘지화학 실링부의 안전성이 향상된 이차전지
KR20120094871A (ko) * 2011-02-17 2012-08-27 주식회사 엘지화학 케이블형 이차전지
KR20130040166A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2822059A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4254614A1 (en) * 2022-03-28 2023-10-04 Ningde Amperex Technology Limited Electrochemical device and electronic device

Also Published As

Publication number Publication date
KR101470554B1 (ko) 2014-12-10
CN104396043B (zh) 2016-10-19
US9324978B2 (en) 2016-04-26
EP2822059A4 (en) 2015-07-15
US20140335391A1 (en) 2014-11-13
JP2015521363A (ja) 2015-07-27
JP6073469B2 (ja) 2017-02-01
EP2822059A1 (en) 2015-01-07
KR20140128899A (ko) 2014-11-06
EP2822059B1 (en) 2017-03-01
CN104396043A (zh) 2015-03-04
KR101573381B1 (ko) 2015-12-11
KR20140128881A (ko) 2014-11-06

Similar Documents

Publication Publication Date Title
WO2014178590A1 (ko) 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2014182063A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182060A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182062A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2018034526A1 (ko) 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2014182058A1 (ko) 케이블형 이차전지
WO2014092471A1 (ko) 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182056A1 (ko) 케이블형 이차전지 및 그의 제조방법
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2016068651A2 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2015065118A1 (ko) 전극조립체 및 그를 포함하는 리튬 이차전지
WO2015080499A1 (ko) 케이블형 이차전지
WO2019050346A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지, 및 플렉서블 이차 전지
WO2017135793A1 (ko) 케이블형 이차전지 및 이의 제조방법
WO2017039398A1 (ko) 케이블형 이차전지 및 이의 제조방법
WO2016068684A1 (ko) 다층형 케이블형 이차전지
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
WO2017090937A1 (ko) 구조 변형이 적은 곡면 전지셀 및 이를 제조하는 방법
WO2014182064A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2013066117A1 (ko) 케이블형 이차전지
WO2018106093A1 (ko) 플렉서블 이차전지
WO2014077635A1 (ko) 무선 충전이 가능한 케이블형 이차전지
WO2017069586A1 (ko) 케이블형 이차전지
WO2016129939A1 (ko) 케이블형 이차전지

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014737131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014737131

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015514943

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE